®
STPS10H100CT/CG/CR/CFP
HIGH VOLTAGE POWER SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
I
F(AV)
V
RRM
2x5A
100 V
Tj 175°C
V
(max) 0.61 V
F
FEATURES AND BENEFITS
HIGH JUNCTION TEMPERATURE CAPABILITY
■
FOR CONVERTERS LOCATED IN CONFINED
ENVIRONMENT
LOW LEAKAGE CURRENT AT HIGH
■
TEMPERATURE
LOW STATIC AND DYNAMIC LOSSES AS A
■
RESULT OF THE SCHOTTKY BARRIER
■ AVALANCHE CAPABILITY SPECIFIED
DESCRIPTION
Schottky barrier rectifier designed for high
frequency miniature Switched Mode Power
Supplies such as adaptators and on board
DC/DC converters. Packaged in TO-220AB,
TO-220FPAB, D
2
PAK and I2PAK.
A1
A2
K
A2
A1
D2PAK
STPS10H100CG
A1
TO-220AB
STPS10H100CT
K
K
A2
K
A1
I2PAK
STPS10H100CR
A1
A2
K
A2
K
TO-220FPAB
STPS10H100CFP
ABSOLUTE RATINGS (limiting values, per diode)
Symbol Parameter Value Unit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage 100 V
RMS forward current 10 A
Average forward
current δ = 0.5
TO-220AB
D2PAK/I2PAK
Tc = 165°C per diode
per device
5
10
TO-220FPAB Tc = 160°C
I
I
P
T
FSM
RRM
ARM
Surge non repetitive forward current tp= 10 ms sinusoidal 180 A
Repetitive peak reverse current tp=2µssquare F = 1kHz 1 A
Repetitive peak avalanche power tp = 1µs Tj = 25°C 7200 W
Storage temperature range -65 to+ 175 °C
stg
Tj Maximum operating junction temperature * 175 °C
dV/dt Critical rate of rise of reverse voltage 10000 V/µs
dPtot
*:
<
dTj Rth j a
July 2003 - Ed: 3F
thermal runaway condition for a diode on its own heatsink
−1()
A
1/7
STPS10H100CT/CG/CR/CFP
THERMAL RESISTANCES
Symbol Parameter Value Unit
R
th (j-c)
R
th (c)
R
th (j-c)
R
th (c)
When the diodes 1 and 2 are used simultaneously :
∆ Tj(diode 1) = P(diode1) x R
STATIC ELECTRICAL CHARACTERISTICS (per diode)
Symbol Parameter Tests conditions Min. Typ. Max. Unit
I
R
V
F
Junction to case D2PAK / I2PAK
TO-220AB
Per diode 2.2 °C/W
Total 1.3
Coupling 0.3
Junction to case TO-220FPAB Per diode 4.5 °C/W
Total 3.5
Coupling 2.5
(Per diode) + P(diode 2) x R
th(j-c)
* Reverse leakage current Tj= 25°C VR=V
th(c)
RRM
3.5 µA
Tj = 125°C 1.3 4.5 mA
** Forward voltage drop Tj = 25°CI
= 5 A 0.73 V
F
Tj = 125°C 0.57 0.61
Tj=25°CI
= 10 A 0.85
F
Tj = 125°C 0.66 0.71
Pulse test : * tp=5ms,δ<2%
** tp = 380 µs, δ <2%
To evaluate the maximum conduction losses use the following equation :
P=0.51xI
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
PF(av)(W)
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
F(AV)
+0.02xI
δ = 0.1
δ = 0.05
F2(RMS)
δ = 0.2
IF(av) (A)
δ = 0.5
δ
=tp/T
δ = 1
T
Fig. 2: Average forward current versus ambient
temperature (δ=0.5, per diode).
IF(av)(A)
6
5
4
3
2
tp
1
0
0 25 50 75 100 125 150 175
Rth(j-a)=Rth(j-c)
D²PAK/I²PAK/TO-220AB
TO-220FPAB
Rth(j-a)=15°C/W
Tamb(°C)
2/7
STPS10H100CT/CG/CR/CFP
Fig. 3: Normalized avalanche power derating ver-
sus pulse duration.
P(t)
ARM p
P (1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.01 1
p
10 100 1000
Fig. 5-1: Non repetitive surge peak forward
current versus overload duration (maximum
values, per diode)
IM(A)
120
100
80
60
40
IM
20
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=50°C
Tc=75°C
Tc=125°C
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P (25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0 25 50 75 100 125 150
T (°C)
j
Fig.5-2: Non repetitivesurge peak forward current
versus overload duration (maximum values, per
diode)(TO-220FPAB)
IM(A)
80
70
60
50
40
30
20
IM
10
0
1E-3 1E-2 1E-1 1E+0
δ=0.5
t
t(s)
Tc=50°C
Tc=75°C
Tc=125°C
Fig. 6-1: Relative variation of thermal impedance
junction to case versus pulse duration (per diode).
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
δ = 0.2
0.4
δ = 0.1
0.2
Single pulse
0.0
1E-3 1E-2 1E-1 1E+0
tp(s)
δ
=tp/T
T
tp
Fig. 6-2: Relative variation of thermal impedance
junction to case versus pulse duration (per
diode).(TO-220FPAB)
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ
=tp/T
T
tp
3/7
δ = 0.2
0.2
δ = 0.1
0.0
Single pulse
1E-3 1E-2 1E-1 1E+0 1E+1
tp(s)