STMicroelectronics STM32WB15CC Datasheet

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4
UFQFPN48
7 x 7 mm
solder pad
Features
Includes ST state-of-the-art patented
technology
Radio
– 2.4 GHz – RF transceiver supporting Bluetooth
specification
– RX sensitivity: -95.5 dBm (Bluetooth
Energy at 1 Mbps)
– Programmable output power up to +5.5
dBm with 1 dB steps – Integrated balun to reduce BOM – Support for 2 Mbps – Dedicated Arm
for real-time Radio layer – Accurate RSSI to enable power control – Suitable for systems requiring compliance
with radio frequency regulations ETSI EN
300 328, EN 300 440, FCC CFR47 Part 15
and ARIB STD-T66 – Support for external PA – Available integrated passive device (IPD)
companion chip for optimized matching
solution (MLPF-WB-01E3)
Ultra-low-power platform
– 1.71 to 3.6 V power supply – – 40 °C to 85 / 105 °C temperature ranges – 12 nA shutdown mode – 610 nA Standby mode + RTC + 48 KB
RAM – Active-mode MCU: 33 µA / MHz when RF
and SMPS on – Radio: Rx 4.5 mA / Tx at 0 dBm 5.2 mA
®
32-bit Cortex® M0+ CPU
STM32WB15CC
with FPU, Bluetooth
®
5.2
®
Low
Core: Arm
adaptive real-time accelerator (ART Accelerator) allowing 0-wait-state execution from Flash memory, frequency up to 64 MHz, MPU, 80 DMIPS and DSP instructions
Performance benchmark
– 1.25 DMIPS/MHz (Drystone 2.1)
Supply and reset management
– High efficiency embedded SMPS
step-down converter with intelligent bypass mode
– Ultra-safe, low-power BOR (brownout
reset) with five selectable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD) –V
Clock sources
– 32 MHz crystal oscillator with integrated
trimming capacitors (Radio and CPU clock) – 32 kHz crystal oscillator for RTC (LSE) – Internal low-power 32 kHz RC (LSI1) – Internal low-drift 32 kHz RC (LSI2) – Internal multispeed 100 kHz to 48 MHz
oscillator, factory-trimmed – High speed internal 16 MHz factory
trimmed RC – 1x PLL for system clock and ADC
®
32-bit Cortex®-M4 CPU with FPU,
mode with RTC and backup registers
BAT
®
Datasheet - production data
February 2021 DS13258 Rev 1 1/121
This is information on a product in full production.
www.st.com
STM32WB15CC
Memories
– 320 KB Flash memory with sector
protection (PCROP) against R/W operations, enabling radio stack and application
– 48 KB SRAM, including 36 KB with
hardware parity check – 20x32-bit backup register – Boot loader supporting USART, SPI, I2C
interfaces – 1 Kbyte (128 double words) OTP
Rich analog peripherals (down to 1.62 V)
– 12-bit ADC 2.5 Msps, 190 µA/Msps – 1x ultra-low-power comparator
System peripherals
– Inter processor communication controller
(IPCC) for communication with Bluetooth
Low Energy – HW semaphores for resources sharing
between CPUs – 1x DMA controller (7x channels) supporting
ADC, SPI, I2C, USART, AES, timers – 1x USART (ISO 7816, IrDA, SPI Master,
Modbus and Smartcard mode) – 1x LPUART (low power) – 1x SPI 32 Mbit/s – 1x I2C (SMBus/PMBus) – Touch sensing controller, up to eight
sensors – 1x 16-bit, four channels advanced timer – 1x 32-bit, four channels timer – 2x 16-bit ultra-low-power timer – 1x independent Systick – 1x independent watchdog – 1x window watchdog
Security and ID
– Secure firmware installation (SFI) for
Bluetooth
®
Low Energy SW stack
– 2x hardware encryption AES maximum
256-bit for the application and the Bluetooth
®
Low Energy – HW public key authority (PKA) – Cryptographic algorithms: RSA,
Diffie-Helman, ECC over GF(p) – True random number generator (RNG) – Sector protection against R/W operation
(PCROP) – CRC calculation unit – Die information: 96-bit unique ID – IEEE 64-bit unique ID. Possibility to derive
Bluetooth
®
Up to 37 fast I/Os, 35 of them 5 V-tolerant
®
Low Energy 48-bit EUI
Development support
– Serial wire debug (SWD), JTAG for the
application processor – Application cross trigger
All packages are ECOPACK2 compliant
2/121 DS13258 Rev 1
STM32WB15CC Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Arm
3.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Security and safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
®
Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Adaptive real-time memory accelerator (ART Accelerator) . . . . . . . . . . 14
3.3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Boot modes and FW update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 RF subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.1 RF front-end block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6.2 BLE general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6.3 RF pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6.4 Typical RF application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7.1 Power supply distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7.2 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7.3 Linear voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.4 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.5 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.6 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.10 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.11 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.12 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.13 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.13.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 36
DS13258 Rev 1 3/121
5
Contents STM32WB15CC
3.13.2 Extended interrupts and events controller (EXTI) . . . . . . . . . . . . . . . . . 37
3.14 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.14.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.14.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.15 Comparator (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.16 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.17 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.18.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.18.2 General-purpose timer (TIM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.18.3 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 40
3.18.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.18.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.18.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.19 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 41
3.20 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.21 Universal synchronous/asynchronous receiver transmitter (USART) . . . 43
3.22 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 43
3.23 Serial peripheral interface (SPI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.24 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.24.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 44
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4/121 DS13258 Rev 1
STM32WB15CC Contents
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1 Summary of main performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.3 RF BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.4 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 65
6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 66
6.3.6 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.8 Wakeup time from Low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.12 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.14 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.18 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.19 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 101
6.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.22 V
6.3.23 SMPS step-down converter characteristics . . . . . . . . . . . . . . . . . . . . . 108
6.3.24 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.25 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 109
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
BAT
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.1 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 117
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
