ST MICROELECTRONICS STM32WL55CCU6 Datasheet

STM32WL55xx STM32WL54xx
UFQFPN48 (7 x 7 mm)
UFBGA73 (5 x 5 mm)
WLCSP59
Multiprotocol LPWAN dual core 32-bit Arm® Cortex®-M4/M0+
LoRa
Features
Radio
Frequency range: 150 MHz to 960 MHz
Modulation: LoRa
BPSK
RX sensitivity: (at 1.2 Kbit/s), (at 10.4 kHz, spreading factor 12)
Transmitter high output power, programmable up to +22 dBm
Transmitter low output power, programmable up to +15 dBm
Compliant with the following radio frequency regulations such as ETSI EN 300 220, EN 300 113, EN 301 166, FCC CFR 47 Part 15, 24, 90, 101 and the Japanese ARIB STD-T30, T-67, T-108
Compatible with standardized or proprietary protocols such as LoRaWAN W-MBus and more (fully open wireless system-on-chip)
Ultra-low-power platform
1.8 V to 3.6 V power supply
40 °C to +105 °C temperature range
Shutdown mode: 31 nA (V
Standby (+ RTC) mode:
360 nA (V
Stop2 (+ RTC) mode: 1.07 µA (V
Active-mode MCU: < 72 µA/MHz (CoreMark
Active-mode RX: 4.82 mA
Active-mode TX: 15 mA at 10 dBm and 87 mA
at 20 dBm (LoRa
Core
32-bit Arm® Cortex®-M4 CPU
®
®
, (G)FSK, (G)MSK and
123 dBm for 2-FSK148 dBm for LoRa
= 3 V)
DD
®
125 kHz)
DD
®
®
, Sigfox™,
= 3 V)
= 3 V)
DD
®
Datasheet - production data
– Adaptive real-time accelerator (ART
Accelerator) allowing 0-wait-state execution from Flash memory, frequency up to 48 MHz, MPU and DSP instructions
– 1.25 DMIPS/MHz (Dhrystone 2.1)
32-bit Arm
®
Cortex®-M0+ CPU
– Frequency up to 48 MHz, MPU – 0.95 DMIPS/MHz (Dhrystone 2.1)
Security and identification
Hardware encryption AES 256-bit
True random number generator (RNG)
Sector protection against read/write operations
(PCROP, RDP, WRP)
CRC calculation unit
Unique device identifier (64-bit UID compliant
with IEEE 802-2001 standard)
96-bit unique die identifier
Hardware public key accelerator (PKA)
Key management services
Secure sub-GHz MAC layer
Secure firmware update (SFU)
Secure firmware install (SFI)
)
Supply and reset management
High-efficiency embedded SMPS step-down converter
SMPS to LDO smart switch
Ultra-safe, low-power BOR (brownout reset)
with 5 selectable thresholds
Ultra-low-power POR/PDR
November 2020 DS13293 Rev 1 1/145
This is information on a product in full production.
www.st.com
STM32WL55/54xx
Programmable voltage detector (PVD)
V
mode with RTC and 20x32-byte backup
BAT
registers
Clock sources
32 MHz crystal oscillator
TCXO support: programmable supply voltage
32 kHz oscillator for RTC with calibration
High-speed internal 16 MHz factory trimmed
RC (± 1 %)
Internal low-power 32 kHz RC
Internal multi-speed low-power 100 kHz to
48 MHz RC
PLL for CPU, ADC and audio clocks
Memories
256-Kbyte Flash memory
64-Kbyte RAM
20x32-bit backup register
Bootloader supporting USART and SPI
interfaces
OTA (over-the-air) firmware update capable
Sector protection against read/write operations
System peripherals
Mailbox and semaphores for communication between Cortex firmware
®
-M4 and Cortex®-M0+
Controllers
2x DMA controller (7 channels each) supporting ADC, DAC, SPI, I2C, LPUART, USART, AES and timers
2x USART (ISO 7816, IrDA, SPI)
1x LPUART (low-power)
2x SPI 16 Mbit/s (1 over 2 supporting I2S)
3x I2C (SMBus/PMBus™)
2x 16-bit 1-channel timer
1x 16-bit 4-channel timer (supporting
motor control)
1x 32-bit 4-channel timer
3x 16-bit ultra-low-power timer
1x RTC with 32-bit sub-second wakeup
counter
1x independent SysTick
1x independent watchdog
1x window watchdog
Rich analog peripherals (down to 1.62 V)
12-bit ADC 2.5 Msps, up to 16 bits with hardware oversampling, conversion range up to 3.6 V
12-bit DAC, low-power sample-and-hold
2x ultra-low-power comparators

