STMicroelectronics STTH12R06 Technical data

®
TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIER
Table 1: Main Product Characteristics
I
F(AV)
V
RRM
I
(typ)
RM
T
j
(typ)
V
F
(max)
t
rr
FEATURES AND BENEFITS
Ultrafast switching
Low reverse recovery current
Low thermal resistance
Reduces switching losses
DESCRIPTION
The STTH12R06, which is using ST Turbo 2 600V technology, is specially suited as boost diode in continuous mode power factor corrections and hard switching conditions. This device is also intended for use as a free wheeling diode in power supplies and other power switching applications.
12 A
7 A
175°C
1.4 V
25 ns
K
TO-220AC
STTH12R06D
K
NC
D2PAK
STTH12R06G
STTH12R06
A
K
TO-220FPAC
STTH12R06FP
A
TO-220AC Insulated
STTH12R06DI
A
K
A
K
Table 2: Order Codes
Part Number Marking
STTH12R06D STTH12R06D
STTH12R06FP STTH12R06FP
STTH12R06G STTH12R06G
STTH12R06G-TR STTH12R06G
STTH12R06DI STTH12R06DI
STTH12R06DIRG STTH12R06DI
October 2004 REV. 2
1/9
STTH12R06
Table 3: Absolute Ratings (limiting values)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
T
T
Table 4: Thermal Resistance
Symbol Parameter Value (max). Unit
R
th(j-c)
Repetitive peak reverse voltage 600 V
RMS forward voltage
TO-220AC / TO-220FPAC / D
2
PAK
TO-220AC Ins. 24
Average forward current δ = 0.5
TO-220AC / D
TO-220FPAC Tc = 50°C
2
PAK
Tc = T125°C 12 A
TO-220AC Ins. Tc = 80°C
Surge non repetitive forward current tp = 10ms sinusoidal 100 A
Storage temperature range -65 to + 175 °C
stg
Maximum operating junction temperature 175 °C
j
Junction to case
TO-220AC / D
2
PAK
1.7 °C/W
TO-220FPAC 4.4
TO-220AC Ins. 3.3
30 A
Table 5: Static Electrical Characteristics
Symbol Parameter Test conditions Min. Typ Max. Unit
Reverse leakage current Tj = 25°C VR = V
I
R
T
= 125°C 50 600
j
Forward voltage drop Tj = 25°C IF = 12A 2.9 V
V
F
= 125°C 1.4 1.8
T
j
To evaluate the conduction losses use the following equation: P = 1.16 x I
F(AV)
RRM
+ 0.053 I
F2(RMS)
45 µA
Table 6: Dynamic Characteristics
Symbol Parameter Test conditions Min. Typ Max. Unit
I
t
rr
RM
Reverse recovery time
Reverse recovery current
Tj = 25°C IF = 0.5A Irr = 0.25A IR =1A 25 ns
= 1A dIF/dt = -50 A/µs VR =30V 45
I
F
Tj = 125°C IF = 12A VR = 400V
/dt = -200 A/µs
dI
F
7.0 8.4 A
S factor Softness factor 0.2
Qrr Reverse recovery
180 nC
charges
t
Forward recovery
fr
time
V
Forward recovery
FP
Tj = 25°C IF = 12A dIF/dt = 96 A/µs
V
= 1.1 x V
FR
Fmax
200 ns
5.5 V
voltage
2/9
STTH12R06
Figure 1: Conduction losses versus average current
P(W)
30
δ = 0.05
25
20
15
10
5
0
0123456789101112131415
δ = 0.1
δ = 0.2
I (A)
F(AV)
δ = 0.5
δ
=tp/T
δ = 1
T
tp
Figure 3: Relative variation of thermal impedance junction to case versus pulse
2
δ
=tp/T
PAK))
T
tp
duration (TO-220AC, TO-220AC Ins., D
Z/R
th(j-c) th(j-c)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
Single pulse
0.3
0.2
0.1
0.0
1.E-03 1.E-02 1.E-01 1.E+00
t (s)
p
Figure 2: Forward voltage drop versus forward current
I (A)
FM
120
110
100
90
80
70
60
50
40
30
20
10
0
0123456
(maximum values)
T =125°C
j
(typical values)
T =125°C
j
V (V)
FM
T =25°C
j
(maximum values)
Figure 4: Relative variation of thermal impedance junction to case versus pulse duration (TO-220FPAC)
Z/R
th(j-c) th(j-c)
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Single pulse
0.1
0.0
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01
t (s)
p
δ
=tp/T
T
tp
Figure 5: Peak reverse recovery current versus dI
/dt (typical values)
F
I (A)
RM
26
V =400V
R
24
T =125°C
j
22
20
18
16
14
12
10
8
6
4
2
0
0 200 400 600 800 1000
I =0.5 x I
F F(AV)
I =0.25 x I
FF(AV)
dI /dt(A/µs)
F
I=I
F F(AV)
I =2 x I
FF(AV)
Figure 6: Reverse recovery time versus dI (typical values)
t (ns)
rr
80
70
60
50
40
30
20
10
0
0 200 400 600 800 1000
I =2 x I
FF(AV)
dI /dt(A/µs)
I=I
FF(AV)
F
I =0.5 x I
FF(AV)
V =400V
R
T =125°C
j
/dt
F
3/9
Loading...
+ 6 hidden pages