DS13258 Rev 1 5/121
5
List of tables STM32WB15CC
List of tables
Table 1. STM32WB15CC device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2. Access status vs. readout protection level and execution modes . . . . . . . . . . . . . . . . . . . 15
Table 3. RF pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 4. Typical external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 5. Power supply typical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 6. Functionalities depending on system operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 7. STM32WB15CC modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 8. STM32WB15CC CPU1 peripherals interconnect matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 9. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 10. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 11. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 12. Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 13. I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 14. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 15. STM32WB15CC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 16. Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 17. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 18. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 19. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 20. Main performance at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 21. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 22. RF transmitter BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 23. RF transmitter BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 24. RF transmitter BLE characteristics (2 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 25. RF receiver BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 26. RF receiver BLE characteristics (2 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 27. RF BLE power consumption for VDD = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 28. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 29. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 30. Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 31. Current consumption in Run and Low-power run modes, code with data processing
running from Flash memory, ART enable (Cache ON Prefetch OFF), VDD = 3.3 V . . . . . 69
Table 32. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 33. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash memory, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V . . . . . . 71
Table 34. Typical current consumption in Run and Low-power run modes,
with different codes running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 35. Current consumption in Sleep and Low-power sleep modes, Flash memory ON . . . . . . . 73
Table 36. Current consumption in Low-power sleep modes, Flash memory in Power down . . . . . . . 73
Table 37. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 38. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 39. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 40. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 41. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 42. Current under Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 43. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 44. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6/121 DS13258 Rev 1
STM32WB15CC List of tables
Table 45. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 46. Wakeup time using LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 47. HSE crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 48. HSE clock source requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 49. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 50. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 51. Low-speed external user clock characteristics – Bypass mode . . . . . . . . . . . . . . . . . . . . . 86
Table 52. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 53. MSI oscillator characteristics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Table 54. LSI1 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 55. LSI2 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 56. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 57. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 58. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 59. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 60. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 61. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 62. Electrical sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 63. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 64. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 65. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 66. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 67. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 68. Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 69. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 70. Maximum ADC R
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
AIN
Table 71. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 72. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 73. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 74. V Table 75. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
BAT
Table 76. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 77. IWDG min/max timeout period at 32 kHz (LSI1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 78. Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 79. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 80. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 81. JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 82. SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 83. UFQFPN48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 84. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 85. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
DS13258 Rev 1 7/121
7
List of figures STM32WB15CC
List of figures
Figure 1. STM32WB15CC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. STM32WB15CC RF front-end block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 3. External components for the RF part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 4. Power distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 5. Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 6. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 7. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 8. STM32WB15CCU UFQFPN48 pinout Figure 9. STM32WB15CCU UFQFPN48E pinout
Figure 10. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 12. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 13. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 14. VREFINT vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 15. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 16. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 17. HSI16 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 18. Typical current consumption vs. MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 19. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 20. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 21. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 22. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 23. SPI timing diagram - Slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 24. SPI timing diagram - Slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 25. SPI timing diagram - Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 26. UFQFPN48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 27. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 28. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
(1) (2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
(1) (2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8/121 DS13258 Rev 1
STM32WB15CC Introduction