Table 1. Device summary

Reference Part number
STM32WL55xx STM32WL55CC, STM32WL55JC, STM32WL55UC
STM32WL54xx STM32WL54CC, STM32WL54JC, STM32WL54UC
Up to 43 I/Os, most 5 V-tolerant
Development support
Serial-wire debug (SWD), JTAG
Dual CPU cross trigger capabilities
All packages ECOPACK2 compliant
2/145 DS13293 Rev 1
STM32WL55/54xx Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Arm Cortex-M cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Adaptive real-time memory accelerator (ART Accelerator) . . . . . . . . . . . 15
3.4 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Security memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 Global security controller (GTZC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.9 Sub-GHz radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.2 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9.3 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.4 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.5 RF-PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.6 Intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10.3 Linear voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10.4 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.11.1 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12 Peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.13 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.14 Hardware semaphore (HSEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.15 Inter-processor communication controller (IPCC) . . . . . . . . . . . . . . . . . . 38
DS13293 Rev 1 3/145
6
Contents STM32WL55/54xx
3.16 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.17 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.18 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.18.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 39
3.18.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 39
3.19 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.20.2 Internal voltage reference (V
3.20.3 V
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
BAT
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
REFINT
3.21 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.22 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.23 Comparator (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.24 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.25 Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 42
3.26 Public key accelerator (PKA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.27 Timer and watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.27.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.27.2 General-purpose timers (TIM2, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . 43
3.27.3 Low-power timers (LPTIM1, LPTIM2 and LPTIM3) . . . . . . . . . . . . . . . . 44
3.27.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.27.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.27.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.28 Real-time clock (RTC), tamper and backup registers . . . . . . . . . . . . . . . 45
3.29 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.30 Universal synchronous/asynchronous receiver transmitter
(USART/UART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.31 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 47
3.32 Serial peripheral interface (SPI)/integrated-interchip sound
interface (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.33 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Pinouts, pin description and alternate functions . . . . . . . . . . . . . . . . . 49
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4/145 DS13293 Rev 1
STM32WL55/54xx Contents
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Main performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.3 Sub-GHz radio characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.4 Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . 74
5.3.5 Embedded reset and power-control block characteristics . . . . . . . . . . . 75
5.3.6 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.8 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.12 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.14 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.18 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.19 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 116
5.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.21 V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
BAT
5.3.22 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.23 Digital-to-analog converter characteristics . . . . . . . . . . . . . . . . . . . . . . 124
5.3.24 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.25 Timers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.26 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 130
DS13293 Rev 1 5/145
6
Contents STM32WL55/54xx
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.1 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.2 WLCSP59 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 UFBGA73 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6/145 DS13293 Rev 1
STM32WL55/54xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. Main features and peripheral count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Access status versus RDP level and execution mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 4. Sub-GHz radio transmit high output power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 5. FSK mode intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. LoRa mode intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 7. Functionalities depending on system operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 8. Low-power mode summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 9. MCU and sub-GHz radio operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 10. Peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 11. DMA1 and DMA2 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 12. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 13. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 14. Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 15. I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 16. USART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 17. SPI and SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 18. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 19. STM32WL55/54xx pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 20. Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 21. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 22. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 23. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 24. Main performances at VDD = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 25. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 26. Operating range of RF pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 27. Sub-GHz radio power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 28. Sub-GHz radio power consumption in transmit mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 29. Sub-GHz radio general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 30. Sub-GHz radio receive mode specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 31. Sub-GHz radio transmit mode specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 32. Sub-GHz radio power management specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 33. Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 34. Embedded reset and power-control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 35. Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 36. Current consumption in Run and LPRun modes on CPU1, CoreMark code with data
running from Flash memory, ART enable (cache ON, prefetch OFF) . . . . . . . . . . . . . . . . 78
Table 37. Current consumption in Run and LPRun modes on CPU1 and CPU2, CoreMark code
with data running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 38. Current consumption in Run and LPRun modes on CPU1, CoreMark code
with data running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 39. Typical current consumption in Run and LPRun modes on CPU1, with different codes
running from Flash memory, ART enable (cache ON, prefetch OFF) . . . . . . . . . . . . . . . . 81
Table 40. Typical current consumption in Run and LPRun modes on CPU1,
with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 41. Current consumption in Sleep and LPSleep modes on CPU1, Flash memory ON . . . . . . 85
Table 42. Current consumption in Sleep and LPSleep modes on CPU1 and CPU2,
Flash memory ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
DS13293 Rev 1 7/145
9
List of tables STM32WL55/54xx
Table 43. Current consumption in LPSleep mode on CPU1, Flash memory in power-down . . . . . . . 86
Table 44. Current consumption in LPSleep mode on CPU1 and CPU2,
Flash memory in power-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 45. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 46. Current consumption during wakeup from Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 47. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 48. Current consumption during wakeup from Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 49. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 50. Current consumption during wakeup from Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 51. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 52. Current consumption during wakeup from Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 53. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 54. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 55. Current under Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 56. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 57. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 58. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 59. HSE32 crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 60. HSE32 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 61. HSE32 TCXO regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 62. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 63. Low-speed external user clock characteristics – Bypass mode . . . . . . . . . . . . . . . . . . . . 100
Table 64. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 65. MSI oscillator characteristics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
Table 66. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 67. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 68. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 69. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 70. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 71. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 72. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 73. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 74. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 75. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 76. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 77. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 78. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 79. Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 80. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 81. Maximum ADC R
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
AIN
Table 82. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 83. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 84. V Table 85. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
BAT
Table 86. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 87. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 88. DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 89. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 90. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 91. IWDG min/max timeout period at 32 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 92. Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 93. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8/145 DS13293 Rev 1
STM32WL55/54xx List of tables
Table 94. USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 95. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 96. Dynamic JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 97. Dynamic SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 98. UFQFPN48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 99. UFBGA73 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 100. UFBGA recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . 141
Table 101. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 102. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
DS13293 Rev 1 9/145
9
List of figures STM32WL55/54xx
List of figures
Figure 1. STM32WL55/54xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2. sub-GHz radio system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 3. High output power PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 4. Low output power PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 5. Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 6. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 7. Supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 8. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 9. UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 10. UFBGA73 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 15. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 16. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 17. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 18. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 19. Typical current consumption vs. MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 20. I/O input characteristics - V
Figure 21. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 22. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 23. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 24. VREFOUT_TEMP when VRS = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 25. VREFOUT_TEMP when VRS = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 26. 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 27. SPI timing diagram - Slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 28. SPI timing diagram - Slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 29. SPI timing diagram - Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 30. UFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 31. UFQFPN48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 32. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 33. UFBGA73 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 34. UFBGA73 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 35. UFBGA73 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
and V
IL
on all I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
IH
10/145 DS13293 Rev 1
STM32WL55/54xx Introduction

1 Introduction

This document provides information on the STM32WL55/54xx microcontrollers.
®(a)
For information on the Arm
®
Cortex
-M4 Technical Reference Manual and to the Cortex®-M0+ Technical Reference
Cortex®-M4 and Cortex®-M0+ cores, refer respectively to the
Manual available from the www.arm.com website.
For information on LoRa
®
modulation, refer to the Semtech website
(https://www.semtech.com/technology/lora).

