ST MICROELECTRONICS STM32L562ZET6Q Datasheet

STM32L562xx
UFQFPN48 (7 x 7 mm)
UFBGA132 (7 x 7 mm)
WLCSP81 (4.36 x 4.07 mm)
(*): Silhouette shown above.
LQFP48 (7 x 7 mm)
LQFP64 (10 x 10 mm
)
LQFP100
(*)
(14 x14 mm)
LQFP144 (20 x 20mm)
FBGA
Ultra-low-power Arm® Cortex®-M33 32-bit MCU+TrustZone®+FPU,
Datasheet - production data
Features
Ultra-low-power with FlexPowerControl
1.71 V to 3.6 V power supply
-40 °C to 85/125 °C temperature range
Batch acquisition mode (BAM)
187 nA in VBAT mode: supply for RTC and
32x32-bit backup registers
17 nA Shutdown mode (5 wakeup pins)
108 nA Standby mode (5 wakeup pins)
222 nA Standby mode with RTC
3.16 μA Stop 2 with RTC
106 μA/MHz Run mode (LDO mode)
62 μA/MHz Run mode @ 3 V
(SMPS step-down converter mode)
5 µs wakeup from Stop mode
Brownout reset (BOR) in all modes except
Shutdown
Core
Memories
Up to 512-Kbyte Flash, two banks read-while­write
256 Kbytes of SRAM including 64 Kbytes with hardware parity check
External memory interface supporting SRAM, PSRAM, NOR, NAND and FRAM memories
OCTOSPI memory interface
Arm® 32-bit Cortex®-M33 CPU with
TrustZone
ART Accelerator
8-Kbyte instruction cache allowing 0-wait-state execution from Flash memory and external memories; frequency up to 110 MHz, MPU, 165 DMIPS and DSP instructions
Performance benckmark
1.5 DMIPS/MHz (Drystone 2.1)
442 CoreMark
Energy benchmark
370 ULPMark-CP® score
54 ULPMark-PP
27400 SecureMark-TLS
February 2020 DS12736 Rev 2 1/323
This is information on a product in full production.
®
and FPU
®
(4.02 CoreMark®/MHz)
®
score
®
score
Security
Arm® TrustZone® and securable I/Os, memories and peripherals
Flexible life cycle scheme with RDP (readout protection)
Root of trust thanks to unique boot entry and hide protection area (HDP)
SFI (secure firmware installation) thanks to embedded RSS (root secure services)
Secure firmware upgrade support with TF-M
AES coprocessor
Public key accelerator
On-the-fly decryption of Octo-SPI external
memories
HASH hardware accelerator
www.st.com
STM32L562xx
Active tamper and protection against temperature, voltage and frequency attacks
True random number generator NIST SP800­90B compliant
96-bit unique ID
512-byte OTP (one-time programmable) for
user data
General-purpose input/outputs
Up to 114 fast I/Os with interrupt capability most 5 V-tolerant and up to 14 I/Os with independent supply down to 1.08 V
Power management
Embedded regulator (LDO) with three configurable range output to supply the digital circuitry
Embedded SMPS step-down converter
External SMPS support
Clock management
4 to 48 MHz crystal oscillator
32 kHz crystal oscillator for RTC (LSE)
Internal 16 MHz factory-trimmed RC (±1%)
Internal low-power 32 kHz RC (±5%)
Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than ±0.25% accuracy)
Internal 48 MHz with clock recovery
3 PLLs for system clock, USB, audio, ADC
Up to 19 communication peripherals
1x USB Type-C™/ USB power delivery controller
1x USB 2.0 full-speed crystal less solution, LPM and BCD
2x SAIs (serial audio interface)
4x I2C FM+(1 Mbit/s), SMBus/PMBus™
6x USARTs (ISO 7816, LIN, IrDA, modem)
3x SPIs (7x SPIs with USART and OCTOSPI in
SPI mode)
1x FDCAN controller
1x SDMMC interface
2 DMA controllers
14 DMA channels
Up to 22 capacitive sensing channels
Support touch key, linear and rotary touch sensors
Rich analog peripherals (independent supply)
2x 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 µA/Msps
2x 12-bit DAC outputs, low-power sample and hold
2x operational amplifiers with built-in PGA
2x ultra-low-power comparators
4x digital filters for sigma delta modulator
Up to 16 timers and 2 watchdogs
16x timers: 2 x 16-bit advanced motor-control, 2 x 32-bit and 5 x 16-bit general purpose, 2x 16-bit basic, 3x low-power 16-bit timers (available in Stop mode), 2x watchdogs, 2x SysTick timer
RTC with hardware calendar, alarms and calibration

