ST MICROELECTRONICS STM32WL55CCU6 Datasheet

Page 1
STM32WL55xx STM32WL54xx
UFQFPN48 (7 x 7 mm)
UFBGA73 (5 x 5 mm)
WLCSP59
Multiprotocol LPWAN dual core 32-bit Arm® Cortex®-M4/M0+
LoRa
Features
Radio
Frequency range: 150 MHz to 960 MHz
Modulation: LoRa
BPSK
RX sensitivity: (at 1.2 Kbit/s), (at 10.4 kHz, spreading factor 12)
Transmitter high output power, programmable up to +22 dBm
Transmitter low output power, programmable up to +15 dBm
Compliant with the following radio frequency regulations such as ETSI EN 300 220, EN 300 113, EN 301 166, FCC CFR 47 Part 15, 24, 90, 101 and the Japanese ARIB STD-T30, T-67, T-108
Compatible with standardized or proprietary protocols such as LoRaWAN W-MBus and more (fully open wireless system-on-chip)
Ultra-low-power platform
1.8 V to 3.6 V power supply
40 °C to +105 °C temperature range
Shutdown mode: 31 nA (V
Standby (+ RTC) mode:
360 nA (V
Stop2 (+ RTC) mode: 1.07 µA (V
Active-mode MCU: < 72 µA/MHz (CoreMark
Active-mode RX: 4.82 mA
Active-mode TX: 15 mA at 10 dBm and 87 mA
at 20 dBm (LoRa
Core
32-bit Arm® Cortex®-M4 CPU
®
®
, (G)FSK, (G)MSK and
123 dBm for 2-FSK148 dBm for LoRa
= 3 V)
DD
®
125 kHz)
DD
®
®
, Sigfox™,
= 3 V)
= 3 V)
DD
®
Datasheet - production data
– Adaptive real-time accelerator (ART
Accelerator) allowing 0-wait-state execution from Flash memory, frequency up to 48 MHz, MPU and DSP instructions
– 1.25 DMIPS/MHz (Dhrystone 2.1)
32-bit Arm
®
Cortex®-M0+ CPU
– Frequency up to 48 MHz, MPU – 0.95 DMIPS/MHz (Dhrystone 2.1)
Security and identification
Hardware encryption AES 256-bit
True random number generator (RNG)
Sector protection against read/write operations
(PCROP, RDP, WRP)
CRC calculation unit
Unique device identifier (64-bit UID compliant
with IEEE 802-2001 standard)
96-bit unique die identifier
Hardware public key accelerator (PKA)
Key management services
Secure sub-GHz MAC layer
Secure firmware update (SFU)
Secure firmware install (SFI)
)
Supply and reset management
High-efficiency embedded SMPS step-down converter
SMPS to LDO smart switch
Ultra-safe, low-power BOR (brownout reset)
with 5 selectable thresholds
Ultra-low-power POR/PDR
November 2020 DS13293 Rev 1 1/145
This is information on a product in full production.
www.st.com
Page 2
STM32WL55/54xx
Programmable voltage detector (PVD)
V
mode with RTC and 20x32-byte backup
BAT
registers
Clock sources
32 MHz crystal oscillator
TCXO support: programmable supply voltage
32 kHz oscillator for RTC with calibration
High-speed internal 16 MHz factory trimmed
RC (± 1 %)
Internal low-power 32 kHz RC
Internal multi-speed low-power 100 kHz to
48 MHz RC
PLL for CPU, ADC and audio clocks
Memories
256-Kbyte Flash memory
64-Kbyte RAM
20x32-bit backup register
Bootloader supporting USART and SPI
interfaces
OTA (over-the-air) firmware update capable
Sector protection against read/write operations
System peripherals
Mailbox and semaphores for communication between Cortex firmware
®
-M4 and Cortex®-M0+
Controllers
2x DMA controller (7 channels each) supporting ADC, DAC, SPI, I2C, LPUART, USART, AES and timers
2x USART (ISO 7816, IrDA, SPI)
1x LPUART (low-power)
2x SPI 16 Mbit/s (1 over 2 supporting I2S)
3x I2C (SMBus/PMBus™)
2x 16-bit 1-channel timer
1x 16-bit 4-channel timer (supporting
motor control)
1x 32-bit 4-channel timer
3x 16-bit ultra-low-power timer
1x RTC with 32-bit sub-second wakeup
counter
1x independent SysTick
1x independent watchdog
1x window watchdog
Rich analog peripherals (down to 1.62 V)
12-bit ADC 2.5 Msps, up to 16 bits with hardware oversampling, conversion range up to 3.6 V
12-bit DAC, low-power sample-and-hold
2x ultra-low-power comparators

Table 1. Device summary

Reference Part number
STM32WL55xx STM32WL55CC, STM32WL55JC, STM32WL55UC
STM32WL54xx STM32WL54CC, STM32WL54JC, STM32WL54UC
Up to 43 I/Os, most 5 V-tolerant
Development support
Serial-wire debug (SWD), JTAG
Dual CPU cross trigger capabilities
All packages ECOPACK2 compliant
2/145 DS13293 Rev 1
Page 3
STM32WL55/54xx Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Arm Cortex-M cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Adaptive real-time memory accelerator (ART Accelerator) . . . . . . . . . . . 15
3.4 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Security memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 Global security controller (GTZC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9 Sub-GHz radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.2 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.3 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.4 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.5 RF-PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.6 Intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10.3 Linear voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10.4 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.11.1 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12 Peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.13 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.14 Hardware semaphore (HSEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.15 Inter-processor communication controller (IPCC) . . . . . . . . . . . . . . . . . . 38
DS13293 Rev 1 3/145
6
Page 4
Contents STM32WL55/54xx
3.16 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.17 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.18 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.18.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 39
3.18.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 39
3.19 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20.2 Internal voltage reference (V
3.20.3 V
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
BAT
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
REFINT
3.21 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.22 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.23 Comparator (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.24 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.25 Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 42
3.26 Public key accelerator (PKA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.27 Timer and watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.27.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.27.2 General-purpose timers (TIM2, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . 43
3.27.3 Low-power timers (LPTIM1, LPTIM2 and LPTIM3) . . . . . . . . . . . . . . . . 44
3.27.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.27.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.27.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.28 Real-time clock (RTC), tamper and backup registers . . . . . . . . . . . . . . . 45
3.29 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.30 Universal synchronous/asynchronous receiver transmitter
(USART/UART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.31 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 47
3.32 Serial peripheral interface (SPI)/integrated-interchip sound
interface (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.33 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Pinouts, pin description and alternate functions . . . . . . . . . . . . . . . . . 49
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4/145 DS13293 Rev 1
Page 5
STM32WL55/54xx Contents
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Main performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.3 Sub-GHz radio characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.4 Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . 74
5.3.5 Embedded reset and power-control block characteristics . . . . . . . . . . . 75
5.3.6 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.8 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.12 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.14 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.18 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.19 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 116
5.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.21 V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
BAT
5.3.22 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.23 Digital-to-analog converter characteristics . . . . . . . . . . . . . . . . . . . . . . 124
5.3.24 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.25 Timers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.26 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 130
DS13293 Rev 1 5/145
6
Page 6
Contents STM32WL55/54xx
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.1 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2 WLCSP59 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 UFBGA73 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6/145 DS13293 Rev 1
Page 7
STM32WL55/54xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. Main features and peripheral count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Access status versus RDP level and execution mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4. Sub-GHz radio transmit high output power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 5. FSK mode intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. LoRa mode intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 7. Functionalities depending on system operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 8. Low-power mode summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 9. MCU and sub-GHz radio operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 10. Peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 11. DMA1 and DMA2 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 12. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 13. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 14. Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 15. I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 16. USART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 17. SPI and SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 18. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 19. STM32WL55/54xx pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 20. Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 21. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 22. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 23. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 24. Main performances at VDD = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 25. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 26. Operating range of RF pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 27. Sub-GHz radio power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 28. Sub-GHz radio power consumption in transmit mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 29. Sub-GHz radio general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 30. Sub-GHz radio receive mode specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 31. Sub-GHz radio transmit mode specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 32. Sub-GHz radio power management specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 33. Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 34. Embedded reset and power-control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 35. Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 36. Current consumption in Run and LPRun modes on CPU1, CoreMark code with data
running from Flash memory, ART enable (cache ON, prefetch OFF) . . . . . . . . . . . . . . . . 78
Table 37. Current consumption in Run and LPRun modes on CPU1 and CPU2, CoreMark code
with data running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 38. Current consumption in Run and LPRun modes on CPU1, CoreMark code
with data running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 39. Typical current consumption in Run and LPRun modes on CPU1, with different codes
running from Flash memory, ART enable (cache ON, prefetch OFF) . . . . . . . . . . . . . . . . 81
Table 40. Typical current consumption in Run and LPRun modes on CPU1,
with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 41. Current consumption in Sleep and LPSleep modes on CPU1, Flash memory ON . . . . . . 85
Table 42. Current consumption in Sleep and LPSleep modes on CPU1 and CPU2,
Flash memory ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
DS13293 Rev 1 7/145
9
Page 8
List of tables STM32WL55/54xx
Table 43. Current consumption in LPSleep mode on CPU1, Flash memory in power-down . . . . . . . 86
Table 44. Current consumption in LPSleep mode on CPU1 and CPU2,
Flash memory in power-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 45. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 46. Current consumption during wakeup from Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 47. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 48. Current consumption during wakeup from Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 49. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 50. Current consumption during wakeup from Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 51. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 52. Current consumption during wakeup from Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 53. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 54. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 55. Current under Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 56. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 57. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 58. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 59. HSE32 crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 60. HSE32 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 61. HSE32 TCXO regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 62. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 63. Low-speed external user clock characteristics – Bypass mode . . . . . . . . . . . . . . . . . . . . 100
Table 64. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 65. MSI oscillator characteristics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Table 66. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 67. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 68. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 69. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 70. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 71. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 72. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 73. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 74. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 75. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 76. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 77. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 78. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 79. Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 80. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 81. Maximum ADC R
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
AIN
Table 82. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 83. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 84. V Table 85. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
BAT
Table 86. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 87. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 88. DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 89. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 90. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 91. IWDG min/max timeout period at 32 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 92. Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 93. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8/145 DS13293 Rev 1
Page 9
STM32WL55/54xx List of tables
Table 94. USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 95. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 96. Dynamic JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 97. Dynamic SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 98. UFQFPN48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 99. UFBGA73 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 100. UFBGA recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . 141
Table 101. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 102. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
DS13293 Rev 1 9/145
9
Page 10
List of figures STM32WL55/54xx
List of figures
Figure 1. STM32WL55/54xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2. sub-GHz radio system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 3. High output power PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 4. Low output power PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 5. Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 6. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 7. Supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 8. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 9. UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 10. UFBGA73 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 15. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 16. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 17. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 18. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 19. Typical current consumption vs. MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 20. I/O input characteristics - V
Figure 21. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 22. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 23. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 24. VREFOUT_TEMP when VRS = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 25. VREFOUT_TEMP when VRS = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 26. 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 27. SPI timing diagram - Slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 28. SPI timing diagram - Slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 29. SPI timing diagram - Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 30. UFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 31. UFQFPN48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 32. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 33. UFBGA73 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 34. UFBGA73 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 35. UFBGA73 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
and V
IL
on all I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
IH
10/145 DS13293 Rev 1
Page 11
STM32WL55/54xx Introduction

1 Introduction

This document provides information on the STM32WL55/54xx microcontrollers.
®(a)
For information on the Arm
®
Cortex
-M4 Technical Reference Manual and to the Cortex®-M0+ Technical Reference
Cortex®-M4 and Cortex®-M0+ cores, refer respectively to the
Manual available from the www.arm.com website.
For information on LoRa
®
modulation, refer to the Semtech website
(https://www.semtech.com/technology/lora).

2 Description

The STM32WL55/54xx long-range wireless and ultra-low-power devices embed a powerful
and ultra-low-power LPWAN-compliant radio solution, enabling the following modulations:
®
LoRa
, (G)FSK, (G)MSK, and BPSK.
The LoRa
These devices are designed to be extremely low-power and are based on the
high-performance Arm
48 MHz. This core implements a full set of DSP instructions. It is complemented by an Arm
Cortex
®
modulation is available in STM32WLx5xx only.
®
Cortex®-M4 32-bit RISC core operating at a frequency of up to
®
-M0+ microcontroller. Both cores implement an independent memory protection unit
®
(MPU) that enhances the application security.
The devices embed high-speed memories (256-Kbyte Flash memory, 64-Kbyte SRAM), and
an extensive range of enhanced I/Os and peripherals.
The devices also embed several protection mechanisms for embedded Flash memory and
SRAM: readout protection, write protection and proprietary code readout protection.
In addition, the STM32WL55/54xx devices support the following secure services running on
®
Arm
Cortex-M0+: unique boot entry capable, secure sub-GHz MAC layer, secure firmware
update, secure firmware install and storage and management of secure keys.
These devices offer a 12-bit ADC, a 12-bit DAC low-power sample-and-hold, two
ultra-low-power comparators associated with a high-accuracy reference voltage generator.
The devices embed a low-power RTC with a 32-bit sub-second wakeup counter, one 16-bit
single-channel timer, two 16-bit four-channel timers (supporting motor control), one 32-bit
four-channel timer and three 16-bit ultra-low-power timers.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS13293 Rev 1 11/145
14
Page 12
Description STM32WL55/54xx
These devices also embed two DMA controllers (7 channels each) allowing any transfer
combination between memory (Flash memory, SRAM1 and SRAM2) and peripheral, using
the DMAMUX1 for flexible DMA channel mapping.
The devices also feature the standard and advanced communication interfaces listed below:
inter-processor communication controller (mailbox) and semaphores for communication between the two Arm
®
Cortex®-M cores
two USART (supporting LIN, smartcard, IrDA, modem control and ISO7816)
one low-power UART (LPUART)
three I2C (SMBus/PMBus)
two SPIs (up to 16 MHz, one supporting I
The operating temperature/voltage ranges are
2
S)
40 °C to +105 °C (+85 °C with radio)
(a)
from a 1.8 V to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.
The devices integrate a high-efficiency SMPS step-down converter and independent power supplies for ADC, DAC and comparator analog inputs.
A V
dedicated supply allows the LSE 32.768 kHz oscillator, the RTC and the backup
BAT
registers to be backed up. The devices can maintain these functions even if the main V not present, through a CR2032-like battery, a supercap or a small rechargeable battery.
Feature
CPU Arm
Maximum CPU frequency (MHz) 48
Flash memory density (Kbytes) 256
SRAM density (Kbytes)
Radio
Radio PA
SRAM1 32
SRAM2 32
LoRa
(G)FSK
BPSK
Low output power (up to 15 dBm)
High output power (up to 22 dBm)

Table 2. Main features and peripheral count

STM32WL55Cx
STM32WL54Cx
Available on STM32WL55xx devices.
Not available on STM32WL54xx devices
STM32WL55Jx
STM32WL54Jx
Cortex-M4 and Cortex-M0
Yes(G)MSK
Yes
DD
STM32WL55Ux
STM32WL54Ux
is
General purpose 4
Timer
a. Devices with suffix 6 operate up to 85 °C. Devices with suffix 7 can operate up to 105 °C except radio.
12/145 DS13293 Rev 1
Low-power 3
SysTick 1
Page 13
STM32WL55/54xx Description
Table 2. Main features and peripheral count (continued)
Feature
STM32WL55Cx
STM32WL54Cx
STM32WL55Jx
STM32WL54Jx
SPI/I2S 2 (1 supporting I2S)
2
C3
Communication interface
I
USART 2
LPUART 1
Independent 1
Watchdog
Window 1
RTC (with wakeup counter) 1
DMA (7 channels) 2
Mailbox and semaphores 1
AES 256 bits 1
RNG 1
PKA 1
P C R O P, R DP, WR P 1
CRC 1
64-bit UID compliant with IEEE 802-2001 standard
Security
96-bit die ID 1
STM32WL55Ux
STM32WL54Ux
1
Storage and management of secure
1
keys
Secure sub-GHz MAC layer
1
Secure firmware update 1
Secure firmware install 1
Tamper pins 3 3 2
Wakeup pins 3 3 2
GPIOs 29 43 22
ADC (number of channels, ext + int) 1 (9 + 4) 1 (12 + 4) 1 (8 + 4)
DAC (number of channels) 1 (1)
Internal VREFBUF No Yes No
Analog comparator 2
Operating voltage 1.8 to 3.6 V
Ambient operating temperature –40 °C to +85 °C
Junction temperature –40 °C to +105 °C
Package
UFQFPN48
(7x7 mm)
UFBGA73
(5x5 mm)
WLCSP59
DS13293 Rev 1 13/145
14
Page 14
Description STM32WL55/54xx
MSv66957V1
DMA1 (7 channels)
NVIC
TIM17
EXTI
TIM16
GPIO
ports A,B,C,H
PWR
SRAM1
RTC
TAMP
IWDG
LSE
32 kHz
HSE32 32 MHz
MSI 5 %
0.1-48MHz
HSI 1 % 16 MHz
PLL
Power supply
POR/PDR/BOR/PVD/PVM
ADC (12 bits ULP,
2 Msps, 12 channels)
Temperature sensor
APB1 and APB 2
Backup domain
JTAG/SWD
Flash interface arbiter
+
ART Accelerator
256-Kbyte
Flash memory
Sub-GHz
radio
RNG
LSI
32 kHz
LPTIM2
LPTIM1
CRC
RCC
SYSCFG/
COMP/VREF
HSEM
WWDG
SPI2S2
I2C3
LPUART1
SPI1
USART1
TIM2
MPU
SRAM2
backup memory
Cortex-M4
(DSP)
≤ 48 MHz
DMAMUX
DMA2 (7 channels)
LDO/SMPS
LPTIM3
TIM1
I2C1
I2C2
USART2
DAC
(12 bits)
AES
PKA
AHB1 and AHB2
TZSC
IPCC
NVIC
MPU
Cortex-M0+
≤ 48 MHz
SUBGHZ
SPI
CTI
TZIC
AHB3

Figure 1. STM32WL55/54xx block diagram

14/145 DS13293 Rev 1
Page 15
STM32WL55/54xx Functional overview

3 Functional overview

3.1 Architecture

The devices embed a sub-GHz RF subsystem that interfaces with a generic microcontroller subsystem using an Arm Cortex-M4 (called CPU1) and an Arm Cortex-M0+ (called CPU2).
An RF low-layer stack is needed and is to be run on CPU1 or CPU2, whereas the host application code is preferably run on CPU1.
The RF subsystem communication is done through an internal SPI interface.
All secure code must be run by CPU2.

3.2 Arm Cortex-M cores

With its embedded Arm cores, the STM32WL55/54xx devices are compatible with all Arm tools and software.
Figure 1 shows the general block diagram of the STM32WL55/54xx devices.

Arm Cortex-M4

The Arm Cortex-M4 is a processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The Arm Cortex-M4 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices.
This processor supports a set of DSP instructions that allow efficient signal processing and complex algorithm execution.

Arm Cortex-M0+

The Arm Cortex-M0+ is an entry-level processor for embedded systems. It has been developed to provide lowest power consumption in the Cortex-M family, while delivering good computation performance and response to interrupts.
The Arm Cortex-M0+ 32-bit RISC processor features good code-efficiency with ultra-low power consumption in the memory size usually associated with 8-bit and 16-bit devices.

3.3 Adaptive real-time memory accelerator (ART Accelerator)

The ART Accelerator is a memory accelerator that is optimized for STM32 industry-standard Arm Cortex-M4 processor. The ART Accelerator balances the inherent performance advantage of the Arm Cortex-M4 over Flash memory technologies, that normally require the processor to wait for the Flash memory at higher frequencies.
To release the processor near 60 DMIPS performance at 48 MHz, the ART Accelerator implements an instruction prefetch queue and branch cache, that increases the program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
DS13293 Rev 1 15/145
48
Page 16
Functional overview STM32WL55/54xx
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 48 MHz.

3.4 Memory protection unit (MPU)

The memory protection unit (MPU) is used to manage the CPU1 and CPU2 accesses to memory, to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to eight protected areas that can in turn be divided up into eight subareas. The protection area sizes are between 32 bytes and the whole 4 Gbytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code must be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real­time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

3.5 Memories

3.5.1 Embedded Flash memory

The Flash memory interface manages the accesses from CPU1 AHB ICode/DCode and CPU2 AHB Sbus to the Flash memory. It implements the access, the erase and program Flash memory operations, and the read and write protection.
The main features of the Flash memory are listed below:
Memory organization: 1 bank
main memory: up to 256 Kbytes
page size: 2 Kbytes
72-bit wide data read (64 bits plus 8 ECC bits)
72-bit wide data write (64 bits plus 8 ECC bits)
Page erase and mass erase
Flexible protections can be configured thanks to option bytes:
Readout protection (RDP) to protect the whole memory. Three levels are available:
Level 0: no readout protection
Level 1: memory readout protection. The Flash memory cannot be read from or
written to if either debug features are connected, boot in SRAM or bootloader is selected.
Level 2: chip readout protection. Debug features (JTAG and serial wire), boot in
SRAM and bootloader selection are disabled (JTAG fuse). This selection can only be reverted by the secure CPU2.
16/145 DS13293 Rev 1
Page 17
STM32WL55/54xx Functional overview
Table 3. Access status versus RDP level and execution mode
Area
Main memory
System memory
Option bytes
Backup registers
SRAM2
1. The option byte can be modified by the sub-GHz radio.
2. Erased when RDP changes from Level 1 to Level 0.
RDP level
Read Write Erase Read Write Erase
1 Yes Yes Yes No No No
2 Yes Yes Yes NA NA NA
1Yes No No Yes No No
2 Yes No No NA NA NA
1 Yes Yes Yes Yes Yes Yes
2Yes No
1Yes Yes NA
2YesYesNANANANA
1 Yes Yes Yes
2 Yes Yes Yes NA NA NA
User execution
(1)
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 4-Kbyte granularity.
Proprietary code readout protection (PCROP): two parts of the Flash memory can be
protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU1/2, as an instruction code, while all other accesses (DMA, debug and CPU1/2 data read, write and erase) are strictly prohibited. Two areas can be selected, with 2-Kbyte granularity. An additional option bit (PCROP_RDP) is used to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.
No
(1)
(2)
(2)
Debug, boot from SRAM or boot from
system memory (loader)
NA NA NA
No No NA
No No No
(2)
(2)
A section of the Flash memory can be secured for CPU2, and, in that case, cannot be accessed by CPU1.
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction
double error detection
address of the ECC fail can be read in the FLASH_ECCR register
The embedded Flash memory is shared between CPU1 and CPU2 on a time sharing basis. A dedicated hardware mechanism allows both CPUs to suspend write/erase operations.