2 Description

The STM32WL55/54xx long-range wireless and ultra-low-power devices embed a powerful
and ultra-low-power LPWAN-compliant radio solution, enabling the following modulations:
®
LoRa
, (G)FSK, (G)MSK, and BPSK.
The LoRa
These devices are designed to be extremely low-power and are based on the
high-performance Arm
48 MHz. This core implements a full set of DSP instructions. It is complemented by an Arm
Cortex
®
modulation is available in STM32WLx5xx only.
®
Cortex®-M4 32-bit RISC core operating at a frequency of up to
®
-M0+ microcontroller. Both cores implement an independent memory protection unit
®
(MPU) that enhances the application security.
The devices embed high-speed memories (256-Kbyte Flash memory, 64-Kbyte SRAM), and
an extensive range of enhanced I/Os and peripherals.
The devices also embed several protection mechanisms for embedded Flash memory and
SRAM: readout protection, write protection and proprietary code readout protection.
In addition, the STM32WL55/54xx devices support the following secure services running on
®
Arm
Cortex-M0+: unique boot entry capable, secure sub-GHz MAC layer, secure firmware
update, secure firmware install and storage and management of secure keys.
These devices offer a 12-bit ADC, a 12-bit DAC low-power sample-and-hold, two
ultra-low-power comparators associated with a high-accuracy reference voltage generator.
The devices embed a low-power RTC with a 32-bit sub-second wakeup counter, one 16-bit
single-channel timer, two 16-bit four-channel timers (supporting motor control), one 32-bit
four-channel timer and three 16-bit ultra-low-power timers.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS13293 Rev 1 11/145
14
Description STM32WL55/54xx
These devices also embed two DMA controllers (7 channels each) allowing any transfer
combination between memory (Flash memory, SRAM1 and SRAM2) and peripheral, using
the DMAMUX1 for flexible DMA channel mapping.
The devices also feature the standard and advanced communication interfaces listed below:
inter-processor communication controller (mailbox) and semaphores for communication between the two Arm
®
Cortex®-M cores
two USART (supporting LIN, smartcard, IrDA, modem control and ISO7816)
one low-power UART (LPUART)
three I2C (SMBus/PMBus)
two SPIs (up to 16 MHz, one supporting I
The operating temperature/voltage ranges are
2
S)
40 °C to +105 °C (+85 °C with radio)
(a)
from a 1.8 V to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.
The devices integrate a high-efficiency SMPS step-down converter and independent power supplies for ADC, DAC and comparator analog inputs.
A V
dedicated supply allows the LSE 32.768 kHz oscillator, the RTC and the backup
BAT
registers to be backed up. The devices can maintain these functions even if the main V not present, through a CR2032-like battery, a supercap or a small rechargeable battery.
Feature
CPU Arm
Maximum CPU frequency (MHz) 48
Flash memory density (Kbytes) 256
SRAM density (Kbytes)
Radio
Radio PA
SRAM1 32
SRAM2 32
LoRa
(G)FSK
BPSK
Low output power (up to 15 dBm)
High output power (up to 22 dBm)

Table 2. Main features and peripheral count

STM32WL55Cx
STM32WL54Cx
Available on STM32WL55xx devices.
Not available on STM32WL54xx devices
STM32WL55Jx
STM32WL54Jx
Cortex-M4 and Cortex-M0
Yes(G)MSK
Yes
DD
STM32WL55Ux
STM32WL54Ux
is
General purpose 4
Timer
a. Devices with suffix 6 operate up to 85 °C. Devices with suffix 7 can operate up to 105 °C except radio.
12/145 DS13293 Rev 1
Low-power 3
SysTick 1
STM32WL55/54xx Description
Table 2. Main features and peripheral count (continued)
Feature
STM32WL55Cx
STM32WL54Cx
STM32WL55Jx
STM32WL54Jx
SPI/I2S 2 (1 supporting I2S)
2
C3
Communication interface
I
USART 2
LPUART 1
Independent 1
Watchdog
Window 1
RTC (with wakeup counter) 1
DMA (7 channels) 2
Mailbox and semaphores 1
AES 256 bits 1
RNG 1
PKA 1
P C R O P, R DP, WR P 1
CRC 1
64-bit UID compliant with IEEE 802-2001 standard
Security
96-bit die ID 1
STM32WL55Ux
STM32WL54Ux
1
Storage and management of secure
1
keys
Secure sub-GHz MAC layer
1
Secure firmware update 1
Secure firmware install 1
Tamper pins 3 3 2
Wakeup pins 3 3 2
GPIOs 29 43 22
ADC (number of channels, ext + int) 1 (9 + 4) 1 (12 + 4) 1 (8 + 4)
DAC (number of channels) 1 (1)
Internal VREFBUF No Yes No
Analog comparator 2
Operating voltage 1.8 to 3.6 V
Ambient operating temperature –40 °C to +85 °C
Junction temperature –40 °C to +105 °C
Package
UFQFPN48
(7x7 mm)
UFBGA73
(5x5 mm)
WLCSP59
DS13293 Rev 1 13/145
14
Description STM32WL55/54xx
MSv66957V1
DMA1 (7 channels)
NVIC
TIM17
EXTI
TIM16
GPIO
ports A,B,C,H
PWR
SRAM1
RTC
TAMP
IWDG
LSE
32 kHz
HSE32 32 MHz
MSI 5 %
0.1-48MHz
HSI 1 % 16 MHz
PLL
Power supply
POR/PDR/BOR/PVD/PVM
ADC (12 bits ULP,
2 Msps, 12 channels)
Temperature sensor
APB1 and APB 2
Backup domain
JTAG/SWD
Flash interface arbiter
+
ART Accelerator
256-Kbyte
Flash memory
Sub-GHz
radio
RNG
LSI
32 kHz
LPTIM2
LPTIM1
CRC
RCC
SYSCFG/
COMP/VREF
HSEM
WWDG
SPI2S2
I2C3
LPUART1
SPI1
USART1
TIM2
MPU
SRAM2
backup memory
Cortex-M4
(DSP)
≤ 48 MHz
DMAMUX
DMA2 (7 channels)
LDO/SMPS
LPTIM3
TIM1
I2C1
I2C2
USART2
DAC
(12 bits)
AES
PKA
AHB1 and AHB2
TZSC
IPCC
NVIC
MPU
Cortex-M0+
≤ 48 MHz
SUBGHZ
SPI
CTI
TZIC
AHB3

Figure 1. STM32WL55/54xx block diagram

14/145 DS13293 Rev 1
STM32WL55/54xx Functional overview

3 Functional overview

3.1 Architecture

The devices embed a sub-GHz RF subsystem that interfaces with a generic microcontroller subsystem using an Arm Cortex-M4 (called CPU1) and an Arm Cortex-M0+ (called CPU2).
An RF low-layer stack is needed and is to be run on CPU1 or CPU2, whereas the host application code is preferably run on CPU1.
The RF subsystem communication is done through an internal SPI interface.
All secure code must be run by CPU2.

3.2 Arm Cortex-M cores

With its embedded Arm cores, the STM32WL55/54xx devices are compatible with all Arm tools and software.
Figure 1 shows the general block diagram of the STM32WL55/54xx devices.