Table 1. Device summary

Reference Part numbers
STM32L562xx
2/323 DS12736 Rev 2
STM32L562CE, STM32L562ME, STM32L562QE, STM32L562RE, STM32L562VE, STM32L562ZE
CRC calculation unit
Debug
Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™ (ETM)
STM32L562xx Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Arm® Cortex®-M33 core with TrustZone® and FPU . . . . . . . . . . . . . . . . . 20
3.2 Art Accelerator – instruction cache (ICACHE) . . . . . . . . . . . . . . . . . . . . . 20
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Global TrustZone controller (GTZC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 TrustZone security architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8.1 TrustZone peripheral classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9.4 SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9.5 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9.6 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.9.7 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.9.8 PWR TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.10 Peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.11 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.12 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.13 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.14 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.15 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.16 DMA request router (DMAMUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.17 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.17.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 57
DS12736 Rev 2 3/323
6
Contents STM32L562xx
3.17.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 57
3.18 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 58
3.19 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 58
3.20 Octo-SPI interface (OCTOSPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.21 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.21.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.21.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.21.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.22 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.23 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.24 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.25 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.26 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 64
3.27 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.28 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.29 Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 66
3.30 HASH hardware accelerator (HASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.31 Public key accelerator PKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.32 On-the-fly decryption engine (OTFDEC) . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.33 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.33.1 Advanced-control timer (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.33.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,
TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.33.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.33.4 Low-power timers (LPTIM1, LPTIM2 and LPTIM3) . . . . . . . . . . . . . . . . 70
3.33.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.33.6 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.33.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.34 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.35 Tamper and backup registers (TAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.36 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.37 Universal synchronous/asynchronous receiver transmitter (USART) . . . 75
3.38 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 76
3.39 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.40 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4/323 DS12736 Rev 2
STM32L562xx Contents
3.41 Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 77
3.42 Controller area network (FDCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.43 Universal serial bus (USB FS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.44 USB Type-C™ / USB Power Delivery controller (UCPD) . . . . . . . . . . . . . 78
3.45 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.45.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.45.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.2 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.3 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 148
5.3.4 Embedded reset and power control block characteristics . . . . . . . . . . 148
5.3.5 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.3.7 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.3.11 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.3.13 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.3.14 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.3.15 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
DS12736 Rev 2 5/323
6
Contents STM32L562xx
5.3.16 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
5.3.17 Extended interrupt and event controller input (EXTI) characteristics . . 223
5.3.18 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5.3.19 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 225
5.3.20 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 238
5.3.21 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 243
5.3.22 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
5.3.23 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 246
5.3.24 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
5.3.25 V
5.3.26 Temperature and VDD thresholds monitoring . . . . . . . . . . . . . . . . . . . 251
5.3.27 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
5.3.28 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
5.3.29 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 255
5.3.30 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
5.3.31 OCTOSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
5.3.32 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . 289
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
BAT
5.3.33 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
6.1 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
6.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
6.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
6.4 WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
6.5 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
6.6 UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
6.7 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311
6.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
6.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
6.8.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 316
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
6/323 DS12736 Rev 2
STM32L562xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32L562xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3. Boot modes when TrustZone is disabled (TZEN=0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 4. Boot modes when TrustZone is enabled (TZEN=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 5. Boot space versus RDP protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. Example of memory map security attribution vs SAU configuration regions . . . . . . . . . . . 27
Table 7. Securable peripherals by TZSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 8. TrustZone-aware peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 9. SMPS external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 10. STM32L562xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 11. Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 12. STM32L562xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 13. DMA1 and DMA2 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 14. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 15. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 16. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 17. I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 18. USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 19. SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 20. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 21. STM32L562xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 22. Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 23. Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 24. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 25. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 26. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 27. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 28. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 29. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 30. Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 31. Current consumption in Run and Low-power run modes,code with data processing
running from Flash in single Bank, ICACHE ON in 2-way . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 32. Current consumption in Run and Low-power run modes,cod