1 Introduction

This document provides the ordering information and mechanical device characteristics of
the STM32WB15CC microcontroller, based on Arm
®
cores
(a)
. Throughout the whole
document TBD indicates a value to be defined.
This document must be read in conjunction with the reference manual (RM0473), available
from the STMicroelectronics website www.st.com.
For information on the Arm® Cortex®-M4 and Cortex®-M0+ cores, refer, respectively, to the
®
Cortex
-M4 Technical Reference Manual and to the Cortex®-M0+ Technical Reference
Manual, both available on the www.arm.com website.
For information on Bluetooth® refer to www.bluetooth.com.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS13258 Rev 1 9/121
44
Description STM32WB15CC

2 Description

The STM32WB15CC multiprotocol wireless and ultra-low-power device embeds a powerful
and ultra-low-power radio compliant with the Bluetooth
It contains a dedicated Arm
®
Cortex® -M0+ for performing all the real-time low layer
®
Low Energy SIG specification v5.2.
operation.
The device is designed to be extremely low-power and is based on the high-performance
®
Arm
Cortex®-M4 32-bit RISC core operating at a frequency of up to 64 MHz. This core
features a Floating point unit (FPU) single precision that supports all Arm
®
single-precision data-processing instructions and data types. It also implements a full set of
DSP instructions and a memory protection unit (MPU) that enhances application security.
Enhanced inter-processor communication is provided by the IPCC with six bidirectional
channels. The HSEM provides hardware semaphores used to share common resources
between the two processors.
The device embeds high-speed memories (320 Kbyte of Flash memory, 48 Kbytes of
SRAM) and an extensive range of enhanced I/Os and peripherals.
Direct data transfer between memory and peripherals and from memory to memory is
supported by seven DMA channels with a full flexible channel mapping by the DMAMUX
peripheral.
The device feature several mechanisms for embedded Flash memory and SRAM: readout
protection, write protection and proprietary code readout protection. Portions of the memory
can be secured for Cortex
®
-M0+ exclusive access.
The AES encryption engine, PKA and RNG enable upper layer cryptography.
The device offers a fast 12-bit ADC and one ultra-low-power comparator.
The device embeds a low-power RTC, one advanced 16-bit timer, one general-purpose
32-bit timer, and two 16-bit low-power timers.
In addition, up to eight capacitive sensing channels are available.
The STM32WB15CC also features standard and advanced communication interfaces,
namely one USART (ISO 7816, IrDA, Modbus and Smartcard mode), one
low- power UART (LPUART), one I2C (SMBus/PMBus), one SPI up to 32 MHz.
The STM32WB15CC operates in the -40 to +85 °C (+105 °C junction) and -40 to +105 °C
(+125
°C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive
set of power-saving modes enables the design of low-power applications.
The STM32WB15CC integrates a high efficiency SMPS step-down converter with automatic
bypass mode capability when the V
is 2.0
V). It includes independent power supplies for analog input for ADC and comparator.
A V
dedicated supply allows the device to back up the LSE 32.768 kHz oscillator, the
BAT
falls below V
DD
(x=1, 2, 3, 4) voltage level (default
BORx
RTC and the backup registers, thus enabling the STM32WB15CC to supply these functions
even if the main V
is not present through a CR2032-like battery, a Supercap or a small
DD
rechargeable battery.
The STM32WB15CC offers one package, 48 pins.
10/121 DS13258 Rev 1
STM32WB15CC Description

Table 1. STM32WB15CC device features and peripheral counts

Feature STM32WB15CCUxE STM32WB15CCU
Flash memory density 320 KB
SRAM density 48 KB
BLE V5.2 (2 Mbps)
Advanced 1 (16 bits)
Timers
Comm interface
RTC 1
Tamper pin 1
Wakeup pin 2
General 1 (32 bits)
Low power 2 (16 bits)
SysTick 1
SPI 1
I2C 1
USART
(1)
1
LPUART 1
GPIOs 37 30
Capacitive sensing 8 3
SMPS No Yes
12-bit ADC Number of channels
Internal V
ref
13 channels
(including 3 internal)
Yes
Analog comparator 1
Max CPU frequency 64 MHz
Operating temperature
Ambient operating temperature:-40 to +85 °C and -40 to +105 °C
Junction temperature: -40 to +105 °C and -40 to +125 °C
Operating voltage 1.71 to 3.6 V
Package
1. USART peripheral can be used as SPI master.
UFQFPN48 7 x 7 mm
0.5 mm pitch, solder pad
DS13258 Rev 1 11/121
44
Description STM32WB15CC
MS53541V3
NVIC
TIM2
PWR
TIM1
GPIO ports
A, B, C, E, H
EXTI
12 KB SRAM1
RTC2
I-WDG
LSE
32 kHz
HSE2
32 MHz
MSI up to
48 MHz
HSI 1% 16 MHz
PLL1
Power supply POR/
PDR/BOR/PVD/AVD
ADC1 12-bit ULP
2.5 Msps / 13 ch
NVIC
JTAG/SWD
AHB Lite
IPCC
Arbiter + ART
320 KB Flash
shared memory
BLE IP
RNG
LSI1
32 kHz
BLE RF IP
LPTIM2
LPTIM1
AES2
DBG
AHB lite (shared)
WKUP
BLE
AHB asynchronous
CRC
RCC + CSS
SYSCFG/COMP
APB asynchronous
RCC2
TSC
HSEM
WWDG
LPUART1
SPI1
I2C1
USART1
PKA + RAM
LSI2
32 kHz
MPU
Cortex-M0+
32 KB SRAM2a
Cortex-M4
(DSP)
4 KB SRAM2b
FPU
CTI CTI
TAMP
DMAMUX
AHB Lite
Temp (
o
C) sensor
DMA1 - 7 channels
APB

Figure 1. STM32WB15CC block diagram

12/121 DS13258 Rev 1
STM32WB15CC Functional overview

3 Functional overview

3.1 Architecture

The STM32WB15CC multiprotocol wireless device embeds a BLE RF subsystem that
interfaces with a generic microcontroller subsystem using an Arm
CPU1) on which the host application resides.
The RF subsystem is composed of an RF analog front end, BLE block as well as of a
dedicated Arm
The RF subsystem performs all of the BLE stack, reducing the interaction with the CPU1 to
high level exchanges.
Some functions are shared between the RF subsystem CPU (CPU2) and the Host CPU
(CPU1):
Flash memories
SRAM1, SRAM2a and SRAM2b (all can be retained in Standby mode)
Security peripherals (RNG, PKA)
Clock RCC
Power control (PWR)
The communication and the sharing of peripherals between the RF subsystem and the
®
Cortex
controller (IPCC) and semaphore mechanism (HSEM).
®
Cortex®-M0+ microcontroller (called CPU2), plus proprietary peripherals.
-M4 CPU is performed through a dedicated inter processor communication

3.2 Arm® Cortex®-M4 core with FPU

The Arm® Cortex®-M4 with FPU is a processor for embedded systems. It has been
developed to provide a low-cost platform that meets the needs of MCU implementation, with
a reduced pin count and low-power consumption, while delivering outstanding
computational performance and an advanced response to interrupts.
®
Cortex®-M4 CPU (called
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional
code-efficiency, delivering the high-performance expected from an Arm® core in the
memory size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions enabling efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32WB15CC is compatible with all Arm® tools and
software.
Figure 1 shows the general block diagram of the device.
DS13258 Rev 1 13/121
44
Functional overview STM32WB15CC

3.3 Memories

3.3.1 Adaptive real-time memory accelerator (ART Accelerator)

The ART Accelerator is a memory accelerator optimized for STM32 industry-standard Arm®
®
Cortex
Cortex
for the Flash memory at higher frequencies.
To release the processor near 80 DMIPS performance at 64 MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 64 MHz.