Arm Cortex-M4

The Arm Cortex-M4 is a processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The Arm Cortex-M4 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices.
This processor supports a set of DSP instructions that allow efficient signal processing and complex algorithm execution.

Arm Cortex-M0+

The Arm Cortex-M0+ is an entry-level processor for embedded systems. It has been developed to provide lowest power consumption in the Cortex-M family, while delivering good computation performance and response to interrupts.
The Arm Cortex-M0+ 32-bit RISC processor features good code-efficiency with ultra-low power consumption in the memory size usually associated with 8-bit and 16-bit devices.

3.3 Adaptive real-time memory accelerator (ART Accelerator)

The ART Accelerator is a memory accelerator that is optimized for STM32 industry-standard Arm Cortex-M4 processor. The ART Accelerator balances the inherent performance advantage of the Arm Cortex-M4 over Flash memory technologies, that normally require the processor to wait for the Flash memory at higher frequencies.
To release the processor near 60 DMIPS performance at 48 MHz, the ART Accelerator implements an instruction prefetch queue and branch cache, that increases the program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
DS13293 Rev 1 15/145
48
Functional overview STM32WL55/54xx
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 48 MHz.

3.4 Memory protection unit (MPU)

The memory protection unit (MPU) is used to manage the CPU1 and CPU2 accesses to memory, to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to eight protected areas that can in turn be divided up into eight subareas. The protection area sizes are between 32 bytes and the whole 4 Gbytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code must be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real­time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

3.5 Memories

3.5.1 Embedded Flash memory

The Flash memory interface manages the accesses from CPU1 AHB ICode/DCode and CPU2 AHB Sbus to the Flash memory. It implements the access, the erase and program Flash memory operations, and the read and write protection.
The main features of the Flash memory are listed below:
Memory organization: 1 bank
main memory: up to 256 Kbytes
page size: 2 Kbytes
72-bit wide data read (64 bits plus 8 ECC bits)
72-bit wide data write (64 bits plus 8 ECC bits)
Page erase and mass erase
Flexible protections can be configured thanks to option bytes:
Readout protection (RDP) to protect the whole memory. Three levels are available:
Level 0: no readout protection
Level 1: memory readout protection. The Flash memory cannot be read from or
written to if either debug features are connected, boot in SRAM or bootloader is selected.
Level 2: chip readout protection. Debug features (JTAG and serial wire), boot in
SRAM and bootloader selection are disabled (JTAG fuse). This selection can only be reverted by the secure CPU2.
16/145 DS13293 Rev 1
STM32WL55/54xx Functional overview
Table 3. Access status versus RDP level and execution mode
Area
Main memory
System memory
Option bytes
Backup registers
SRAM2
1. The option byte can be modified by the sub-GHz radio.
2. Erased when RDP changes from Level 1 to Level 0.
RDP level
Read Write Erase Read Write Erase
1 Yes Yes Yes No No No
2 Yes Yes Yes NA NA NA
1Yes No No Yes No No
2 Yes No No NA NA NA
1 Yes Yes Yes Yes Yes Yes
2Yes No
1Yes Yes NA
2YesYesNANANANA
1 Yes Yes Yes
2 Yes Yes Yes NA NA NA
User execution
(1)
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 4-Kbyte granularity.
Proprietary code readout protection (PCROP): two parts of the Flash memory can be
protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU1/2, as an instruction code, while all other accesses (DMA, debug and CPU1/2 data read, write and erase) are strictly prohibited. Two areas can be selected, with 2-Kbyte granularity. An additional option bit (PCROP_RDP) is used to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.
No
(1)
(2)
(2)
Debug, boot from SRAM or boot from
system memory (loader)
NA NA NA
No No NA
No No No
(2)
(2)
A section of the Flash memory can be secured for CPU2, and, in that case, cannot be accessed by CPU1.
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction
double error detection
address of the ECC fail can be read in the FLASH_ECCR register
The embedded Flash memory is shared between CPU1 and CPU2 on a time sharing basis. A dedicated hardware mechanism allows both CPUs to suspend write/erase operations.

3.5.2 Embedded SRAM

The devices feature up to 64 Kbytes of embedded SRAM, split in two blocks:
SRAM1: up to 32 Kbytes mapped at address 0x2000 0000
SRAM2: up to 32 Kbytes located at address 0x2000 8000 (contiguous to SRAM1), also
mirrored at 0x1000 0000, with hardware parity check (this SRAM can be retained in Standby mode)
The SRAMs can be accessed in read/write with 0 wait states for all CPU1/2 clock speeds.
DS13293 Rev 1 17/145
48
Functional overview STM32WL55/54xx

3.6 Security memory management

The devices contain many security blocks both for the sub-GHz MAC layer and the Host application, such as:
securable RNG
customer keys storage
secure Flash memory partition for CPU2 only access
secure SRAM partition, that can be accessed only by CPU2
securable sub-GHz radio sub-system
securable DMA channels
securable AES: 128-and 256-bit AES, supporting ECB, CBC, CTR, GCM, GMAC and
CCM chaining modes
securable PKA:
modular arithmetic including exponentiation with maximum modulo size of
3136 bits
elliptic curves over prime field scalar multiplication, ECDSA signature, ECDSA
verification with maximum modulo size of 521 bits
cyclic redundancy check calculation unit (CRC)

3.7 Boot modes

At startup, BOOT0 pin and BOOT1 option bit are used to select one of the following boot options:
Boot from user Flash memory
Boot from boot system memory (where embedded bootloader is located)
Boot from embedded SRAM
Boot from system memory (where the embedded SFI is located)
The bootloader makes possible to download code from USART or SPI.