3.5.2 Embedded SRAM

The devices feature up to 64 Kbytes of embedded SRAM, split in two blocks:
SRAM1: up to 32 Kbytes mapped at address 0x2000 0000
SRAM2: up to 32 Kbytes located at address 0x2000 8000 (contiguous to SRAM1), also
mirrored at 0x1000 0000, with hardware parity check (this SRAM can be retained in Standby mode)
The SRAMs can be accessed in read/write with 0 wait states for all CPU1/2 clock speeds.
DS13293 Rev 1 17/145
48
Page 18
Functional overview STM32WL55/54xx

3.6 Security memory management

The devices contain many security blocks both for the sub-GHz MAC layer and the Host application, such as:
securable RNG
customer keys storage
secure Flash memory partition for CPU2 only access
secure SRAM partition, that can be accessed only by CPU2
securable sub-GHz radio sub-system
securable DMA channels
securable AES: 128-and 256-bit AES, supporting ECB, CBC, CTR, GCM, GMAC and
CCM chaining modes
securable PKA:
modular arithmetic including exponentiation with maximum modulo size of
3136 bits
elliptic curves over prime field scalar multiplication, ECDSA signature, ECDSA
verification with maximum modulo size of 521 bits
cyclic redundancy check calculation unit (CRC)

3.7 Boot modes

At startup, BOOT0 pin and BOOT1 option bit are used to select one of the following boot options:
Boot from user Flash memory
Boot from boot system memory (where embedded bootloader is located)
Boot from embedded SRAM
Boot from system memory (where the embedded SFI is located)
The bootloader makes possible to download code from USART or SPI.

3.8 Global security controller (GTZC)

The GTZC includes the following sub-blocks:
TZSC: security controller
This sub-block defines the secure/privileged state of slave peripherals. It also controls the unprivileged area size for the watermark memory peripheral controller (MPCWM).
TZIC: security illegal access controller
This sub-block gathers all illegal access events in the system and generates a secure interrupt towards the secure CPU2 NVIC.
These sub-blocks are used to configure the system security and privilege such as:
on-chip Flash memory and RAM with programmable privileged protection on both
secure and non-secure memory areas
AHB and APB peripherals with programmable security and/or privileged access
18/145 DS13293 Rev 1
Page 19
STM32WL55/54xx Functional overview
MSv62614V1
Sub-GHz radio
Sub-GHz
RF frontend
Radio control
SUBGHZSPI
hse32
Interrups
RFO_LP
RFO_HP
RFI_P
RFI_N
FSK
modem
LoRa
modem
(note)
Data
and
control
HSE32
OSC_IN
OSC_OUT
BUSY
HSERDY
HSEON
HSEBYPPWR
Note: LoRa modem is only available on STM32WL55xx devices.
VR_PA
VDDPA
PB0_VDDTCXO

3.9 Sub-GHz radio

3.9.1 Introduction

The sub-GHz radio is an ultra-low-power sub-GHz radio operating in the 150 - 960 MHz ISM band. LoRa, (G)FSK/(G)MSK modulation in transmit and receive, and (D)BPSK in transmit only, allow an optimal trade-off between range, data rate and power consumption. This sub­GHz radio is compliant with the LoRaWAN ETSI EN 300 220, EN 300 113, EN 301 166, FCC CFR 47 part 15, 24, 90, 101 and the ARIB STD-T30, T-67, T-108.
The sub-GHz radio consists of:
an analog front-end transceiver, capable of outputting up to + 15 dBm maximum power
on its RFO_LP pin and up to + 22 dBm maximum power on RFO_HP pin
a digital modem bank providing the following modulation schemes:
LoRa Rx/Tx with bandwidth (BW) from 7.8 - 500 kHz, spreading factor (SF)
5 - 12, bit rate (BR) from 0.013 to 17.4 Kbit/s (real bitrate)
FSK and GFSK Rx/Tx with BR from 0.6 to 300 Kbit/s
(G)MSK Tx with BR from 0 to 10 Kbit/s
BPSK and DBPSK TX only with bitrate for 100 and 600 bit/s
a digital control including all data processing and sub-GHz radio configuration control
a high-speed clock generation
®
specification v1.0 and radio regulations such as

3.9.2 General description

The sub-GHz radio provides an internal processing unit to handle communication with the system CPU. Communication is handled by commands sent over the SPI interface, and a set of interrupts is used to signal events. BUSY information signals operation activity and is used to indicate when the sub-GHz radio commands cannot be received.
The block diagram of the sub-GHz radio system is shown in the figure below.
Figure 2. sub-GHz radio system block diagram
DS13293 Rev 1 19/145
48
Page 20
Functional overview STM32WL55/54xx
MSv62616V2
VLXSMPS
VFBSMPS (1.55V)
VDDPA
VR_PA (up to 3.1V)
RFO_HP
LDO/SMPS
REG
PA
HP PA
VLXSMPS
VFBSMPS (1.55V)
VDDPA
VR_PA (up to 3.1V)
RFO_HP
LDO/SMPS
REG
PA
HP PA
V
DD
V
DD
V
DD
V
DD
VDDSMPS (1.8 to 3.6V) VDDSMPS (1.8 to 3.6V)
LDO mode
SMPS mode
Note: Use of the SMPS is optional. When SMPS is not used, the BOM can be reduced by removing the coil between VLXSMPS and VFBSMPS pins.

3.9.3 Transmitter

The transmit chain comprises the modulated output from the modem, that directly modulates the RF-PLL. An optional pre-filtering of the bit stream can be enabled to reduce the power in the adjacent channel also dependent on the selected modulation scheme. The modulated signal from the RF-PLL directly drives the high output power PA (HP PA) or low output power PA (LP PA).
Transmitter high output power
Transmit high output power up to + 22 dBm, is supported through the RFO_HP RF pin.
For this, the REG PA must be supplied directly from V
on VDDSMPS pin, as shown in the
DD
figure below.
The output power range is programmable in 32 steps of ~ 1 dB. The power amplifier ramping timing is also programmable.This allows adaptation to meet radio regulation requirements.
Figure 3. High output power PA
The table below gives the maximum transmit output power versus the V
V
DDPA
Table 4. Sub-GHz radio transmit high output power
supply (V) Transmit output power (dBm)
3.3 + 22
20/145 DS13293 Rev 1
2.7 + 20
2.4 + 19
1.8 + 16
supply level.
DDPA
Page 21
STM32WL55/54xx Functional overview
MSv62617V2
Note: Use of the SMPS is optional. When SMPS is not used, the BOM can be reduced by removing the coil between VLXSMPS and VFBSMPS pins.
VLXSMPS
VFBSMPS (1.55V)
VDDPA
VR_PA (up to 1.35V)
RFO_LP
LDO/SMPS
REG
PA
LP PA
LDO mode SMPS mode
VDDSMPS (1.8 to 3.6V)
V
DD
VLXSMPS
VFBSMPS (1.55V)
VDDPA
VR_PA (up to 1.35V)
RFO_LP
LDO/SMPS
REG
PA
V
DD
LP PA
VDDSMPS (1.8 to 3.6V)
Transmitter low output power
The transmit low output power up to + 15 dBm on full VDD range (1.8 to 3.6 V), is supported through the RFO_LP RF pin. For this, the REG PA must be supplied from the regulated V
FBSMPS
The output power range is programmable in 32 steps of ~1 dB. The power amplifier ramping timing is also programmable.This allows adaptation to meet radio regulation requirements.
supply at 1.55 V, as shown in the figure below.
Figure 4. Low output power PA

3.9.4 Receiver

3.9.5 RF-PLL

The receive chain comprises a differential low-noise amplifier (LNA), a down-converter to low-IF by mixer operation in quadrature configuration. The I and Q signals are low pass filtered and a  ADC converts them into the digital domain. In the digital modem, the signals are decimated, further down converted and channel filtered. The demodulation is done according to the selected modulation scheme.
The down mixing to low-IF is done by mixing the receive signal with the local RF-PLL located in the negative frequency, where -f frequency, f is located at f
is the received signal and fif is the intermediate frequency). The wanted signal
rf
= flo + fif.
rf
= -frf + -fif. (where flo is the local RF-PLL
lo
The receiver features automatic I and Q calibration, that improves image rejection. The calibration is done automatically at startup before using the receiver, and can be requested by command.
The receiver supports LoRa, (G)MSK and (G)FSK modulations.
The RF-PLL is used as the frequency synthesizer for the generation of the local oscillator frequency (f
) for both transmit and receive chains. The RF-PLL uses auto calibration and
lo
DS13293 Rev 1 21/145
48
Page 22
Functional overview STM32WL55/54xx
uses the 32 MHz HSE32 reference. The sub-GHz radio covers all continuous frequencies in the range between 150 to 960 MHz.

3.9.6 Intermediate frequencies

The sub-GHz radio receiver operates mostly in low-IF configuration, except for specific high­bandwidth settings.
Table 5. FSK mode intermediate frequencies
Setting name Bandwidth (kHz) f
RX_BW_467 467.0
RX_BW_234 234.3
RX_BW_117 117.3
RX_BW_58 58.6
RX_BW_29 29.3
RX_BW_14 14.6
RX_BW_7 7.3
RX_BW_373 373.6
RX_BW_187 187.2
RX_BW_93 93.8
RX_BW_46 46.9
RX_BW_23 23.4
RX_BW_11 11.7
RX_BW_5 5.8
RX_BW_312 312.0
RX_BW_156 156.2
RX_BW_78 78.2
(kHz)
if
250
200
RX_BW_39 39.0
RX_BW_19 19.5
RX_BW_9 9.7
RX_BW_4 4.8
Table 6. LoRa mode intermediate frequencies
Setting name Bandwidth (kHz) f
LORA_BW_500 500 0
LORA_BW_250 250
LORA_BW_62 62.5
LORA_BW_41 41.67 167
22/145 DS13293 Rev 1
167
(kHz)
if
250LORA_BW_125 125
Page 23
STM32WL55/54xx Functional overview
Table 6. LoRa mode intermediate frequencies (continued)
Setting name Bandwidth (kHz) f
LORA_BW_31 31.25 250
LORA_BW_20 20.83 167
LORA_BW_15 15.63 250
LORA_BW_10 10.42 167
LORA_BW_7 7.81 250

3.10 Power supply management

The devices embed two different regulators: one LDO and one DC/DC (SMPS). The SMPS can be optionally switched-on by software to improve the power efficiency. As LDO and SMPS operate in parallel, the SMPS switch-on is transparent to the user and only the power efficiency is affected.

3.10.1 Power supply schemes

The devices require a V independent supplies (V peripherals:
V
= 1.8 V to 3.6 V
DD
V
is the external power supply for the I/Os, the system analog blocks such as reset,
DD
power management, internal clocks and low-power regulator. It is provided externally through VDD pins.
V
DDSMPS
V
DDSMPS
= 1.8 V to 3.6 V
is the external power supply for the SMPS step-down converter. It is provided externally through VDDSMPS supply pin and must be connected to the same supply as V
.
DD
V
FBSMPS
V
FBSMPS
= 1.45 V to 1.62 V (1.55 V typical)
is the external power supply for the main system regulator. It is provided externally through VFBSMPS pin and is supplied through the SMPS step-down converter.
V
= 0 V to 3.6 V (DAC minimum voltage is 1.71 V without buffer and 1.8 V with
DDA
buffer. COMP and ADC minimum voltage is 1.62 V. VREFBUF minimum voltage is
2.4 V)
V
is the external analog power supply for A/D converters, D/A converters, voltage
DDA
reference buffer, and comparators. The V voltage (see power-up and power-down limitations below) and must preferably be connected to V
V
DDRF
V
DDRF
= 1.8 V to 3.6 V
is an external power supply for the radio. It is provided externally through the
DD
VDDRF pin and must be connected to the same supply as V
V
DDRF1V5
V
DDRF1V5
= 1.45 V to 1.62 V
is an external power supply for the radio. It is provided externally through the
operating voltage supply between 1.8 V and 3.6 V. Several
DD
DDSMPS
, V
FBSMPS
when these peripherals are not used.
, V
if
DDA
DDA
, V
) can be provided for specific
DDRF
voltage level is independent from the V
.
DD
(kHz)
DD
DS13293 Rev 1 23/145
48
Page 24
Functional overview STM32WL55/54xx
MSv68044V1
0.3
1
V
BOR0
3.6
Operating modePower-on Power-down time
V
V
DDA
V
DD
Invalid supply area V
DDA
< V
DD
+ 300 mV
V
DDA
independent from V
DD
VDDRF1V5 pin and must be connected externally to VFBSMPS.
V
VREF-, VREF
= 1.55 V to 3.6 V
BAT
V
is the power supply for RTC, TAMP, external clock 32 kHz oscillator and backup
BAT
registers (through power switch) when V
+
V
is the input reference voltage for ADC and DAC. It is also the output of the
REF+
is not present.
DD
internal voltage reference buffer when enabled.
When V
When V
V
can be grounded when ADC/DAC is not active. The internal voltage reference
REF+
DDA
DDA
< 2 V, V 2 V, V
must be equal to V
REF+
must be between 2 V and V
REF+
DDA
.
.
DDA
buffer supports the following output voltages, configured with VRS bit in the VREFBUF_CSR register:
–V
–V
around 2.048 V: this requires V
REF+
around 2.5 V: this requires V
REF+
DDA
2.4 V.
DDA
2.8 V.
During power up and power down, the following power sequence is required:
1. When V
During power down, V
< 1 V other power supplies (V
DD
can temporarily become lower then other supplies only if the
DD
) must remain below V
DDA
+ 300 mV.
DD
energy provided to the device remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during this transient phase.
2. When V
An embedded linear voltage regulator is used to supply the internal digital power V V
is the power supply for digital peripherals, SRAM1 and SRAM2. The Flash memory
CORE
is supplied by V part V
DDI
.
> 1 V, all other power supplies (V
DD
CORE
and VDD. V
is split in two parts: V
CORE
) become independent.
DDA
part and an interruptible
DDO
CORE
.
Figure 5.
Note: VDD, V
sequence.
DDRF
and V
DDSMPS
must be wired together, so they can follow the same voltage
Power-up/power-down sequence
24/145 DS13293 Rev 1
Page 25
STM32WL55/54xx Functional overview
MSv50973V1
LDO/SMPS
MR
V
DD
V
LXSMPS
V
FBSMPS
V
BKP
V
DDO
V
DDI
V
BAT
V
RF
V
MAIN
V
LP
V
SW
POR
mode
FW mode
en
RFLDO
V
DDSMPS
V
DDRF1V5
LPR
MSv50974V1
LDO/SMPS
LDO/SMPS supply LDO supply
RF
LDO
MR LPR
V
DDRF1V5
V
FBSMPS
V
LXSMPS
V
DDSMPS
V
DD
LDO/SMPS
RF
LDO
MR LPR
V
DDRF1V5
V
FBSMPS
V
LXSMPS
V
DDSMPS
V
DD
Figure 6. Power supply overview
The different supply configurations are shown in the figure below.
Figure 7. Supply configurations
DS13293 Rev 1 25/145
48
Page 26
Functional overview STM32WL55/54xx
The LDO or SMPS step-down converter operating mode can be configured by one of the following:
by the MCU using the SMPSEN setting in PWR control register 5 (PWR_CR5), that depends upon the MCU system operating mode (Run, Stop, Standby or Shutdown).
by the sub-GHz radio using SetRegulatorMode() command and the sub-GHz radio operating mode (Sleep, Calibrate, Standby, Standby with HSE32 or Active).
After any POR and NRST reset, the LDO mode is selected. The SMPS selection has priority over LDO selection.
While the sub-GHz radio is in Standby with HSE32 or in Active mode, the supply mode is not altered until the sub-GHz radio enters Standby or Sleep mode. The sub-GHz radio activity may add a delay for entering the MCU software requested supply mode.
The LDO or SMPS supply mode can be checked with the SMPSRDY flag in power status register 2 (PWR_SR2).
Note: When the radio is active, the supply mode is not changed until after the radio activity is
finished.
During Stop 1, Stop 2 and Standby modes, when the sub-GHz radio is not active, the LDO or SMPS step-down converter is switched off. When exiting low-power modes (except Shutdown), the SMPS step-down converter is set by hardware to the mode selected by the SMPSEN bit in PWR control register 5 (PWR_CR5). SMPSEN is retained in Stop and Standby modes.
Independently from the MCU software selected supply operating mode, the sub-GHz radio allows the supply mode selection while the sub-GHz radio is active (thanks to the sub-GHz radio SetRegulatorMode()command).
The maximum load current delivered by the SMPS can be selected by the sub- GHz radio SUBGHZ_SMPSC2R register.
The inrush current of the LDO and SMPS step-down converter can be controlled via the sub- GHz radio SUBGHZ_PCR register. This information is retained in all but the sub-GHz radio Deep-sleep mode.
The SMPS needs a clock to be functional. If for any reason this clock stops, the device may be destroyed. To avoid this situation, a clock detection is used to, in case of a clock failure, switch off the SMPS and enable the LDO. The SMPS clock detection is enabled by the sub­GHz radio SUBGHZ_SMPSC0R.CLKDE. By default, the SMPS clock detection is disabled and must be enabled before enabling the SMPS.
Danger: Before enabling the SMPS, the SMPS clock detection must be
enabled in the sub-GHz radio SUBGHZ_SMPSC0R.CLKDE.

3.10.2 Power supply supervisor

The devices integrate a power-on reset/power-down reset, coupled with a Brownout reset (BOR) circuitry.
BOR0 level cannot be disabled. Other BOR levels can be enabled by user option. When enabled, BOR is active in all power modes except in Shutdown
26/145 DS13293 Rev 1
Page 27
STM32WL55/54xx Functional overview
Five BOR thresholds can be selected through option bytes.
During power-on, BOR keeps the device under reset until the supply voltage V the specified V
When V
When V
DD
DD
threshold:
BORx
drops below the selected threshold, a device reset is generated.
is above the V
can start.
The devices feature an embedded PVD (programmable voltage detector) that monitors the V
power supply and compares it with the V
DD
when V
drops below the V
DD
PVD
threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state.
The PVD is enabled by software and can be configured to monitor the V needed for the sub-GHz radio operation. For this, the PVD must select its lowest threshold, and the PVD and the wakeup must be enabled by the EWPVD bit in PWR_CR3 register. Only a voltage drop below the PVD level generates a wakeup event.
In addition, the devices embed a PVM (peripheral voltage monitor) that compares the independent supply voltage V functional supply range.
Finally, a radio end-of-life monitor provides information on the V low to operate the sub-GHz radio. When reaching the EOL level, the software must stop all radio activity in a safe way.

3.10.3 Linear voltage regulator

reaches
DD
upper limit, the device reset is released and the system
BORx
threshold. An interrupt can be generated
threshold and/or when VDD is higher than the V
with a fixed threshold to ensure that the peripheral is in its
DDA
PVD
DD
supply when V
DD
PVD
supply level
DD
is too
Two embedded linear voltage regulators supply all the digital circuitries, except for the Standby circuitry and the Backup domain. The main regulator (MR) output voltage (V can be programmed by software to two different power ranges (range 1 and range 2), to optimize the consumption depending on the system maximum operating frequency.
The voltage regulators are always enabled after a reset. Depending on the application modes, the V
supply is provided either by the main regulator or by the low-power
CORE
regulator (LPR).
When MR is used, a dynamic voltage scaling is proposed to optimize power as follows:
range 1: high-performance range
The system clock frequency can be up to 48 MHz. The Flash memory access time for read access is minimum. Write and erase operations are possible.
range 2: low-power range
The system clock frequency can be up to 16 MHz.The Flash memory access time for a read access is increased as compared to range 1. Write and erase operations are possible.
Note: MR is supplied by VDD during power-on or at wakeup from Stop1, Stop2, Standby or
Shutdown mode. MR is powered by LDO/SMPS after these transition phases.

3.10.4 VBAT operation

The VBAT pin is used to power the device V from an external battery, an external super-capacitor, or from V
domain (RTC, LSE and backup registers)
BAT
when no external battery
DD
CORE
)
DS13293 Rev 1 27/145
48
Page 28
Functional overview STM32WL55/54xx
nor an external super-capacitor are present. Three anti-tamper detection pins are available in VBAT mode.
VBAT operation is automatically activated when V
An internal V
battery charging circuit is embedded and can be activated when VDD is
BAT
present.
Note: When the microcontroller is supplied only from V
alarm/events do not exit it from VBAT operation.

