STMicroelectronics STM32WB10CC Datasheet

STM32WB10CC

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5.2 radio solution

Datasheet - production data

Features

Includes ST state-of-the-art patented technology

Radio

2.4 GHz

RF transceiver supporting Bluetooth® 5.2 specification

RX sensitivity: -95.5 dBm (Bluetooth® Low Energy at 1 Mbps)

Programmable output power up to +4 dBm with 1 dB steps

Integrated balun to reduce BOM

Support for 1 Mbps

Dedicated Arm® 32-bit Cortex® M0+ CPU for real-time Radio layer

Accurate RSSI to enable power control

Suitable for systems requiring compliance with radio frequency regulations ETSI EN 300 328, EN 300 440, FCC CFR47 Part 15 and ARIB STD-T66

Support for external PA

Available integrated passive device (IPD) companion chip for optimized matching solution (MLPF-WB-01E3)

Ultra-low-power platform

2.0 to 3.6 V power supply

– 10 °C to +85 °C temperature range

18 nA shutdown mode

700 nA Standby mode + RTC + 48 KB RAM

Radio: Rx 7.7 mA / Tx at 0 dBm 8.7 mA

Core: Arm® 32-bit Cortex®-M4 CPU with FPU, adaptive real-time accelerator (ART Accelerator) allowing 0-wait-state execution from Flash memory, frequency up to 64 MHz, MPU, 80 DMIPS and DSP instructions

Performance benchmark

1.25 DMIPS/MHz (Drystone 2.1)

UFQFPN48 7 x 7 mm solder pad

Supply and reset management

Ultra-safe, low-power BOR (brownout reset) with five selectable thresholds

Ultra-low-power POR/PDR

Programmable voltage detector (PVD)

VBAT mode with RTC and backup registers

Clock sources

32 MHz crystal oscillator with integrated trimming capacitors (Radio and CPU clock)

32 kHz crystal oscillator for RTC (LSE)

Internal low-power 32 kHz RC (LSI1)

Internal low-drift 32 kHz (stability ±500 ppm) RC (LSI2)

Internal multispeed 100 kHz to 48 MHz oscillator, factory-trimmed

High speed internal 16 MHz factory trimmed RC (±1%)

1x PLL for system clock and ADC

Memories

320 KB Flash memory with sector protection (PCROP) against R/W operations, enabling radio stack and application

48 KB SRAM, including 36 KB with hardware parity check

20x32-bit backup register

Boot loader supporting USART, SPI, I2C interfaces

1 Kbyte (128 double words) OTP

Rich analog peripherals (down to 2.0 V)

12-bit ADC 2.5 Msps, 190 µA/Msps

February 2021

DS13259 Rev 1

1/110

This is information on a product in full production.

www.st.com

STM32WB10CC

System peripherals

Inter processor communication controller (IPCC) for communication with Bluetooth® Low Energy

HW semaphores for resources sharing between CPUs

1x DMA controller (7x channels) supporting ADC, SPI, I2C, USART, AES, timers

1x USART (ISO 7816, IrDA, SPI Master, Modbus and Smartcard mode)

1x SPI 32 Mbit/s

1x I2C (SMBus/PMBus)

Touch sensing controller, up to eight sensors

1x 16-bit, four channels advanced timer

1x 32-bit, four channels timer

2x 16-bit ultra-low-power timer

1x independent Systick

1x independent watchdog

1x window watchdog

Security and ID

Secure firmware installation (SFI) for Bluetooth® Low Energy SW stack

2x hardware encryption AES maximum

256-bit for the application and the Bluetooth® Low Energy

HW public key authority (PKA)

Cryptographic algorithms: RSA, Diffie-Helman, ECC over GF(p)

True random number generator (RNG)

Sector protection against R/W operation (PCROP)

CRC calculation unit

Die information: 96-bit unique ID

IEEE 64-bit unique ID. Possibility to derive Bluetooth® Low Energy 48-bit EUI

Up to 30 fast I/Os, 28 of them 5 V-tolerant

Development support

Serial wire debug (SWD), JTAG for the application processor

Application cross trigger

Package is ECOPACK2 compliant

2/110

DS13259 Rev 1

STM32WB10CC

Contents

 

 

Contents

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 9

2

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

3

Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

3.1

Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

3.2

Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

3.3

Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

3.3.1 Adaptive real-time memory accelerator (ART Accelerator) . . . . . . . . . . 14 3.3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4

Security and safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

3.5

Boot modes and FW update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

3.6

RF subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

3.6.1

RF front-end block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

3.6.2

BLE general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

3.6.3

RF pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

3.6.4

Typical RF application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

3.7 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

 

3.7.1

Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

 

3.7.2

Linear voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

3.7.3

Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

3.7.4

Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

3.7.5

Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

3.8

VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

3.9

Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

3.10

Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

3.11

General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . .

34

3.12

Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . .

35

3.13

Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

 

3.13.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . .

35

 

3.13.2 Extended interrupts and events controller (EXTI) . . . . . . . . . . . . . . . . .

36

DS13259 Rev 1

3/110

Contents

STM32WB10CC

 

 

3.14 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.14.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.14.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.15 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.16 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.17.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.17.2 General-purpose timer (TIM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.17.3 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 39 3.17.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.17.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.17.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.18 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 40 3.19 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.20Universal synchronous/asynchronous receiver transmitter (USART) . . . 42

3.21 Serial peripheral interface (SPI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.22 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.22.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 43

4

Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

5

Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

51

6

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

 

6.1

Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

 

 

6.1.1

Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

 

 

6.1.2

Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

 

 

6.1.3

Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

 

 

6.1.4

Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

 

 

6.1.5

Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

 

 

6.1.6

Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53

 

 

6.1.7

Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.1 Summary of main performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.2 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4/110

DS13259 Rev 1

STM32WB10CC

Contents

 

 

6.3.3 RF BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.4 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 60 6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 60 6.3.6 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.8Wakeup time from Low-power modes and voltage scaling

transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.12 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.3.14 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.18 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.19 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 91 6.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.21 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.22 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.23 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . . 98

7

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

103

 

7.1

UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

103

 

7.2

Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

106

 

 

7.2.1

Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 106

 

 

7.2.2

Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . .

106

8

Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

108

9

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

109

DS13259 Rev 1

5/110

List of tables

STM32WB10CC

 

 

List of tables

Table 1. STM32WB10CC device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 2. Access status vs. readout protection level and execution modes . . . . . . . . . . . . . . . . . . . 15 Table 3. RF pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 4. Typical external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 5. Functionalities depending on system operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 6. STM32WB10CC modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 7. STM32WB10CC CPU1 peripherals interconnect matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 8. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 9. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 10. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 11. Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 12. I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 13. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 14. STM32WB10CC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 15. Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 16. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 17. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 18. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 19. Main performance at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 20. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 21. RF transmitter BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 22. RF transmitter BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 23. RF receiver BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Table 24. RF BLE power consumption for VDD = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Table 25. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 26. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 27. Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Table 28. Current consumption in Run and Low-power run modes, code with data processing

running from Flash memory, ART enable (Cache ON Prefetch OFF), VDD = 3.3 V . . . . . 63 Table 29. Current consumption in Run and Low-power run modes, code with data processing

running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 30. Typical current consumption in Run and Low-power run modes, with different codes

running from Flash memory, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V . . . . . . 64 Table 31. Typical current consumption in Run and Low-power run modes,

with different codes running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 32. Current consumption in Sleep and Low-power sleep modes, Flash memory ON . . . . . . . 65 Table 33. Current consumption in Low-power sleep modes, Flash memory in Power down . . . . . . . 65 Table 34. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Table 35. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Table 36. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 37. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 38. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 39. Current under Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 40. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 41. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Table 42. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Table 43. HSE crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 44. HSE clock source requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6/110

DS13259 Rev 1

STM32WB10CC

List of tables

 

 

Table 45. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Table 46. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Table 47. Low-speed external user clock characteristics, bypass mode . . . . . . . . . . . . . . . . . . . . . . 75 Table 48. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 49. MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

Table 50. LSI1 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 51. LSI2 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 52. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 53. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Table 54. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Table 55. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 56. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Table 57. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Table 58. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 59. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 60. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 61. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 62. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 63. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 64. Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Table 65. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Table 66. Maximum ADC RAIN values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Table 67. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table 68. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Table 69. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 70. VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Table 71. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 72. IWDG min/max timeout period at 32 kHz (LSI1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 73. Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 74. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 75. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 76. JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 77. SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 78. UFQFPN48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 79. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 80. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

DS13259 Rev 1

7/110

List of figures

STM32WB10CC

 

 

List of figures

Figure 1. STM32WB10CC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 2. STM32WB10CC RF front-end block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 3. External components for the RF part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 4. Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 5. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 6. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 7. STM32WB10CCU UFQFPN48 pinout (1) (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 8. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 9. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Figure 12. VREFINT vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 13. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 14. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 15. HSI16 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Figure 16. Typical current consumption vs. MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Figure 17. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Figure 18. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Figure 19. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Figure 20. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Figure 21. SPI timing diagram - Slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Figure 22. SPI timing diagram - Slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Figure 23. SPI timing diagram - Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Figure 24. UFQFPN48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Figure 25. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Figure 26. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8/110

DS13259 Rev 1

STM32WB10CC

Introduction

 

 

1 Introduction

This document provides the ordering information and mechanical device characteristics of the STM32WB10CC microcontroller, based on Arm® cores(a). Throughout the whole document TBD indicates a value to be defined.

This document must be read in conjunction with the reference manual (RM0478), available from the STMicroelectronics website www.st.com.

For information on the Arm® Cortex®-M4 and Cortex®-M0+ cores, refer, respectively, to the Cortex®-M4 Technical Reference Manual and to the Cortex®-M0+ Technical Reference Manual, both available on the www.arm.com website.

For information on Bluetooth® refer to www.bluetooth.com.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

DS13259 Rev 1

9/110

Description

STM32WB10CC

 

 

2 Description

The STM32WB10CC multiprotocol wireless and ultra-low-power device embeds a powerful and ultra-low-power radio compliant with the Bluetooth® Low Energy SIG specification v5.0. It contains a dedicated Arm® Cortex® -M0+ for performing all the real-time low layer operation.

The device is designed to be extremely low-power and is based on the high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 64 MHz. This core features a Floating point unit (FPU) single precision that supports all Arm® single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) that enhances application security.

Enhanced inter-processor communication is provided by the IPCC with six bidirectional channels. The HSEM provides hardware semaphores used to share common resources between the two processors.

The device embeds high-speed memories (320 Kbyte of Flash memory, 48 Kbytes of SRAM) and an extensive range of enhanced I/Os and peripherals.

Direct data transfer between memory and peripherals and from memory to memory is supported by seven DMA channels with a full flexible channel mapping by the DMAMUX peripheral.

The device features several mechanisms for embedded Flash memory and SRAM: readout protection, write protection and proprietary code readout protection. Portions of the memory can be secured for Cortex® -M0+ exclusive access.

The AES encryption engine, PKA and RNG enable upper layer cryptography. The device offers a fast 12-bit ADC.

The device embeds a low-power RTC, one advanced 16-bit timer, one general-purpose 32-bit timer, and two 16-bit low-power timers.

In addition, up to three capacitive sensing channels are available.

The STM32WB10CC also features standard and advanced communication interfaces, namely one USART (ISO 7816, IrDA, Modbus and Smartcard mode), one I2C (SMBus/PMBus), one SPI up to 32 MHz.

The STM32WB10CC operates in the -10 to +85 °C (+105 °C junction) temperature range from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes enables the design of low-power applications.

The device includes independent power supplies for analog input for ADC.

A VBAT dedicated supply allows the device to back up the LSE 32.768 kHz oscillator, the RTC and the backup registers, thus enabling the STM32WB10CC to supply these functions even if the main VDD is not present through a CR2032-like battery, a Supercap or a small rechargeable battery.

The STM32WB10CC is available in a 48-pin UFQFPN package.