3.8 Global security controller (GTZC)

The GTZC includes the following sub-blocks:
TZSC: security controller
This sub-block defines the secure/privileged state of slave peripherals. It also controls the unprivileged area size for the watermark memory peripheral controller (MPCWM).
TZIC: security illegal access controller
This sub-block gathers all illegal access events in the system and generates a secure interrupt towards the secure CPU2 NVIC.
These sub-blocks are used to configure the system security and privilege such as:
on-chip Flash memory and RAM with programmable privileged protection on both
secure and non-secure memory areas
AHB and APB peripherals with programmable security and/or privileged access
18/145 DS13293 Rev 1
STM32WL55/54xx Functional overview
MSv62614V1
Sub-GHz radio
Sub-GHz
RF frontend
Radio control
SUBGHZSPI
hse32
Interrups
RFO_LP
RFO_HP
RFI_P
RFI_N
FSK
modem
LoRa
modem
(note)
Data
and
control
HSE32
OSC_IN
OSC_OUT
BUSY
HSERDY
HSEON
HSEBYPPWR
Note: LoRa modem is only available on STM32WL55xx devices.
VR_PA
VDDPA
PB0_VDDTCXO

3.9 Sub-GHz radio

3.9.1 Introduction

The sub-GHz radio is an ultra-low-power sub-GHz radio operating in the 150 - 960 MHz ISM band. LoRa, (G)FSK/(G)MSK modulation in transmit and receive, and (D)BPSK in transmit only, allow an optimal trade-off between range, data rate and power consumption. This sub­GHz radio is compliant with the LoRaWAN ETSI EN 300 220, EN 300 113, EN 301 166, FCC CFR 47 part 15, 24, 90, 101 and the ARIB STD-T30, T-67, T-108.
The sub-GHz radio consists of:
an analog front-end transceiver, capable of outputting up to + 15 dBm maximum power
on its RFO_LP pin and up to + 22 dBm maximum power on RFO_HP pin
a digital modem bank providing the following modulation schemes:
LoRa Rx/Tx with bandwidth (BW) from 7.8 - 500 kHz, spreading factor (SF)
5 - 12, bit rate (BR) from 0.013 to 17.4 Kbit/s (real bitrate)
FSK and GFSK Rx/Tx with BR from 0.6 to 300 Kbit/s
(G)MSK Tx with BR from 0 to 10 Kbit/s
BPSK and DBPSK TX only with bitrate for 100 and 600 bit/s
a digital control including all data processing and sub-GHz radio configuration control
a high-speed clock generation
®
specification v1.0 and radio regulations such as

3.9.2 General description

The sub-GHz radio provides an internal processing unit to handle communication with the system CPU. Communication is handled by commands sent over the SPI interface, and a set of interrupts is used to signal events. BUSY information signals operation activity and is used to indicate when the sub-GHz radio commands cannot be received.
The block diagram of the sub-GHz radio system is shown in the figure below.
Figure 2. sub-GHz radio system block diagram
DS13293 Rev 1 19/145
48
Functional overview STM32WL55/54xx
MSv62616V2
VLXSMPS
VFBSMPS (1.55V)
VDDPA
VR_PA (up to 3.1V)
RFO_HP
LDO/SMPS
REG
PA
HP PA
VLXSMPS
VFBSMPS (1.55V)
VDDPA
VR_PA (up to 3.1V)
RFO_HP
LDO/SMPS
REG
PA
HP PA
V
DD
V
DD
V
DD
V
DD
VDDSMPS (1.8 to 3.6V) VDDSMPS (1.8 to 3.6V)
LDO mode
SMPS mode
Note: Use of the SMPS is optional. When SMPS is not used, the BOM can be reduced by removing the coil between VLXSMPS and VFBSMPS pins.

3.9.3 Transmitter

The transmit chain comprises the modulated output from the modem, that directly modulates the RF-PLL. An optional pre-filtering of the bit stream can be enabled to reduce the power in the adjacent channel also dependent on the selected modulation scheme. The modulated signal from the RF-PLL directly drives the high output power PA (HP PA) or low output power PA (LP PA).
Transmitter high output power
Transmit high output power up to + 22 dBm, is supported through the RFO_HP RF pin.
For this, the REG PA must be supplied directly from V
on VDDSMPS pin, as shown in the
DD
figure below.
The output power range is programmable in 32 steps of ~ 1 dB. The power amplifier ramping timing is also programmable.This allows adaptation to meet radio regulation requirements.
Figure 3. High output power PA
The table below gives the maximum transmit output power versus the V
V
DDPA
Table 4. Sub-GHz radio transmit high output power
supply (V) Transmit output power (dBm)
3.3 + 22
20/145 DS13293 Rev 1
2.7 + 20
2.4 + 19
1.8 + 16
supply level.
DDPA
STM32WL55/54xx Functional overview
MSv62617V2
Note: Use of the SMPS is optional. When SMPS is not used, the BOM can be reduced by removing the coil between VLXSMPS and VFBSMPS pins.
VLXSMPS
VFBSMPS (1.55V)
VDDPA
VR_PA (up to 1.35V)
RFO_LP
LDO/SMPS
REG
PA
LP PA
LDO mode SMPS mode
VDDSMPS (1.8 to 3.6V)
V
DD
VLXSMPS
VFBSMPS (1.55V)
VDDPA
VR_PA (up to 1.35V)
RFO_LP
LDO/SMPS
REG
PA
V
DD
LP PA
VDDSMPS (1.8 to 3.6V)
Transmitter low output power
The transmit low output power up to + 15 dBm on full VDD range (1.8 to 3.6 V), is supported through the RFO_LP RF pin. For this, the REG PA must be supplied from the regulated V
FBSMPS
The output power range is programmable in 32 steps of ~1 dB. The power amplifier ramping timing is also programmable.This allows adaptation to meet radio regulation requirements.
supply at 1.55 V, as shown in the figure below.
Figure 4. Low output power PA

3.9.4 Receiver

3.9.5 RF-PLL

The receive chain comprises a differential low-noise amplifier (LNA), a down-converter to low-IF by mixer operation in quadrature configuration. The I and Q signals are low pass filtered and a  ADC converts them into the digital domain. In the digital modem, the signals are decimated, further down converted and channel filtered. The demodulation is done according to the selected modulation scheme.
The down mixing to low-IF is done by mixing the receive signal with the local RF-PLL located in the negative frequency, where -f frequency, f is located at f
is the received signal and fif is the intermediate frequency). The wanted signal
rf
= flo + fif.
rf
= -frf + -fif. (where flo is the local RF-PLL
lo
The receiver features automatic I and Q calibration, that improves image rejection. The calibration is done automatically at startup before using the receiver, and can be requested by command.
The receiver supports LoRa, (G)MSK and (G)FSK modulations.
The RF-PLL is used as the frequency synthesizer for the generation of the local oscillator frequency (f
) for both transmit and receive chains. The RF-PLL uses auto calibration and
lo
DS13293 Rev 1 21/145
48
Functional overview STM32WL55/54xx
uses the 32 MHz HSE32 reference. The sub-GHz radio covers all continuous frequencies in the range between 150 to 960 MHz.