3.11 Low-power modes

The devices support several low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.
By default, the microcontroller is in Run mode, range 1, after a system or a power-on reset. It is up to the user to select one of the low-power modes described below:
Sleep mode: CPU clock off, all peripherals including CPU core peripherals (among them NVIC, SysTick) can run and wake up the CPU when an interrupt or an event occurs.
Low-power run mode (LPRun): when the system clock frequency is reduced below 2 MHz. The code is executed from the SRAM or from the Flash memory. The regulator is in low-power mode to minimize the operating current.
Low-power sleep mode (LPSleep): entered from the LPRun mode.
Stop 0 and Stop 1 modes: the content of SRAM1, SRAM2 and of all registers is
retained. All clocks in the V disabled. LSI and LSE can be kept running.
RTC can remain active (Stop mode with RTC, Stop mode without RTC). The sub-GHz radio may remain active independently from the CPUs.
Some peripherals with the wakeup capability can enable HSI16 RC during the Stop mode to detect their wakeup condition.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption compared with Stop 2.
In Stop 0 mode, the main regulator remains on, resulting in the fastest wakeup time but with much higher consumption. The active peripherals and wakeup sources are the same as in Stop 1 mode that uses the low-power regulator.
The system clock, when exiting Stop 0 or Stop 1 mode, can be either MSI up to 48 MHz or HSI16, depending on the software configuration.
Stop 2 mode: part of the V and some peripherals preserve their contents (see Table 7).
All clocks in the V
domain are stopped. PLL, MSI, HSI16 and HSE32 are disabled.
CORE
LSI and LSE can be kept running.
RTC can remain active (Stop 2 mode with RTC, Stop 2 mode without RTC). The sub­GHz radio may also remain active independent from the CPUs.
Some peripherals with the wakeup capability can enable HSI16 RC during the Stop 2 mode to detect their wakeup condition (see Tab le 7).
The system clock when exiting from Stop 2 mode, can be either MSI up to 48 MHz or
domain are stopped. PLL, MSI, HSI16 and HSE32 are
CORE
domain is powered off. Only SRAM1, SRAM2, CPUs
CORE
is not present.
DD
, external interrupts and RTC
BAT
28/145 DS13293 Rev 1
Page 29
STM32WL55/54xx Functional overview
HSI16, depending on the software configuration.
Standby mode: V
domain is powered off. However, it is possible to preserve the
CORE
SRAM2 content as detailed below:
Standby mode with SRAM2 retention when the RRS bit is set in the PWR control
register 3 (PWR_CR3). In this case, SRAM2 is supplied by the low-power regulator.
Standby mode when the RRS bit is cleared in the PWR control register 3
(PWR_CR3). In this case the main regulator and the low-power regulator are powered off.
All clocks in the V
domain are stopped. PLL, MSI, HSI16 and HSE32 are disabled.
CORE
LSI and LSE can be kept running.
Th RTC can remain active (Standby mode with RTC, Standby mode without RTC). The sub-GHz radio and the PVD may also remain active when enabled independent from the CPUs. In Standby mode, the PVD selects its lowest level.
The system clock, when exiting Standby modes, is MSI at 4 MHz.
Shutdown mode: V
domain is powered off. All clocks in the V
CORE
domain are
CORE
stopped. PLL, MSI, HSI16, LSI and HSE32 are disabled. LSE can be kept running. The system clock when exiting the Shutdown mode, is MSI at 4 MHz. In this mode, the supply voltage monitoring is disabled and the product behavior is not guaranteed in case of a power voltage drop.
The table below summarizes the peripheral features over all available modes. Wakeup capability is detailed in gray cells.

Table 7. Functionalities depending on system operating mode

Stop 0 Stop 1 Stop 2 Standby Shutdown
Peripheral
Run
Sleep
LPRun
-
LPSleep
Wakeup capability
-
Wakeup capability
-
Wakeup capability
CPU1 Y R Y R R -R-R---- --
CPU2 Y R Y R R
Sub-GHz radio system O O O O O
(2)
Flash memory (256 Kbytes)
(2)O(3)
YO
O
(3)
-R-R---- --
OOOOOOO- --
R -R-R-R-R -R
Flash memory interface Y Y Y Y R -R-R---- --
SRAM1 Y O
SRAM2 Y O
(2)
(2)
Backup registers Y Y Y Y R
Brownout reset (BOR) Y Y Y Y Y
Programmable voltage detector (PVD)
OOOOO
(2)
YO
(2)
YO
R -R-R---- --
R -R-R-O
-R-R-R-R -R
YYYYYYY- --
OOOOOO
(1)
-
-
Wakeup capability
(4)
-- --
(5)O(5)
- --
VBAT
Wakeup capability
DS13293 Rev 1 29/145
48
Page 30
Functional overview STM32WL55/54xx
Table 7. Functionalities depending on system operating mode
Peripheral
Peripheral voltage monitor (PVM3)
DMAx (x = 1, 2) O O O O R
DMAMUX1 O O O O R
High-speed internal (HSI16) O O O O O
High-speed external (HSE32) O O O
Low-speed internal (LSI) O O O O O
Low-speed external (LSE) O O O O O
Multi-speed internal (MSI) O O O O O
Clock security system (CSS) O O O O R
Clock security system on LSE O O O O O
Run
Sleep
LPRun
LPSleep
OOOOO
(7)O(7)O(7)
(1)
(continued)
Stop 0 Stop 1 Stop 2 Standby Shutdown
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
OOOOO- -- --
-R------ --
-R------ --
(6)
(6)
-O
(7)
-O
(6)
-O
(7)
-O
---- --
(7)
-O
-- --
-O-O-O-- --
-O-O-O-O -O
-O-O---- --
-R------ --
OOOOOOO- --
VBAT
RTC/auto wakeup O O O O O
Number of tamper pins 3 3 3 3 3
USARTx (x= 1, 2) O O O O O
Low-power UART (LPUART1) O O O O O
I2Cx (x = 1, 2) O O O O O
I2C3 O O O O O
SPI1 O O O O R
SUBGHZSPI O O O O R
SPI2S2 O O O O R
ADC O O O O R
DAC O O O O R
VREFBUF O O O O O
COMPx (x = 1, 2) O O O O O
Temperature sensor O O O O R
TIMx (x = 1, 2, 16, 17) O O O O R
LPTIM1 O O O O O
LPTIMx (x = 2, 3) O O O O O
Independent watchdog (IWDG)
OOOOOOOOOOOO- --
OOOOOOOO OO
O3O3O3O3 O3
(8)O(8)O(8)O(8)
(8)O(8)O(8)O(8)O(8)O(8)
(9)O(9)O(9)O(9)
(9)O(9)O(9)O(9)O(9)O(9)
- ---- --
- -- --
- ---- --
- -- --
-R------ --
-R------ --
-R------ --
-R------ --
-R------ --
-O-R---- --
OOOOO- -- --
-R------ --
-R------ --
OOOOO- -- --
OOO- ---- --
30/145 DS13293 Rev 1
Page 31
STM32WL55/54xx Functional overview
Table 7. Functionalities depending on system operating mode
(1)
(continued)
Stop 0 Stop 1 Stop 2 Standby Shutdown
Peripheral
Run
Sleep
LPRun
-
LPSleep
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
-
Wakeup capability
VBAT
Wakeup capability
Window watchdog (WWDG) O O O O R -R-R---- --
SysTick timer O O O O R
True random number generator (RNG)
O
(10)
(1
O
RRR-R------ --
0)
-R-R---- --
AES hardware accelerator O O O O R -R------ --
PKA hardware accelerator O O O O R
CRC calculation unit O O O O R
IPCC O R O R R
HSEM O R O R R
GTZC TZSC O R O R R
GTZC TZIC O R O R R
-R------ --
-R-R---- --
-R-R---- --
-R------ --
-R-R---- --
-R-R---- --
EXTI O O O O R
GPIOs O O O O O OOOOO
1. Legend: Y = Yes (enabled). O = Optional (disabled by default and can be enabled by software). R = data retained.
- = Not available. Gray cells indicate wakeup capability.
2. The SRAM clock can be gated on or off.
3. Flash memory can be placed in power-down mode.
4. The SRAM2 content can optionally be retained when the PWR_CR3.RRS bit is set.
5. Only when the sub-GHz radio is active.
6. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral that requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
7. HSE32 can be used by sub-GHz radio system.
8. USART reception is functional in Stop 0 and Stop 1 modes. LPUART1 reception is functional is Stop 0, Stop 1, and Stop 2 modes. LPUART1 generates a wakeup interrupt on Start address match or received frame event.
9. I2Cx (x= 1, 2) address detection is functional in Stop 0 and Stop 1 modes. I2C3 address detection is functional in Stop 0, Stop 1 and Stop 2 modes. I2C3 generates a wakeup interrupt in case of address match.
10. Voltage scaling range 1 only.
11. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
12. The I/Os with wakeup from Standby/Shutdown capability are PA0, PC13 and PB3.
13. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode, but the configuration is lost when exiting the Shutdown mode.
ORORO- -- --
R
(11)
3
pin
s
(12)
(13)
3
pins
(12)
-
DS13293 Rev 1 31/145
48
Page 32
Functional overview STM32WL55/54xx
Mode name Entry
Sleep (Sleep-now or Sleep-on-exit)
WFI or return from ISR
WFE Wakeup event

Table 8. Low-power mode summary

Wakeup
(1)
source
Any interrupt
LPRun Set LPR bit Clear LPR bit
Set LPR bit +
LPSleep
WFI or return from ISR
Set LPR bit + WFE
Any interrupt
Wakeup event OFF ON
LPMS = 0b000 +
Stop 0
SLEEPDEEP bit + WFI or return from ISR or WFE
Any EXTI line (configured in the EXTI registers).
Specific peripherals events
Stop 1
Stop 2 (with I2C3,
LPUART1, LPTIM1, SRAM1,
LPMS = 0b001 + SLEEPDEEP bit + WFI or return from ISR or WFE
LPMS = 0b010+ SLEEPDEEP bit + WFI or return from ISR or WFE
SRAM2)
Wakeup
system clock
Same as before entering Sleep mode
Same as LPRun clock
Same as before entering LPSleep mode
HSI16 when STOPWUCK = 1 in RCC_CFGR.
MSI with the frequency before entering the Stop mode when STOPWUCK = 0.
Vol tage
Effect on clocks
regulators
MR LPR
CPU clock OFF No effect on other clocks
ON ON
or analog clock sources
None OFF ON
CPU clock OFF
OFF ON
No effect on other clocks or analog clock sources
ON
All clocks OFF except HSI16, LSI and
ON
LSE
OFF
LPMS = 0b011+
Standby (with SRAM2)
Standby
Set RRS bit + SLEEPDEEP bit + WFI or return from ISR or WFE
LPMS = 0b011 + Clear RRS bit + SLEEPDEEP bit + WFI or return
Wakeup PVD, RFIRQ, wakeup RFBUSY, WKUP pin edge, RTC and TAMP event, LSECSS, external reset in NRST pin, IWDG reset
MSI 4 MHz
from ISR or WFE
LPMS = 0b1xx +
Shutdown
SLEEPDEEP bit + WFI or return from ISR or WFE
1. Refer to Table 7: Functionalities depending on system operating mode.
WKUP pin edge, RTC and TAMP event, external reset in NRST pin
MSI 4 MHz
32/145 DS13293 Rev 1
All clocks OFF
except LSI and LSE
All clocks OFF except LSE
OFF ON
OFF OFF
OFF OFF
Page 33
STM32WL55/54xx Functional overview

Relation between MCU and sub-GHz radio operating modes

The CPUs and sub-GHz radio have their own operating modes (see the table below).
Table 9. MCU and sub-GHz radio operating modes
CPU operating mode
Run, Sleep
Sub-GHz radio operating mode Description
Sleep, Calibration, Standby, Active (FS, TX,
RX)
(1)
Deep-Sleep
LDO or SMPS regulator active, MCU running in main regulator (MR) mode
LDO and SMPS regulator off, MCU running in low power regulator (LPR) mode
LPRun, LPSleep
Stop 0
Sleep, Calibration, Standby, Active (FS, TX, RX)
Sleep, Calibration, Standby, Active (FS, TX,
RX)
(1)
Deep-Sleep
LDO or SMPS regulator active, MCU running in low power regulator (LPR) mode
LDO or SMPS regulator active, MCU running in main regulator (MR) mode
LDO and SMPS regulator off, MCU using low power regulator (LPR) mode
Stop 1 and Stop 2
Sleep, Calibration, Standby, Active (FS, TX, RX)
Deep-Sleep
LDO or SMPS regulator active, MCU using low power regulator (LPR) mode
LDO and SMPS regulator off, MCU regulator off or on in low power (LPR) mode
(2)
.
Standby
Sleep, Calibration, Standby, Active (FS, TX, RX)
Shutdown Deep-Sleep
1. In the MCU Run, Sleep and Stop 0 modes, the sub-GHz radio is prevented from entering Deep-sleep mode.
2. When retaining SRAM2 in Standby mode, the MCU uses the low-power regulator (LPR) mode.
3. When the CPU is in Shutdown mode, the sub-GHz radio cannot be activated and is forced in Deep-sleep mode.
(3)
LDO or SMPS regulator active, MCU regulator off or on in low power (LPR) mode
(2)
LDO and SMPS regulator off, MCU regulator off

3.11.1 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O Schmitt trigger is disabled). In addition, the internal reset pull-up is deactivated when the reset source is internal.
This excludes the five serial-wire JTAG debug ports that are in pull-up/pull-down after reset.

3.12 Peripheral interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources and, consequently, reducing power-supply consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, LPRun, LPSleep, Stop 0, Stop 1 and Stop 2 modes.
DS13293 Rev 1 33/145
48
Page 34
Functional overview STM32WL55/54xx

Table 10. Peripherals interconnect matrix

(1) (2)
Destination
Source
ADC
TIM1
TIM2
TIM16
TIM17
LPTIM1
LPTIM2
LPTIM3
DAC
COMP1
COMP2
DMAMUX1
TIM1 -X- - - - - XXXX - - -
TIM2 X
TIM16
TIM17 X
LPTIM1
LPTIM2
LPTIM3
ADC X
Temperature
sensor
(3)
VBAT
VREFINT
HSE32
- - - - - - XXXX - - -
- - - - - - - - - - - -X-
- - - - - - - - - - -X-
- - - - - -X-X- -X- -
- - - - - -X-X- -X- -
- - - - - - - - - - -X-X
- - - - - - - - - - - -
- - - - - - -X- - - - - -
- - - - - - -X- - - - - -
- - - - - - -X- - - - - -
- - -X- - - - - - - - - -
IRTIM
SUBGHZSPI
LSE
MSI
LSI
MCO
GPIO EXTI
RTC
TAMP
COMP1 XXXXXX
COMP2 XXXXXX
SYST ERR X
1. For more details, refer to section “Interconnection details” of the reference manual.
2. The “-” symbol in grayed cells means no interconnect.
3. VDD on STM32WL55/4UxYx devices.
-XX- - - - - - - - - - -
- - -X- - - - - - - - - -
- -X- - - - - - - - - - -
- - -X- - - - - - - - - -
- - - - - - -XX- -X- -
- -X-XX- - - - - - - -
- - - -XX- - - - - - - -
- - - - - - - -
- - - - - - - -
-XX- - - - - - - - - -
34/145 DS13293 Rev 1
Page 35
STM32WL55/54xx Functional overview

3.13 Reset and clock controller (RCC)

The following different clock sources can be used to drive the system clock (SYSCLK):
HSI16 (high-speed internal) 16 MHz RC oscillator clock
MSI (multi-speed internal) RC oscillator clock from 100 kHz to 48 MHz
HSE32 (high-speed external) 32 MHz oscillator clock, with trimming capacitors.
PLL clock
The MSI is used as system clock source after startup from reset, configured at 4 MHz.
The devices have the following additional clock sources:
LSI: 32 kHz low-speed internal RC that may drive the independent watchdog and optionally the RTC used for auto-wakeup from Stop and Standby modes.
LSE: 32.768 kHz low-speed external crystal that optionally drives the RTC used for auto-wakeup from Stop, Standby and Shutdown modes, or the real-time clock (RTCCLK).
Each clock source can be switched on or off independently when it is not used, to optimize power consumption.
Several prescalers can be used to configure the AHB frequencies (HCLK3/PCLK3, HCLK1, HCLK2), the high-speed APB2 (PCLK2) and the low-speed APB1 (PCLK1) domains. The maximum frequency of the AHB (HCLK3, HCLK1, and HCLK2), the PCLK1 and the PCLK2 domains is 48 MHz.
Most peripheral clocks are derived from their bus clock (HCLK, PCLK) except the following:
The clock used for true RNG, is derived (selected by software) from one of the following sources:
PLL VCO (PLLQCLK) (only available in Run mode)
MSI (only available in Run mode)
LSI clock
LSE clock
The ADC clock is derived (selected by software) from one of the following sources:
system clock (SYSCLK) (only available in Run mode)
HSI16 clock (only available in Run mode)
PLL VCO (PLLPCLK) (only available in Run mode)
The DAC uses the LSI clock in sample and hold mode
The (LP)U(S)ARTs clocks are derived (selected by software) from one of the following
sources:
system clock (SYSCLK) (only available in Run mode)
HSI16 clock (available in Run and Stop modes)
LSE clock (available in Run and Stop modes)
APB clock (PCLK depending on which APB the U(S)ART is mapped) (available in
CRun and CSleep when also enabled in (LP)U(S)ARTxSMEN)
The wakeup from Stop mode is supported only when the clock is HSI16 or LSE.
DS13293 Rev 1 35/145
48
Page 36
Functional overview STM32WL55/54xx
The I2Cs clocks are derived (selected by software) from one of the following sources:
system clock (SYSCLK) (only available in Run mode)
HSI16 clock (available in Run and Stop modes)
APB clock (PCLK depending on which APB the I2C is mapped) (available in CRun
and CSleep when also enabled in I2CxSMEN.)
The wakeup from Stop mode is supported only when the clock is HSI16.
The SPI2S2 I2S clock is derived (selected by software) from one of the following sources:
HSI16 clock (only available in Run mode)
PLL VCO (PLLQCLK) (only available in Run mode)
external input I2S_CK (available in Run and Stop modes)
The low-power timers (LPTIMx) clock is derived (selected by software) from one of the following sources:
LSI clock (available in Run and Stop modes)
LSE clock (available in Run and Stop modes)
HSI16 clock (only available in Run mode)
APB clock (PCLK depending on which APB the LPTIMx is mapped) (available in
Run and CStop when enabled in LPTIMxSMEN.)
external clock mapped on LPTIMx_IN1 (available in Run and Stop modes)
The functionality in Stop mode (including wakeup) is supported only when the clock is LSI or LSE, or in external clock mode.
The RTC clock is derived (selected by software) from one of the following sources:
LSE clock
LSI clock
HSE32 clock divided by 32
The functionality in Stop mode (including wakeup) is supported only when the clock is LSI or LSE.
The IWDG clock is always the LSI clock.
The RCC feeds the CPU1 system timer (SysTick) external clock with the AHB clock (HCLK1) divided by eight. The SysTick can work either with this clock or directly with the CPU1 clock (HCLK1), configurable in the SysTick control and status register.
FCLK1 acts as CPU1 free-running clock. For more details, refer to the programming manual STM32 Cortex-M4 MCUs and MPUs programming manual (PM0214).
The RCC feeds the CPU2 system timer (SysTick) external clock with the AHB clock (HCLK2) divided by eight. The SysTick can work either with this clock or directly with the CPU2 clock (HCLK2), configurable in the SysTick control and status register.
FCLK2 acts as CPU2 free-running clock.
36/145 DS13293 Rev 1
Page 37
STM32WL55/54xx Functional overview
MSv62604V2
LSI RCC 32 kHz
LSE OSC
32.768 kHz
LSCO
to IWDG
HSE32 OSC
32 MHz
HSE CSS
OSC_IN
OSC_OUT
HSI16 RC
16 MHz
MSI RC
100 kHz - 48 MHz
MCO
/1 - 16
/32
LSE CSS
PLL
/P
/R
/Q
/M
SYSCLK
MSI
MSI
HSI16
HSI16
HSE32
HSE32
PLLRCLK
PLLRCLK
LSE
LSI
SYS clock
source control
SYSCLK
MSI
HSI16
CPU1
HPRE
/1,2,...,512
HCLK1
HCLK2
HCLK3
APB1
PPRE1
/1,2,4,8,16
to CPU1, AHB1, AHB2
to CPU1 FCLK
/8
to CPU1 system timer
APB2
PPRE2
/1,2,4,8,16
PCLK1
PCLK2
to CPU2
to CPU2 FCLK
/8
to CPU2 system timer
to AHB3, Flash, SRAM1, SRAM2
to APB1 TIMx
to APB2 TIMx
to USART1 to LPTIM1
to LPUART1
to ADC
to RTC
x1 or
x2
x1 or
x2
to I2C1
PCLKn
SYSCLK
HSI16
HSI16
HSI16
PCLKn
LSI
LSE
PLLPCLK
SYSCLK
PCLKn
LSE
to APB2
to APB1
to RF
SYSCLK
MSI
to RNG
PLLQCLK
PLLRCLK
OSC32_IN
OSC32_OUT
LSI
LSE
LSI
LSE
HSEPRE
/1,2
xN
to I2C2 to I2C3
to LPTIM3
to LPTIM2
PCLK3 to APB3
to USART2
HSI16
to SPI2S2
I2S_CKIN
HSI16
PLLPCLK
PLLQCLK
LSIPRE
/1,128
CPU2
C2HPRE
1,2,...,512
AHB3
SHDHPRE
/1,2,...,512
LSI DAC

Figure 8. Clock tree

DS13293 Rev 1 37/145
1. For full details about the internal and external clock source characteristics, refer to the electrical characteristics section in the device datasheet.
2. The ADC clock can additionally be derived from the AHB clock of the ADC bus interface, divided by a programmable factor (1, 2 or 4). When the programmable factor is 1, the AHB prescaler must be equal to 1.

3.14 Hardware semaphore (HSEM)

The HSEM provides a 16- (32-bit) register based semaphores. The semaphores can be used to ensure synchronization between different processes running between different cores. The HSEM provides a non blocking mechanism to lock semaphores in an atomic way. The following functions are provided:
Locking a semaphore can be done in two ways:
2-step lock: by writing COREID and PROCID to the semaphore, followed by a
read check
1-step lock: by reading the COREID from the semaphore
Interrupt generation when a semaphore is unlocked: Each semaphore may generate an interrupt on one of the interrupt lines.
48
Page 38
Functional overview STM32WL55/54xx
Semaphore clear protection: A semaphore is only unlocked when COREID and PROCID match.
Global semaphore clear per COREID

3.15 Inter-processor communication controller (IPCC)

The IPCC is used for communicating data between two processors.
The IPCC block provides a non blocking signaling mechanism to post and retrieve communication data in an atomic way. It provides the signaling for twelve channels:
six channels in the direction from processor 1 to processor 2
six channels in the opposite direction
It is then possible to have two different communication types in each direction.
The IPCC communication data must be located in a common memory, that is not part of the IPCC block.