3.3.2 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU1 accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to eight protected areas, which can be divided
up into eight subareas. The protection area sizes are between 32 bytes and the whole
4
-M4 processors. It balances the inherent performance advantage of the Arm®
®
-M4 over Flash memory technologies, which normally require the processor to wait
Gbytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code must be
protected against the misbehavior of other tasks. It is usually managed by an RTOS
(real-time operating system). If a program accesses a memory location prohibited by the
MPU, the RTOS detects it and takes action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

3.3.3 Embedded Flash memory

The STM32WB15CC device features 320 Kbytes of embedded Flash memory available for
storing programs and data, as well as some customer keys.
Flexible protections can be configured thanks to option bytes:
Readout protection (RDP) to protect the whole memory. Three levels are available:
Level 0: no readout protection
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in SRAM or bootloader is selected
Level 2: chip readout protection: debug features (Cortex
JTAG and serial wire), boot in SRAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.
®
-M4 and Cortex®-M0+
14/121 DS13258 Rev 1
STM32WB15CC Functional overview
Table 2. Access status vs. readout protection level and execution modes
Area
Main
memory
System
memory
Option
bytes
Backup
registers
SRAM2a SRAM2b
1. The option byte can be modified by the RF subsystem.
2. Erased when RDP changes from Level 1 to Level 0.
Protection
level
1 Yes Yes Yes No No No
2 Yes Yes Yes N/A N/A N/A
1 Yes No No Yes No No
2 Yes No No N/A N/A N/A
1 Yes Yes Yes Yes Yes Yes
2YesNo
1YesYesN/A
2 Yes Yes N/A N/A N/A N/A
1 Yes Yes Yes
2 Yes Yes Yes N/A N/A N/A
User execution
Read Write Erase Read Write Erase
(1)
No
(1)
Debug, boot from SRAM or boot
from system memory (loader)
N/A N/A N/A
(2)
(2)
No No N/A
No No No
(2)
(2)
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 4-Kbyte granularity.
Proprietary code readout protection (PCROP): two parts of the Flash memory can be
protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU, as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. Two areas can be selected, with 2-Kbyte granularity. An additional option bit (PCROP_RDP) makes possible to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.
A section of the Flash memory is secured for the RF subsystem CPU2, and cannot be
accessed by the host CPU1.
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction
double error detection
the address of the ECC fail can be read in the ECC register
The embedded Flash memory is shared between CPU1 and CPU2 on a time sharing basis.
A dedicated HW mechanism allows both CPUs to perform Write/Erase operations.

3.3.4 Embedded SRAM

The STM32WB15CC device features 48 Kbytes of embedded SRAM, split in three blocks:
SRAM1: 12 Kbytes mapped at address 0x2000 0000
SRAM2a: 32 Kbytes located at address 0x2003 0000 also mirrored at 0x1000 0000,
with hardware parity check
SRAM2b: 4 Kbytes located at address 0x2003 8000 (contiguous with SRAM2a) and
mirrored at 0x1000 8000 with hardware parity check
DS13258 Rev 1 15/121
44
Functional overview STM32WB15CC
SRAM2a and SRAM2b can be write-protected, with 1-Kbyte granularity. A section of the
SRAM2a and SRAM2b is secured for the RF sub-system and cannot be accessed by the
host CPU1.
The SRAMs can be accessed in read/write with 0 wait states for all CPU1 and CPU2 clock
speeds.

3.4 Security and safety

The STM32WB15CC contains many security blocks both for the BLE and the Host
application.
It includes:
Secure Flash memory partition for RF subsystem-only access
Secure SRAM partition, that can be accessed only by the RF subsystem
True random number generator (RNG)
Advance encryption standard hardware accelerator (AES-256bit, supporting chaining
modes ECB, CBC, CTR, GCM, GMAC, CCM)
Private key acceleration (PKA) including:
Modular arithmetic including exponentiation with maximum modulo size of 3136
bits
Elliptic curves over prime field scalar multiplication, ECDSA signature, ECDSA
verification with maximum modulo size of 521 bits
Cyclic redundancy check calculation unit (CRC)
A specific mechanism is in place to ensure that all the code executed by the RF subsystem
CPU2 can be secure, whatever the Host application.

3.5 Boot modes and FW update

At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The device always boots on CPU1 core. The embedded bootloader code makes it possible
to boot from various peripherals:
UART
I2C
SPI
Secure Firmware update from system boot is provided.