3.9.6 Intermediate frequencies

The sub-GHz radio receiver operates mostly in low-IF configuration, except for specific high­bandwidth settings.
Table 5. FSK mode intermediate frequencies
Setting name Bandwidth (kHz) f
RX_BW_467 467.0
RX_BW_234 234.3
RX_BW_117 117.3
RX_BW_58 58.6
RX_BW_29 29.3
RX_BW_14 14.6
RX_BW_7 7.3
RX_BW_373 373.6
RX_BW_187 187.2
RX_BW_93 93.8
RX_BW_46 46.9
RX_BW_23 23.4
RX_BW_11 11.7
RX_BW_5 5.8
RX_BW_312 312.0
RX_BW_156 156.2
RX_BW_78 78.2
(kHz)
if
250
200
RX_BW_39 39.0
RX_BW_19 19.5
RX_BW_9 9.7
RX_BW_4 4.8
Table 6. LoRa mode intermediate frequencies
Setting name Bandwidth (kHz) f
LORA_BW_500 500 0
LORA_BW_250 250
LORA_BW_62 62.5
LORA_BW_41 41.67 167
22/145 DS13293 Rev 1
167
(kHz)
if
250LORA_BW_125 125
STM32WL55/54xx Functional overview
Table 6. LoRa mode intermediate frequencies (continued)
Setting name Bandwidth (kHz) f
LORA_BW_31 31.25 250
LORA_BW_20 20.83 167
LORA_BW_15 15.63 250
LORA_BW_10 10.42 167
LORA_BW_7 7.81 250

3.10 Power supply management

The devices embed two different regulators: one LDO and one DC/DC (SMPS). The SMPS can be optionally switched-on by software to improve the power efficiency. As LDO and SMPS operate in parallel, the SMPS switch-on is transparent to the user and only the power efficiency is affected.

3.10.1 Power supply schemes

The devices require a V independent supplies (V peripherals:
V
= 1.8 V to 3.6 V
DD
V
is the external power supply for the I/Os, the system analog blocks such as reset,
DD
power management, internal clocks and low-power regulator. It is provided externally through VDD pins.
V
DDSMPS
V
DDSMPS
= 1.8 V to 3.6 V
is the external power supply for the SMPS step-down converter. It is provided externally through VDDSMPS supply pin and must be connected to the same supply as V
.
DD
V
FBSMPS
V
FBSMPS
= 1.45 V to 1.62 V (1.55 V typical)
is the external power supply for the main system regulator. It is provided externally through VFBSMPS pin and is supplied through the SMPS step-down converter.
V
= 0 V to 3.6 V (DAC minimum voltage is 1.71 V without buffer and 1.8 V with
DDA
buffer. COMP and ADC minimum voltage is 1.62 V. VREFBUF minimum voltage is
2.4 V)
V
is the external analog power supply for A/D converters, D/A converters, voltage
DDA
reference buffer, and comparators. The V voltage (see power-up and power-down limitations below) and must preferably be connected to V
V
DDRF
V
DDRF
= 1.8 V to 3.6 V
is an external power supply for the radio. It is provided externally through the
DD
VDDRF pin and must be connected to the same supply as V
V
DDRF1V5
V
DDRF1V5
= 1.45 V to 1.62 V
is an external power supply for the radio. It is provided externally through the
operating voltage supply between 1.8 V and 3.6 V. Several
DD
DDSMPS
, V
FBSMPS
when these peripherals are not used.
, V
if
DDA
DDA
, V
) can be provided for specific
DDRF
voltage level is independent from the V
.
DD
(kHz)
DD
DS13293 Rev 1 23/145
48
Functional overview STM32WL55/54xx
MSv68044V1
0.3
1
V
BOR0
3.6
Operating modePower-on Power-down time
V
V
DDA
V
DD
Invalid supply area V
DDA
< V
DD
+ 300 mV
V
DDA
independent from V
DD
VDDRF1V5 pin and must be connected externally to VFBSMPS.
V
VREF-, VREF
= 1.55 V to 3.6 V
BAT
V
is the power supply for RTC, TAMP, external clock 32 kHz oscillator and backup
BAT
registers (through power switch) when V
+
V
is the input reference voltage for ADC and DAC. It is also the output of the
REF+
is not present.
DD
internal voltage reference buffer when enabled.
When V
When V
V
can be grounded when ADC/DAC is not active. The internal voltage reference
REF+
DDA
DDA
< 2 V, V 2 V, V
must be equal to V
REF+
must be between 2 V and V
REF+
DDA
.
.
DDA
buffer supports the following output voltages, configured with VRS bit in the VREFBUF_CSR register:
–V
–V
around 2.048 V: this requires V
REF+
around 2.5 V: this requires V
REF+
DDA
2.4 V.
DDA
2.8 V.
During power up and power down, the following power sequence is required:
1. When V
During power down, V
< 1 V other power supplies (V
DD
can temporarily become lower then other supplies only if the
DD
) must remain below V
DDA
+ 300 mV.
DD
energy provided to the device remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during this transient phase.
2. When V
An embedded linear voltage regulator is used to supply the internal digital power V V
is the power supply for digital peripherals, SRAM1 and SRAM2. The Flash memory
CORE
is supplied by V part V
DDI
.
> 1 V, all other power supplies (V
DD
CORE
and VDD. V
is split in two parts: V
CORE
) become independent.
DDA
part and an interruptible
DDO
CORE
.
Figure 5.
Note: VDD, V
sequence.
DDRF
and V
DDSMPS
must be wired together, so they can follow the same voltage
Power-up/power-down sequence
24/145 DS13293 Rev 1
STM32WL55/54xx Functional overview
MSv50973V1
LDO/SMPS
MR
V
DD
V
LXSMPS
V
FBSMPS
V
BKP
V
DDO
V
DDI
V
BAT
V
RF
V
MAIN
V
LP
V
SW
POR
mode
FW mode
en
RFLDO
V
DDSMPS
V
DDRF1V5
LPR
MSv50974V1
LDO/SMPS
LDO/SMPS supply LDO supply
RF
LDO
MR LPR
V
DDRF1V5
V
FBSMPS
V
LXSMPS
V
DDSMPS
V
DD
LDO/SMPS
RF
LDO
MR LPR
V
DDRF1V5
V
FBSMPS
V
LXSMPS
V
DDSMPS
V
DD
Figure 6. Power supply overview
The different supply configurations are shown in the figure below.
Figure 7. Supply configurations
DS13293 Rev 1 25/145
48
Functional overview STM32WL55/54xx
The LDO or SMPS step-down converter operating mode can be configured by one of the following:
by the MCU using the SMPSEN setting in PWR control register 5 (PWR_CR5), that depends upon the MCU system operating mode (Run, Stop, Standby or Shutdown).
by the sub-GHz radio using SetRegulatorMode() command and the sub-GHz radio operating mode (Sleep, Calibrate, Standby, Standby with HSE32 or Active).
After any POR and NRST reset, the LDO mode is selected. The SMPS selection has priority over LDO selection.
While the sub-GHz radio is in Standby with HSE32 or in Active mode, the supply mode is not altered until the sub-GHz radio enters Standby or Sleep mode. The sub-GHz radio activity may add a delay for entering the MCU software requested supply mode.
The LDO or SMPS supply mode can be checked with the SMPSRDY flag in power status register 2 (PWR_SR2).
Note: When the radio is active, the supply mode is not changed until after the radio activity is
finished.
During Stop 1, Stop 2 and Standby modes, when the sub-GHz radio is not active, the LDO or SMPS step-down converter is switched off. When exiting low-power modes (except Shutdown), the SMPS step-down converter is set by hardware to the mode selected by the SMPSEN bit in PWR control register 5 (PWR_CR5). SMPSEN is retained in Stop and Standby modes.
Independently from the MCU software selected supply operating mode, the sub-GHz radio allows the supply mode selection while the sub-GHz radio is active (thanks to the sub-GHz radio SetRegulatorMode()command).
The maximum load current delivered by the SMPS can be selected by the sub- GHz radio SUBGHZ_SMPSC2R register.
The inrush current of the LDO and SMPS step-down converter can be controlled via the sub- GHz radio SUBGHZ_PCR register. This information is retained in all but the sub-GHz radio Deep-sleep mode.
The SMPS needs a clock to be functional. If for any reason this clock stops, the device may be destroyed. To avoid this situation, a clock detection is used to, in case of a clock failure, switch off the SMPS and enable the LDO. The SMPS clock detection is enabled by the sub­GHz radio SUBGHZ_SMPSC0R.CLKDE. By default, the SMPS clock detection is disabled and must be enabled before enabling the SMPS.
Danger: Before enabling the SMPS, the SMPS clock detection must be
enabled in the sub-GHz radio SUBGHZ_SMPSC0R.CLKDE.