10/110

DS13259 Rev 1

STM32WB10CC

 

Description

 

 

 

 

 

Table 1. STM32WB10CC device features and peripheral counts

 

Feature

STM32WB10CC

 

 

 

 

Flash memory density

320K bytes

 

 

 

 

 

SRAM density

 

48 Kbytes

 

 

 

 

 

BLE

 

V5.2 (1 Mbps)

 

 

 

 

 

 

 

 

Advanced

1 (16-bit)

 

 

 

 

 

 

Timers

 

General purpose

1 (32-bit)

 

 

 

 

 

 

Low power

2 (16-bit)

 

 

 

 

 

 

 

 

 

 

 

SysTick

1

 

 

 

 

 

 

Communication

 

SPI

1

 

 

 

 

 

 

I2C

1

 

interface

 

 

 

 

 

 

 

 

USART(1)

1

 

RTC

 

1

 

 

 

 

 

Tamper pin

 

1

 

 

 

 

 

Wakeup pin

 

2

 

 

 

 

 

GPIOs

 

30

 

 

 

 

 

Capacitive sensing

 

3

 

 

 

 

 

12-bit ADC

 

13 channels

 

Number of channels

(including 3 internal)

 

 

 

 

 

Internal Vref

 

Yes

 

Max CPU frequency

64 MHz

 

 

 

 

 

 

Operating temperature

Ambient operating temperature:-10 to +85 °C

 

Junction temperature: -10 to 105 °C

 

 

 

 

 

 

 

 

 

Operating voltage

 

2.0 to 3.6 V

 

 

 

 

 

 

Package

 

UFQFPN48

 

 

7 mm x 7 mm, 0.5 mm pitch, solder pad

 

 

 

 

 

 

 

 

 

1. USART peripheral can be used as SPI.

DS13259 Rev 1

11/110

STMicroelectronics STM32WB10CC Datasheet

Description

STM32WB10CC

 

 

Figure 1. STM32WB10CC block diagram

 

 

 

 

 

APB asynchronous

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>AHB asynchronous

 

RCC2

 

 

<![if ! IE]>

<![endif]>CTI

NVIC

<![if ! IE]>

<![endif]>AHB Lite

BLE IP

LSI2

 

 

 

 

 

 

 

 

 

 

32 kHz

 

 

Cortex-M0+

BLE RF IP

HSE2

 

 

32 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32 KB SRAM2a

WKUP

 

 

 

 

 

 

 

BLE

 

 

 

 

 

 

 

 

 

LSE

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>320 KB Flash shared memory

 

 

 

4 KB SRAM2b

RTC2

 

32 kHz

<![if ! IE]>

<![endif]>JTAG/SWD

 

<![if ! IE]>

<![endif]>Arbiter + ART

 

 

 

LSI1

 

 

 

 

 

 

 

PKA + RAM

I-WDG

 

32 kHz

 

 

 

 

 

 

 

HSEM

TAMP

 

 

 

<![if ! IE]>

<![endif]>(shared)

 

 

 

NVIC

RNG

 

 

 

 

ETM

 

<![if ! IE]>

<![endif]>lite

 

 

 

HSI 1%

 

 

 

 

<![if ! IE]>

<![endif]>AHB

IPCC

PLL1

 

Cortex-M4

 

16 MHz

 

 

 

 

 

MSI up to

 

 

 

 

 

 

 

(DSP)

 

 

RCC + CSS

 

 

 

 

 

 

 

48 MHz

<![if ! IE]>

<![endif]>CTI

 

 

 

 

 

 

FPU

MPU

 

 

PWR

Power supply POR/

 

 

 

PDR/BOR/PVD/AVD

 

 

 

 

 

 

 

 

 

 

 

EXTI

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Lite

 

AES2

 

 

 

 

 

 

<![if ! IE]>

<![endif]>AHB

 

 

 

 

DMA1 - 7 channels

 

 

 

WWDG

 

 

 

 

 

 

 

 

 

12 KB SRAM1

 

 

DMAMUX

 

 

 

 

DBG

 

 

 

 

 

 

 

 

 

 

Temp (oC) sensor

 

 

 

GPIO ports

 

 

 

SPI1

 

A, B, C, E, H

 

 

ADC1 12-bit ULP

 

 

 

CRC

 

 

 

 

 

 

 

 

 

 

2.5 Msps / 13 ch

 

 

I2C1

 

TSC

 

 

 

 

 

 

 

 

 

 

APB

 

 

 

 

 

 

 

 

 

USART1

 

LPTIM1

 

 

 

TIM1

 

 

 

 

LPTIM2

 

 

 

TIM2

 

SYSCFG

 

 

 

 

 

 

 

 

MS53573V2

12/110

DS13259 Rev 1

STM32WB10CC

Functional overview

 

 

3 Functional overview

3.1Architecture

The STM32WB10CC multiprotocol wireless device embeds a BLE RF subsystem that interfaces with a generic microcontroller subsystem using an Arm® Cortex®-M4 CPU (called CPU1) on which the host application resides.

The RF subsystem is composed of an RF analog front end, BLE block as well as of a dedicated Arm® Cortex®-M0+ microcontroller (called CPU2), plus proprietary peripherals. The RF subsystem performs all of the BLE stack, reducing the interaction with the CPU1 to high level exchanges.

Some functions are shared between the RF subsystem CPU (CPU2) and the Host CPU (CPU1):

Flash memories

SRAM1, SRAM2a and SRAM2b (all can be retained in Standby mode)

Security peripherals (RNG, PKA)

Clock RCC

Power control (PWR)

The communication and the sharing of peripherals between the RF subsystem and the Cortex®-M4 CPU is performed through a dedicated inter processor communication controller (IPCC) and semaphore mechanism (HSEM).

3.2Arm® Cortex®-M4 core with FPU

The Arm® Cortex®-M4 with FPU is a processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an Arm® core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions enabling efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded Arm® core, the STM32WB10CC is compatible with all Arm® tools and software.

Figure 1 shows the general block diagram of the device.

DS13259 Rev 1

13/110

Functional overview

STM32WB10CC

 

 

3.3Memories

3.3.1Adaptive real-time memory accelerator (ART Accelerator)

The ART Accelerator is a memory accelerator optimized for STM32 industry-standard Arm® Cortex®-M4 processors. It balances the inherent performance advantage of the Arm® Cortex®-M4 over Flash memory technologies, which normally require the processor to wait for the Flash memory at higher frequencies.

To release the processor near 80 DMIPS performance at 64 MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 64 MHz.