running from Flash in single Bank, ICACHE ON in 1-way . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 33. Current consumption in Run and Low-power run modes, code with data processing
running from Flash in single Bank, ICACHE Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 34. Current consumption in Run and Low-power run modes, code with data processing
running from Flash in single bank, ICACHE ON in 2-way and power
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 35. Current consumption in Run and Low-power run modes, code with data processing
running from Flash in single bank, ICACHE ON in 1-way and power
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 36. Current consumption in Run and Low-power run modes, code with data processing
running from Flash in single bank, ICACHE Disabled and power
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 37. Current consumption in Run and Low-power run modes, code with data processing
running from Flash in dual bank, ICACHE ON in 2-way . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 38. Current consumption in Run and Low-power run modes, code with data processing
e with data processing
DS12736 Rev 2 7/323
10
List of tables STM32L562xx
running from Flash in dual bank, ICACHE ON in 1-way . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 39. Current consumption in Run and Low-power run modes, code with data processing
running from Flash in dual bank, ICACHE Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 40. Current consumption in Run and Low-power run modes, code with data processing
running from Flash in dual bank, ICACHE ON in 2-way and power
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 41. Current consumption in Run and Low-power run modes, code with data processing
running from Flash in dual bank, ICACHE ON in 1-way and power
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 42. Current consumption in Run and Low-power run modes, code with data processing
running from Flash in dual bank, ICACHE Disabled and power
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 43. Current consumption in Run and Low-power run modes,
code with data processing running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 44. Current consumption in Run and Low-power run modes,
code with data processing running from SRAM1 and
power supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 45. Current consumption in Run and Low-power run modes,
code with data processing running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 46. Current consumption in Run and Low-power run modes,
code with data processing running from SRAM2 and
power supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 47. Typical current consumption in Run and Low-power run modes,
with different codes running from Flash, ICACHE ON (2-way). . . . . . . . . . . . . . . . . . . . . 169
Table 48. Typical current consumption in Run and Low-power run modes with SMPS,
with different codes running from Flash, ICACHE ON (2-way). . . . . . . . . . . . . . . . . . . . . 170
Table 49. Typical current consumption in Run and Low-power run modes,
with different codes running from Flash, ICACHE ON (1-way). . . . . . . . . . . . . . . . . . . . . 171
Table 50. Typical current consumption in Run and Low-power run modes with SMPS,
with different codes running from Flash, ICACHE ON (1-way). . . . . . . . . . . . . . . . . . . . . 172
Table 51. Typical current consumption in Run and Low-power run modes,
with different codes running from Flash, ICACHE disabled . . . . . . . . . . . . . . . . . . . . . . . 173
Table 52. Typical current consumption in Run and Low-power run modes with internal SMPS,
with different codes running from Flash, ICACHE disabled . . . . . . . . . . . . . . . . . . . . . . . 174
Table 53. Typical current consumption in Run and Low-power run modes,
with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 54. Typical current consumption in Run and Low-power run modes with internal SMPS,
with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 55. Typical current consumption in Run and Low-power run modes,
with different codes running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 56. Typical current consumption in Run and Low-power run modes with internal SMPS,
with different codes running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 57. Current consumption in Sleep and Low-power sleep mode, Flash ON . . . . . . . . . . . . . . 179
Table 58. Current consumption in Low-power sleep mode, Flash in power-down . . . . . . . . . . . . . . 180
Table 59. Current consumption in Sleep and Low-power sleep mode,
Flash ON and power supplied by internal SMPS step down converter . . . . . . . . . . . . . . 181
Table 60. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 61. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 62. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 63. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 64. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 65. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8/323 DS12736 Rev 2
STM32L562xx List of tables
Table 66. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Table 67. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Table 68. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 69. Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 70. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 71. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Table 72. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Table 73. LSE oscillator characteristics (f
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
LSE
Table 74. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Table 75.
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
Table 76. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Table 77. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Table 78. PLL, PLLSAI1, PLLSAI2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 79. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 80. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 81. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Table 82. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Table 83. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Table 84. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Table 85. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Table 86. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Table 87. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 88. I/O AC characteristics (All I/Os except FT_c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Table 89. FT_c I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Table 90. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Table 91. EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Table 92. Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Table 93. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Table 94. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Table 95. ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Table 96. ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Table 97. ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Table 98. ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Table 99. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Table 100. DAC accuracy ranges 0/1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Table 101. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Table 102. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Table 103. OPAMP characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Table 104. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Table 105. V Table 106. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
BAT
Table 107. Temp and VDD monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Table 108. DFSDM measured timing 1.71 to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Table 109. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Table 110. IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Table 111. WWDG min/max timeout value at 110 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Table 112. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Table 113. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Table 114. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Table 115. USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Table 116. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 266
Table 117. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings. . . . . . . . . . . 266
DS12736 Rev 2 9/323
10
List of tables STM32L562xx
Table 118. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 267
Table 119. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 268
Table 120. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Table 121. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 269
Table 122. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Table 123. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 271