3.16 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.17 Direct memory access controller (DMA)

The DMA (direct memory access) is used to provide high-speed data transfer between peripherals and memory, as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.
The DMA controller has 14 channels in total. A full cross matrix allows the peripherals, with DMA support, to be mapped on any of the available DMA channels. Each DMA channel has an arbiter for handling the priority between DMA requests.
The DMA main features are listed below:
14 independently configurable channels (requests)
a full cross matrix between peripherals and all 14 channels and an hardware trigger
possibility through the DMAMUX1
software programmable priorities between requests from channels of one DMA (four levels: very-high, high, medium, low), plus hardware priorities management in case of equality (example: request 1 has priority over request 2)
independent source and destination transfer size (byte, half-word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
support for circular buffer management
38/145 DS13293 Rev 1
Page 39
STM32WL55/54xx Functional overview
three event flags (DMA half-transfer, DMA transfer complete and DMA transfer error), logically ORed together in a single interrupt request for each channel
memory-to-memory transfer
peripheral-to-memory, memory-to-peripheral, and peripheral-to-peripheral transfers
access to Flash memory, SRAM, APB and AHB peripherals, as source and destination
programmable number of data to be transferred (up to 65536)
secure and privileged support per channel level configuration
Feature DMA1 DMA2
Number of channels 7 7

Table 11. DMA1 and DMA2 implementation

DMAMUX1 is used to route the peripherals with DMA source support, to any DMA channel.

3.18 Interrupts and events

3.18.1 Nested vectored interrupt controller (NVIC)

The devices embed an NIVC able to manage 16 priority levels, and to handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the Cortex-M4.
The device also embeds an NVIC able to manage four priority levels, and handles up to 32 maskable interrupt channels plus the 16 interrupt lines of the Cortex-M0+.
The NVIC benefits are the following:
low-latency interrupt processing
interrupt entry vector table address passed directly to the core
early processing of interrupts
processing of late-arriving higher-priority interrupts
support for tail chaining
processor state automatically saved
interrupt entry restored on interrupt exit, with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.18.2 Extended interrupt/event controller (EXTI)

The EXTI manages wakeup through configurable and direct event inputs. It provides wake­up requests to the power control, and generates interrupt requests to the CPU1/2 NVIC and events to the CPU1/2 event input.
Configurable events/interrupts come from peripherals that are able to generate a pulse and allow the selection between the event/interrupt trigger edge and a software trigger.
Direct events/interrupts come from peripherals having their own clearing mechanism.
DS13293 Rev 1 39/145
48
Page 40
Functional overview STM32WL55/54xx

3.19 Cyclic redundancy check (CRC)

The CRC calculation unit is used to get a CRC code from 8-, 16- or 32-bit data word and a generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the functional safety standards, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps to compute a signature of he software during runtime, to be compared with a reference signature generated at link time and stored at a given memory location.

3.20 Analog-to-digital converter (ADC)

A native 12-bit ADC is embedded into the devices. It can be extended to 16-bit resolution through hardware oversampling. The ADC has up to 12 external channels and four internal channels (temperature sensor, voltage reference, V ADC performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADC frequency is independent from the CPU1/2 frequency, allowing maximum sampling rate of ~2 Msps even with a low CPU speed. An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase.
(a)
monitoring, DAC output). The
BAT
The ADC can be served by the DMA controller. It can operate in the whole V range.
The ADC features a hardware oversampler up to 256 samples, improving the resolution to 16 bits. Refer to the application note Improving STM32F1 Series, STM32F3 Series and STM32Lx Series ADC resolution by oversampling (AN2668).
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions with timers.

3.20.1 Temperature sensor

The temperature sensor (TS) generates a VTS voltage that varies linearly with temperature.
The temperature sensor is internally connected to the ADC VIN[12] input channel, to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor may vary from part to part due to process variation, the uncalibrated internal temperature sensor is suitable only for relative temperature measurements.
To improve the accuracy of the temperature sensor, each part is individually factory­calibrated by ST. The resulting calibration data is stored in the device engineering bytes, accessible in read-only mode.
DD
supply
a. VDD on STM32WL55/54UxYx devices.
40/145 DS13293 Rev 1
Page 41
STM32WL55/54xx Functional overview
Calibration value
name
TS_CAL1
TS_CAL2
Table 12. Temperature sensor calibration values
TS ADC raw data acquired at 30 °C (± 5 °C), V
= V
DDA
TS ADC raw data acquired at 130 °C (± 5 °C), V
= V
DDA
= 3.3 V (± 10 mV)
REF+
= 3.3 V (± 10 mV)
REF+
3.20.2 Internal voltage reference (V
V is internally connected to the ADC VIN[13] input channel.
V and stored in the device engineering bytes. It is accessible in read-only mode.
provides a stable (bandgap) voltage output for the ADC and comparators. V
REFINT
is individually and precisely measured, for each part, by ST, during production test
REFINT
Table 13. Internal voltage reference calibration values
Calibration value name Description Memory address
VREFINT_CAL
Raw data acquired at 30 °C (± 5 °C),
= V
V
DDA
REF+
Description Memory address
0x1FFF 75A8 - 0x1FFF 75A9
0x1FFF 75C8 - 0x1FFF 75C9
REFINT
)
= 3.3 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
REFINT
3.20.3 V
battery voltage monitoring
BAT
This embedded hardware feature allows the application to measure the V voltage using the ADC VIN[14] input channel. As V outside the ADC input range, the VBAT pin is internally connected to a bridge divider by three. As a consequence, the converted digital value is one third the V

3.21 Digital-to-analog converter (DAC)

The 1-channel 12-bit buffered DAC converts a digital value into an analog voltage available on the channel output. The architecture of each channel is based on an integrated resistor string and an inverting amplifier. The digital circuitry is common for both channels.
DAC main features:
1 DAC output channel
8-bit or 12-bit output mode
buffer offset calibration (factory and user trimming)
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
independent or simultaneous conversion for DAC channels
may be higher than V
BAT
BAT
voltage.
BAT
(a)
battery
, and thus
DDA
a. VDD on STM32WL55/54UxYx devices.
DS13293 Rev 1 41/145
48
Page 42
Functional overview STM32WL55/54xx
DMA capability for either DAC channel
triggering with timer events, synchronized with DMA
triggering with external events
Sample-and-hold low-power mode, with internal or external capacitor

3.22 Voltage reference buffer (VREFBUF)

The devices embed a voltage reference buffer that can be used as voltage reference for ADC, and also as voltage reference for external components through the VREF+ pin.
VREFBUF supports two voltages: 2.048 V and 2.5 V.
An external voltage reference can be provided through the VREF+ pin when VREFBUF is off.

3.23 Comparator (COMP)

The devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.
The reference voltage can be one of the following:
external I/O
internal reference voltage or submultiple (1/4, 1/2, 3/4)
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers, and can be also combined into a window comparator.

3.24 True random number generator (RNG)

The devices embed a true RNG that delivers 32-bit random numbers generated by an integrated analog circuitry.

3.25 Advanced encryption standard hardware accelerator (AES)

The AES encrypts or decrypts data, using an algorithm and implementation fully compliant with the advanced encryption standard (AES) defined in FIPS (federal information processing standards) publication 197.
Multiple chaining modes are supported (ECB, CBC, CTR, GCM, GMAC, CCM), for key sizes of 128 or 256 bits. The AES supports DMA single transfers for incoming and outgoing data (two DMA channels required).

3.26 Public key accelerator (PKA)

The PKA is used to compute cryptographic public key primitives, specifically those related to RSA (Rivest, Shamir and Adleman), Diffie-Hellmann or ECC (elliptic curve cryptography) over GF(p) (Galois fields). These operations are executed in the Montgomery domain.
42/145 DS13293 Rev 1
Page 43
STM32WL55/54xx Functional overview

3.27 Timer and watchdog

The devices include one advanced 16-bit timer, one general-purpose 32-bit timer, two 16-bit basic timers, three low-power timers, two watchdog timers and a SysTick timer.
The table below compares the features of the advanced control, general purpose and basic timers.

Table 14. Timer features

Counter
resolution
(bits)
16 Up
Counter
type
Up, down
and
up/down
Prescaler
Any integer
1 and 65536
Timer type
Advanced control
General purpose
Low power
Timer name
TIM1 16
TIM2 32 NA
TIM16
TIM17
LPTIM1 LPTIM2 LPTIM3

3.27.1 Advanced-control timer (TIM1)

The advanced-control timer TIM1 can be seen as a three-phase PWM multiplexed on six channels. Each channel has complementary PWM outputs with programmable inserted dead-times. Each channel can also be seen as complete general-purpose timers.
The four independent channels can be used for:
input capture
output compare
PWM generation (edge or center-aligned modes) with full modulation capability
(0 - 100 %)
one-pulse mode output
factor
between
DMA
request
generation
Yes
Capture/ compare channels
4
2
1
Complementary
outputs
3
1
In debug mode, the TIM1 counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose timers (described in the next section) using the same architecture. TIM1 can then work together with TIM2 via the peripheral interconnect matrix, for synchronization or event chaining.

3.27.2 General-purpose timers (TIM2, TIM16, TIM17)

Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.
TIM2 main features:
full-featured general-purpose timer
four independent channels for input capture/output compare, PWM or one-pulse mode
output
DS13293 Rev 1 43/145
48
Page 44
Functional overview STM32WL55/54xx
counter that can be frozen in debug mode
independent DMA request generation, support of quadrature encoders
TIM16 and TIM17 main features:
general-purpose timers with mid-range features
16-bit auto-reload upcounters and 16-bit prescalers
1 channel and 1 complementary channel
channels that can all be used for input capture/output compare, PWM or one-pulse
mode output
counter that can be frozen in debug mode
independent DMA request generation

3.27.3 Low-power timers (LPTIM1, LPTIM2 and LPTIM3)

These low-power timers have an independent clock and run in Stop mode if they are clocked by LSE, LSI, or by an external clock. They are able to wake up the system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 and LPTIM3 are active in Stop 0 and Stop 1 modes.
LPTIM1/2/3 main features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
configurable output: pulse, PWM
continuous/one-shot mode
selectable software/hardware input trigger
selectable clock source
internal clock sources: LSE, either LSI, HSI16 or APB clock
external clock source over LPTIM input (works even with no internal clock source
running, used by pulse counter application)
programmable digital glitch filter
encoder mode (LPTIM1 only)

3.27.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and a 8-bit prescaler. The IWDG is clocked from an independent 32 kHz internal RC (LSI). As the IWDG operates independently from the main clock, it can operate in Stop and Standby modes.
The IWDG can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. The IWDG is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.
44/145 DS13293 Rev 1
Page 45
STM32WL55/54xx Functional overview

3.27.5 System window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. The WWDG can be used as a watchdog to reset the device when a problem occurs.
The WWDG is clocked from the main clock and has an early warning interrupt capability. The counter can be frozen in debug mode.

3.27.6 SysTick timer

This timer is dedicated to real-time operating systems, but can also be used as a standard down counter.
SysTick timer main features:
24-bit down counter
autoreload capability
maskable system interrupt generation when the counter reaches 0
programmable clock source

3.28 Real-time clock (RTC), tamper and backup registers

The RTC is an independent BCD timer/counter. The RTC provides a time-of-day clock/calendar with programmable alarm interrupts.
As long as the supply voltage remains in the operating range, the RTC never stops, regardless of the device status (Run mode, low-power mode or under reset).
The RTC provides an automatic wakeup to manage all low-power modes.
The RTC is functional in VBAT mode.
Twenty 32-bit backup registers are retained in all low-power modes and also in VBAT mode. These registers can be used to store sensitive data as their content is protected by a tamper detection circuit.
Three tamper pins and four internal tampers are available for anti-tamper detection. The external tamper pins can be configured for edge or level detection with or without filtering.

3.29 Inter-integrated circuit interface (I2C)

The device embeds three I2Cs, with features implementation listed in the he table below.
2
The I
C bus interface handles communications between the microcontroller and the serial
2
I
C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
2
I
C bus specification and user manual rev. 5 compatibility:
slave and master modes, multimaster capability
Standard-mode (Sm), with a bitrate up to 100 Kbit/s
Fast-mode (Fm), with a bitrate up to 400 Kbit/s
Fast-mode plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
DS13293 Rev 1 45/145
48
Page 46
Functional overview STM32WL55/54xx
programmable setup and hold times
clock stretching (optional)
SMBus (system management bus) specification rev 2.0 compatibility:
hardware PEC (packet error checking) generation and verification with ACK
control
address resolution protocol (ARP) support
SMBus alert
PMBus (power system management protocol) specification rev 1.1 compatibility
independent clock: a choice of independent clock sources allowing the I
2
C
communication speed to be independent from the PCLK reprogramming (see Figure 8)
wakeup from Stop mode on address match
programmable analog and digital noise filters
1-byte buffer with DMA capability
I2C features
7-bit addressing mode X X X
10-bit addressing mode X X X
Standard-mode (up to 100 Kbit/s) X X X

Table 15. I2C implementation

(1)
I2C1
(2)
I2C2
(2)
I2C3
Fast-mode (up to 400 Kbit/s) X X X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X X
Independent clock X X X
Wakeup from Stop mode X
SMBus/PMBus X X X
1. X = supported.
2. The register content is lost in Stop 2 mode.
3. Wakeup supported from Stop 0 and Stop 1 modes.
4. Wakeup supported from Stop 0, Stop 1 and Stop 2 modes.
(3)
(3)
X
(4)
X

3.30 Universal synchronous/asynchronous receiver transmitter (USART/UART)

The devices embed two universal synchronous receiver transmitters, USART1 and USART2 (see Table 16 for the implementation details).
Each USART provides asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode. Each USART has LIN Master/Slave capability and provides hardware management of the CTS and RTS signals, and RS485 driver enable.
The USART is able to communicate at speeds of up to 4 Mbit/s, and also provides Smart Card mode (ISO 7816 compliant) and SPI-like communication capability.
The USART supports synchronous operation (SPI mode), and can be used as an SPI master.
46/145 DS13293 Rev 1
Page 47
STM32WL55/54xx Functional overview
The USART has a clock domain independent from the CPU clock, allowing the USART to wake up the MCU from Stop mode, using baudrates up to 200 kbaud.
The wakeup events from Stop mode are programmable and can be one of the following:
start bit detection
any received data frame
a specific programmed data frame
The USART interface can be served by the DMA controller.

3.31 Low-power universal asynchronous receiver transmitter (LPUART)

The devices embed one low-power UART (LPUART1) that enables asynchronous serial communication with minimum power consumption. The LPUART supports half-duplex single-wire communication and modem operations (CTS/RTS), allowing multiprocessor communication.
The LPUART has a clock domain independent from the CPU clock, and can wake up the system from Stop mode using baudrates up to 220 Kbaud. The wakeup events from Stop mode are programmable and can be one of the following:
start bit detection
any received data frame
a specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low-energy consumption. Higher speed clock can be used to reach higher baudrates.
The LPUART interface can be served by the DMA controller.
USART modes/features
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode (Master/Slave) X -
Smartcard mode X -
Single-wire half-duplex communication X X
IrDA SIR ENDEC block X -
LIN mode X -
Dual clock domain and wakeup from low-power mode X X
Receiver timeout interrupt X -
Modbus communication X -
Auto baud rate detection X -

Table 16. USART/LPUART features

(1)
USART1/2 LPUART1
DS13293 Rev 1 47/145
48
Page 48
Functional overview STM32WL55/54xx
Table 16. USART/LPUART features (continued)
USART modes/features
Driver enable X X
USART data length 7, 8 and 9 bits
Tx/Rx FIFO X X
Tx/Rx FIFO size 8
1. X = supported.
(1)
USART1/2 LPUART1

3.32 Serial peripheral interface (SPI)/integrated-interchip sound interface (I2S)

The SPI/I2S interface can be used to communicate with external devices using the SPI protocol or the I
2
S audio protocol. SPI or I2S mode is selectable by software. SPI Motorola®
mode is selected by default after a device reset.
The SPI protocol supports half-duplex, full-duplex and simplex synchronous, serial communication with external devices. The SPI interface can be configured as master and, in this case, it provides the communication clock (SCK) to the external slave device. The SPI interface can also operate in multimaster configuration.
2
The I
S protocol is also a synchronous serial communication interface. It can operate in slave or master mode with half-duplex communication. It can address four different audio standards including the Philips I
2
S standard, the MSB- and LSB-justified standards and the
PCM standard.
Features SPI1 SPI2S2 SUBGHZSPI
Enhanced NSSP and TI modes Yes
Hardware CRC calculation Yes Yes No
2
I
S support No Yes No
Data size configurable (bits) from 4 to 16
Rx/Tx FIFO size (bits) 32
Wakeup capability from LPSleep Yes
1. The SPI1 and SPI2S2 instances are general purpose type while the SUBGHZSPI instance is dedicated for
Sub-GHz radio control exclusively. Radio is controlled internally through SUBGHZSPI and, for debug purpose only, from the external.

Table 17. SPI and SPI/I2S implementation

(1)

3.33 Development support

Serial-wire JTAG debug port (SWJ-DP)

The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial-wire debug port, that enables either a serial-wire debug or a JTAG probe to be connected to the target.
The debug is performed using only two pins instead of the five required by the JTAG (JTAG pins can then be reused as GPIOs with alternate function). The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
48/145 DS13293 Rev 1
Page 49
STM32WL55/54xx Pinouts, pin description and alternate functions
MSv48144V4
PB3
PB4
PB5
PB6
PB7
PB8
PA0
PA1
PA2
PA3
VDD
PA4
PA5
PA6
PA9
RFI_P
VR_PA
PA7
PA8
RFI_N
NRST
PH3-BOOT0
RFO_LP
RFO_HP
PA13
PA12
PA11
PA10
PB12
PB2
PB0-VDD_TCXO
VDDRF1V55
VDDRF
OSC_OUT
OSC_IN
VDDPA
VSSSMPS
VLXSMPS
VDD
VDDA
VBAT
VDDSMPS
VFBSMPS
PC15-OSC32_OUT
PA15
PA14
PC14-OSC32_IN
PC13
UFQFPN48
136
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19
2
3
4
5
6
7
8
9
10
11
12

4 Pinouts, pin description and alternate functions

Figure 9. UFQFPN48 pinout

1. The above figure shows the package top view.
2. The exposed pad must be connected to the ground plain.
DS13293 Rev 1 49/145
60
Page 50
Pinouts, pin description and alternate functions STM32WL55/54xx
MSv48145V4
A
B
C
D
E
F
G
H
J
143987652
PA4
PA3
PC1
PB6
PB3
VLXSMPS
VSSSMPS
PA5
PA2
PC6
PC0
VDD
PB5
PB4
VFBSMPS
VDDSMPS
PA8
PA7
PA1
PC4
VSS
PB8
PB7
PA15
PB10
PB11
PA6
PC5
PC2
PB9
PB15
PA14
PC3
PC15-
OSC32
_OUT
VREF+
VDDA
RFI_P
VSSRF
VSSRF
PB0-
VDD_TCXO
PA0
PB14
PC14-
OSC32_IN
VDDRF
1V55
PB13
PC13
VSS
VDD
OSC_OUT
PB2
PA10
PA13
VBAT
VSS
PA11
PA12
PA9 PB12 PB1 VDDRF VDD
NRST
VSS
PH3-
BOOT0
VDD RFI_N
VSSRF
RFO_LP
VDDPA
VSSRF
RFO_HP
VR_PA
OSC_IN

Figure 10. UFBGA73 pinout

1. The above figure shows the package top view.

Table 18. Legend/abbreviations used in the pinout table

Name Abbreviation Definition
Pin name
Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name
S Supply pin
I Input only pin
Pin type
I/O Input / output pin
O Output only pin
I/O structure
RF Radio RF pin
TT 3 V tolerant I/O
_f I/O, Fm+ capable
FT 5 V tolerant I/O
_a I/O, with Analog switch function supplied by V
50/145 DS13293 Rev 1
Option for FT I/Os
DDA
Page 51
STM32WL55/54xx Pinouts, pin description and alternate functions
Table 18. Legend/abbreviations used in the pinout table (continued)
Name Abbreviation Definition
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Functions selected through GPIOx_AFR registers
Functions directly selected/enabled through peripheral registers