3.6 RF subsystem

The STM32WB15CC embed an ultra-low power multi-standard radio Bluetooth® Low
Energy (BLE), compliant with Bluetooth
2
Mbps transfer rates, supports multiple roles simultaneously acting at the same time as
®
specification v5.2. The BLE features 1 Mbps and
16/121 DS13258 Rev 1
STM32WB15CC Functional overview
BLE sensor and hub device, embeds Elliptic Curve Diffie-Hellman (ECDH) key agreement
protocol, thus ensuring a secure connection.
The BLE stack runs on an embedded Arm® Cortex®-M0+ core (CPU2). The stack is stored
on the embedded Flash memory, which is also shared with the Arm
application, making it possible in-field stack update.

3.6.1 RF front-end block diagram

The RF front-end is based on a direct modulation of the carrier in Tx, and uses a low IF
architecture in Rx mode.
Thanks to an internal transformer at RF pins, the circuit directly interfaces the antenna
(single ended connection, impedance close to 50 ). The natural bandpass behavior of the
internal transformer, simplifies outside circuitry aimed for harmonic filtering and out of band
interferer rejection.
In Transmit mode, the maximum output power is user selectable through the programmable
LDO voltage of the power amplifier. A linearized, smoothed analog control offers clean
power ramp-up.
In receive mode the circuit can be used in standard high performance or in reduced power
consumption (user programmable). The Automatic gain control (AGC) is able to reduce the
chain gain at both RF and IF locations, for optimized interference rejection. Thanks to the
use of complex filtering and highly accurate I/Q architecture, high sensitivity and excellent
linearity can be achieved.
The bill of material is reduced thanks to the high degree of integration. The radio frequency
source is synthesized form an external 32 MHz crystal that does not need any external
trimming capacitor network thanks to a dual network of user programmable integrated
capacitors.
®
Cortex®-M4 (CPU1)
DS13258 Rev 1 17/121
44
Functional overview STM32WB15CC
MS53542V2
Note: UFQFPN48: V
SS
through exposed pad, and V
SSRF
pin must be connected to ground plane
PA
BP
filter
ADC
ADC
PLL
Modulator
RF1
Adjust
32 MHz
OSC_OUTOSC_IN
PA ramp
generator
AGC
control
BLE
modulator
BLE
demodulator
BLE
controller
RF control
AGC
Timer and Power
control
LDO LDO LDO
V
FBSMPS
Trimmed
bias
V
DDRF
Max PA
level
SMPS
V
LXSMPS
V
DDSMPSVSSSMPS
Adjust
HSE
G
G
LNA
Wakeup
Interrupt
AHB
APB
See note
RF_TX_
MOD_
EXT_PA
Figure 2. STM32WB15CC RF front-end block diagram

3.6.2 BLE general description

The BLE block is a master/slave processor, compliant with Bluetooth specification 5.2
standard (2
It integrates a 2.4 GHz RF transceiver and a powerful Cortex®-M0+ core, on which a
Mbps).
complete power-optimized stack for Bluetooth Low Energy protocol runs, providing
master
/ slave role support
GAP: central, peripheral, observer or broadcaster roles
ATT/GATT: client and server
SM: privacy, authentication and authorization
L2CAP
Link layer: AES-128 encryption and decryption
18/121 DS13258 Rev 1
STM32WB15CC Functional overview
In addition, according to Bluetooth specification v5.2, the BLE block provides:
Multiple roles simultaneous support
Master/slave and multiple roles simultaneously
LE data packet length extension (making it possible to reach 800 kbps at application
level)
LE privacy 1.2
LE secure connections
Flexible Internet connectivity options
High data rate (2 Mbps)
The device allows the applications to meet the tight peak current requirements imposed by
the use of standard coin cell batteries. When the high efficiency embedded SMPS
step-down converter is used, the RF front end consumption (I
) is only TBD mA at the
tmax
highest output power (TBD dBm).
Ultra-low-power sleep modes and very short transition time between operating modes result
in very low average current consumption during real operating conditions, resulting in longer
battery life.
The BLE block integrates a full bandpass balun, thus reducing the need for external
components.
The link between the Cortex®-M4 application processor (CPU1) running the application, and
the BLE stack running on the dedicated Cortex
®
-M0+ (CPU2) is performed through a
normalized API, using a dedicated IPCC.

3.6.3 RF pin description

The RF block contains dedicated pins, listed in Table 3.
:
Name Type Description
RF1
OSC_OUT
OSC_IN
RF_TX_
MOD_EXT_PA
VDDRF V
VSSRF
1. On packages with exposed pad, this pad must be connected to GND plane for correct RF operation.
(1)
RF Input/output, must be connected to the antenna through a low-pass matching network
32 MHz main oscillator, also used as HSE source
I/O
External PA transmit control
Dedicated supply, must be connected to V
DD
VSSTo be connected to GND
Table 3. RF pin list
DD

3.6.4 Typical RF application schematic

The schematic in Figure 3 and the external components listed in Table 3 are purely
indicative. For more details refer to the “Reference design” provided in separate documents.
DS13258 Rev 1 19/121
44
Functional overview STM32WB15CC
MS53575V1
STM32WB
microcontroller
V
DD
OSC_IN
OSC_OUT
VDDRF
VSSRF
RF1
Antenna
Cf1 Cf2
Lf1
Lf2
X1
C1
Antenna filter
(including exposed pad)
32 MHz
Figure 3. External components for the RF part
Component Description Value
C1 Decoupling capacitance for RF 100 nF // 100 pF
X1 32 MHz crystal
Antenna filter Antenna filter and matching network Refer to AN5165, on www.st.com
Antenna 2.4 GHz band antenna -
1. e.g. NDK reference: NX2016SA 32 MHz EXS00A-CS06654.
Table 4. Typical external components
(1)
32 MHz
Note: For more details refer to AN5165 “Development of RF hardware using STM32WB
microcontrollers” available on www.st.com.