3.3.2Memory protection unit

The memory protection unit (MPU) is used to manage the CPU1 accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to eight protected areas, which can be divided up into eight subareas. The protection area sizes are between 32 bytes and the whole

4 Gbytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code must be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location prohibited by the MPU, the RTOS detects it and takes action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.3.3Embedded Flash memory

The STM32WB10CC device features 320 Kbytes of embedded Flash memory available for storing programs and data, as well as some customer keys.

Flexible protections can be configured thanks to option bytes:

Readout protection (RDP) to protect the whole memory. Three levels are available:

Level 0: no readout protection

Level 1: memory readout protection: the Flash memory cannot be read from or written to if either debug features are connected, boot in SRAM or bootloader is selected

Level 2: chip readout protection: debug features (Cortex®-M4 and Cortex®-M0+ JTAG and serial wire), boot in SRAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

14/110

DS13259 Rev 1

STM32WB10CC

 

 

 

 

 

 

 

 

Functional overview

 

 

 

 

 

 

 

 

 

 

Table 2. Access status vs. readout protection level and execution modes

 

 

Protection

 

User execution

 

 

Debug, boot from SRAM or boot

 

Area

 

 

 

from system memory (loader)

 

 

 

 

 

 

 

 

level

 

 

 

 

 

 

 

 

 

 

 

Read

 

Write

 

Erase

Read

Write

Erase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main

1

Yes

 

Yes

 

Yes

No

No

No

 

memory

2

Yes

 

Yes

 

Yes

N/A

N/A

N/A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

System

1

Yes

 

No

 

No

Yes

No

No

 

memory

2

Yes

 

No

 

No

N/A

N/A

N/A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Option

1

Yes

 

Yes

 

Yes

Yes

Yes

Yes

 

 

 

 

 

 

 

 

 

 

 

 

bytes

2

Yes

 

(1)

 

No

(1)

N/A

N/A

N/A

 

 

 

No

 

 

 

Backup

1

Yes

 

Yes

 

N/A(2)

No

No

N/A(2)

 

registers

2

Yes

 

Yes

 

N/A

N/A

N/A

N/A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRAM2a

1

Yes

 

Yes

 

Yes(2)

No

No

No(2)

 

SRAM2b

2

Yes

 

Yes

 

Yes

N/A

N/A

N/A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.The option byte can be modified by the RF subsystem.

2.Erased when RDP changes from Level 1 to Level 0.

Write protection (WRP): the protected area is protected against erasing and programming. Two areas can be selected, with 4-Kbyte granularity.

Proprietary code readout protection (PCROP): two parts of the Flash memory can be protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU, as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. Two areas can be selected, with 2-Kbyte granularity. An additional option bit (PCROP_RDP) makes possible to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.

A section of the Flash memory is secured for the RF subsystem CPU2, and cannot be accessed by the host CPU1.

The whole non-volatile memory embeds the error correction code (ECC) feature supporting:

single error detection and correction

double error detection

the address of the ECC fail can be read in the ECC register

The embedded Flash memory is shared between CPU1 and CPU2 on a time sharing basis. A dedicated HW mechanism allows both CPUs to perform Write/Erase operations.

3.3.4Embedded SRAM

The STM32WB10CC device features 48 Kbytes of embedded SRAM, split in three blocks:

SRAM1: 12 Kbytes mapped at address 0x2000 0000

SRAM2a: 32 Kbytes located at address 0x2003 0000 also mirrored at 0x1000 0000, with hardware parity check

SRAM2b: 4 Kbytes located at address 0x2003 8000 (contiguous with SRAM2a) and mirrored at 0x1000 8000 with hardware parity check

DS13259 Rev 1

15/110

Functional overview

STM32WB10CC

 

 

SRAM2a and SRAM2b can be write-protected, with 1-Kbyte granularity. A section of the SRAM2a and SRAM2b is secured for the RF sub-system and cannot be accessed by the host CPU1.

The SRAMs can be accessed in read/write with 0 wait states for all CPU1 and CPU2 clock speeds.

3.4Security and safety

The STM32WB10CC contains many security blocks both for the BLE and the Host application.

It includes:

Secure Flash memory partition for RF subsystem-only access

Secure SRAM partition, that can be accessed only by the RF subsystem

True random number generator (RNG)

Advance encryption standard hardware accelerator (AES-256bit, supporting chaining modes ECB, CBC, CTR, GCM, GMAC, CCM)

Private key acceleration (PKA) including:

Modular arithmetic including exponentiation with maximum modulo size of 3136 bits

Elliptic curves over prime field scalar multiplication, ECDSA signature, ECDSA verification with maximum modulo size of 521 bits

Cyclic redundancy check calculation unit (CRC)

A specific mechanism is in place to ensure that all the code executed by the RF subsystem CPU2 can be secure, whatever the Host application.

3.5Boot modes and FW update

At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:

Boot from user Flash

Boot from system memory

Boot from embedded SRAM

The device always boots on CPU1 core. The embedded bootloader code makes it possible to boot from various peripherals:

UART

I2C

SPI

Secure Firmware update from system boot is provided.

3.6RF subsystem

The STM32WB10CC embeds an ultra-low power multi-standard radio Bluetooth® Low Energy (BLE), compliant with Bluetooth® specification v5.2. The BLE features 1 Mbps transfer rate, supports multiple roles simultaneously acting at the same time as BLE sensor

16/110

DS13259 Rev 1

STM32WB10CC

Functional overview

 

 

and hub device, embeds Elliptic Curve Diffie-Hellman (ECDH) key agreement protocol, thus ensuring a secure connection.

The BLE stack runs on an embedded Arm® Cortex®-M0+ core (CPU2). The stack is stored on the embedded Flash memory, which is also shared with the Arm® Cortex®-M4 (CPU1) application, making it possible in-field stack update.

3.6.1RF front-end block diagram

The RF front-end is based on a direct modulation of the carrier in Tx, and uses a low IF architecture in Rx mode.

Thanks to an internal transformer at RF pins, the circuit directly interfaces the antenna (single ended connection, impedance close to 50 Ω). The natural bandpass behavior of the internal transformer, simplifies outside circuitry aimed for harmonic filtering and out of band interferer rejection.

In Transmit mode, the maximum output power is user selectable through the programmable LDO voltage of the power amplifier. A linearized, smoothed analog control offers clean power ramp-up.