Table 19. STM32WL55/54xx pin definition

Pin
functions
Notes
Alternate functions
Additional
functions
Pin number
Pin name
WLCSP59
UFQFPN48
(function after
UFBGA73
reset)
Pin type
Notes
I/O structure
Alternate functions Additional functions
- E10 - VSS S - - - -
1D11C1 PB3 I/OFT_a-
JTDO/TRACESWO,
TIM2_CH2, SPI1_SCK,
RF_IRQ0, USART1_RTS,
DEBUG_RF_DTB1,
CM4_EVENTOUT
COMP1_INM, COMP2_INM,
ADC_IN2,
TAMP_IN3/WKUP3
NJTRST, I2C3_SDA,
2D9C2 PB4 I/OFT_fa-
SPI1_MISO, USART1_CTS,
DEBUG_RF_LDORDY,
TIM17_BKIN,
COMP1_INP, COMP2_INP,
ADC_IN3
CM4_EVENTOUT
LPTIM1_IN1, I2C1_SMBA,
SPI1_MOSI, RF_IRQ1,
3-D2 PB5 I/OFT_a-
USART1_CK, COMP2_OUT,
TIM16_BKIN,
CM4_EVENTOUT
- F7 E3 VSS S - - - -
- F11 E2 VDD S - - - -
-
4 - E1 PB6 I/O FT_f -
5-C3 PB7 I/OFT_f-
6-D3 PB8 I/OFT_f-
DS13293 Rev 1 51/145
LPTIM1_ETR, I2C1_SCL,
USART1_TX, TIM16_CH1N,
CM4_EVENTOUT
LPTIM1_IN2, TIM1_BKIN,
I2C1_SDA, USART1_RX,
TIM17_CH1N,
CM4_EVENTOUT
TIM1_CH2N, I2C1_SCL,
RF_IRQ2, TIM16_CH1,
CM4_EVENTOUT
-
-
-
60
Page 52
Pinouts, pin description and alternate functions STM32WL55/54xx
Table 19. STM32WL55/54xx pin definition (continued)
Pin number
Pin name
(function after
reset)
UFBGA73
WLCSP59
UFQFPN48
--C4 PB9 I/OFT_f-
- - F2 PC0 I/O FT_f -
- - F1 PC1 I/O FT_f -
--D4 PC2 I/OFT-
--D5 PC3 I/OFT-
- - F3 PC4 I/O FT - CM4_EVENTOUT -
Pin type
Notes
I/O structure
Alternate functions Additional functions
TIM1_CH3N, I2C1_SDA,
SPI2_NSS/I2S2_WS,
IR_OUT, TIM17_CH1,
CM4_EVENTOUT
LPTIM1_IN1, I2C3_SCL,
LPUART1_RX, LPTIM2_IN1,
CM4_EVENTOUT
LPTIM1_OUT,
SPI2_MOSI/I2S2_SD,
I2C3_SDA, LPUART1_TX,
CM4_EVENTOUT
LPTIM1_IN2, SPI2_MISO,
CM4_EVENTOUT
LPTIM1_ETR,
SPI2_MOSI/I2S2_SD,
LPTIM2_ETR,
CM4_EVENTOUT
-
-
-
-
-
- - E4 PC5 I/O FT - CM4_EVENTOUT -
- - G2 PC6 I/O FT - I2S2_MCK, CM4_EVENTOUT -
TIM2_CH1, I2C3_SMBA,
I2S_CKIN, USART2_CTS,
7H11D6 PA0 I/OFT_a-
TIM2_ETR, CM4_EVENTOUT
8 G10 G3 PA1 I/O FT_a -
9F9H2 PA2 I/OFT_a-
10 C8 H1 PA3 I/O FT_a -
- E6 G5 VSS S - - - -
USART2_RX, LPUART1_RX,
COMP1_OUT,
DEBUG_PWR_REGLP1S,
TIM2_CH2, LPTIM3_OUT,
I2C1_SMBA, SPI1_SCK,
USART2_RTS,
LPUART1_RTS,
DEBUG_PWR_REGLP2S,
CM4_EVENTOUT
LSCO, TIM2_CH3,
USART2_TX, LPUART1_TX,
COMP2_OUT,
DEBUG_PWR_LDORDY,
CM4_EVENTOUT
TIM2_CH4, I2S2_MCK,
CM4_EVENTOUT
TAMP_IN2/WKUP1
-
LSCO
-
52/145 DS13293 Rev 1
Page 53
STM32WL55/54xx Pinouts, pin description and alternate functions
Table 19. STM32WL55/54xx pin definition (continued)
Pin number
Pin name
(function after
Notes
I/O structure
WLCSP59
UFQFPN48
reset)
Pin type
UFBGA73
11 K11 H 5 VDD S - - - -
12 J10 J1 PA4 I/O FT -
13 H9 J2 PA5 I/O FT -
14 G8 F4 PA6 I/O FT -
15 E8 H3 PA7 I/O FT_fa -
Alternate functions Additional functions
RTC_OUT2, LPTIM1_OUT,
SPI1_NSS, USART2_CK,
DEBUG_SUBGHZSPI_
-
NSSOUT, LPTIM2_OUT,
CM4_EVENTOUT
TIM2_CH1, TIM2_ETR,
SPI2_MISO, SPI1_SCK,
DEBUG_SUBGHZSPI_
-
SCKOUT, LPTIM2_ETR,
CM4_EVENTOUT
TIM1_BKIN, I2C2_SMBA,
SPI1_MISO, LPUART1_CTS,
DEBUG_SUBGHZSPI_
-
MISOOUT, TIM16_CH1,
CM4_EVENTOUT
TIM1_CH1N, I2C3_SCL,
SPI1_MOSI, COMP2_OUT,
DEBUG_SUBGHZSPI_
-
MOSIOUT, TIM17_CH1,
CM4_EVENTOUT
MCO, TIM1_CH1,
16 L10 J3 PA8 I/O FT_a -
SPI2_SCK/I2S2_CK,
USART1_CK, LPTIM2_OUT,
-
CM4_EVENTOUT
TIM1_CH2,
SPI2_NSS/I2S2_WS,
17 K9 E5 PA9 I/O FT_fa -
I2C1_SCL,
SPI2_SCK/I2S2_CK,
-
USART1_TX,
CM4_EVENTOUT
TIM2_CH3, I2C3_SCL,
- - H4 PB10 I/O FT_f -
SPI2_SCK/I2S2_CK,
LPUART1_RX, COMP1_OUT,
-
CM4_EVENTOUT
TIM2_CH4, I2C3_SDA,
--G4 PB11 I/OFT_f-
LPUART1_TX, COMP2_OUT,
-
CM4_EVENTOUT
18 J8 F5 NRST I/O FT - - -
19 H7 J5 PH3-BOOT0 I/O FT - CM4_EVENTOUT BOOT0
-L8- VDD S - - - -
DS13293 Rev 1 53/145
60
Page 54
Pinouts, pin description and alternate functions STM32WL55/54xx
Table 19. STM32WL55/54xx pin definition (continued)
Pin number
Pin name
(function after
reset)
UFBGA73
WLCSP59
UFQFPN48
- K7 - VSS S - - - -
- J6 H6 VSSRF S - - - -
- H5 G6 VSSRF S - - - -
20 L6 J6 RFI_P I RF - - -
21 K5 H7 RFI_N I RF - - -
- G4 G7 VSSRF S - - - -
- J4 - VSSRF S - - - -
22 L4 J8 RFO_LP O RF - - -
- - G8 VSSRF S - - - -
Pin type
Notes
I/O structure
Alternate functions Additional functions
23 K3 J9 RFO_HP O RF - - -
- H3 - VSSRF S - - - -
24 L2 H9 VR_PA S - - - -
25 H1 H8 VDDPA S - - - -
- K1 - VSSRF S - - - -
26 G2 G9 OSC_IN I RF - - -
27 F1 F8 OSC_OUT O RF - - -
- F3 - VSSRF S - - - -
28 E2 E8 VDDRF S - - - -
29 D1 F7 VDDRF1V55 S - - - -
- F5 D9 VSS S - - - -
- - E9 VDD S - - - -
30 B1 F6 PB0-VDD_TCXO I/O TT -
- - E7 PB1 I/O FT_a -
31 - D8 PB2 I/O FT_a -
32 - E6 PB12 I/O FT -
COMP1_OUT,
CM4_EVENTOUT
LPUART1_RTS_DE,
LPTIM2_IN1,
CM4_EVENTOUT
LPTIM1_OUT, I2C3_SMBA,
SPI1_NSS,
DEBUG_RF_SMPSRDY,
CM4_EVENTOUT
TIM1_BKIN, I2C3_SMBA,
SPI2_NSS/I2S2_WS,
LPUART1_RTS,
CM4_EVENTOUT
COMP2_INP,
ADC_IN5
COMP1_INP,
COMP2_INM,
ADC_IN4
-
-
54/145 DS13293 Rev 1
Page 55
STM32WL55/54xx Pinouts, pin description and alternate functions
Table 19. STM32WL55/54xx pin definition (continued)
Pin number
Pin name
(function after
Notes
I/O structure
WLCSP59
UFQFPN48
reset)
Pin type
UFBGA73
- - D7 PB13 I/O FT_fa -
- - C6 PB14 I/O FT_fa -
33 D3 C8 PA10 I/O FT_fa -
34 E4 B9 PA11 I/O FT_fa -
35 D5 A9 PA12 I/O FT_fa -
36 D7 B8 PA13 I/O FT_a -
- C2 B7 VSS S - - - -
-A2A7 VDD S - - - -
Alternate functions Additional functions
TIM1_CH1N, I2C3_SCL,
SPI2_SCK/I2S2_CK,
LPUART1_CTS,
ADC_IN0
CM4_EVENTOUT
TIM1_CH2N, I2S2_MCK,
I2C3_SDA, SPI2_MISO,
ADC_IN1
CM4_EVENTOUT
RTC_REFIN, TIM1_CH3,
I2C1_SDA,
SPI2_MOSI/I2S2_SD,
USART1_RX,
DEBUG_RF_HSE32RDY,
TIM17_BKIN,
COMP1_INM, COMP2_INM,
DAC_OUT1,
ADC_IN6
CM4_EVENTOUT
TIM1_CH4, TIM1_BKIN2,
LPTIM3_ETR, I2C2_SDA,
SPI1_MISO, USART1_CTS,
DEBUG_RF_NRESET,
COMP1_INM, COMP2_INM,
ADC_IN7
CM4_EVENTOUT
TIM1_ETR, LPTIM3_IN1,
I2C2_SCL, SPI1_MOSI,
RF_BUSY, USART1_RTS,
ADC_IN8
CM4_EVENTOUT
JTMS-SWDIO, I2C2_SMBA,
IR_OUT, CM4_EVENTOUT
ADC_IN9
37 - A8 VBAT S - - - -
TAMP_IN1/
38 - C7 PC13 I/O FT - CM4_EVENTOUT
RTC_OUT1/RTC_TS/
WKUP2
39 B3 B6 PC14-OSC32_IN I/O FT - CM4_EVENTOUT OSC32_IN
40 A4 C5
PC15-
OSC32_OUT
I/O FT - CM4_EVENTOUT OSC32_OUT
- - B5 VREF+ S - - - -
41 B5 A5 VDDA S - - - -
- C4 - VSS S - - - -
DS13293 Rev 1 55/145
60
Page 56
Pinouts, pin description and alternate functions STM32WL55/54xx
Table 19. STM32WL55/54xx pin definition (continued)
Pin number
Pin name
(function after
WLCSP59
UFQFPN48
reset)
UFBGA73
Pin type
I/O structure
42 C6 A4 PA14 I/O FT_a -
Notes
Alternate functions Additional functions
JTCK-SWCLK, LPTIM1_OUT,
I2C1_SMBA,
ADC_IN10
CM4_EVENTOUT
43 A8 B3 PA15 I/O FT_fa -
JTDI, TIM2_CH1, TIM2_ETR,
I2C2_SDA, SPI1_NSS,
COMP1_INM,
COMP2_INP,
CM4_EVENTOUT
TIM1_CH3N, I2C2_SCL,
- - B4 PB15 I/O FT_f
SPI2_MOSI/I2S2_SD,
CM4_EVENTOUT
44 A6 - VDD S - - - -
- B7 - VSS S - - - -
(1)
49
G6 - VSS S - - - -
45 B9 B2 VFBSMPS S - - - -
46 A10 A2 VDDSMPS S - - - -
47 B11 B1 VLXSMPS S - - - -
48 C10 A1 VSSSMPS S - - - -
1. Pin 49 is an exposed pad that must be connected to VSS.
ADC_IN11
-
56/145 DS13293 Rev 1
Page 57

Table 20. Alternate functions

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
STM32WL55/54xx Pinouts, pin description and alternate functions
DS13293 Rev 1 57/145
Port
PA0
PA1
PA2
PA3
PA4
PA5
PA6
Port A
PA7
PA8
PA9
PA1 0
PA11
SYS_
AF
-
-
LSCO
-
RTC_
OUT2
-
-
-
MCO
-
RTC_
REFIN
-
TIM1/ TIM2/
LPTIM1
TIM2_
CH1
TIM2_
CH2
TIM2_
CH3
TIM2_
CH4
LPTIM1
_OUT
TIM2_
CH1
TIM1_
BKIN
TIM1_ CH1N
TIM1_
CH1
TIM1_
CH2
TIM1_
CH3
TIM1_
CH4
TIM1/
BKIN2
SPI2S2/
TIM2
TIM2_
ETR
TIM1_
TIM1/
LPTIM3
--
LPTIM3_
­OUT
-- -- -
-- -
-- -
SPI2_
MISO
--
--
-- -
SPI2_
-
NSS/
I2S2_WS
--
LPTIM3_
ETR
I2C1/ I2C2/
I2C3
I2C3_ SMBA
I2C1_ SMBA
-
I2C2_ SMBA
I2C3_
SCL
I2C1_
SCL
I2C1_
SDA
I2C2_
SDA
SPI1/
SPI2S2
I2S_
CKIN
SPI1_
SCK
I2S2_
MCK
SPI1_
NSS
SPI1_
SCK
SPI1_ MISO
SPI1_ MOSI
SPI2_
SCK/
I2S2_CK
SPI2_
SCK/
I2S2_CK
SPI2_
MOSI/
I2S2_SD
SPI1_ MISO
RF
-
-
-
-
-- -----
--
-- ----
-
-
-
-
USART1
/
LPUART1 - - -
USART2
USART2_
CTS
USART2_
RTS
USART2_TXLPUART1_
USART2_RXLPUART1_
USART2_
CK
USART1_
CK
USART1_
TX
USART1_
RX
USART1_
CTS
----
LPUART1_
RTS
TX
RX
-----
LPUART1_
CTS
----- -
----- - -
-----
----
COMP1/ COMP2/
DEBUG
TIM1
COMP1_
--- -
---
--- - - -
---
COMP2_
TIM1_
BKIN
COMP2_
TIM1_ BKIN2
OUT
OUT
OUT
DEBUG_PWR
_REGLP1S
DEBUG_PWR
_REGLP2S
DEBUG_PWR
_LDORDY
DEBUG_
SUBGHZSPI_
NSSOUT
DEBUG_
SUBGHZSPI_
SCKOUT
DEBUG_
SUBGHZSPI_
MISOOUT
DEBUG_
SUBGHZSPI_
MOSIOUT
DEBUG_RF_
HSE32RDY
DEBUG_RF_
NRESET
TIM2/ TIM16/ TIM17/
LPTIM2
TIM2_ETR
-
-
LPTIM2_
OUT
LPTIM2_
ETR
TIM16_
CH1
TIM17_
CH1
LPTIM2_
OUT
TIM17_
BKIN
-
EVENOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
Page 58
58/145 DS13293 Rev 1
Table 20. Alternate functions (continued)
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Pinouts, pin description and alternate functions STM32WL55/54xx
Port
PA1 2
PA1 3
PA1 4
Port A (continued)
PA1 5
PB0
PB1
PB2
PB3
PB4
PB5
Port B
PB6
PB7
PB8
PB9
PB10
SYS_
AF
JTMS-
SWDIO
JTCK-
SWCLK
JTDI
JTDO/
TRACE
SWO
NJTRST - - -
TIM1/ TIM2/
LPTIM1
TIM1_
-
LPTIM1_
TIM2_
---- -- - - ----
---- -- - -
LPTIM1_
-
TIM2_
LPTIM1_
-
LPTIM1_
-
LPTIM1_
-
TIM1_
­CH2N
TIM1_
­CH3N
TIM2_
-
TIM1/
ETR
-- -
OUT
CH1
OUT
CH2
IN1
ETR
IN2
CH3
SPI2S2/
TIM2
TIM2_
ETR
TIM1/
LPTIM3
LPTIM3_
-
--
--
-- -
--
--
-
--
--
--
IN1
TIM1_
BKIN
I2C1/ I2C2/
I2C3
I2C2_
SCL
I2C2_ SMBA
I2C1_ SMBA
I2C2_
­SDA
I2C3_ SMBA
I2C3_
SDA
I2C1_ SMBA
I2C1_
SCL
I2C1_
SDA
I2C1_
SCL
I2C1_
SDA
I2C3_
SCL
SPI1/
SPI2S2
SPI1_ MOSI
SPI1_
SPI1_
SPI1_
SPI1_ MISO
SPI1_ MOSI
SPI2_
I2S2_WS
SPI2_
I2S2_CK
RF_BUSY
-- -IR_OUT---- - -
-- - ----- - -
NSS
NSS
SCK
NSS/
SCK/
RF_IRQ0
RF_IRQ1
--
--
- RF_IRQ2 - - - - - - -
USART1
RF
/
LPUART1 - - -
USART2
USART1_
RTS
-- ----- - -
-- -----
USART1_
RTS
USART1_
-
--IR_OUT---- -
--
CTS
USART1_
CK
USART1_
TX
USART1_
RX
----- - -
LPUART1_
RTS_DE
-----
-----
----
----- -
----- -
LPUART1_
RX
--- - -
---
COMP1/ COMP2/
TIM1
COMP1_
OUT
COMP2_
OUT
COMP1_
OUT
TIM2/
DEBUG
TIM16/ TIM17/
LPTIM2
--
LPTIM2_
IN1
DEBUG_RF_
SMPSRDY
DEBUG_RF_
DTB1
DEBUG_RF_
LDORDY
-
--
TIM17_
BKIN
TIM16_
BKIN
TIM16_
CH1N
TIM17_
CH1N
TIM16_
CH1
TIM17_
CH1
-
-
EVENOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
Page 59
Table 20. Alternate functions (continued)
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
STM32WL55/54xx Pinouts, pin description and alternate functions
DS13293 Rev 1 59/145
Port
SYS_
PB11
PB12
PB13
PB14
Port B (continued)
PB15
AF
TIM1/ TIM2/
TIM1/
LPTIM1
TIM2_
­CH4
TIM1_
-
BKIN
TIM1_
-
CH1N
TIM1_
-
CH2N
TIM1_
-
CH3N
SPI2S2/
TIM2
TIM1/
LPTIM3
--
TIM1_
­BKIN
--
-I2S2_MCK
--
I2C1/ I2C2/
I2C3
I2C3_
SDA
I2C3_ SMBA
I2C3_
SCL
I2C3_
SDA
I2C2_
SCL
SPI1/
SPI2S2
-- -
SPI2_
NSS/
I2S2_WS
SPI2_
SCK/
I2S2_CK
SPI2_ MISO
SPI2_
MOSI/
I2S2_SD
USART1
RF
/
LPUART1 - - -
USART2
LPUART1_
TX
--
--
-- ----- - -
-- ----- - -
LPUART1_
RTS
LPUART1_
CTS
---
--- - - -
--- - - -
COMP1/ COMP2/
TIM1
COMP2_
OUT
DEBUG
--
TIM2/ TIM16/ TIM17/
LPTIM2
EVENOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
Page 60
60/145 DS13293 Rev 1
Table 20. Alternate functions (continued)
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Pinouts, pin description and alternate functions STM32WL55/54xx
Port
PC0
PC1
PC2
PC3
PC4
Port C
PC5
PC6
PC13
PC14
PC15
SYS_
AF
TIM1/ TIM2/
LPTIM1
LPTIM1_
-
LPTIM1_
-
LPTIM1_
-
LPTIM1_
-
---- -- - - ----- - -
---- -- - - ----- - -
---- -
---- -- - - ----- - -
---- -- - - ----- - -
---- -- - - ----- - -
TIM1/
IN1
OUT
IN2
ETR
SPI2S2/
TIM2
TIM1/
LPTIM3
--
SPI2_
-
MOSI/
I2S2_SD
-- -
-- -
I2C1/ I2C2/
I2C3
I2C3_
SCL
I2C3_
SDA
SPI1/
SPI2S2
-- -
-- -
SPI2_ MISO
SPI2_
MOSI/
I2S2_SD
I2S2_
MCK
USART1
RF
/
LPUART1 - - -
USART2
LPUART1_
RX
LPUART1_
TX
-- ----- - -
-- ----- -
-- ----- - -
--- - -
--- - - -
COMP1/ COMP2/
TIM1
DEBUG
TIM2/ TIM16/ TIM17/
LPTIM2
LPTIM2_
IN1
LPTIM2_
ETR
EVENOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
CM4_
EVENTOUT
PH3
Port H
---- -- - - ----- - ­EVENTOUT
CM4_
Page 61
STM32WL55/54xx Electrical characteristics
MSv68045V1
MCU pin
C = 50 pF
MSv68046V1
MCU pin
V
IN

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS and, for parameter values based on characterization results, measurements are performed on the UFQFPN48 package.

5.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies, by tests in production on 100 % of the devices, with an ambient temperature at T by the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3).

5.1.2 Typical values

= 25 °C and TA = TAmax (given
A
Unless otherwise specified, typical data are based on TA = 25 °C, V Typical values are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95 % of the devices have an error less than or equal to the value indicated

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 11.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions Figure 12. Pin input voltage
(mean ± 2).
DD
= V
DDA
= V
BAT
= 3 V.
DS13293 Rev 1 61/145
135
Page 62
Electrical characteristics STM32WL55/54xx
MSv64325V5
V
DD
Backup circuitry
(LSE, RTC and
backup registers)
Kernel logic
(CPU, digital
and memories
Level shifter
I/O
logic
IN
LPR
GPIOs
1.55 to 3.6 V
n x 100 nF + 1 x 4.7 μF
n x VSS
n x VDD
VBAT
V
CORE
Power switch
ADC DAC
COMPs
VREFBUF
V
REF+
V
REF-
V
DDA
10 nF + 1 μF
VDDA
VSS
V
REF
100 nF
1 μF
SMPS
MR
VDDSMPS
VLXSMPS
VFBSMPS
VSSSMPS
4.7 μF
V
DD
Exposed pad
470 nF
To all modules (VSS/VSSRF)
LDO/SMPS
RFLDO
VDDRF1V5
REG PA
VDDPA (= VDDRF1V5 or VDDSMPS)
VDDRF
15 μH
V
BAT
Sub-GHz radio
OUT

5.1.6 Power supply scheme

Figure 13. Power supply scheme
Caution: Each power supply pair (such as V
Note: For the UFQFPN48 and WLCSP59 package, VREF+ is internally connected to VDDA.
62/145 DS13293 Rev 1
ceramic capacitors as shown in the above figure. These capacitors must be placed as close
DD/VSS or VDDA/VSS
) must be decoupled with filtering
as possible to (or below) the appropriate pins on the underside of the PCB to ensure the good functionality of the device.
Page 63
STM32WL55/54xx Electrical characteristics
MSv64326V2
VBAT
I
DD
VDD
VDDA
VDDRF
VDDSMPS
I
DDVBAT
VBAT
I
DDA
VDD
VDDA
I
DDRF
VDDRF
I
DDSMPS
VDDSMPS

5.1.7 Current consumption measurement

Figure 14. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in the tables below, may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand.