Table 124. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Table 125. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Table 126. Synchronous non-multiplexed NOR/PSRAM read timings. . . . . . . . . . . . . . . . . . . . . . . . 277
Table 127. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Table 128. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Table 129. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Table 130. OCTOSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Table 131. OCTOSPI characteristics in DTR mode (no DQS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Table 132. OCTOSPI characteristics in DTR mode (with DQS)/Octal and HyperBus . . . . . . . . . . . . 285
Table 133. Dynamics characteristics: delay block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Table 134. Dynamics characteristics: SD / eMMC characteristics, VDD=2.7V to 3.6 V . . . . . . . . . . . 289
Table 135. Dynamics characteristics: eMMC characteristics VDD=1.71 V to 1.9 V. . . . . . . . . . . . . . 290
Table 136. UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Table 137. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Table 138. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Table 139. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Table 140. WLCSP - 81 balls, 4.36 x 4.07 mm, 0.4 mm pitch, wafer level chip scale
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Table 141. WLCSP81 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Table 142. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Table 143. UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Table 144. UFBGA132 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 309
Table 145. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Table 146. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Table 147. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
10/323 DS12736 Rev 2
STM32L562xx List of figures
List of figures
Figure 1. STM32L562xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 2. STM32L562xx power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 3. STM32L562xxxxP power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 4. STM32L562xxxxQ power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 5. Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 6. SMPS step down converter power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 7. STM32L562xx clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 8. Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 9. Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 10. STM32L562xx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 11. STM32L562xxxxP LQFP48 external SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 12. STM32L562xx UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 13. STM32L562xxxxP UFQFPN48 external SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 14. STM32L562xx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 15. STM32L562xxxxQ LQFP64 SMPS step down converter pinout. . . . . . . . . . . . . . . . . . . . . 82
Figure 16. STM32L562xxxxP LQFP64 external SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 17. STM32L562xxxxQ WLCSP81 SMPS step down converter ballout . . . . . . . . . . . . . . . . . . 83
Figure 18. STM32L562xxxxP WLCSP81 external SMPS ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 19. STM32L562xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 20. STM32L562xxxxQ LQFP100 SMPS step down converter pinout. . . . . . . . . . . . . . . . . . . . 85
Figure 21. STM32L562xx UFBGA132 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 22. STM32L562xxxxQ UFBGA132 SMPS step down converter ballout. . . . . . . . . . . . . . . . . . 86
Figure 23. STM32L562xx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 24. STM32L562xxxxQ LQFP144 SMPS step down converter pinout. . . . . . . . . . . . . . . . . . . . 88
Figure 25. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 26. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 27. STM32L552xx and STM32L562xx power supply overview . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 28. STM32L552xxxP and STM32L562xxxP power supply overview . . . . . . . . . . . . . . . . . . . 141
Figure 29. STM32L552xxxQ and STM32L562xxxQ power supply overview. . . . . . . . . . . . . . . . . . . 142
Figure 30. Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 31. External components for SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 32. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 33. High-speed external clock source AC timing diagram .
Figure 34. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Figure 35. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Figure 36. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Figure 37. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Figure 38. Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Figure 39. HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 40. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Figure 41. I/O AC characteristics definition
Figure 42. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Figure 43. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Figure 44. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Figure 45. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Figure 46. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Figure 47. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Figure 48. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
. . . . . . . . . . . . . . . . . . . . . . . . . . 199
DS12736 Rev 2 11/323
13
List of figures STM32L562xx
Figure 49. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Figure 50. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Figure 51. USART master mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Figure 52. USART slave mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Figure 53. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 265
Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 267
Figure 55. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 268
Figure 56. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 270
Figure 57. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Figure 58. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Figure 59. Synchronous non-multiplexed NOR/PSRAM read timings. . . . . . . . . . . . . . . . . . . . . . . . 276
Figure 60. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Figure 61. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Figure 62. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Figure 63. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 281
Figure 64. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 281
Figure 65. OCTOSPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Figure 66. OCTOSPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Figure 67. OCTOSPI HyperBus clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Figure 68. OCTOSPI HyperBus read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Figure 69. OCTOSPI HyperBus read with double latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Figure 70. OCTOSPI HyperBus write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Figure 71. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Figure 72. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Figure 73. DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Figure 74. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 293
Figure 75. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Figure 76. Example of LQFP48 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . 295
Figure 77. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Figure 78. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Figure 79. Example of UFQFPN48 package marking (package top view). . . . . . . . . . . . . . . . . . . . . 298
Figure 80. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 299
Figure 81. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Figure 82. Example of LQFP64 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . 301
Figure 83. WLCSP - 81 balls, 4.36 x 4.07 mm, 0.4 mm pitch, wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Figure 84. WLCSP - 81 balls, 4.36 x 4.07 mm, 0.4 mm pitch, wafer level chip scale
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Figure 85. Example of WLCSP81 package marking (package top view . . . . . . . . . . . . . . . . . . . . . . 304
Figure 86. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 305
Figure 87. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Figure 88. Example of LQFP100 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . 307
Figure 89. UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Figure 90. UFBGA132 - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Figure 91. Example of UFBGA132 package marking (package top view) . . . . . . . . . . . . . . . . . . . . 310
12/323 DS12736 Rev 2
STM32L562xx List of figures
Figure 92. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 311
Figure 93. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Figure 94. Example of LQFP144 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . 314
DS12736 Rev 2 13/323
13
Introduction STM32L562xx