3.7 Power supply management

3.7.1 Power supply distribution

The device integrate an SMPS step-down converter to improve low power performance
when the V
automatically enters in bypass mode when the V
(x = 1, 2, 3 or 4) voltage.
By default, at Reset the SMPS is in bypass mode.
The device can be operated without the SMPS by just wiring its output to VDD. This is the
case for applications where the voltage is low, or where the power consumption is not
critical.
voltage is high enough. This converter has an intelligent mode that
DD
voltage falls below a specific BORx
DD
20/121 DS13258 Rev 1
STM32WB15CC Functional overview
MS41409V4
MR
LPR
RFR
SMPS
(not used)
MR
LPR
RFR
V
DD
L1
C2
SMPS configuration LDO configuration
V
DD
VDDSMPS
VLXSMPS
VFBSMPS
SMPS
SMPS mode or BYPASS mode
VDDSMPS
VLXSMPS
VFBSMPS
Figure 4. Power distribution
Table 5. Power supply typical components
Component Description Value
C2 SMPS output capacitor
(2)
L1
1. e.g. GRM155R60J475KE19.
2. An extra 10 nH inductor in series with L1 is needed to improve the receiver performance, e.g Murata LQG15WZ10NJ02D
3. e.g. Wurth 74479774222.
4. e.g. Murata LQM21FN100M70L.
SMPS inductance
(1)
For 8 MHz
For 4 MHz
(3)
(4)
4.7 µF
2.2 µH
10 µH
The SMPS can also be switched on or set in bypass mode at any time by the application software, for example when very accurate ADC measurement are needed.

3.7.2 Power supply schemes

The device has different voltage supplies (see Figure 6) and can operate within the following voltage ranges:
V
V
During power up/down, the following power sequence requirements must be respected:
When VDD is below 1 V the other power supply (V
When V
= 1.71 to 3.6 V: external power supply for I/Os (V
DD
), the internal regulator and
DDIO
system functions such as RF, SMPS, reset, power management and internal clocks. It is provided externally through VDD pins. V
DDRF
and V
DDSMPS
must be always
connected to VDD pins.
= 1.62 (ADC/COMPs) to 3.6 V: external analog power supply for ADC and
DDA
comparator. The V not used V
V
+ 300 mV
DD
must be connected to VDD.
DDA
is above 1 V all power supplies are independent.
DD
voltage level can be independent from the VDD voltage. When
DDA
), must remain below
DDA
DS13258 Rev 1 21/121
44
Functional overview STM32WB15CC
MSv47490V1
0.3
1
V
BOR0
3.6
Operating modePower-on Power-down time
V
V
DDX
(1)
V
DD
Invalid supply area V
DDX
< V
DD
+ 300 mV
V
DDX
independent from V
DD
Figure 5. Power-up/down sequence
1. V
DDX
During the power down phase, VDD can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ. This allows the external decoupling capacitors to be discharged with different time constants during the power down transient phase.
Note: VDD, V
sequence.
refers to V
and V
DDRF
.
DDA
DDSMPS
must be wired together, so they can follow the same voltage
22/121 DS13258 Rev 1
STM32WB15CC Functional overview
MS53544V2
VBAT
IOs
Wakeup domain (V
DDIO
)
Analog domain
Interruptible domain (V
DD12I
)
Switch domain (V
SW
)
(CPU1, CPU2,
peripherals)
Level shifter
Power switch
V
BAT
ADC
V
DDA
V
REF-
V
DD
HSI, HSE, PLL, LSI1,
LSI2, IWDG,
RF
IOs
V
SS
V
SS
IO
logic
V
REF+
V
SW
LSE, RTC,
backup
registers
IO
logic
Backup domain
SMPS
Power switch
V
SS
V
BKP12
SRAM1,
SRAM2b,
SRAM2a
Power switch
V
SS
On domain (V
DD12O
)
Power switch
V
SS
SysConfig, EXTI,
RCC, PwrCtrl,
LPTIM, LPUSART
=
=
LPR
MR
RFR
V
LXSMPS
V
FBSMPS
V
DDSMPS
RF domain
Radio
V
DDRF
V
SSRF
(including exposed pad)
V
SS
V
SSSMPS
V
SS
V
SS
V
SS
Figure 6. Power supply overview
DS13258 Rev 1 23/121
44
Functional overview STM32WB15CC

3.7.3 Linear voltage regulator

Three embedded linear voltage regulators supply most of the digital and RF circuitries, the main regulator (MR), the low-power regulator (LPR) and the RF regulator (RFR).
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
The LPR is used in Low-Power Run, Low-Power Sleep and Stop 1 modes. It is also
used to supply the SRAMs in Standby with retention.
The RFR is used to supply the RF analog part, its activity is automatically managed by
the RF subsystem.
All the regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down, inducing zero consumption.
The ultralow-power STM32WB15CC supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the main regulator that supplies the logic (VCORE) can be adjusted according to the system’s maximum operating frequency.
VCORE can also be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode. In this case the CPU is running at up to 2
MHz, and peripherals with independent clock can be clocked by HSI16 (in this mode the
RF subsystem is not available).