Table 21. Voltage characteristics

Symbol Ratings Min Max Unit
External main supply voltage
V
DDX
V
- V
(including V
SS
V
DDSMPS, VBAT, VREF+
DD
, V
DDA
,
Input voltage on FT_xx pins
(2)
IN
Input voltage on TT pins 3.9
V
DDRF
)
,
–0.3 3.9
min (VDD, V
V
- 0.3
SS
Input voltage on any other pin 3.9
DDx
|V
SSx-VSS
- V
V
REF+
1. All main power (VDD, VDDRF, VDDA, VBAT) and ground (VSS) pins must always be connected to the external power supply, in the permitted range.
power pins of the same domain
Variations between all the different
|
ground pins
Allowed voltage difference for
DDA
V
REF+
(5)
V
>
DDA
Variations between different V
|
|V
DDX
-50
-50
-0.4V
(1)
DDA
, V
DDRF
, V
DDSMPS
) +
3.9
(3)(4)
V
mV
DS13293 Rev 1 63/145
135
Page 64
Electrical characteristics STM32WL55/54xx
2. VIN maximum must always be respected. Refer to the next table for the maximum allowed injected current values.
3. This formula must be applied only on the power supplies related to the I/O structure described in Table 19:
STM32WL55/54xx pin definition.
4. To sustain a voltage higher than 4 V, the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.

Table 22. Current characteristics

Symbol Ratings Max Unit
(1)
(1)
(1)
(1)
130
130
130
100
IV
IV
IV
DD(PIN)
IV
SS(PIN)
DD
SS
Total current into sum of all V
Total current out of sum of all V
Maximum current into each
VDD
Maximum current out of each
power lines (source)
DD
ground lines (sink)
SS
power pin (source)
ground pin (sink)
VSS
Output current sunk by any I/O and control pin, except FT_f 20
I
IO(PIN)
Output current sunk by any FT_f pin 20
Output current sourced by any I/O and control pin 20
I
Total output current sunk by sum of all I/Os and control pins
IO(PIN)
I
INJ(PIN)
|I
INJ(PIN)
1. All main power (VDD, VDDRF, VDDA, VBAT) and ground (VSS) pins must always be connected to the external power supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.
3. Positive injection (when V specified maximum value.
4. A negative injection is induced by V maximum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum |I injected currents (instantaneous values).
Total output current sourced by sum of all I/Os and control pins
Injected current on FT_xx, TT and RST pins, except PB0 –5 / +0
(3)
Injected current on PB0 -5/0
|
Total injected current (sum of all I/Os and control pins)
> VDD) is not possible on these I/Os and does not occur for input voltages lower than the
IN
< VSS. I
IN
must never be exceeded. Refer also to the previous table for the
INJ(PIN)
(2)
(2)
(5)
|
is the absolute sum of the negative
INJ(PIN)
100
100
(4)
25
mA

Table 23. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range -65 to +150
Maximum junction temperature 125
64/145 DS13293 Rev 1
°C
Page 65
STM32WL55/54xx Electrical characteristics

5.3 Operating conditions

5.3.1 Main performances

Table 24. Main performances at VDD = 3 V
Parameter Test conditions Typ Unit
VBAT (V
= 3V, VDD = 0 V) 0.005
BAT
Shutdown 0.031
Standby (32-Kbyte RAM retention) 0.360
I
CORE
Core current consumption
Stop 2, RTC enabled 1
Sleep (16 MHz) 770
LPRun (2 MHz) 220
Run, SMPS ON (48 MHz) 3450
Rx boosted LoRa 125 kHz, SMPS ON 4.82
434 to 490 MHz, 14 dBm, 3.3 V 21
Tx low power
868 to 915 MHz, 14 dBm, 3.3 V 26
434 to 490 MHz, 22 dBm, 3.3 V 120
Tx high power
868 to 915 MHz, 22 dBm, 3.3 V 107

5.3.2 General operating conditions

Table 25. General operating conditions
µA
mA
Symbol Parameter Conditions Min Max Unit
f
HCLK
PCLK1
f
PCLK2
V
Internal AHB clock frequency -
Internal APB1 clock frequency -
Internal APB2 clock frequency -
Standard operating voltage - 1.8
DD
0 48 MHzf
(1)
3.6
ADC or COMP used 1.62
DAC used 1.71
DDA
V
BAT
V
FBSMPS
V
DDRF
V
Analog supply voltage
VREFBUF used 2.4
ADC, DAC, COMP and VREFBUF not used
0
Backup operating voltage - 1.55 3.6
SMPS feedback voltage - 1.4 3.6
Minimum RF voltage - 1.8 3.6
TT I/O –0.3 V
I/O input voltage
IN
All I/O except TT –0.3
min (V
3.6
+ 0.3
DD
min between
, V
DD
DDA
and 5.5 V
(2)(3)
) + 3.6 V
VV
V
DS13293 Rev 1 65/145
135
Page 66
Electrical characteristics STM32WL55/54xx
Table 25. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
Power dissipation at
= 85 °C for suffix 6 version
T
P
A
D
or TA = 105 °C for suffix 7
UFBGA73 - 392.0 mW
(4)
Ambient temperature for suffix 6 version
Maximum power dissipation
Low-power dissipation
–40
(5)
85
105
TA
Ambient temperature for the suffix 7 version
dissipation
Low-power dissipation
–40
(5)
Suffix 6 version
T
Maximum power
Junction temperature range
J
1. When the reset is released, the functionality is guaranteed down to V
2. This formula has to be applied only on the power supplies related to the I/O structure described in Table 19:
STM32WL55/54xx pin definition. Maximum I/O input voltage is the smallest value between min (V
5.5 V.
3. For operation with voltage higher than min (V disabled.
4. If T
5. In low-power dissipation state, T
is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 101: Package thermal
A
characteristics).
can be extended to this range, as long as TJ does not exceed TJ max (see Table 101:
Package thermal characteristics).
A
Suffix 7 version 125
BOR0
, V
DD
) + 0.3 V, the internal pull-up and pull-down resistors must be
DDA
–40
min.
DD
105
125
105
, V
DDA
°C
°C
) + 3.6 V and
66/145 DS13293 Rev 1
Page 67
STM32WL55/54xx Electrical characteristics

5.3.3 Sub-GHz radio characteristics

Electrical characteristics of the sub-GHz radio are given with the following conditions unless otherwise specified:
V
Temperature = 25 °C
HSE32 = 32 MHz
F
All RF impedances matched using reference design
Reference design implementing a 32 MHz crystal oscillator
Transmit mode output power defined in 50 load
FSK BER (bit error rate) = 0.1 %, 2-level FSK modulation without pre-filtering,
LoRa PER (packet error rate) = 1 %, packet of 64 bytes, preamble of 8 bytes, error
Sensitivities given using highest LNA gain step
Power consumption measured with -140 dBm signal and AGC ON
Blocking immunity, ACR and co-channel rejection, given for a single tone interferer and
Bandwidth expressed on DSB (double-sided band)
= 3.3 V. The current consumption is measured as described in Figure 14.
DD
I
includes current consumption of all supplies (V
DD
DDRF
, V
DDSMPS
, VDD, V
DDA
, V
BAT
).
All peripherals except Sub-GHz radio are disabled and the system is in Standby mode.
= 434/868/915 MHz
RF
BR = 4.8 Kbit/s, FDA = 5 kHz, BW_F = 20 kHz
correction code CR = 4/5, CRC on payload enabled, no reduced encoding, no implicit header
referenced to sensitivity +6 dB, blocking tests performed with unmodulated signal
Table 26. Operating range of RF pads
Pad Description Max Unit
RFI_P/RFI_N RF input power 0
RFO_LP/RFO_HP/VR_PA Voltage Standing Wave Ratio (VSWR) 10.1
dBm
DS13293 Rev 1 67/145
135
Page 68
Electrical characteristics STM32WL55/54xx
Table 27. Sub-GHz radio power consumption
Symbol Mode Conditions Min Typ Max Unit
Deep-Sleep
I
DD
mode (Sleep with cold
(1)(2)
start)
Sleep mode (with warm
(2)(3)
start)
Sleep, LDO
(4)
mode
Sleep, SMPS
(4)
mode
Standby mode (RC 13 MHz on)
Standby mode (HSE32)
Synthesizer mode
All blocks off - 50 -
Configuration retained - 140 -
Configuration retained + RC64k - 810 -
LDO, band-gap, RC 13 MHz on
Band-gap,
HSE32 off - 414 -
HSE32 on - 564 -
HSE32 off - 700 ­RC 13 MHz on, SMPS 40 mA max
HSE32 on - 950 -
RC 13 MHz on, HSE32 off - 0.7 -
SMPS mode 40 mA max settings - 1.05 -
LDO mode - 0.99 -
SMPS mode used with 40 mA drive capability - 2.66 -
LDO mode - 4.05 -
nA
µA
mA
FSK 4.8 Kbit/s - 4.47 -
Receive mode, SMPS mode used
SMPS 40 mA max
LoRa 125 kHz - 4.82 -
Rx boosted, FSK 4.8 Kbit/s - 5.12 -
RX boosted, LoRa 125 kHz - 5.46 -
mA
FSK 4.8 Kbit/s - 8.18 -
Receive mode, LDO mode used
LoRa 125 kHz 8.90
FSK 4.8 Kbit/s 9.52 RX boosted
LoRa 125 kHz 10.22
1. Cold start is equivalent to device at POR or when the device wakes up from Sleep mode with all blocks off.
2. Only Sub-GHz radio power consumption.
3. Warm start only happens when the device wakes up from Sleep mode with its configuration retained,
4. System in Stop 0 mode range 2.
68/145 DS13293 Rev 1
Page 69
STM32WL55/54xx Electrical characteristics
Table 28. Sub-GHz radio power consumption in transmit mode
Symbol Frequency band (MHz) PA match (conditions) Power output Typ Unit
+14 dBm, V
Low power (optimized for 14 dBm)
+10 dBm, V
+14 dBm, V
+10 dBm, V
868 to 915
+15 dBm, V
Low power (optimal settings)
(1)
+10 dBm, V
+15 dBm, V
+10 dBm, V
+14 dBm, V
Low power (optimized for 14 dBm)
+10 dBm, V
+14 dBm, V
+10 dBm, V
434 to 490
+15 dBm, V
+10 dBm, V
Low power (optimal settings)
+15 dBm, V
+10 dBm, V
I
DD
868 to 915
Low-power PA, SMPS OFF +14 dBm, V
434 to 490 43.5
+22 dBm, V
High power (optimized for 22 dBm)
868 to 915
+20 dBm, V
+17 dBm, V
+14 dBm, V
+20 dBm, V
High power (optimal settings)
+17 dBm, V
+14 dBm, V
+22 dBm, V
High power (optimized for 22 dBm)
434 to 490
+20 dBm, V
+17 dBm, V
+14 dBm, V
+20 dBm, V
High power (optimal settings)
+17 dBm, V
+14 dBm, V
1. Optimal settings can be used to optimize power consumption when the output power is NOT 22 dBm (high power) or
14 dBm (low power). In that case, a dedicated firmware configuration associated to a dedicated board matching network (see AN5457 for details) corresponding to the custom output power, can be used.
= 3.3 V 23.5
DDRF
= 3.3 V 17.5
DDRF
= 1.8 V 41.5
DDRF
= 1.8 V 28.5
DDRF
= 3.3 V 25.5
DDRF
= 3.3 V 15
DDRF
= 1.8 V 51
DDRF
= 1.8 V 25
DDRF
= 3.3 V 22.5
DDRF
= 3.3 V 13.5
DDRF
= 1.8 39.5
DDRF
= 1.8 V 22.5
DDRF
= 3.3 V 24.5
DDRF
= 3.3 V 13.5
DDRF
= 1.8 V 43
DDRF
= 1.8 V 21.5
DDRF
= 3.3 V
DDRF
= 3.3 V 119
DDRF
= 3.3 V 107.5
DDRF
= 3.3 V 98
DDRF
= 3.3 V 92
DDRF
= 3.3 V 92.5
DDRF
= 3.3 V 58
DDRF
= 3.3 V 45.5
DDRF
= 3.3 V 110.5
DDRF
= 3.3 V 90
DDRF
= 3.3 V 71
DDRF
= 3.3 V 59
DDRF
= 3.3 V 72
DDRF
= 3.3 V 43.5
DDRF
= 3.3 V 38
DDRF
45.5
mA
DS13293 Rev 1 69/145
135
Page 70
Electrical characteristics STM32WL55/54xx
Table 29. Sub-GHz radio general specifications
Symbol Description Conditions Min Typ Max Unit
FR Frequency synthesizer range Low-power PA 150 - 960 MHz
FSTEP Frequency synthesizer step High-resolution mode HSE / 2
100 kHz offset - –100 -
PHN
(2)
(1)
Synthesizer phase noise (868 to 915 MHz)
(2)(5)
-095 - Hz
dBc/Hz1 MHz offset - –120 -
10 MHz offset - –135 -
TS_FS Synthesizer wakeup time From Standby, HSE32 mode - 40 -
TS_HO
TS_OS
OSC_
TRM
BR_F Bitrate, FSK
FDA Frequency deviation, FSK
Synthesizer hop time 10 MHz step - 40 -
P
(3)
Crystal oscillator wakeup time
C
From Standby, RC from HSE32 off
normal mode
-170 -
Crystal oscillator trimming range for crystal frequency error compensation
(4)
Min/max XTAL specifications ±15 ±30 - ppm
Programmable (min modulation index is 0.5)
Programmable (FDA + BR_F/2 250 kHz)
0.6 - 300
0.6 - 200 kHz
(5)
µs
Kbit/s
BR_L Bitrate, LoRa
Min for SF12, BW_L = 7.8 kHz Max for SF7, BW_L = 500 kHz
0.018 - 62.5
BW_L Signal BW, LoRa Programmable 7.8 - 500
SF Spreading factor for LoRa Programmable, chips/symbol = 2
1. Phase Noise specifications are given for the recommended PLL bandwidth to be used for the specific modulation/BR, optimized settings may be used for specific applications.
2. Phase Noise is not constant over frequency, due to the topology of the PLL. For two frequencies close to each other, the phase noise may change significantly
3. Wakeup time till crystal oscillator frequency is within ±10 ppm.
4. OSC_TRIM is the available trimming range to compensate for crystal initial frequency error and to allow crystal temperature compensation implementation. The total available trimming range is higher and allows the compensation for all device process variations
5. Maximum bit rate is assumed to scale with the RF frequency: for example 300 Kbit /s in the 869-to-915 MHz frequency band and only 50 Kbit/s at 150 MHz.
6. For RF frequencies below 400 MHz, there is a scaling between the frequency and supported bandwidth. Some bandwidths may not be available below 400 MHz.
SF
5-12-
(6)
(6)
Kbit/s
kHz
70/145 DS13293 Rev 1
Page 71
STM32WL55/54xx Electrical characteristics
Table 30. Sub-GHz radio receive mode specifications
Symbol Description Conditions Min Typ Max Unit
RXS_2FB
Sensitivity 2-FSK, RX boosted gain, split RF paths for RX and Tx, RF switch insertion loss excluded
BR = 0.6 Kbit/s, FDA = 0.8 kHz, BW = 4 kHz
BR = 1.2 Kbit/s, FDA = 5 kHz, BW = 20 kHz
BR = 4.8 Kbit/s, FDA = 5 kHz, BW = 20 kHz
BR = 38.4 Kbit/s, FDA = 40 kHz, BW = 160 kHz
BR = 250 Kbit/s, FDA = 125 kHz, BW = 500 kHz
- –125 -
- –123 -
-–117 -
- –108 -
- –103 -
BW = 10.4 kHz, SF = 7 - –135 -
BW = 10.4 kHz, SF = 12 - –148 -
dBm
RXS_LB
Sensitivity LoRa, RX boosted gain, split RF paths for RX and Tx, RF switch insertion loss excluded
BW = 125 kHz, SF = 7 - –125 -
BW = 125 kHz, SF = 12 - –138 -
BW = 250 kHz, SF = 7 - –122 -
BW = 250 kHz, SF = 12 - –135 -
BW = 500 kHz, SF = 7 - –118 -
BW = 500 kHz, SF = 12 - –130 -
RSX_2F
Sensitivity 2-FSK, RX power saving gain with direct tie connection between RX and Tx
BR = 4.8 Kbit/s, FDA = 5 kHz, BW = 20 kHz
-–115 -
Sensitivity LoRa, RX power
RXS_L
saving gain with direct tie
BW = 125 kHz, SF = 12 - –135 -
connection between RX and Tx
CCR_F Co-channel rejection, FSK - - –9 -
SF = 7 - 7 -
CCR_L Co-channel rejection, LoRa
SF = 12 - 19 -
ACR_F Adjacent channel rejection, FSK Offset = ±50 kHz - 44 -
Offset = ±1.5 x BW_L, BW = 125 kHz, SF = 7
-60 -
ACR_L Adjacent channel rejection, LoRa
BI_F Blocking immunity, FSK
Offset = ±1.5 x BW_L, BW = 125 kHz, SF = 12
Offset = ±1 MHz, BR = 4.8 Kbit/s, FDA = 5 kHz, BW = 20 kHz
Offset = ±2 MHz, BR = 4.8 Kbit/s, FDA = 5 kHz, BW = 20 kHz
Offset = ±10 MHz, BR = 4.8 Kbit/s, FDA = 5 kHz, BW = 20 kHz
-71 -
-67 -
-70 -
-76 -
dB
DS13293 Rev 1 71/145
135
Page 72
Electrical characteristics STM32WL55/54xx
Table 30. Sub-GHz radio receive mode specifications (continued)
Symbol Description Conditions Min Typ Max Unit
BI_L Blocking immunity, LoRa
Offset = ±1 MHz, BW = 125 kHz, SF = 12
Offset = ±2 MHz, BW = 125 kHz, SF = 12
Offset = ±10 MHz, BW = 125 kHz, SF = 12
-87 -
-91 -
-96 -
Unwanted tones are 1 MHz and
1.96 MHz above LO.
-–9 -
868 to 915 MHz band
IIP3 Third order input intercept point
Unwanted tones are 1 MHz and
1.96 MHz above LO.
- –15 -
433 MHz band
Without IQ calibration - 30 -
IMA Image attenuation
With IQ calibration - 54 -
BW_F DSB channel filter BW, FSK Programmable, typical values 4.8 - 467 kHz
TS_RX Receiver wakeup time FS to RWX - 41 - µs
Maximum tolerated frequency offset between transmitter and receiver, SF7 to SF12
FERR_L
Maximum tolerated frequency
All bandwidths, ±25 % of BW. The tighter limit between this line
25 - BW
and the three lines below applies.
SF12 –50 - 50
offset between transmitter and receiver, SF10 to SF12
SF10 –200 - 200
dB
dBm
dB
ppmSF11 –100 - 100
Table 31. Sub-GHz radio transmit mode specifications
Symbol Description Conditions Min Typ Max Unit
Highest power step setting for low-power PA (LP PA)
-+15
(1)
-
TXOP Max RF output power
TXDRP
RF output power drop versus supply voltage
TXPRNG RF output power range
TXACC
RF output power step accuracy
Highest power step setting for high-power PA (HP PA)
LP PA, under SMPS or LDO VDDop range from 1.8 to 3.7 V
HP PA, +22 dBm, V
HP PA, +22 dBm, V
HP PA, +22 dBm, V
= 2.7 V - 2 -
DD
= 2.4 V - 3 -
DD
= 1.8 V - 6 -
DD
Programmable in 31 steps, typical value
--±2-dB
-+22-
-0.5-
TXOP-31 - TXOP dBm
72/145 DS13293 Rev 1
dBm
dB
Page 73
STM32WL55/54xx Electrical characteristics
Table 31. Sub-GHz radio transmit mode specifications (continued)
Symbol Description Conditions Min Typ Max Unit
TXRMP PA ramping time Programmable 10 - 3400
TS_TX TX wakeup time
1. For low-power PA, +15 dBm maximum RF output power can be reached with optimal settings.
Frequency synthesizer enabled
- 36 + PA ramping -
µs
Table 32. Sub-GHz radio power management specifications
Frequency
Symbol Description Conditions
(MHz)
470 490 868
TRPOR Required POR reset pulse duration For V
1.8 V 50 100 - µs
DD
VEOLL End-of-life low-threshold voltage - 1.81 1.89 1.96
VEOLH End-of-life high-threshold voltage - 1.86 1.94 2.1
VEOLD End-of-life hysteresis voltage VEOLH - VEOLL 50 53 56 mV
VREG Main regulated supply
Load transient for ILSMPS 100 µA to
LDTRSMPS
100 mA in 10 µs LDO running
LDO or SMPS over process, voltage and temperature range
1.47 1.55 1.62 V
High BW mode - 25 -
Low BW mode - 47 -
ILSMPS SMPS load current - - - 100 mA
IDDSMPS SMPS quiescent current
SMPS converter average efficiency
EFFSMPS
EFF = VREG x ILOAD / V
DDSMPS
x IDD
SMPS high power, V
SMPS low power, V
SMPS 100 mA max V ILSMPS = 6 mA
SMPS 100 mA max V ILSMPS = 50 mA
SMPS 100 mA max V ILSMPS = 6 mA
SMPS 100 mA max V ILSMPS = 50 mA
= 3.3 V - 538 -
DD
= 3.3 V - 460 -
DD
= 3.3 V,
DD
= 3.3 V,
DD
= 1.8 V,
DD
= 2.0 V,
DD
-71-
-89-
-88-
-91-
Unit
V
mV
µA
%
SMPS 100 mA max V ILSMPS = 100 mA
= 3.3 V,
DD
-86-
Cout Shared between LDO and SMPS ±20 % tolerance - 470 - nF
Lout SMPS inductor - - 15 - µH
TSSMPS Sleep and Sleep, SMPS startup time For ILIM = 50 mA - 70 - µs
DS13293 Rev 1 73/145
135
Page 74
Electrical characteristics STM32WL55/54xx
Table 32. Sub-GHz radio power management specifications (continued)
Frequency
Symbol Description Conditions
= 3.3 V,
V
DD
ILOAD = 0 to 100 mA, current limiter off
(MHz)
470 490 868
-95-
Unit
IDDLDO LDO quiescent current
= 3.3 V, ILOAD = 100 mA,
DD
current limiter on
= 3.3 V, ILOAD = 50 mA,
V
DD
current limiter on
-380-
-280-
ILDO LDO load current - - 100 - mA
LDTRLDO
Load transient for ILDO 100 µA to 100 mA in 10 µs
--25-mV
TSLDO Sleep and Sleep, LDO startup time For ILIM = 50 mA - 60 - µs
VDIG Digital regulator target voltage - 1.14 1.2 1.26 V
(1)
ILM
1. The default current limiter value is set to 50 mA.
Current limiter max value - 25 50 200 mA