3.10.2 Power supply supervisor

The devices integrate a power-on reset/power-down reset, coupled with a Brownout reset (BOR) circuitry.
BOR0 level cannot be disabled. Other BOR levels can be enabled by user option. When enabled, BOR is active in all power modes except in Shutdown
26/145 DS13293 Rev 1
STM32WL55/54xx Functional overview
Five BOR thresholds can be selected through option bytes.
During power-on, BOR keeps the device under reset until the supply voltage V the specified V
When V
When V
DD
DD
threshold:
BORx
drops below the selected threshold, a device reset is generated.
is above the V
can start.
The devices feature an embedded PVD (programmable voltage detector) that monitors the V
power supply and compares it with the V
DD
when V
drops below the V
DD
PVD
threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state.
The PVD is enabled by software and can be configured to monitor the V needed for the sub-GHz radio operation. For this, the PVD must select its lowest threshold, and the PVD and the wakeup must be enabled by the EWPVD bit in PWR_CR3 register. Only a voltage drop below the PVD level generates a wakeup event.
In addition, the devices embed a PVM (peripheral voltage monitor) that compares the independent supply voltage V functional supply range.
Finally, a radio end-of-life monitor provides information on the V low to operate the sub-GHz radio. When reaching the EOL level, the software must stop all radio activity in a safe way.

3.10.3 Linear voltage regulator

reaches
DD
upper limit, the device reset is released and the system
BORx
threshold. An interrupt can be generated
threshold and/or when VDD is higher than the V
with a fixed threshold to ensure that the peripheral is in its
DDA
PVD
DD
supply when V
DD
PVD
supply level
DD
is too
Two embedded linear voltage regulators supply all the digital circuitries, except for the Standby circuitry and the Backup domain. The main regulator (MR) output voltage (V can be programmed by software to two different power ranges (range 1 and range 2), to optimize the consumption depending on the system maximum operating frequency.
The voltage regulators are always enabled after a reset. Depending on the application modes, the V
supply is provided either by the main regulator or by the low-power
CORE
regulator (LPR).
When MR is used, a dynamic voltage scaling is proposed to optimize power as follows:
range 1: high-performance range
The system clock frequency can be up to 48 MHz. The Flash memory access time for read access is minimum. Write and erase operations are possible.
range 2: low-power range
The system clock frequency can be up to 16 MHz.The Flash memory access time for a read access is increased as compared to range 1. Write and erase operations are possible.
Note: MR is supplied by VDD during power-on or at wakeup from Stop1, Stop2, Standby or
Shutdown mode. MR is powered by LDO/SMPS after these transition phases.

3.10.4 VBAT operation

The VBAT pin is used to power the device V from an external battery, an external super-capacitor, or from V
domain (RTC, LSE and backup registers)
BAT
when no external battery
DD
CORE
)
DS13293 Rev 1 27/145
48
Functional overview STM32WL55/54xx
nor an external super-capacitor are present. Three anti-tamper detection pins are available in VBAT mode.
VBAT operation is automatically activated when V
An internal V
battery charging circuit is embedded and can be activated when VDD is
BAT
present.
Note: When the microcontroller is supplied only from V
alarm/events do not exit it from VBAT operation.