3.7.4 Power supply supervisor

An integrated ultra-low-power brown-out reset (BOR) is active in all modes except Shutdown ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes.The device features an embedded programmable voltage detector (PVD) that monitors the V interrupt can be generated when V higher than the V
threshold. The interrupt service routine can then generate a warning
PVD
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a peripheral voltage monitor (PVM) that compares the independent supply voltage V functional supply range.
Any BOR level can also be used to automatically switch the SMPS step-down converter in bypass mode when the V operation is selectable by register bit, the BOR level is selectable by option byte.

3.7.5 Low-power modes

This ultra-low-power device supports several low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.
is below a specified
DD
power supply and compares it with the V
DD
DDA
voltage drops below a given voltage level. The mode of
DD
drops below the V
DD
threshold and/or when VDD is
PVD
with a fixed threshold to ensure that the peripheral is in its
threshold. An
PVD
24/121 DS13258 Rev 1
STM32WB15CC Functional overview
By default, the microcontroller is in Run mode, after a system or a power on Reset. It is up to the user to select one of the low-power modes described below:
Sleep
In Sleep mode, only the CPU1 is stopped. All peripherals, including the RF subsystem, continue to operate and can wake up the CPU when an interrupt/event occurs.
Low-power run
This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator operating current. The code can be executed from SRAM or from the Flash memory, and the CPU1 frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16. The RF subsystem is not available in this mode and must be OFF.
Low-power sleep
This mode is entered from the low-power run mode. Only the CPU1 clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the low-power run mode. The RF subsystem is not available in this mode and must be OFF.
Stop 0 and Stop 1
Stop modes achieve the lowest power consumption while retaining the content of all the SRAM and registers. The LSE (or LSI) is still running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop modes to detect their wakeup condition.
Two modes are available: Stop 0 and Stop 1.
Stop 1 offers several active peripherals and wakeup sources. In Stop 0 mode the main regulator remains ON, allowing a very fast wakeup time but with higher consumption.
In these modes the RF subsystem can wait for incoming events in all Stop modes.
The system clock when exiting from Stop 0 or Stop1 modes can be either MSI up to 48 MHz or HSI16 if the RF subsystem is disabled. If the RF subsystem is used the exits must be set to HSI16 only.
Standby
The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off.
The RTC can remain active (Standby mode with RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.
After entering Standby mode, register content is lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAMs can be retained in Standby mode, supplied by the low-power regulator (Standby with 48 KB SRAM retention mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE, or from the RF system wakeup).
The system clock after wakeup is 16 MHz, derived from the HSI16
DS13258 Rev 1 25/121
44
Functional overview STM32WB15CC
In this mode the RF can be used.
Shutdown
The Shutdown mode allows to achieve the ultimate lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2a, SRAM2b and register contents are lost except for registers in the Backup domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).
The system clock after wakeup is 4 MHz, derived from the MSI.
In this mode the RF is no longer operational.
When the RF subsystem is active, it changes the power state according to its needs (Run, Stop, Standby). This operation is transparent for the CPU1 host application and managed by a dedicated HW state machine. At any given time the effective power state reached is the higher one needed by both the CPU1 and RF sub-system.
Tab l e 6 summarizes the peripheral features over all available modes. Wakeup capability is
detailed in gray cells.
Table 6. Functionalities depending on system operating mode
(1)
Stop0 Stop1 Standby Shutdow
Peripheral
Run
Sleep
Low-power run
-
Low-power sleep
Wakeup capability
-
Wakeup capability
-
-
Wakeup capability
VBAT
Wakeup capability
CPU1 Y - Y - - --------
CPU2 Y - Y - -
Radio-system (BLE) Y Y - - -
Flash memory Y Y O O R
SRAM1 Y O
SRAM2a Y O
SRAM2b Y O
(3)
(3)
(3)
(3)
YO
(3)
YO
(3)
YO
Backup registers Y Y Y Y R
Brown-out reset (BOR) Y Y Y Y Y
Brown-out SMPS force bypass (BOR)
Programmable voltage detector (PVD)
YYYY Y
OOO O O
--------
Y-Y-Y
(2)
- --
-R-R-R-R
R -R-O
R -R-O
R -R-O
(2)
----
(2)
----
(2)
----
-R-R-R-R
YYYYY- --
Y- ------
OOO- ----
26/121 DS13258 Rev 1
STM32WB15CC Functional overview
Table 6. Functionalities depending on system operating mode