5.3.4 Operating conditions at power-up/power-down

Parameters given in the table below are derived from tests performed under the ambient temperature condition summarized in Table 25: General operating conditions.
Symbol Parameter Min Max Unit
t
VDD
t
VDDA
t
VDDRF
Table 33. Operating conditions at power-up/power-down
VDD rise time rate -
fall time rate 10
V
DD
V
rise time rate 0
DDA
V
fall time rate 10
DDA
V
rise time rate -
DDRF
fall time rate -
V
DDRF
µAV
µs/V
74/145 DS13293 Rev 1
Page 75
STM32WL55/54xx Electrical characteristics

5.3.5 Embedded reset and power-control block characteristics

Parameters given in the table below are derived from tests performed under the ambient temperature conditions summarized in Table 25: General operating conditions.
Table 34. Embedded reset and power-control block characteristics
Symbol Parameter Conditions
t
RSTTEMPO
V
BOR0
(2)
Reset temporization after BOR0 is detected V
Brownout reset threshold 0
rising - 250 400 s
DD
Rising edge 1.72 1.76 1.80
Falling edge 1.70 1.74 1.78
(2)
Rising edge 2.06 2.10 2.14
V
BOR1
Brownout reset threshold 1
Falling edge 1.96 2.00 2.04
Rising edge 2.26 2.31 2.35
V
BOR2
Brownout reset threshold 2
Falling edge 2.16 2.20 2.24
(1)
Min Typ Max Unit
V
BOR3
V
BOR4
V
PVD0
V
PVD1
V
PVD2
V
PVD3
V
PVD4
V
PVD5
V
PVD6
V
hyst_BORH0
V
hyst_BOR_PVD
(BOR_PVD)
I
DD
Brownout reset threshold 3
Brownout reset threshold 4
Programmable voltage detector threshold 0
PVD threshold 1
PVD threshold 2
PVD threshold 3
PVD threshold 4
PVD threshold 5
PVD threshold 6
Hysteresis voltage of BORH0
Hysteresis voltage of BORH (except BORH0) and PVD
(3)
BOR
(2)
(except BOR0) and PVD
consumption from V
DD
Rising edge 2.56 2.61 2.66
Falling edge 2.47 2.52 2.57
Rising edge 2.85 2.90 2.95
Falling edge 2.76 2.81 2.86
Rising edge 1.88 1.95 2.02
Falling edge 1.83 1.90 1.97
Rising edge 2.26 2.31 2.36
Falling edge 2.15 2.20 2.25
Rising edge 2.41 2.46 2.51
Falling edge 2.31 2.36 2.41
Rising edge 2.56 2.61 2.66
Falling edge 2.47 2.52 2.57
Rising edge 2.69 2.74 2.79
Falling edge 2.59 2.64 2.69
Rising edge 2.85 2.91 2.96
Falling edge 2.75 2.81 2.86
Rising edge 2.92 2.98 3.04
Falling edge 2.84 2.90 2.96
Hysteresis in continuous mode
Hysteresis in other mode
-20-
-30-
- - 100 -
- - 1.1 1.6 µA
V
V
mV
DS13293 Rev 1 75/145
135
Page 76
Electrical characteristics STM32WL55/54xx
Table 34. Embedded reset and power-control block characteristics (continued)
Symbol Parameter Conditions
(1)
Min Typ Max Unit
V
PVM3
V
hyst_PVM3
(PVM3)
I
DD
1. Continuous mode means Run and Sleep modes, or temperature sensor enable in LPRun and LPSleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except Shutdown) and its consumption is therefore included in the supply current characteristics tables.
V
peripheral voltage monitoring
DDA
Falling edge 1.6 1.64 1.68
PVM3 hysteresis - - 10 - mV
(2)
PVM3 consumption from V
DD
--2-µA

5.3.6 Embedded voltage reference

Parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 25: General operating
conditions.
Rising edge 1.61 1.65 1.69
Symbol Parameter Conditions Min Typ Max Unit
Internal reference voltage –40 °C < TJ < +105 °C 1.182 1.212 1.232 V
ADC sampling time when reading
(1)
the internal reference voltage
Start time of reference voltage buffer when ADC is enable
V
REFINT
)
VDD when converted by ADC
t
t
IDD(V
V
REFINT
S_vrefint
start_vrefint
REFINTBUF
Table 35. Embedded internal voltage reference
-4
--812
buffer consumption from
- - 12.5 20
(2)
--
(2)
(2)
V
µs
µA
V
REFINT
T
Coeff
A
Coeff
V
DDCoeff
V
REFINT_DIV1
V
REFINT_DIV2
V
REFINT_DIV3
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Internal reference voltage spread over the temperature range
Temperature coefficient –40 °C < TJ < +105 °C - 30 50
Long term stability 1000 hours, T = 25 °C - 300 1000
Voltage coefficient 3.0 V < VDD < 3.6 V - 250 1200
1/4 reference voltage
1/2 reference voltage 49 50 51
3/4 reference voltage 74 75 76
= 3.3 V - 5 7.5
V
DD
-
76/145 DS13293 Rev 1
24 25 26
(2)
(2)
(2)
(2)
mV
ppm/°C
ppm
ppm/V
%
V
REFINT
Page 77
STM32WL55/54xx Electrical characteristics
MSv66005V3
1.185
1.19
1.195
1.2
1.205
1.21
1.215
1.22
1.225
1.23
1.235
-40 -20 0 20 40 60 80 100 120
V
°C
Mean Min Max
Figure 15. V

5.3.7 Supply current characteristics

The current consumption is a function of several parameters and factors such as operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.
versus temperature
REFINT
The current consumption is measured as described in Figure 14.
Typical and maximum current consumption
The device is put under the following conditions:
All I/O pins are in analog input mode.
All peripherals are disabled, except when explicitly mentioned.
The Flash memory access time is adjusted with the minimum wait-states number,
depending on the f to Flash clock (HCLK3) frequency’ in the reference manual (RM0461).
f
f
PCLK
PCLK
= f
= f
when the peripherals are enabled.
HCLK
= f
HCLK
HCLKS
Parameters given in the tables below (Table 36 to Table 55) are derived from tests performed under ambient temperature and supply voltage conditions summarized in
Table 25: General operating conditions.
frequency. Refer to the table ‘Number of wait states according
HCLK
for the Flash memory and shared peripherals.
DS13293 Rev 1 77/145
135
Page 78
78/145 DS13293 Rev 1
Table 36. Current consumption in Run and LPRun modes on CPU1, CoreMark code with data
running from Flash memory, ART enable (cache ON, prefetch OFF)
Conditions Typ Max
Symbol Parameter
-
f
= f
(Run)
I
DD
I
DD
(LPRun)
1. Guaranteed by characterization results, unless otherwise specified.
Supply current
in Run mode
Supply current
in LPRun mode
HCLK
All peripherals disabled
f
HCLK
All peripherals disabled
= f
MSI
MSI
Voltage
scaling
Range 2
SMPS
Range 2
Range 1
SMPS
Range 1
(1)
f
HCLK
(MHz)
25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C
16 1.85 1.90 1.95 2.10 2.20 2.40 2.80
8 1.10 1.15 1.20 1.30 1.40 1.60 1.90
2 0.585 0.610 0.670 0.760 - - -
16 1.50 1.45 1.65 1.70 - - -
8 1.00 1.05 1.05 1.10 - - -
2 0.730 0.750 0.780 0.830 - - -
48 5.55 5.65 5.80 5.95 7.40 11.0 14.0
32 3.85 3.95 4.05 4.20 5.60 8.40 13.0
16 2.15 2.20 2.30 2.45 3.70 6.60 11.0
48 3.40 3.45 3.55 3.60 - - -
32 2.50 2.55 2.60 2.65 - - -
16 1.60 1.60 1.65 1.70 - - -
2 0.220 0.235 0.290 0.380 0.270 0.490 0.880
1 0.120 0.135 0.185 0.275 0.150 0.390 0.780
0.4 0.058 0.0715 0.120 0.210 0.084 0.330 0.710
Electrical characteristics STM32WL55/54xx
Unit
mA
Page 79
DS13293 Rev 1 79/145
Table 37. Current consumption in Run and LPRun modes on CPU1 and CPU2, CoreMark code
Symbol Parameter
I
DD
(Run)
I
DD
(LPRun)
Supply current in
Run mode
Supply current in
LPRun mode
with data running from SRAM1
Conditions Typ
-
f
= f
HCLK
All peripherals disabled
f
HCLK
All peripherals disabled
= f
MSI
MSI
Volt age scaling
f
HCLK
(MHz)
25 °C 55 °C 85 °C 105 °C
Range 2 16 2.5 2.55 2.65 2.75
48 8.00 8.15 8.35 8.55
Range 1
32 5.80 5.90 6.05 6.25
48 4.75 4.85 4.95 5.00
SMPS
Range 1
32 3.50 3.60 3.65 3.75
16 2.20 2.25 2.30 2.40
20.350- - -
10.185- - -
0.4 0.0805 - - -
STM32WL55/54xx Electrical characteristics
Unit
mA
Page 80
80/145 DS13293 Rev 1
Table 38. Current consumption in Run and LPRun modes on CPU1, CoreMark code
Symbol Parameter
-
f
= f
I
DD
(Run)
I
DD
(LPRun)
1. Guaranteed by characterization results, unless otherwise specified.
Supply current
in Run mode
Supply current
in LPRun mode
HCLK
All peripherals disabled
f
HCLK
All peripherals disabled
= f
MSI
MSI
with data running from SRAM1
Conditions Typ Max
Voltage
scaling
Range 2
SMPS
Range 2
Range 1
SMPS
Range 1
f
HCLK
(MHz)
25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C
16 1.90 1.90 2.00 2.10 2.20 2.40 2.80
8 1.101.151.201.301.401.602.00
2-------
16 1.40 1.45 1.50 1.55 - - -
8 1.00 1.05 1.05 1.10 - - -
2 0.730 0.750 0.780 0.825 - - -
48 5.65 5.75 5.90 6.05 6.50 6.70 7.10
32 3.90 4.00 4.10 4.25 4.60 4.80 5.20
16 2.20 2.25 2.30 2.45 2.50 2.80 3.20
48 3.45 3.50 3.60 3.65 - - -
32 2.50 2.55 2.60 2.70 - - -
16 1.60 1.60 1.65 1.70 - - -
2 0.220 0.230 0.285 0.375 0.240 0.480 0.860
1 0.120 0.130 0.180 0.270 0.140 0.380 0.770
0.4 0.052 0.064 0.115 0.205 0.077 0.320 0.710
Electrical characteristics STM32WL55/54xx
(1)
Unit
mA
Page 81
Table 39. Typical current consumption in Run and LPRun modes on CPU1, with different codes
STM32WL55/54xx Electrical characteristics
running from Flash memory, ART enable (cache ON, prefetch OFF)
DS13293 Rev 1 81/145
Symbol Parameter
IDD(Run)
Supply current in
Run mode
- Voltage scaling Code 25 °C 25 °C
= f
f
HCLK
MSI
All peripherals disabled
Conditions Typ
Reduced code 1.90
(1)
f
HCLK
Range 2
= 16 MHz
CoreMark
Dhrystone 2.1 1.85 115.63
Fibonacci 1.80 112.50
While(1) 1.60 100.00
Reduced code 1.45 90.63
(1)
f
HCLK
SMPS
Range 2
= 16 MHz
CoreMark
Dhrystone 2.1 1.40 87.50
Fibonacci 1.40 87.50
While(1) 1.30 81.25
Reduced code 5.70 118.75
(1)
f
HCLK
Range 1
= 48 MHz
CoreMark
Dhrystone 2.1 5.50 114.58
Fibonacci 5.40 112.50
While(1) 4.65 96.88
Reduced code 3.50 72.92
(1)
f
HCLK
SMPS
Range 1
= 48 MHz
CoreMark
Dhrystone 2.1 3.40 70.83
Fibonacci 3.30 68.75
While(1) 2.90 60.42
Typ
Unit
118.75
1.85 115.63
1.40 87.50
mA
5.55 115.63
3.40 70.83
Unit
µA/MHz
Page 82
82/145 DS13293 Rev 1
Table 39. Typical current consumption in Run and LPRun modes on CPU1, with different codes
running from Flash memory, ART enable (cache ON, prefetch OFF) (continued)
Electrical characteristics STM32WL55/54xx
Conditions Typ
Symbol Parameter
- Voltage scaling Code 25 °C 25 °C
= f
IDD(LPRun)
1. CoreMark used for characterization results provided in Table 36 and Table 39.
Supply current in
LPRun mode
f
HCLK
All peripherals disabled
MSI
= 2 MHz
Typ
Unit
Reduced code 0.225
CoreMark
(1)
Dhrystone 2.1 0.220 110.00
0.220 110.00
mA
112.50
Fibonacci 0.240 120.00
While(1) 0.175 87.50
Unit
µA/MHz
Page 83
Table 40. Typical current consumption in Run and LPRun modes on CPU1,
STM32WL55/54xx Electrical characteristics
with different codes running from SRAM1
DS13293 Rev 1 83/145
Symbol Parameter
IDD(Run)
Supply current
in Run mode
- Voltage scaling Code 25 °C 25 °C
= f
f
HCLK
MSI
All peripherals disabled
Conditions Typ
Reduced code 1.95
(1)
f
HCLK
Range 2
= 16 MHz
CoreMark
Dhrystone 2.1 1.90 118.75
Fibonacci 1.90 118.75
While(1) 1.75 109.38
Reduced code 1.45 90.63
Range 2
SMPS ON
f
HCLK
= 16 MHz
CoreMark
Dhrystone 2.1 1.45 90.63
Fibonacci 1.45 90.63
(1)
While(1) 1.35 84.38
Reduced code 5.90 122.92
(1)
f
HCLK
Range 1
= 48 MHz
CoreMark
Dhrystone 2.1 5.70 118.75
Fibonacci 5.65 117.71
While(1) 5.10 106.25
Reduced code 3.60 75.00
Range 1
SMPS ON
f
HCLK
= 48 MHz
CoreMark
Dhrystone 2.1 3.50 72.92
Fibonacci 3.45 71.88
(1)
While(1) 3.15 65.63
Typ
Unit
121.88
1.90 118.75
1.45 90.63
mA
5.65 117.71
3.45 71.88
Unit
µA/MHz
Page 84
84/145 DS13293 Rev 1
Table 40. Typical current consumption in Run and LPRun modes on CPU1,
with different codes running from SRAM1 (continued)
Electrical characteristics STM32WL55/54xx
Conditions Typ
Symbol Parameter
- Voltage scaling Code 25 °C 25 °C
= f
Supply current
IDD(LPRun)
1. CoreMark used for characterization results provided in Table 36 and Table 39.
2. Flash memory in power-down mode.
(2)
in LPRun mode
f
HCLK
All peripherals disabled
MSI
= 2 MHz
Typ
Unit
Reduced code 0.225
CoreMark
(1)
Dhrystone 2.1 0.225 112.50
0.220 110.00
mA
112.50
Fibonacci 0.225 112.50
While(1) 0.195 97.50
Unit
µA/MHz
Page 85
Symbol Parameter
I
DD
(Sleep)
Supply current in Sleep mode
Table 41. Current consumption in Sleep and LPSleep modes on CPU1, Flash memory ON
Conditions Typ Max
-
= f
f
HCLK
MSI
All peripherals disabled
Volt age scaling
Range 2
Range 1
f
HCLK
(MHz)
25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C
16 0.770 0.800 0.860 0.955 1.00 1.30 1.60
8 0.570 0.600 0.655 0.745 0.780 0.990 1.40
2 0.445 0.470 0.525 0.615 0.650 0.860 1.30
48 1.70 1.70 1.80 1.90 2.10 2.30 2.70
32 1.25 1.30 1.40 1.50 1.60 1.90 2.30
16 0.845 0.875 0.945 1.05 1.10 1.40 1.80
STM32WL55/54xx Electrical characteristics
(1)
Unit
DS13293 Rev 1 85/145
Supply current
(LPSleep)
I
DD
in LPSleep
mode
1. Guaranteed by characterization results, unless otherwise specified.
= f
f
HCLK
MSI
All peripherals disabled
SMPS
Range 1
48 1.35 1.40 1.45 1.50 - - -
32 1.15 1.15 1.20 1.25 - - -
16 0.895 0.915 0.950 1.00 - - -
2 0.068 0.0805 0.130 0.220 0.095 0.330 0.720
1 0.044 0.0565 0.105 0.195 0.069 0.310 0.700
0.4 0.0225 0.040 0.0885 0.180 0.052 0.290 0.680
0.1 0.018 0.032 0.081 0.170 0.045 0.280 0.670
mA
Page 86
86/145 DS13293 Rev 1
Table 42. Current consumption in Sleep and LPSleep modes on CPU1 and CPU2,
Symbol Parameter
Flash memory ON
Conditions Typ
- Voltage scaling f
(MHz) 25 °C
HCLK
16 0.790
Electrical characteristics STM32WL55/54xx
Unit
(Sleep)
I
DD
(LPSleep)
I
DD
Supply current in
Sleep mode
Supply current in
LPSleep mode
Table 43. Current consumption in LPSleep mode on CPU1, Flash memory in power-down
f
= f
HCLK
MSI
All peripherals disabled
= f
f
HCLK
MSI
All peripherals disabled
Conditions Typ Max
Symbol Parameter
-f
(MHz) 25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C
HCLK
2 58.0 74.5 125 215 86.0 330 710
I
DD
(LPSleep)
Supply current in
LPSleep mode
HCLK
All peripherals disabled
MS
1 35.5 50.5 99.0 190 60.0 300 690
0.4 18.5 33.5 81.5 170 41.0 280 670
= f
f
0.1 11.0 26.5 74.5 165 36.0 280 660
1. Guaranteed by characterization results, unless otherwise specified.
Range 2
Range 1
SMPS Range 1
80.585
20.450
48 1.75
32 1.30
16 0.870
mA
48 1.40
32 1.15
16 0.905
0.1 0.0165
(1)
Unit
µA
Page 87
Symbol Parameter
(LPSleep)
I
DD
Supply current in
LPSleep mode
Table 44. Current consumption in LPSleep mode on CPU1 and CPU2,
Flash memory in power-down
Conditions Typ
-f
f
= f
HCLK
MS
All peripherals disabled
(MHz) 25 °C
HCLK
259.5
136.0
0.4 21.5
0.1 12.5
STM32WL55/54xx Electrical characteristics
Unit
µA
Table 45. Current consumption in Stop 2 mode
Conditions Typ Max
Symbol Parameter
DS13293 Rev 1 87/145
I
DD
(Stop 2)
I
DD
(Stop 2 with
RTC)
1. Guaranteed based on test during characterization, unless otherwise specified.
2. LSI using LSIPRE = 1 configuration.
Supply current in Stop 2 mode RTC disabled
Supply current in Stop 2 mode RTC enabled, clocked by LSI
(2)
(1)
V
(V) 0 °C 25 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
DD
1.8 0.545 0.830 2.45 8.45 13.5 1.20 2.20 24.0 66.0
2.4 0.525 0.850 2.60 8.80 14.0 - - - -
3.0 0.605 0.885 2.80 9.25 14.5 1.10 2.60 26.0 69.0
3.6 0.630 0.935 3.10 9.75 15.5 1.40 2.80 26.0 71.0
1.8 0.650 0.880 2.55 8.25 13.5 1.30 2.30 24.0 66.0
2.4 0.630 0.945 2.70 8.85 14.0 - - - -
3.0 0.715 1.00 2.90 9.70 15.0 1.40 2.80 26.0 69.0
3.6 0.750 1.10 3.15 10.5 15.5 1.50 3.00 26.0 71.0
Unit
µA
Page 88
88/145 DS13293 Rev 1
Table 46. Current consumption during wakeup from Stop 2 mode
Typ a t 2 5 ° C
Conditions
= 1.8 V VDD = 2.4 V VDD = 3.0 V VDD = 3.6 V
V
DD
Wakeup clock: MSI 4 MHz, voltage range 2 2.93 3.22 3.45 4.79
Wakeup clock: MSI 2 MHz, voltage range 2 4.44 5.03 5.82 7.36
Wakeup clock: MSI 4 MHz, voltage range 1 3.03 3.14 3.51 4.66
Wakeup clock: MSI 16 MHz, voltage range 1 1.75 1.95 2.00 3.06
Wakeup clock: MSI 48 MHz, voltage range 1 1.75 1.40 1.89 2.80
Electrical characteristics STM32WL55/54xx
Unit
nAs
Table 47. Current consumption in Stop 1 mode
Conditions Typ Max
Symbol Parameter
(V) 0 °C 25 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
V
DD
1.8 2.05 4.00 14.0 47.0 74.5 6.10 20.0 200 480
I
DD
(Stop 1)
Supply current in Stop 1 mode RTC disabled
2.4 2.15 3.95 14.0 47.0 75.0 - - - -
3.0 2.15 4.15 14.0 47.5 75.5 5.90 20.0 200 490
3.6 2.25 4.20 14.0 48.0 76.5 6.20 20.0 200 490
1.8 2.15 4.10 14.0 47.0 75.0 6.30 20.0 200 480
I
DD
(Stop 1with
RTC)
Supply current in Stop 1 mode RTC enabled, clocked by LSI
(2)
2.4 2.15 4.10 14.0 47.5 75.5 - - - -
3.0 2.25 4.20 14.0 47.5 76.0 6.40 21.0 200 490
3.6 2.30 4.15 14.5 48.5 77.0 6.70 21.0 200 490
1. Guaranteed based on test during characterization, unless otherwise specified.
2. LSI using LSIPRE = 1 configuration.
(1)
Unit
µA
Page 89
Table 48. Current consumption during wakeup from Stop 1 mode
Typ a t 2 5 ° C
Conditions
= 1.8 V VDD = 2.4 V VDD = 3.0 V VDD = 3.6 V
V
DD
Wakeup clock: MSI 4 MHz, voltage range 2 1.05 1.15 1.09 1.18
Wakeup clock: MSI 2 MHz, voltage range 2 1.81 1.81 2.12 2.40
Wakeup clock: MSI 4 MHz, voltage range 1 0.766 1.23 1.34 1.49
Wakeup clock: MSI 16 MHz, voltage range 1 0.310 0.169 0.935 0.836
Wakeup clock: MSI 48 MHz, voltage range 1 0.0707 0.461 0.533 0.565
STM32WL55/54xx Electrical characteristics
Unit
nAs
Table 49. Current consumption in Stop 0 mode
Conditions Typ Max
Symbol Parameter
-
DS13293 Rev 1 89/145
I
DD
(Stop 0)
1. Guaranteed based on test during characterization, unless otherwise specified.
Supply current in Stop 0 mode RTC disabled
Table 50. Current consumption during wakeup from Stop 0 mode
Conditions
Wakeup clock: MSI 4 MHz, voltage range 2 3.45 3.76 3.45 4.04
Wakeup clock: MSI 2 MHz, voltage range 2 3.05 3.20 3.74 3.35
Wakeup clock: MSI 4 MHz, voltage range 1 3.20 3.66 3.30 4.11
Wakeup clock: MSI 16 MHz, voltage range 1 1.07 1.25 1.71 1.80
Wakeup clock: MSI 48 MHz, voltage range 1 0.867 1.13 1.39 0.949
(1)
V
DD
(V)
0 °C 25 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
1.8 335 345 365 415 455 480 500 740 1200
2.4360370395445485----
3.0 390 400 425 475 515 540 570 800 1200
3.6 425 435 460 515 550 580 600 840 1300
Typ a t 2 5 ° C
Unit
VDD = 1.8 V VDD = 2.4 V VDD = 3.0 V VDD = 3.6 V
nAs
Unit
µA
Page 90
90/145 DS13293 Rev 1
Table 51. Current consumption in Standby mode
Conditions Typ Max
Symbol Parameter
-
V
(V)
DD
0 °C 25 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
1.8 0.009 0.027 0.245 1.00 2.40 - - - -
2.4 0.022 0.051 0.340 1.35 2.85 - - - -
3.0 0.046 0.071 0.470 1.75 3.40 - - - -
3.6 0.075 0.125 0.650 2.30 4.05 - - - -
1.8 0.130 0.205 0.820 2.90 5.55 0.200 0.550 8.20 24.0
2.4 0.140 0.225 0.915 3.25 6.05 - - - -
3.0 0.165 0.255 1.05 3.70 6.60 0.280 0.710 9.40 27.0
I
DD
(Standby)
Supply current in Standby mode RTC disabled Backup registers retained
No retention
SRAM2 retained
3.6 0.190 0.300 1.20 4.25 7.25 0.330 0.770 10.0 28.0
1.8 0.215 0.295 0.895 3.10 5.30 - - - -
RTC clocked by LSI (PREDIV = 1)
RTC clocked by LSE
(2)
quartz
in low drive
I
DD
(Standby
with RTC)
Supply current in Standby mode (backup registers and SRAM2 retained) RTC enabled
mode
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
Table 52. Current consumption during wakeup from Standby mode
2.4
3.0
3.6
1.8
2.4
3.0
3.6
0.230 0.325 0.990 3.45 5.95 - - - -
0.260 0.360 1.15 3.95 6.85 - - - -
0.305 0.425 1.30 4.55 7.85 - - - -
0.270 0.350 0.975 3.15 5.80 - - - -
0.295 0.390 1.10 3.50 6.25 - - - -
0.345 0.445 1.25 4.00 6.85 - - - -
0.415 0.535 1.45 4.60 7.55 - - - -
Typ at 25 °C
Symbol Conditions
= 1.8 V VDD = 2.4 V VDD = 3.0 V VDD = 3.6 V
V
DD
IDD (wakeup from Standby)
Wakeup clock: MSI 4 MHz 23.5 81.3 111 114
Wakeup clock: MSI 8 MHz 15.2 15.7 17.3 19.6
Electrical characteristics STM32WL55/54xx
(1)
Unit
µA
Unit
nAs
Page 91
Symbol Parameter
Table 53. Current consumption in Shutdown mode
Conditions Typ Max
V
-
DD
(V)
1.8 0.001 0.008 0.105 0.380 0.995 0.001 0.043 1.70 6.40
0 °C 25 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
STM32WL55/54xx Electrical characteristics
(1)
Unit
I
DD
(Shutdown)
Supply current in Shutdown mode RTC disabled Backup registers retained
2.40.0080.0180.1350.4451.20----
3.0 0.018 0.031 0.180 0.545 1.45 0.078 0.150 2.40 8.50
3.6 0.041 0.062 0.260 0.690 1.80 0.110 0.190 2.90 9.90
1.80.0540.0650.1450.5451.35----
2.40.0900.1050.2000.6651.60----
3.00.1600.1750.2950.8601.95----
3.60.2500.2800.4401.152.45----
1.80.1400.1550.2700.6051.20----
2.40.1650.1850.3150.7051.40----
3.00.2050.2250.3800.8551.70----
DS13293 Rev 1 91/145
I
DD
(Shutdown
with RTC)
Supply current in Shutdown mode (backup registers retained) RTC enabled
RTC clocked by
an external clock
RTC clocked by LSE quartz
(2)
in
low drive mode
3.60.2650.2950.5001.102.10----
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
µA
Page 92
92/145 DS13293 Rev 1
Table 54. Current consumption in VBAT mode
Conditions Typ Max
Symbol Parameter
-
V
BAT
(V)
0 °C 25 °C 55 °C 85 °C 105 °C 105 °C
1.8 1.00 3.00 19.0 95.0 180 1.00
2.4 1.00 3.00 22.0 110 200 1.00
3.0 1.00 5.00 31.0 150 270 1.00
3.6 3.00 11.0 50.0 220 380 3.00
1.8 140 150 180 275 390 140
2.4 155 170 200 310 435 155
(1)
3.0 185 200 235 375 545 185
I
DD
(VBAT)
RTC disabled
Backup domain supply current
RTC enabled and clocked by LSE quartz
3.6 230 245 295 485 710 230
1. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
Table 55. Current under Reset condition
Conditions Typ
Symbol
V
(V) 25 °C
DD
1.8 V 600
I
DD
(RST)
2.4 V 650
3.0 V 700
3.6 V 780
Electrical characteristics STM32WL55/54xx
Unit
nA
Unit
µA
Page 93
STM32WL55/54xx Electrical characteristics
I
SW
V
DDfSW
C××=
I/O system current consumption
The current consumption of the I/O system has two components: a static and a dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 75: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to floating pins, these pins must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 56: Peripheral current consumption, the I/Os used by an application also contribute to
the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:
where
I
V
f
C is the total capacitance seen by the I/O pin: C = C
C
is the current sunk by a switching I/O to charge/discharge the capacitive load.
SW
is the I/O supply voltage.
DD
is the I/O switching frequency.
SW
+ C
Io
EXT .
is the PCB board capacitance plus any connected external device pin
EXT
capacitance.
The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.
DS13293 Rev 1 93/145
135
Page 94
Electrical characteristics STM32WL55/54xx
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the table below. The device is placed under the following conditions:
All I/O pins are in analog mode.
The given value is calculated by measuring the difference of the current consumptions:
when the peripheral is clocked on
when the peripheral is clocked off
Ambient operating temperature and supply voltage conditions summarized in Table 21:
Voltage characteristics.
The power consumption of the digital part of the on-chip peripherals is given in the table below. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.
Peripheral Range 1 Range 2 LPRun and LPSleep Unit
CRC1 0.42 0.38 1.00
DMA1 2.29 1.88 1.45
Table 56. Peripheral current consumption
AHB1
AHB2
AHB3
DMA2 2.50 1.94 1.50
DMAMUX1 3.96 3.38 2.50
All AHB1 peripherals 9.17 7.50 9.30
GPIOA 0.01 0.12 0.20
GPIOB 0.01 0.12 0.15
GPIOC 0.01 0.12 0.15
GPIOH 0.01 0.06 0.10
All AHB2 peripherals 0.62 0.56 0.40
AES1 2.50 2.13 1.80
FLASH 7.92 6.56 11.3
PKA 3.33 2.75 2.15
RNG1 1.04 N/A N/A
RNG1 independent clock domain 0.62 N/A N/A
SRAM1 0.62 0.38 0.55
SRAM2 0.42 0.37 0.50
All AHB3 peripherals
DAC 0.83 0.69 0.50
I2C1 1.67 1.37 1.05
(1)
16.0 13.4 16.0
µA/MHz
µA/MHz
µA/MHz
APB1
I2C1 independent clock domain 2.29 1.94 1.40
I2C2 1.67 1.37 1.05
I2C2 independent clock domain 2.50 2.00 1.60
I2C3 1.67 1.37 0.90
94/145 DS13293 Rev 1
µA/MHz
Page 95
STM32WL55/54xx Electrical characteristics
Table 56. Peripheral current consumption (continued)
Peripheral Range 1 Range 2 LPRun and LPSleep Unit
I2C3 independent clock domain 2.29 1.87 1.30
LPTIM1 1.67 1.44 1.50
LPTIM1 independent clock domain 2.50 2.19 1.45
LPTIM2 1.67 1.37 0.90
LPTIM2 independent clock domain 2.50 2.12 1.55
LPTIM3 0.83 0.69 0.65
LPTIM3 independent clock domain 2.29 1.94 0.65
LPUART1 2.08 1.81 3.55
APB1
LPUART1 independent clock domain
RTCAPB 2.08 1.81 1.50
SPI2 1.46 1.19 0.90
TIM2 4.58 3.81 2.95
USART2 1.88 1.56 1.35
USART2 independent clock domain 4.58 3.75 3.05
2.50 2.06 1.35
µA/MHz
WWDG1 0.42 0.31 0.05
All APB1 peripherals
ADC 1.25 1.00 0.70
ADC independent clock domain 0.21 0.13 0.30
SPI1 1.25 1.06 0.90
TIM1 6.25 5.19 8.30
APB2
APB3
All peripherals
1. Without independent clocks.
TIM16 2.29 1.94 1.35
TIM17 2.29 1.87 1.25
USART1 1.67 1.38 1.00
USART1 independent clock domain 4.17 3.38 2.90
All APB2 peripherals
SUBGHZSPI 1.46 1.25 1.10
(1)
(1)
(1)
19.6 16.1 20.2
15.8 13.0 15.8
62.9 52.3 59.7