In receive mode the circuit can be used in standard high performance or in reduced power consumption (user programmable). The Automatic gain control (AGC) is able to reduce the chain gain at both RF and IF locations, for optimized interference rejection. Thanks to the use of complex filtering and highly accurate I/Q architecture, high sensitivity and excellent linearity can be achieved.

The bill of material is reduced thanks to the high degree of integration. The radio frequency source is synthesized form an external 32 MHz crystal that does not need any external trimming capacitor network thanks to a dual network of user programmable integrated capacitors.

DS13259 Rev 1

17/110

Functional overview

STM32WB10CC

 

 

Figure 2. STM32WB10CC RF front-end block diagram

 

Timer and Power

AGC

 

<![if ! IE]>

<![endif]>control

<![if ! IE]>

<![endif]>AGC

 

 

 

 

control

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF_TX_

 

 

 

 

 

 

 

 

 

MOD_

RF control

 

<![if ! IE]>

<![endif]>ADC

 

 

 

 

 

EXT_PA

 

 

 

 

G

 

 

 

Interrupt

 

BLE

 

BP

 

 

 

 

 

 

 

LNA

 

Wakeup

 

modulator

 

 

 

 

BLE

<![if ! IE]>

<![endif]>ADC

filter

 

 

 

 

 

 

 

 

 

 

AHB

controller

BLE

 

G

 

 

 

 

 

 

 

 

 

APB

 

demodulator

 

 

 

 

 

RF1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>Modulator

PLL

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>PA

See

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>ramp PA generator

 

 

note

Adjust

Adjust

 

 

 

 

 

 

 

HSE

 

 

 

 

 

 

Trimmed

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bias

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LDO

LDO

LDO

Max PA

 

 

 

 

 

 

level

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

VDDRF

OSC_IN

 

OSC_OUT

 

 

 

 

 

 

 

32 MHz

 

 

 

 

 

 

 

 

Note: UFQFPN48: VSS through exposed pad, and VSSRF pin must be connected to ground plane

 

 

 

 

 

 

 

 

 

MS53574V1

3.6.2BLE general description

The BLE block is a master/slave processor, compliant with Bluetooth specification 5.2 standard (1 Mbps).

It integrates a 2.4 GHz RF transceiver and a powerful Cortex®-M0+ core, on which a complete power-optimized stack for Bluetooth Low Energy protocol runs, providing master / slave role support

GAP: central, peripheral, observer or broadcaster roles

ATT/GATT: client and server

SM: privacy, authentication and authorization

L2CAP

Link layer: AES-128 encryption and decryption

18/110

DS13259 Rev 1

STM32WB10CC

Functional overview

 

 

In addition, according to Bluetooth specification v5.2, the BLE block provides:

Multiple roles simultaneous support

Master/slave and multiple roles simultaneously

LE data packet length extension (making it possible to reach 800 kbps at application level)

LE privacy 1.2

LE secure connections

Flexible Internet connectivity options

The device allows the applications to meet the tight peak current requirements imposed by the use of standard coin cell batteries.

Ultra-low-power sleep modes and very short transition time between operating modes result in very low average current consumption during real operating conditions, resulting in longer battery life.

The BLE block integrates a full bandpass balun, thus reducing the need for external components.

The link between the Cortex®-M4 application processor (CPU1) running the application, and the BLE stack running on the dedicated Cortex®-M0+ (CPU2) is performed through a normalized API, using a dedicated IPCC.

3.6.3RF pin description

The RF block contains dedicated pins, listed in Table 3.

:

 

Table 3. RF pin list

 

 

 

Name

Type

Description

 

 

 

RF1

 

RF Input/output, must be connected to the antenna through a low-pass matching network

 

 

 

OSC_OUT

 

32 MHz main oscillator, also used as HSE source

 

I/O

OSC_IN

 

 

 

 

 

 

RF_TX_

 

External PA transmit control

MOD_EXT_PA

 

 

 

 

 

 

VDDRF

VDD

Dedicated supply, must be connected to VDD

VSSRF(1)

VSS

To be connected to GND

1. The exposed pad must be connected to GND plane for correct RF operation.

3.6.4Typical RF application schematic

The schematic in Figure 3 and the external components listed in Table 3 are purely indicative. For more details refer to the “Reference design” provided in separate documents.

DS13259 Rev 1

19/110

Functional overview

STM32WB10CC

 

 

Figure 3. External components for the RF part

 

OSC_IN

 

 

 

X1

32 MHz

 

 

OSC_OUT

 

 

 

 

VDD

 

 

VDDRF

 

 

STM32WB

 

C1

Antenna

VSSRF

 

microcontroller

 

 

(including exposed pad)

 

 

 

 

 

 

Lf1

 

 

 

Cf1

Cf2

 

RF1

Antenna filter

 

 

Lf2

 

 

 

 

MS53575V1

Table 4. Typical external components

Component

Description

Value

 

 

 

C1

Decoupling capacitance for RF

100 nF // 100 pF

 

 

 

X1

32 MHz crystal(1)

32 MHz

Antenna filter

Antenna filter and matching network

Refer to AN5165, on www.st.com

 

 

 

Antenna

2.4 GHz band antenna

-

 

 

 

1. e.g. NDK reference: NX2016SA 32 MHz EXS00A-CS06654.

Note:

For more details refer to AN5165 “Development of RF hardware using STM32WB

 

microcontrollers” available on www.st.com.

3.7Power supply management

3.7.1Power supply schemes

The device has different voltage supplies (see Figure 5) and can operate within the following voltage ranges:

VDD = 2.0 to 3.6 V: external power supply for I/Os (VDDIO), the internal regulator and system functions such as RF, reset, power management and internal clocks. It is provided externally through VDD pins. VDDRF must be always connected to VDD pins.

VDDA = 2.0 to 3.6 V: external analog power supply for ADC. The VDDA voltage level can be independent from the VDD voltage. When not used VDDA must be connected to VDD.

20/110

DS13259 Rev 1

STM32WB10CC

Functional overview

 

 

During power up/down, the following power sequence requirements must be respected:

When VDD is below 1 V the other power supply (VDDA), must remain below VDD + 300 mV

When VDD is above 1 V all power supplies are independent.