3.11 Low-power modes

The devices support several low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.
By default, the microcontroller is in Run mode, range 1, after a system or a power-on reset. It is up to the user to select one of the low-power modes described below:
Sleep mode: CPU clock off, all peripherals including CPU core peripherals (among them NVIC, SysTick) can run and wake up the CPU when an interrupt or an event occurs.
Low-power run mode (LPRun): when the system clock frequency is reduced below 2 MHz. The code is executed from the SRAM or from the Flash memory. The regulator is in low-power mode to minimize the operating current.
Low-power sleep mode (LPSleep): entered from the LPRun mode.
Stop 0 and Stop 1 modes: the content of SRAM1, SRAM2 and of all registers is
retained. All clocks in the V disabled. LSI and LSE can be kept running.
RTC can remain active (Stop mode with RTC, Stop mode without RTC). The sub-GHz radio may remain active independently from the CPUs.
Some peripherals with the wakeup capability can enable HSI16 RC during the Stop mode to detect their wakeup condition.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption compared with Stop 2.
In Stop 0 mode, the main regulator remains on, resulting in the fastest wakeup time but with much higher consumption. The active peripherals and wakeup sources are the same as in Stop 1 mode that uses the low-power regulator.
The system clock, when exiting Stop 0 or Stop 1 mode, can be either MSI up to 48 MHz or HSI16, depending on the software configuration.
Stop 2 mode: part of the V and some peripherals preserve their contents (see Table 7).
All clocks in the V
domain are stopped. PLL, MSI, HSI16 and HSE32 are disabled.
CORE
LSI and LSE can be kept running.
RTC can remain active (Stop 2 mode with RTC, Stop 2 mode without RTC). The sub­GHz radio may also remain active independent from the CPUs.
Some peripherals with the wakeup capability can enable HSI16 RC during the Stop 2 mode to detect their wakeup condition (see Tab le 7).
The system clock when exiting from Stop 2 mode, can be either MSI up to 48 MHz or
domain are stopped. PLL, MSI, HSI16 and HSE32 are
CORE
domain is powered off. Only SRAM1, SRAM2, CPUs
CORE
is not present.
DD
, external interrupts and RTC
BAT
28/145 DS13293 Rev 1
STM32WL55/54xx Functional overview
HSI16, depending on the software configuration.
Standby mode: V
domain is powered off. However, it is possible to preserve the
CORE
SRAM2 content as detailed below:
Standby mode with SRAM2 retention when the RRS bit is set in the PWR control
register 3 (PWR_CR3). In this case, SRAM2 is supplied by the low-power regulator.
Standby mode when the RRS bit is cleared in the PWR control register 3
(PWR_CR3). In this case the main regulator and the low-power regulator are powered off.
All clocks in the V
domain are stopped. PLL, MSI, HSI16 and HSE32 are disabled.
CORE
LSI and LSE can be kept running.
Th RTC can remain active (Standby mode with RTC, Standby mode without RTC). The sub-GHz radio and the PVD may also remain active when enabled independent from the CPUs. In Standby mode, the PVD selects its lowest level.
The system clock, when exiting Standby modes, is MSI at 4 MHz.
Shutdown mode: V
domain is powered off. All clocks in the V
CORE
domain are
CORE
stopped. PLL, MSI, HSI16, LSI and HSE32 are disabled. LSE can be kept running. The system clock when exiting the Shutdown mode, is MSI at 4 MHz. In this mode, the supply voltage monitoring is disabled and the product behavior is not guaranteed in case of a power voltage drop.
The table below summarizes the peripheral features over all available modes. Wakeup capability is detailed in gray cells.

Table 7. Functionalities depending on system operating mode

Stop 0 Stop 1 Stop 2 Standby Shutdown
Peripheral
Run
Sleep
LPRun
-
LPSleep
Wakeup capability
-
Wakeup capability
-
Wakeup capability
CPU1 Y R Y R R -R-R---- --
CPU2 Y R Y R R
Sub-GHz radio system O O O O O
(2)
Flash memory (256 Kbytes)
(2)O(3)
YO
O
(3)
-R-R---- --
OOOOOOO- --
R -R-R-R-R -R
Flash memory interface Y Y Y Y R -R-R---- --
SRAM1 Y O
SRAM2 Y O
(2)
(2)
Backup registers Y Y Y Y R
Brownout reset (BOR) Y Y Y Y Y
Programmable voltage detector (PVD)
OOOOO
(2)
YO
(2)
YO
R -R-R---- --
R -R-R-O
-R-R-R-R -R
YYYYYYY- --
OOOOOO
(1)
-
-
Wakeup capability
(4)
-- --
(5)O(5)
- --
VBAT
Wakeup capability
DS13293 Rev 1 29/145
48
Functional overview STM32WL55/54xx
Table 7. Functionalities depending on system operating mode
Peripheral
Peripheral voltage monitor (PVM3)
DMAx (x = 1, 2) O O O O R
DMAMUX1 O O O O R
High-speed internal (HSI16) O O O O O
High-speed external (HSE32) O O O
Low-speed internal (LSI) O O O O O
Low-speed external (LSE) O O O O O
Multi-speed internal (MSI) O O O O O
Clock security system (CSS) O O O O R
Clock security system on LSE O O O O O
Run
Sleep
LPRun
LPSleep
OOOOO
(7)O(7)O(7)
(1)
(continued)
Stop 0 Stop 1 Stop 2 Standby Shutdown
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
OOOOO- -- --
-R------ --
-R------ --
(6)
(6)
-O
(7)
-O
(6)
-O
(7)
-O
---- --
(7)
-O
-- --
-O-O-O-- --
-O-O-O-O -O
-O-O---- --
-R------ --
OOOOOOO- --
VBAT
RTC/auto wakeup O O O O O
Number of tamper pins 3 3 3 3 3
USARTx (x= 1, 2) O O O O O
Low-power UART (LPUART1) O O O O O
I2Cx (x = 1, 2) O O O O O
I2C3 O O O O O
SPI1 O O O O R
SUBGHZSPI O O O O R
SPI2S2 O O O O R
ADC O O O O R
DAC O O O O R
VREFBUF O O O O O
COMPx (x = 1, 2) O O O O O
Temperature sensor O O O O R
TIMx (x = 1, 2, 16, 17) O O O O R
LPTIM1 O O O O O
LPTIMx (x = 2, 3) O O O O O
Independent watchdog (IWDG)
OOOOOOOOOOOO- --
OOOOOOOO OO
O3O3O3O3 O3
(8)O(8)O(8)O(8)
(8)O(8)O(8)O(8)O(8)O(8)
(9)O(9)O(9)O(9)
(9)O(9)O(9)O(9)O(9)O(9)
- ---- --
- -- --
- ---- --
- -- --
-R------ --
-R------ --
-R------ --
-R------ --
-R------ --
-O-R---- --
OOOOO- -- --
-R------ --
-R------ --
OOOOO- -- --
OOO- ---- --
30/145 DS13293 Rev 1
Loading...
+ 115 hidden pages