5.3.8 Wakeup time from low-power modes and voltage scaling transition times

µA/MHz
µA/MHzAll APB3 peripherals 1.46 1.25 1.10
The wakeup times given in the table below, are the latency between the event and the execution of the first user instruction.
The device goes in low-power mode after the WFE (wait for event) instruction.
DS13293 Rev 1 95/145
135
Page 96
Electrical characteristics STM32WL55/54xx
Table 57. Low-power mode wakeup timings
(1)
Symbol Parameter Conditions Typ Max Unit
t
WUSLEEP
t
WULPSLEEP
Wakeup time from Sleep to Run mode
Wakeup time from LPSleep to LPRun mode
- 0.188 0.222
Wakeup in Flash with memory in power-down during LPSleep mode (FPDS = 1 in PWR_CR1) and with clock MSI = 2 MHz
3.81 4.38
Wakeup clock MSI = 48 MHz 2.14 2.90
Wakeup clock MSI = 16 MHz 2.78 3.58
Wakeup clock HSI16 = 16 MHz 1.99 -
To Run mode (Range 1)
Wakeup clock HSI16 = 16 MHz with HSIKERON enabled
1.01 1.13
t
WUSTOP0
Wakeup time from Stop 0 mode in Flash memory
(2)
Wakeup clock MSI = 4 MHz 6.79 8.21
Wakeup clock MSI = 2 MHz 10.4 12.2
To LPRun mode Wakeup clock MSI = 2 MHz 10.5 12.3
Wakeup clock MSI = 48 MHz 5.15 6.55
Wakeup clock MSI = 16 MHz 5.73 7.14
Wakeup clock HSI16 = 16 MHz 5.71 7.10
To Run mode (Range 1)
Wakeup clock HSI16 = 16 MHz with HSIKERON enabled
4.57 6.52
t
WUSTOP1
Wakeup time from Stop 1 mode in Flash memory
(2)
Wakeup clock MSI = 4 MHz 8.43 9.93
µs
µs
µs
Wakeup clock MSI = 2 MHz 11.9 13.7
To LPRun mode Wakeup clock MSI = 2 MHz 10.6 13.9
Wakeup clock MSI = 48 MHz 5.56 6.85
Wakeup clock MSI = 16 MHz 6.32 7.59
Wakeup clock HSI16 = 16 MHz 6.28 7.51
Wakeup clock HSI16 = 16 MHz with HSIKERON enabled
6.26 7.53
t
WUSTOP2
Wakeup time from Stop 2 mode in Flash memory
(2)
To Run mode (Range 1)
Wakeup clock MSI = 4 MHz 9.69 10.9
Wakeup clock MSI = 2 MHz 14.0 15.4
t
WUSTBY
t
WUSHUTD
1. Guaranteed by characterization results (VDD = 3 V, T = 25 °C).
2. Wakeup time is equivalent when code is executed from SRAM1 compared to Flash memory. It is also equivalent when
going to Range 2 rather than Range 1.
Wakeup time from Standby to Run mode
Wakeup time from Shutdown to Run mode
Range 1
Range 1 Wakeup clock MSI = 4 MHz 264 316
Wakeup clock MSI = 4 MHz 34.3 39.2
Wakeup clock MSI = 8 MHz 22.4 25.6
µs
µs
96/145 DS13293 Rev 1
Page 97
STM32WL55/54xx Electrical characteristics
Table 58. Regulator modes transition times
(1)
Symbol Parameter Conditions Typ Max Unit
t
WULPRUN
t
VOST
1. Guaranteed by characterization results (VDD = 3 V, T = 25 °C).
2. Time until REGLPF flag is cleared in PWR_SR2.
3. Time until VOSF flag is cleared in PWR_SR2.
Transition time from LPRun to Run
(2)
mode
Regulator transition time from Range 2 to Range 1
Regulator transition time from Range 1 to Range 2
(3)
(3)
Code run with MSI = 2 MHz 19.6 -
21.9 32.2
Code run with HSI16
23.1 33.9

5.3.9 External clock source characteristics

High-speed external user clock generated from an external source
The high-speed external (HSE32) clock can be supplied with a 32 MHz crystal oscillator or by a TCXO (temperature controlled crystal oscillator).
Crystal oscillator
The devices include internal programmable capacitances that can be used to tune the crystal frequency in order to compensate the PCB parasitic one.
µs
Characteristics in the tables below, are measured over recommended operating conditions, unless otherwise specified. Typical values are referred to T
Symbol Parameter Conditions Min Typ Max Unit
f
nom
f
TOL
C
C
Shunt
C
motion
ESR
P
1. 32 MHz XTAL is specified for two specific references: NX2016SA and NX1612SA.
2. Load capacitance can be managed by internal programmable capacitances at calibration phase. No need to add external
foot capacitances. The values indicated take into account the combination of the two foot capacitances.
Oscillator frequency - - 32 - MHz
Frequency accuracy
Load capacitance
Load
Crystal shunt capacitance - 0.3 0.6 2
Crystal motional capacitance - 1.3 1.89 2.5 fF
Crystal equivalent series resistance
Drive level - - - 100 µW
D
Table 59. HSE32 crystal requirements
Initial - - ±10
Aging over 10 years - - ±10
(2)
-9.51010.5
- - 30 60
= 25 °C and VDD = 3 V.
A
(1)
ppmOver temperature (-20 to 70 °C) - - ±10
pF
DS13293 Rev 1 97/145
135
Page 98
Electrical characteristics STM32WL55/54xx
Table 60. HSE32 oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
stabilized,
V
t
SUA(HSE)
t
SUR(HSE)
I
DDRF(HSE)
XOT
g(HSE)
XOT
fp(HSE)
Startup time for 80% amplitude stabilization
Startup time for HSEREADY signal
HSE32 current consumption
SUBGHZ_HSEINTRIMR granularity
SUBGHZ_HSEINTRIMR frequency pulling
DDRF
SUBGHZ_HSEINTRIMR = 0x12,
-40 to +105 °C temperature range
stabilized,
V
DDRF
SUBGHZ_HSEINTRIMR = 0x12,
-40 to +105 °C temperature range
HSEGMC = 000, SUBGHZ_HSEINTRIMR = 0x12
-1000-
- 180 -
-50-µA
-15
±15 ±30 -
Capacitor bank
XOT
XOT
nb(HSE)
st(HSE)
SUBGHZ_HSEINTRIMR number of tuning bits
SUBGHZ_HSEINTRIMR setting time
-6-bit
--0.1ms
For more information about the trimming methodology of the oscillator, refer to the application note HSE trimming for STM32 wireless MCUs (AN5042).
µs
ppm
TCXO regulator
Symbol Parameter Conditions Min Typ Max Unit
V
TCXO
Regulated voltage range for TCXO voltage supply
ILTCXO Load current for TCXO regulator - - 1.5 4 mA
TSVTCXO Startup time for TCXO regulator
IDDTCXO
ATC XO
1. In order to minimize spurious injection, the capacitance value must be calculated such that an amplitude of
0.4 to 0.5 Vpk-pk on OSC_IN is obtained. For TCXO output voltage of 0.8 Vpk-pk, 10 pF can be used.
Current consumption for TCXO regulator
Amplitude voltage for external TCXO applied to OSC_IN pin
Table 61. HSE32 TCXO regulator characteristics
> V
V
DDOP
From enable to regulated voltage within 25 mV from target
Quiescent current - - 70 µA
Relative to load current - 1.6 2 %
Provided through a 220 resistor in series with a capacitance (voltage divider)
+ 200 mV 1.6 1.7 3.3 V
TCXO
(1)
- - 50 µs
0.4 0.6 1.2 Vpk-pk
Low-speed external user clock generated from an external source
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. The information provided in this section is based on design simulation results obtained with typical external components specified in the table below. In the application,
98/145 DS13293 Rev 1
Page 99
STM32WL55/54xx Electrical characteristics
MS30253V2
OSC32_IN
OSC32_OUT
Drive
programmable
amplifier
f
LSE
32.768 kHz resonator
Resonator with integrated capacitors
C
L1
C
L2
the resonator and the load capacitors have to be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time.
Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Table 62. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
LSEDRV[1:0] = 00 - Low drive capability - 250 -
(1)
I
DD(LSE)
LSE current consumption
LSEDRV[1:0] = 01 - Medium-low drive capability - 315 -
LSEDRV[1:0] = 10 - Medium-high drive capability - 500 -
LSEDRV[1:0] = 11 - High drive capability - 630 -
LSEDRV[1:0] = 00 - Low drive capability - - 0.50
G
mcritmax
Maximum critical crystal g
m
LSEDRV[1:0] = 01 - Medium-low drive capability - - 0.75
LSEDRV[1:0] = 10 - Medium-high drive capability - - 1.70
LSEDRV[1:0] = 11 - High drive capability - - 2.70
t
1. Guaranteed by design.
2. t
(2)
SU(LSE)
SU(LSE)
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.
Startup time VDD stabilized - 2 - s
is the startup time measured from the moment it is enabled (by software) until a stable 32.768 kHz oscillation is
For more information on the crystal selection, refer to application note Oscillator design guide for STM8AF/AL/S, STM32 MCUs and MPUs (AN2867).
Figure 16. Typical application with a 32.768 kHz crystal
nA
µA/V
Note: No external resistors are required between OSC32_IN and OSC32_OUT, and it is forbidden
to add one.
In bypass mode, the LSE oscillator is switched off and the input pin is a standard GPIO.
DS13293 Rev 1 99/145
135
Page 100
Electrical characteristics STM32WL55/54xx
MS19215V2
V
LSEH
t
f(LSE)
90%
10%
T
LSE
t
t
r(LSE)
V
LSEL
t
w(LSEH)
t
w(LSEL)
The external clock signal has to respect the I/O characteristics detailed in Section 5.3.16:
I/O port characteristics.The recommend clock input waveform is shown in the figure below.
Figure 17. Low-speed external clock source AC timing diagram
Table 63. Low-speed external user clock characteristics
(1)
– Bypass mode
Symbol Parameter Conditions Min Typ Max Unit
f
LSE_ext
V
LSEH
V
LSEL
t
w(LSEH)
t
w(LSEL)
User external clock source frequency
OSC32_IN input pin high­level voltage
OSC32_IN input pin low­level voltage
OSC32_IN high or low time - 250 - - ns
- 21.2 32.768 44.4 kHz
-
-V
0.7 x
V
DDx
SS
-V
- 0.3 x V
DDx
DDx
Includes initial accuracy,
f
tolLSE
Frequency tolerance
stability over temperature,
–500 - +500 ppm
aging and frequency pulling
1. Guaranteed by design.

5.3.10 Internal clock source characteristics

Parameters given in the table below are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 25: General operating
conditions. The provided curves are characterization results, not tested in production.
V
High-speed internal (HSI16) RC oscillator
Symbol Parameter Conditions Min Typ Max Unit
f
HSI16
100/145 DS13293 Rev 1
HSI16 frequency V
Table 64. HSI16 oscillator characteristics
(1)
= 3.0 V, TA = 30 °C 15.88 - 16.08 MHz
DD
Loading...