1 Introduction

This document provides the ordering information and mechanical device characteristics of
the STM32L562xx microcontrollers.
This document should be read in conjunction with the STM32L552xx and STM32L562xx
reference manual (RM0438).
For information on the Arm
Reference Manual, available from the www.arm.com website.
®(a)
Cortex®-M33 core, refer to the Cortex®-M33 Technical
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
14/323 DS12736 Rev 2
STM32L562xx Description

2 Description

The STM32L562xx devices are an ultra-low-power microcontrollers family (STM32L5
Series) based on the high-performance Arm
at a frequency of up to 110
The Cortex®-M33 core features a single-precision floating-point unit (FPU), which supports
all the Arm
Cortex
®
single-precision data-processing instructions and all the data types. The
®
-M33 core also implements a full set of DSP (digital signal processing) instructions
MHz.
®
Cortex®-M33 32-bit RISC core. They operate
and a memory protection unit (MPU) which enhances the application’s security.
These devices embed high-speed memories (512 Kbytes of Flash memory and 256 Kbytes
of SRAM), a flexible external memory controller (FSMC) for static memories (for devices
with packages of 100 pins and more), an Octo-SPI Flash memories interface (available on
all packages) and an extensive range of enhanced I/Os and peripherals connected to two
APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L5 Series devices offer security foundation compliant with the trusted based
security architecture (TBSA) requirements from Arm. They embed the necessary security
features to implement a secure boot, secure data storage, secure firmware installation and
secure firmware upgrade. Flexible life cycle is managed thanks to multiple levels of readout
protection. Firmware hardware isolation is supported thanks to securable peripherals,
memories and I/Os, and also to the possibility to configure the peripherals and memories as
“privilege”.
The STM32L562xx devices embed several protection mechanisms for embedded Flash
memory and SRAM: readout protection, write protection, secure and hidden protection
areas.
The STM32L562xx devices embed several peripherals reinforcing security:
- One AES coprocessor
- One public key accelerator (PKA), DPA resistant
- One on-the-fly decryption engine for Octo-SPI external memories
- One HASH hardware accelerator
- One true random number generator
The STM32L5 Series devices offer active tamper detection and protection against transient
and environmental perturbation attacks thanks to several internal monitoring which generate
secret data erase in case of attack. This helps to fit the PCI requirements for point of sales
applications. These devices offer two fast 12-bit ADC (5 Msps), two comparators, two
operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power
RTC, two general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control,
seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support
four digital filters for external sigma delta modulators (DFSDM). In addition, up to 22
capacitive sensing channels are available.
STM32L5 Series also feature standard and advanced communication interfaces such as:
- Four I2Cs
- Three SPIs
- Three USARTs, two UARTs and one low-power UART
DS12736 Rev 2 15/323
79
Description STM32L562xx
- Two SAIs
- One SDMMC
- One FDCAN
- USB device FS
- USB Type-C / USB power delivery controller
The STM32L562xx devices embed an AES, PKA and OTFDEC hardware accelerator.
The devices operate in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C
junction) temperature ranges from a 1.71 to 3.6
V power supply. A comprehensive set of
power-saving modes allows the design of low-power applications.
Some independent power supplies are supported like an analog independent supply input
for ADC, DAC, OPAMPs and comparators, a 3.3
14 I/Os, which can be supplied independently down to 1.08
V dedicated supply input for USB and up to
V. A VBAT input allows to
backup the RTC and backup the registers.
The STM32L562xx devices offer seven packages from 48-pin to 144-pin.