Figure 4. Power-up/down sequence

V

 

 

 

3.6

(1)

 

 

 

 

 

 

VDDX

 

 

 

VDD

 

 

VBOR0

 

 

 

1

 

 

 

0.3

 

 

 

Power-on

Operating mode

Power-down

time

Invalid supply area

VDDX < VDD + 300 mV

VDDX independent from VDD

 

 

 

 

MSv47490V1

1. VDDX refers to VDDA.

During the power down phase, VDD can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ. This allows the external decoupling capacitors to be discharged with different time constants during the power down transient phase.

Note:

VDD and VDDRF must be wired together, so they can follow the same voltage sequence.

DS13259 Rev 1

21/110

Functional overview

STM32WB10CC

 

 

Figure 5. Power supply overview

 

Interruptible domain (VDD12I)

On domain (VDD12O)

 

<![if ! IE]>

<![endif]>shifter

IO

(CPU1, CPU2,

RCC, PwrCtrl,

 

 

 

 

SysConfig, EXTI,

IOs

<![if ! IE]>

<![endif]>Level

logic

peripherals)

LPTIM, USART1

 

Power

 

 

Power

 

 

 

switch

switch

VSS

VSS

VSS

VDD MR

RFR

 

 

LPR

 

 

VDDRF

 

 

RF domain

Backup domain

 

Radio

VBKP12

SRAM1,

SRAM2a,

 

 

 

 

SRAM2b

VSSRF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power switch

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(including exposed pad)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wakeup domain (VDDIO)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HSI, HSE,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power switch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLL,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSW

 

 

 

 

 

 

 

 

 

 

VBAT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LSI1, LSI2,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IWDG, RF

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Switch domain (VSW)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VBAT

 

 

 

 

 

 

 

IO

 

 

 

LSE, RTC,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IOs

 

 

 

 

 

 

logic

 

backup registers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDDA

 

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analog domain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ADC

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VREF+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VREF-

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MS53576V2

22/110

DS13259 Rev 1

STM32WB10CC

Functional overview

 

 

3.7.2Linear voltage regulator

Three embedded linear voltage regulators supply most of the digital and RF circuitries, the main regulator (MR), the low-power regulator (LPR) and the RF regulator (RFR).

The MR is used in the Run and Sleep modes and in the Stop 0 mode.

The LPR is used in Low-Power Run, Low-Power Sleep and Stop 1 modes. It is also used to supply the SRAMs in Standby with retention.

The RFR is used to supply the RF analog part, its activity is automatically managed by the RF subsystem.

All the regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down, inducing zero consumption.

The ultralow-power STM32WB10CC supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the main regulator that supplies the logic (VCORE) can be adjusted according to the system’s maximum operating frequency.

VCORE can also be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode. In this case the CPU is running at up to

2 MHz, and peripherals with independent clock can be clocked by HSI16 (in this mode the RF subsystem is not available).

3.7.3Power supply supervisor

An integrated ultra-low-power brown-out reset (BOR) is active in all modes except Shutdown ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage VDD is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 2.0 V at power on, and other higher thresholds can be selected through option bytes.The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it with the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.7.4Low-power modes

This ultra-low-power device supports several low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.

By default, the microcontroller is in Run mode, after a system or a power on Reset. It is up to the user to select one of the low-power modes described below:

Sleep

In Sleep mode, only the CPU1 is stopped. All peripherals, including the RF subsystem, continue to operate and can wake up the CPU when an interrupt/event occurs.

Low-power run

This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator operating current. The code can be executed from SRAM or from the Flash memory, and the CPU1 frequency is limited to 2 MHz. The peripherals with

DS13259 Rev 1

23/110

Functional overview

STM32WB10CC

 

 

independent clock can be clocked by HSI16. The RF subsystem is not available in this mode and must be OFF.

Low-power sleep

This mode is entered from the low-power run mode. Only the CPU1 clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the low-power run mode. The RF subsystem is not available in this mode and must be OFF.

Stop 0 and Stop 1

Stop modes achieve the lowest power consumption while retaining the content of all the SRAM and registers. The LSE (or LSI) is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

Some peripherals with wakeup capability can enable the HSI16 RC during Stop modes to detect their wakeup condition.

Two modes are available: Stop 0 and Stop 1.

Stop 1 offers several active peripherals and wakeup sources. In Stop 0 mode the main regulator remains ON, allowing a very fast wakeup time but with higher consumption. In these modes the RF subsystem can wait for incoming events in all Stop modes.

The system clock when exiting from Stop 0 Stop1 modes can be either MSI up to

48 MHz or HSI16 if the RF subsystem is disabled. If the RF subsystem is used the exits must be set to HSI16 only.

Standby

The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off.

The RTC can remain active (Standby mode with RTC).

The brown-out reset (BOR) always remains active in Standby mode.

The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.

After entering Standby mode, register content is lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAMs can be retained in Standby mode, supplied by the low-power regulator (Standby with 48 KB SRAM retention mode).

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE, or from the RF system wakeup).

The system clock after wakeup is 16 MHz, derived from the HSI16

24/110

DS13259 Rev 1

STM32WB10CC

Functional overview

 

 

In this mode the RF can be used.

Shutdown

The Shutdown mode allows to achieve the ultimate lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off.

The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).

The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.

SRAM1, SRAM2a, SRAM2b and register contents are lost except for registers in the Backup domain.

The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).

The system clock after wakeup is 4 MHz, derived from the MSI. In this mode the RF is no longer operational.

When the RF subsystem is active, it changes the power state according to its needs (Run, Stop, Standby). This operation is transparent for the CPU1 host application and managed by a dedicated HW state machine. At any given time the effective power state reached is the higher one needed by both the CPU1 and RF sub-system.

Table 5 summarizes the peripheral features over all available modes. Wakeup capability is detailed in gray cells.