Stop0 Stop1 Standby Shutdow
Peripheral
Peripheral voltage monitor (PVMx; x=3)
DMAx (x=1) O O O O -
High speed internal (HSI16) O O O O O
High speed external (HSE) O O O O -
Low speed internal (LSI) O O O O O
Low speed external (LSE) O O O O O
Multi-speed internal (MSI) O O O O -
Clock security system (CSS) O O O O -
Clock security system on LSE O O O O O
RTC / Auto wakeup O O O O O
Run
Sleep
Low-power run
-
Low-power sleep
OOO O O
(4)
-
Wakeup capability
OOO- ----
--------
(4)
-O
--------
-O-O----
-O-O-O-O
--------
--------
OOOOO- --
OOOOOOOO
(1)
(continued)
VBAT
Wakeup capability
Wakeup capability
-
-
Wakeup capability
------
Number of RTC tamper pins 1 1 1 1 1
USART1 O O O O O
Low-power UART (LPUART) O O O O O
I2C1 O O O O O
SPIx (x=1) O O O O -
ADC1 O O O O -
COMPx (x=1) O O O O O
Temperature sensor O O O O -
Timers (TIMx) O O O O -
Low-power timer 1 (LPTIM1) O O O O O
Low-power timer 2 (LPTIM2) O O O O O
Independent watchdog (IWDG) O O O O O
Window watchdog (WWDG) O O O O -
SysTick timer O O O O -
Touch sensing controller (TSC) O O O O -
True random number generator (RNG)
OO - - -
O1O1O1O1
(5)O(5)O(5)O(5)
(5)O(5)O(5)O(5)
(6)O(6)O(6)O(6)
- ----
- ----
- ----
--------
--------
OOO- ----
--------
--------
OOO- ----
OOO- ----
OOOOO- --
--------
--------
--------
--------
AES hardware accelerator O O O O - --------
CRC calculation unit O O O O -
--------
DS13258 Rev 1 27/121
44
Functional overview STM32WB15CC
Table 6. Functionalities depending on system operating mode
(1)
(continued)
Stop0 Stop1 Standby Shutdow
Peripheral
Run
Sleep
Low-power run
-
Low-power sleep
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
IPCC O - O - - --------
HSEM O - O - -
PKA O O O O -
GPIOs O O O O O
1. Legend: Y = Yes (enabled). O = Optional (disabled by default, can be enabled by software). R = data retained. - = Not available. Gray cells indicate Wakeup capability.
2. The SRAM1, SRAM2a and SRAM2b content needs to be retained via the PWR_CR3.RRS bit.
3. The SRAM clock can be gated on or off.
4. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
5. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
6. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
7. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
8. The I/Os with wakeup from Standby/Shutdown capability are PA0 and PA2.
9. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
--------
--------
OOO
(7)
2
pins
(8)
(9)
2
pins
(9)
-
VBAT
28/121 DS13258 Rev 1
Table 7. STM32WB15CC modes overview
Mode Regulator CPU1 Flash SRAM Clocks DMA and Peripherals Wakeup source Consumption
Run MR Yes ON
LPRun LPR Yes ON
Sleep MR No ON
(2)
(2)
(2)
ON Any All N/A 91 µA/MHz N/A
Any
ON
except
All except RF and RNG N/A 90 µA/MHz TBD µs
PLL
ON
(3)
Any All
Any interrupt
or event
28 µA/MHz TBD cycles
(1)
STM32WB15CC Functional overview
Wakeup time
Any
except
All except RF and RNG
LPSleep LPR No ON
(2)
ON
(3)
PLL
RF, BOR, PVD, PVM, RTC,
DS13258 Rev 1 29/121
Stop 0 MR No OFF ON
LSE, LSI,
(4)
HSE
(5)
HSI16
,
IWDG, COMPx (x=1),
USART1
I2C1
(6)
(7)
, LPTIMx (x=1, 2), SMPS
All other peripherals are frozen.
RF, BOR, PVD, PVM, RTC,
IWDG, COMPx (x=1),
USART1
I2C1
(6)
(7)
, LPTIMx (x=1, 2)
Stop 1 LPR No OFF ON
LSE, LSI,
(4)
HSE
(5)
HSI16
,
All other peripherals are frozen.
RF, BOR, RTC, IWDG
All other peripherals are
powered off.
I/O configuration can be floating,
Standby
LPR
SRAMs
ON
No OFF
OFF OFF
LSE, LSI
pull-up or pull-down
RTC
All other peripherals are
Shutdown OFF No OFF OFF LSE
powered off.
I/O configuration can be floating,
pull-up or pull-down
1. Typical current at VDD = 1.8 V, 25 °C. for STOPx, SHUTDOWN and Standby, else VDD = 3.3 V, 25 °C.
, LPUART1
, LPUART1
(9)
(6)
(6)
Any interrupt
or event
Reset pin, all I/Os, RF,
BOR, PVD, PVM,
RTC, IWDG, COMPx
,
(x=1), USART1,
LPUART1, I2C1,
LPTIMx (x=1, 2)
Reset pin, all I/Os
RF, BOR, PVD, PVM,
RTC, IWDG, COMPx
,
(x=1), USART1,
LPUART1, I2C1,
LPTIMx (x=1, 2)
RF, Reset pin
Two I/Os (WKUPx)
BOR, RTC, IWDG
Two I/Os (WKUPx)
RTC
27 µA/MHz TBD cycles
100 µA TBD µs
3.05 µA w/o RTC
3.35 µA w RTC
0.335 µA w/o RTC
0.61 µA w RTC
(8)
0.243 µA w/o RTC
0.518 µA w RTC
(8)
0.012 µA w/o RTC
,
0.210 µA w/ RTC
TBD µs
TBD µs
-
30/121 DS13258 Rev 1
2. The Flash memory controller can be placed in power-down mode if the RF subsystem is not in use and all the program is run from the SRAM.
3. The SRAM1 and SRAM2 clocks can be gated off independently.
4. HSE (32 MHz) automatically used when RF activity is needed by the RF subsystem.
5. HSI16 (16 MHz) automatically used by some peripherals.
6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, Address match or Received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. I/Os with wakeup from Standby/Shutdown capability: PA0, PA2.
9. I/Os can be configured with internal pull-up, pull-down or floating but the configuration is lost immediately when exiting the Shutdown mode.
Functional overview STM32WB15CC
Loading...
+ 91 hidden pages