Table 2. STM32L562xx features and peripheral counts

Peripherals
STM32L562CE/
STM32L562CExxP
Flash memory (Kbyte) 512
SRAM
External memory controller for static memories (FSMC)
OCTOSPI 1
Timers
System (Kbyte) 256 (192+64)
Backup (byte) 128
Advanced control 2 (16-bit)
General purpose
Basic 2 (16-bit)
Low power 3 (16-bit)
SysTick timer 1
Watchdog timers (independent, window)
STM32L562RE/
STM32L562RExxQ
STM32L562RExxP/
No Yes
STM32L562MExxQ
STM32L562MExxP/
5 (16-bit) 2 (32-bit)
2
STM32L562VE/
STM32L562VExxQ
STM32L562QE/
STM32L562QExxP/
STM32L562QExxQ
STM32L562ZE/
STM32L562ZExxQ
16/323 DS12736 Rev 2
STM32L562xx Description
Table 2. STM32L562xx features and peripheral counts (continued)
Peripherals
STM32L562CE/
STM32L562CExxP
STM32L562RE/
STM32L562RExxQ
STM32L562RExxP/
STM32L562MExxQ
STM32L562MExxP/
STM32L562VE/
STM32L562VExxQ
STM32L562QE/
STM32L562QExxQ
STM32L562QExxP/
STM32L562ZE/
SPI 3
I2C 4
(1)
Communication interfaces
USART
/UART UART LPUART
SAI 2
3/2 (2)
2 1
FDCAN 1
USB FS Yes
SDMMC No
Digital filters for sigma­delta modulators
Yes/No/ Yes
Yes (4 filters)
Yes
Number of channels 8
Real time clock (RTC) Yes
Tamper pins 3 4/3 3 5/4 5 8/7
True random number generator Yes
AES Yes
PKA Yes
STM32L562ZExxQ
HASH (SHA-256) Yes
On-the-fly decryption for OCTOSPI 1
OCTOSPI memory encryption 1
GPIOs Wakeup pins Nb of I/Os down to 1.08 V
Capacitive sensing Number of channels
38/36
3 0
52/50/47
4/3/3
0
54/51
3 6
5 10/10/9 10 19/18 22 22/21
12-bit ADC 2
ADC
Number of channels
9
16/16/15 16/15 16/14 16 16/14
12-bit DAC 1
DAC
Number of channels
2
DS12736 Rev 2 17/323
83/79
5/4
0
110/108/105
5
13/
13/10
115 /111
5/4
14/13
79
Description STM32L562xx
Table 2. STM32L562xx features and peripheral counts (continued)
Peripherals
Internal voltage reference buffer
STM32L562CE/
STM32L562CExxP
STM32L562RE/
STM32L562RExxQ
STM32L562RExxP/
STM32L562MExxQ
STM32L562MExxP/
Yes
STM32L562VE/
STM32L562VExxQ
STM32L562QE/
STM32L562QExxQ
STM32L562QExxP/
STM32L562ZE/
Analog comparator 2
Operational amplifiers 2
Max. CPU frequency 110 MHz
Operating voltage 1.71 to 3.6 V
Operating temperature
Package
1. USART3 is not available on STM32L562CExxP devices.
2. For the LQFP100 package, only FSMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.
UFQFPN48
Ambient operating temperature: -40 to 85 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to 130 °C
LQFP48,
LQFP64 WLCSP81 LQFP100
(2)
UFBGA132 LQFP144
STM32L562ZExxQ
18/323 DS12736 Rev 2
STM32L562xx Description
MSv49330V6
USB FS
CH1
CH2
DAC1
Flash up to 512KB
Flexible static memory controller (FSMC): SRAM,
PSRAM, NOR Flash,FRAM, NAND Flash
114 AF
PA[15:0]
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]), ETR, BKIN,
BKIN2 as AF
RX, TX, CK,CTS,
RTS as AF
MOSI, MISO,
SCK, NSS as AF
APB260 M Hz
APB1 30MHz
MOSI, MISO, SCK, NSS as AF
OUT1
RTC_TS
OSC32_IN
OSC32_OUT
VDDA, VSSA
VDD, VSS, NRST
smcard irDA
16b
D[7:0], D[3:1]dir CMD, CMDdir,CK, CKin D0dir, D2dir
VBAT = 1.55 to 3.6 V
SCL, SDA, SMBA as AF
JTAG & SW
ARM Cortex-M33 110 MHz TrustZone FPU
NVIC
ETM
MPU
TRACECLK
TRACED[3:0]
CLK, NE[4:1], NL, NBL[1:0], A[25:0], D[15:0], NOE, NWE, NWAIT, NCE, INT as AF
DP
DM
FIFO
@ VDDA
BOR
Supply
supervision
PVD, PVM
Int
reset
XTAL 32 kHz
RTC
FCLK
Standby
interface
IWDG
@VBAT
@ VDD
@VDD
AWU
PCLKx
VDD = 1.71 to 3.6 V
VSS
Voltage regulator LDO and SMPS
3.3 to 1.2 V
VDD
Power management
@ VDD
RTC_TAMP[8:1]
Backup register
AHB bus-matrix
2 channels, 1 compl. channel,
BKIN as AF
TIM2
TIM3
TIM4
TIM5
USART2
USART3
I2C1/SMBUS
SPI1
TIM17
USART1
EXT IT. WKUP
TIM16
TIM8 / PWM
TIM15
SDMMC1
TIM1 / PWM
TIM6
TIM7
WWDG
GPIO PORT H
GPIO PORT F
GPIO PORT G
GPIO PORT D
GPIO PORT E
GPIO PORT B
GPIO PORT C
GPIO PORT A
DMA1
DMA2
APB1 110 MHz (max)
SRAM 192 KB
SRAM 64 KB
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
C-BUS
S-BUS
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PF[15:0]
PG[15:0]
PH[1:0]
16b
16b
16b
16b
3 compl. Channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]), ETR, BKIN,
BKIN2 as AF
1 channel, 1 compl. channel,
BKIN as AF
1 channel, 1 compl. channel,
BKIN as AF
OUT2
16b
16b
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
MOSI, MISO, SCK, NSS as AF
RX, TX, CTS, RTS as AF
RX, TX, CTS, RTS as AF
RX, TX, CK, CTS, RTS as AF
RX, TX, CK, CTS, RTS as AF
smcard
irDA
smcard
irDA
32b
16b
16b
32b
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
AHB/APB1
OSC_IN
OSC_OUT
HCLKx
XTAL OSC
4- 16MHz
16xIN
VREF+
USAR T 2MBps
Temperature sensor
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
SAI2
SDCKIN[7:0], SDDATIN[7:0],
SDCKOUT,SDTRIG as AF
DFSDM
Touch sensing controller
8 groups of sensing channels as AF
OUT, INN, INP
LPUART1
LPTIM1
LPTIM2
RX, TX, CTS, RTS as AF
IN1, IN2, OUT, ETR as AF
IN1, OUT, ETR as AF
RC HSI
RC LSI
PLL 1&2&3
MSI
Octo SPI1 memory interface
IO[7:0], CLK, NCLK, NCS. DQS
@ VDDUSB
COMP1
INP, INN, OUT
COMP2
INP, INN, OUT
@ VDDA
RTC_OUT
VDDIO, VDDUSB
FIFO
PHY
AHB1 110 MHz
CRC
OUT, INN, INP
I2C2/SMBUS
I2C3/SMBUS
OpAmp1
SPI3
SPI2
UART5
UART4
APB2 110MHz
AHB2 110 MHz
OpAmp2
@VDDA
RNG
AES
VREF Buffer
@ VDDA
@ VDD
HASH
FIFO
TX, RX as AF
FDCAN1
SCL, SDA, SMBA as AF
I2C4/SMBUS
ITF
ADC1
@ VDDA
SYSCFG
Icache 8KB
ADC2
LPTIM3
IN1, OUT, ETR as AF
UCPD1
DP
DM
@ VDDUSB
PHY
CRS
PKA32
DMAMUX1
AHB1 110 MHz
AHB/APB2
32-bits AHB bus
VDD power domain
VDDUSB power domain
VBAT power domain
VDDIO2 power domain
VDDA power domain
OTFDEC
GTZC
Reset
and clock
control
UCPD1