Table 5. Functionalities depending on system operating mode(1)

 

 

 

 

<![if ! IE]>

<![endif]>power-Lowsleep

Stop0

Stop1

Standby

Shutdow

 

 

 

 

<![if ! IE]>

<![endif]>power-Low run

 

 

 

 

 

 

 

 

 

Peripheral

<![if ! IE]>

<![endif]>Run

<![if ! IE]>

<![endif]>Sleep

-

<![if ! IE]>

<![endif]>capabilityWakeup

-

<![if ! IE]>

<![endif]>capabilityWakeup

-

<![if ! IE]>

<![endif]>capabilityWakeup

-

<![if ! IE]>

<![endif]>capabilityWakeup

<![if ! IE]>

<![endif]>VBAT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU1

Y

-

Y

-

-

-

-

-

-

-

-

-

-

CPU2

Y

-

Y

-

-

-

-

-

-

-

-

-

-

Radio-system (BLE)

Y

Y

-

-

-

Y

-

Y

-

Y(2)

-

-

-

Flash memory

Y

Y

O

O

R

-

R

-

R

-

R

-

R

SRAM1

Y

O(3)

Y

O(3)

R

-

R

-

O(2)

-

-

-

-

SRAM2a

Y

O(3)

Y

O(3)

R

-

R

-

O(2)

-

-

-

-

SRAM2b

Y

O(3)

Y

O(3)

R

-

R

-

O(2)

-

-

-

-

Backup registers

Y

Y

Y

Y

R

-

R

-

R

-

R

-

R

Brown-out reset (BOR)

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

-

-

-

Programmable voltage detector

O

O

O

O

O

O

O

O

-

-

-

-

-

(PVD)

 

 

 

 

 

 

 

 

 

 

 

 

 

DMAx (x=1)

O

O

O

O

-

-

-

-

-

-

-

-

-

High speed internal (HSI16)

O

O

O

O

O(4)

-

O(4)

-

-

-

-

-

-

DS13259 Rev 1

25/110

Functional overview

STM32WB10CC

 

 

Table 5. Functionalities depending on system operating mode(1) (continued)

 

 

 

 

<![if ! IE]>

<![endif]>Low-power sleep

Stop0

Stop1

Standby

Shutdow

 

 

 

 

<![if ! IE]>

<![endif]>Low-power run

 

 

 

 

 

 

 

 

 

Peripheral

<![if ! IE]>

<![endif]>Run

<![if ! IE]>

<![endif]>Sleep

-

<![if ! IE]>

<![endif]>Wakeup capability

-

<![if ! IE]>

<![endif]>Wakeup capability

-

<![if ! IE]>

<![endif]>Wakeup capability

-

<![if ! IE]>

<![endif]>Wakeup capability

<![if ! IE]>

<![endif]>VBAT

 

 

 

 

 

 

High speed external (HSE)

O

O

O

O

-

-

-

-

-

-

-

-

-

Low speed internal (LSI)

O

O

O

O

O

-

O

-

O

-

-

-

-

Low speed external (LSE)

O

O

O

O

O

-

O

-

O

-

O

-

O

Multi-speed internal (MSI)

O

O

O

O

-

-

-

-

-

-

-

-

-

Clock security system (CSS)

O

O

O

O

-

-

-

-

-

-

-

-

-

Clock security system on LSE

O

O

O

O

O

O

O

O

O

O

-

-

-

RTC / Auto wakeup

O

O

O

O

O

O

O

O

O

O

O

O

O

Number of RTC tamper pins

1

1

1

1

1

O

1

O

1

O

1

O

1

USART1

O

O

O

O

O(5)

O(5)

O(5)

O(5)

-

-

-

-

-

I2C1

O

O

O

O

O(6)

O(6)

O(6)

O(6)

-

-

-

-

-

SPIx (x=1)

O

O

O

O

-

-

-

-

-

-

-

-

-

ADC1

O

O

O

O

-

-

-

-

-

-

-

-

-

Temperature sensor

O

O

O

O

-

-

-

-

-

-

-

-

-

Timers (TIMx)

O

O

O

O

-

-

-

-

-

-

-

-

-

Low-power timer 1 (LPTIM1)

O

O

O

O

O

O

O

O

-

-

-

-

-

Low-power timer 2 (LPTIM2)

O

O

O

O

O

O

O

O

-

-

-

-

-

Independent watchdog (IWDG)

O

O

O

O

O

O

O

O

O

O

-

-

-

Window watchdog (WWDG)

O

O

O

O

-

-

-

-

-

-

-

-

-

SysTick timer

O

O

O

O

-

-

-

-

-

-

-

-

-

Touch sensing controller (TSC)

O

O

O

O

-

-

-

-

-

-

-

-

-

True random number generator

O

O

-

-

-

-

-

-

-

-

-

-

-

(RNG)

 

 

 

 

 

 

 

 

 

 

 

 

 

AES hardware accelerator

O

O

O

O

-

-

-

-

-

-

-

-

-

CRC calculation unit

O

O

O

O

-

-

-

-

-

-

-

-

-

IPCC

O

-

O

-

-

-

-

-

-

-

-

-

-

HSEM

O

-

O

-

-

-

-

-

-

-

-

-

-

PKA

O

O

O

O

-

-

-

-

-

-

-

-

-

GPIOs

O

O

O

O

O

O

O

O

(7)

2

(9)

2

-

pins

pins

 

 

 

 

 

 

 

 

 

 

(8)

 

(9)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26/110

DS13259 Rev 1

STM32WB10CC

Functional overview

 

 

1.Legend: Y = Yes (enabled). O = Optional (disabled by default, can be enabled by software). R = data retained. - = Not available. Gray cells indicate Wakeup capability.

2.The SRAM1, SRAM2a and SRAM2b content needs to be retained via the PWR_CR3.RRS bit.

3.The SRAM clock can be gated on or off.

4.Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.

5.UART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.

6.I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.

7.I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.

8.The I/Os with wakeup from Standby/Shutdown capability are PA0 and PA2.

