ST MICROELECTRONICS STPSC406D Datasheet

STPSC406
K
K
A
K
A
NC
TO-220AC
STPSC406D
DPAK
STPSC406B
600 V power Schottky silicon carbide diode
Datasheet - production data
Description
The SiC diode is an ultrahigh performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide bandgap material allows the design of a Schottky diode structure with a 600 V rating. Due to the Schottky construction no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.
ST SiC diodes will boost the performance of PFC operations in hard switching conditions.

Table 1. Device summary

I
F(AV)
V
RRM
T
j (max)
Q
C (typ)
4 A
600 V
175 °C
3 nC
No or negligible reverse recovery
Switching behavior independent of
temperature
Dedicated to PFC boost diode
August 2015 DocID16283 Rev 2 1/8
This is information on a product in full production.
www.st.com
Characteristics STPSC406
dPtot
dTj
<
1
Rth(j-a)

1 Characteristics

Table 2. Absolute ratings (limiting values at 25 °C unless otherwise specified)

Symbol Parameter Value Unit
V
I
F(RMS)
I
F(AV)
I
I
1. condition to avoid thermal runaway for a diode on its own heatsink
Repetitive peak reverse voltage 600
RRM
Forward rms current 11 Average forward
current
Surge non repetitive
FSM
forward current
Repetitive peak forw ard
FRM
current
T
Storage temperature range -55 to +175 °C
stg
T
Operating junction temperature
j
DPAK, T TO-220AC, Tc = 95 °C, δ = 0.5
= 10 ms sinusoidal, Tc = 25 °C
t
p
tp = 10 ms sinusoidal, Tc = 125 °C tp = 10 µs square, Tc = 25 °C
DPAK, T TO-220AC, Tc = 105 °C, Tj = 150 °C, δ = 0.1
= 110 °C, δ = 0.5
c
= 115 °C, Tj = 150 °C, δ = 0.1
c
(1)
-40 to +175 °C

T a ble 3. Thermal resistance

4
14 10 40
14
Symbol Parameter Value Unit
T0-220AC 5.5
R
th(j-c)
Junction to case
DPAK 4.5

Table 4. Static electrical characteristics

V A
A
A
A
°C/W
Symbol Parameter Tests conditions Min. Typ. Max. Unit
T
= 25 °C
Reverse leakage
(1)
I
R
current
(2)
VF
1. tp = 10 ms, δ < 2%
2. tp = 500 µs, δ < 2%
Forward voltage drop
j
T
= 150 °C - 60 500
j
T
= 25 °C
j
= 150 °C - 1.9 2.4
T
j
V
I
To evaluate the conduction losses use the following equation: P = 1.20x I
2/8 DocID16283 Rev 2
F(AV)
+ 0.3 x I
F2(RMS)
= V
R
= 4 A
F
RRM
-1050 µA
-1.551.9
V
STPSC406 Characteristics
IFM(A)
0
1
2
3
4
5
6
7
8
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Tj=150 °CTj=150 °C
Tj=175 °CTj=175 °C
Tj=25 °CTj=25 °C
VFM(V)
IR(µA)
1.E-02
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
0 50 100 150 200 250 300 350 400 450 500 550 600
Tj=25 °CTj=25 °C
Tj=150 °CTj=150 °C
Tj=175 °CTj=175 °C
VR(V)
IM(A)
0
5
10
15
20
25
30
35
0 25 50 75 100 125 150 175
T
δ
=tp/T
tp
δ=0.1
δ=0.3
δ=0.5
d=1δ=1
d=0.7δ=0.7
TC(°C)
IM(A)
0
5
10
15
20
25
30
35
0 25 50 75 100 125 150 175
T
δ
=tp/T
tp
δ=0.1
δ=0.3
δ=0.5
d=1δ=1
d=0. 7δ=0.7
TC(°C)

Table 5. Other parameters

Symbol Parameter Test conditions Typ. Unit
Q
Total capacitive charge
c
C Total capacita nc e
Vr = 400 V, IF = 4 A dIF/dt = -200 A/µs T
= 150 °C
j
V
r
V
r
Figure 1. Forward voltage drop versus forward
current (typical values)
3nC
= 0 V, Tc = 25 °C, F = 1 Mhz 200
pF
= 400 V, Tc = 25 °C, F = 1 Mhz 20
Figure 2. Reverse leakage current versus
reverse voltage applied
(maximum values)
Figure 3. Peak forward current versus case
temperature (TO-220AC)
Figure 4. Peak forward current versus case
temperature (DPAK)
DocID16283 Rev 2 3/8
8
Loading...
+ 5 hidden pages