Figure 1. STM32L562xx block diagram

1. AF: alternate function on I/O pins.
DS12736 Rev 2 19/323
79
Functional overview STM32L562xx

3 Functional overview

3.1 Arm® Cortex®-M33 core with TrustZone® and FPU

The Cortex®-M33 with TrustZone and FPU is a highly energy efficient processor designed for microcontrollers and deeply embedded applications, especially those requiring efficient security.
The Cortex®-M33 processor delivers a high computational performance with low-power consumption and an advanced response to interrupts. it features:
Arm® TrustZone® technology, using the ARMv8-M main extension supporting secure and non-secure states
Memory protection units (MPUs), 8 regions for secure and 8 regions for non secure
Configurable secure attribute unit (SAU) supporting up to 8 memory regions
Floating-point arithmetic functionality with support for single precision arithmetic
The processor supports a set of DSP instructions that allows an efficient signal processing and a complex algorithm execution.
The Cortex®-M33 processor supports the following bus interfaces:
System AHB bus: The System AHB (S-AHB) bus interface is used for any instruction fetch and data access to the memory-mapped SRAM, peripheral, external RAM and external device, or Vendor_SYS regions of the ARMv8-M memory map.
Code AHB bus The Code AHB (C-AHB) bus interface is used for any instruction fetch and data access to the code region of the ARMv8-M memory map.
Figure 1 shows the general block diagram of the STM32L562xx family devices.

3.2 Art Accelerator – instruction cache (ICACHE)

The instruction cache (ICACHE) is introduced on C-AHB code bus of Cortex®-M33 processor to improve performance when fetching instruction (or data) from both internal and external memories.
20/323 DS12736 Rev 2
STM32L562xx Functional overview
ICACHE offers the following features:
Multi-bus interface: – slave port receiving the memory requests from the Cortex
®
-M33 C-AHB code
execution port – master1 port performing refill requests to internal memories (FLASH and SRAMs) – master2 port performing refill requests to external memories (external
FLASH/RAMs through Octo-SPI/FMC interfaces) – a second slave port dedicated to ICACHE registers access.
Close to zero wait states instructions/data access performance: – 0 wait-state on cache hit – hit-under-miss capability, allowing to serve new processor requests while a line
refill (due to a previous cache miss) is still ongoing – critical-word-first refill policy, minimizing processor stalls on cache miss – hit ratio improved by 2-ways set-associative architecture and pLRU-t replacement
policy (pseudo-least-recently-used, based on binary tree), algorithm with best
complexity/performance balance – dual master ports allowing to decouple internal and external memory traffics, on
Fast and Slow buses, respectively; also minimizing impact on interrupt latency – optimal cache line refill thanks to AHB burst transactions (of the cache line size). – performance monitoring by means of a hit counter and a miss counter.
Extension of cacheable region beyond Code memory space, by means of address remapping logic that allows to define up to 4 cacheable external regions
Power consumption reduced intrinsically (most accesses to cache memory rather to bigger main memories); even improved by configuring ICACHE as direct mapped (rather than the default 2-ways set-associative mode)
TrustZone
®
security support
Maintenance operation for software management of cache coherency
Error management: detection of unexpected cacheable write access, with optional
interrupt raising.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to the memory and to prevent one task to accidentally corrupt the memory or the resources used by any other active task. This memory area is organized into up to 8 regions for secure and 8 regions for non secure state.
The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real­time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
DS12736 Rev 2 21/323
79
Functional overview STM32L562xx

3.4 Embedded Flash memory

The devices feature 512 Kbytes of embedded Flash memory which is available for storing programs and data.
The Flash interface features:
Single or dual bank operating modes
Read-while-write (RWW) in dual bank mode
This feature allows to perform a read operation from one bank while an erase or program operation is performed to the other bank. The dual bank boot is also supported. Each bank contains 128 pages of 2 or 4 memory also embeds 512 bytes OTP (one-time programmable) for user data.
Flexible protections can be configured thanks to the option bytes:
Readout protection (RDP) to protect the whole memory. Four levels of protection are
available: – Level 0: no readout protection – Level 0.5: available only when TrustZone is enabled
All read/write operations (if no write protection is set) from/to the non-secure Flash memory are possible. The Debug access to secure area is prohibited. Debug access to non-secure area remains possible.
– Level 1: memory readout protection; the Flash memory cannot be read from or written
to if either the debug features are connected or the boot in RAM or bootloader are selected. If TrustZone is enabled, the non-secure debug is possible and the boot in SRAM is not possible.
– Level 2: chip readout protection; the debug features (Cortex
wire), the boot in RAM and the bootloader selection are disabled (JTAG fuse). This selection is irreversible.
Write protection (WRP): the protected area is protected against erasing and programming:
In single bank mode, four areas can be selected with 4-Kbyte granularity. – In dual bank mode, two areas per bank can be selected with 2-Kbyte granularity.
Kbytes (depending on the read access width). The Flash
®
-M33 JTAG and serial
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
Single error detection and correction
Double error detection
The address of the ECC fail can be read in the ECC register.
TrustZone security
When the TrustZone security is enabled, the whole Flash is secure after reset and the following protections are available:
Non-volatile watermark-based secure Flash area: the secure area can be accessed only in secure mode.
In single bank mode, four areas can be selected with a page granularity. – In dual bank mode, one area per bank can be selected with a page granularity.
Secure hidden protection area: it is part of the Flash secure area and it can be protected to deny an access to this area by any data read, write and instruction fetch.
22/323 DS12736 Rev 2
STM32L562xx Functional overview
For example, a software code in the secure Flash memory hidden protection area can be executed only once and deny any further access to this area until next system reset.
Volatile block-based secure Flash area. In a block-based secure area, each page can be programmed on-the-fly as secure or non-secure.