9.I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

DS13259 Rev 1

27/110

<![if ! IE]>

<![endif]>28/110

<![if ! IE]>

<![endif]>1 Rev DS13259

Table 6. STM32WB10CC modes overview

Mode

Regulator

CPU1

Flash

SRAM

Clocks

DMA and Peripherals

Wakeup source

Consumption(1)

Wakeup time

Run

MR

Yes

ON(2)

ON

Any

All

N/A

91 µA/MHz

N/A

 

 

 

ON(2)

 

Any

 

 

 

 

LPRun

LPR

Yes

ON

except

All except RF and RNG

N/A

90 µA/MHz

TBD µs

 

 

 

 

 

PLL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sleep

MR

No

ON(2)

ON(3)

Any

All

Any interrupt

28 µA/MHz

TBD cycles

or event

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ON(2)

ON(3)

Any

 

Any interrupt

 

 

LPSleep

LPR

No

except

All except RF and RNG

27 µA/MHz

TBD cycles

or event

 

 

 

 

 

PLL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LSE, LSI,

RF, BOR, PVD, RTC, IWDG,

Reset pin, all I/Os, RF,

 

 

Stop 0

MR

No

OFF

ON

USART1(6), I2C1(7),

BOR, PVD, RTC,

100 µA

TBD µs

HSE(4),

LPTIMx (x=1, 2)

IWDG, USART1, I2C1,

 

 

 

 

 

HSI16(5)

 

 

 

 

 

 

 

All other peripherals are frozen.

LPTIMx (x=1, 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LSE, LSI,

RF, BOR, PVD, RTC, IWDG,

Reset pin, all I/Os

 

 

Stop 1

LPR

No

OFF

ON

USART1(6), I2C1(7),

RF, BOR, PVD, RTC,

3.05 µA w/o RTC

TBD µs

HSE(4),

LPTIMx (x=1, 2)

 

 

 

 

 

 

HSI16(5)

IWDG, USART1, I2C1,

3.45 µA w RTC

 

 

 

 

 

 

All other peripherals are frozen.

 

 

 

 

 

 

 

LPTIMx (x=1, 2)

 

 

 

LPR

 

 

SRAMs

 

RF, BOR, RTC, IWDG

RF, Reset pin

0.345 µA w/o RTC

 

 

 

 

ON

 

All other peripherals are

0.70 µA w RTC

 

 

 

 

 

 

 

Standby

 

No

OFF

 

LSE, LSI

powered off.

Two I/Os (WKUPx)(8)

 

TBD µs

 

 

0.245 µA w/o RTC

 

OFF

 

 

OFF

 

I/O configuration can be floating,

BOR, RTC, IWDG

 

 

 

 

 

0.600 µA w RTC

 

 

 

 

 

 

 

pull-up or pull-down

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RTC

 

 

 

Shutdown

OFF

No

OFF

OFF

LSE

All other peripherals are

Two I/Os (WKUPx)(8),

0.018 µA w/o RTC

-

powered off.

RTC

0.425 µA w/ RTC

 

 

 

 

 

 

I/O configuration can be floating,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pull-up or pull-down(9)

 

 

 

1.Typical current at VDD = 2.4 V, 25 °C. for STOPx, SHUTDOWN and Standby, else VDD = 3.3 V, 25 °C.

2.The Flash memory controller can be placed in power-down mode if the RF subsystem is not in use and all the program is run from the SRAM.

3.The SRAM1 and SRAM2 clocks can be gated off independently.

4.HSE (32 MHz) automatically used when RF activity is needed by the RF subsystem.

<![if ! IE]>

<![endif]>overview Functional

<![if ! IE]>

<![endif]>STM32WB10CC

5. HSI16 (16 MHz) automatically used by some peripherals.

6. U(S)ART reception is functional in Stop mode, and generates a wakeup interrupt on Start, Address match or Received frame event.

7.I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.

8.I/Os with wakeup from Standby/Shutdown capability: PA0, PA2.

9.I/Os can be configured with internal pull-up, pull-down or floating but the configuration is lost immediately when exiting the Shutdown mode.

<![if ! IE]>

<![endif]>1 Rev DS13259

<![if ! IE]>

<![endif]>29/110

<![if ! IE]>

<![endif]>STM32WB10CC

<![if ! IE]>

<![endif]>overview Functional

Functional overview

STM32WB10CC

 

 

3.7.5Reset mode

To improve the consumption under reset, the I/Os state under and after reset is “analog state” (the I/O Schmitt trigger is disabled). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.8VBAT operation

 

The VBAT pin allows to power the device VBAT domain (RTC, LSE and Backup registers)

 

from an external battery, an external supercapacitor, or from VDD when no external battery

 

nor an external supercapacitor are present. One anti-tamper detection pin is available in

 

VBAT mode.

 

VBAT operation is automatically activated when VDD is not present.

 

An internal VBAT battery charging circuit is embedded and can be activated when VDD is

 

present.

Note:

When the microcontroller is supplied only from VBAT, external interrupts and RTC

 

alarm/events do not exit it from VBAT operation.

3.9

Interconnect matrix

 

 

 

 

 

 

 

 

Several peripherals have direct connections between them. This allows autonomous

 

 

communication between peripherals, saving CPU1 resources and, consequently, reducing

 

power supply consumption. In addition, these hardware connections result in fast and

 

 

predictable latency.

 

 

 

 

 

 

 

 

Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power

 

run and Sleep, Stop 0 and Stop 1 modes.

 

 

 

 

 

 

 

 

Table 7. STM32WB10CC CPU1 peripherals interconnect matrix

 

 

 

 

 

Source

 

Destination

 

Action

<![if ! IE]>

<![endif]>Run

 

<![if ! IE]>

<![endif]>Sleep

<![if ! IE]>

<![endif]>power-Low run

<![if ! IE]>

<![endif]>power-Low

<![if ! IE]>

<![endif]>0Stop/ Stop 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TIMx

 

Timers synchronization or chaining

Y

 

Y

Y

Y

-

 

 

 

 

 

 

 

 

 

 

 

 

TIMx

 

 

ADC1

 

Conversion triggers

Y

 

Y

Y

Y

-

 

 

 

DMA

 

Memory to memory transfer trigger

Y

 

Y

Y

Y

-

 

 

 

 

 

 

 

 

 

 

 

 

ADC1

 

 

TIM1

 

Timer triggered by analog watchdog

Y

 

Y

Y

Y

-

 

 

 

 

 

 

 

 

 

 

 

 

RTC

 

 

LPTIMERx

 

Low-power timer triggered by RTC

Y

 

Y

Y

Y

Y

 

 

 

alarms or tampers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All clock sources

 

TIM2

 

Clock source used as input channel for

Y

 

Y

Y

Y

-

(internal and external)

 

RC measurement and trimming

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30/110

DS13259 Rev 1

Loading...
+ 80 hidden pages