3.5 Embedded SRAM

The devices feature 256 Kbytes of embedded SRAM. This SRAM is split into three blocks:
192 Kbytes mapped at address 0x2000 0000 (SRAM1).
64 Kbytes located at address 0x0A03 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2003 0000 offering a contiguous address space with the SRAM1. This block is accessed through the C-bus for maximum performance. Either 64 Kbytes or upper 4 Kbytes of SRAM2 can be retained in Standby mode. The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.
TrustZone security
When the TrustZone security is enabled, all SRAMs are secure after reset. The SRAM can be programmed as non-secure by block based using the MPCBB (memory protection controller block based) in GTZC controller. The granularity of SRAM secure block based is a page of 256 bytes.

3.6 Boot modes

At startup, a BOOT0 pin, nBOOT0 and NSBOOTADDx[24:0] / SECBOOTADD0[24:0] option bytes are used to select the boot memory address which includes:
Boot from any address in user Flash
Boot from system memory bootloader
Boot from any address in embedded SRAM
Boot from Root Security service (RSS)
The BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed.
The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, FDCAN or USB FS in device mode through the DFU (device firmware upgrade).
The bootloader is available on all devices. Refer to the application note STM32 microcontroller system memory boot mode (AN2606) for more details.
The root secure services (RSS) are embedded in a Flash memory area named secure information block, programmed during ST production.
The RSS enables for example the secure firmware installation (SFI) thanks to the RSS extension firmware (RSSe SFI).
This feature allows the customers to protect the confidentiality of the firmware to be provisioned into the STM32 device when the production is subcontracted to a third party.
DS12736 Rev 2 23/323
79
Functional overview STM32L562xx
The RSS is available on all devices, after enabling the TrustZone through the TZEN option bit.
Refer to the application note Overview secure firmware install (SFI) (AN4992) for more details.
Refer to Tab le 3 and Tab le 4 for boot modes when TrustZone is disabled and enabled respectively.

Table 3. Boot modes when TrustZone is disabled (TZEN=0)

nBOOT0
FLASH_
OPTR[27]
BOOT0
pin PH3
nSWBOOT0
FLASH_
OPTR[26]
Boot address option-
bytes selection
- 0 1 NSBOOTADD0[24:0]
- 1 1 NSBOOTADD1[24:0]
1 - 0 NSBOOTADD0[24:0]
0 - 0 NSBOOTADD1[24:0]
When TrustZone is enabled by setting the TZEN option bit, the boot space must be in secure area. The SECBOOTADD0[24:0] option bytes are used to select the boot secure memory address.
A unique boot entry option can be selected by setting the BOOT_LOCK option bit, allowing to boot always at the address selected by SECBOOTADD0[24:0] option bytes. All other boot options are ignored.
Boot area
Boot address defined by user option bytes NSBOOTADD0[24:0]
Boot address defined by user option bytes NSBOOTADD1[24:0]
Boot address defined by user option bytes NSBOOTADD0[24:0]
Boot address defined by user option bytes NSBOOTADD1[24:0]
ST programmed
default value
Flash: 0x0800 0000
System bootloader: 0x0BF9 0000
Flash: 0x0800 0000
System bootloader: 0x0BF9 0000
24/323 DS12736 Rev 2
STM32L562xx Functional overview

Table 4. Boot modes when TrustZone is enabled (TZEN=1)

BOOT_
LOCK
nBOOT0
FLASH_
OPTR[27]
BOOT0
PH3
pin
nSWBOOT0
FLASH_
OPTR[26]
RSS
command
-0 1 0
- 1 1 0 N/A RSS: 0x0FF8 0000
0
1- 0 0
0- 0 0 N/A
-- -
0N/A
1- - - -
Boot address
option-bytes
selection
SECBOOTAD
D0[24:0]
SECBOOTAD
D0[24:0]
SECBOOTAD
D0[24:0]
Boot area
Secure boot address defined by user option bytes
SECBOOTADD0[24:0]
Secure boot address defined by user option bytes SECBOOTADD0[24:0]
RSS: RSS: 0x0FF8 0000
RSS: RSS: 0x0FF8 0000
Secure boot address defined by user option bytes SECBOOTADD0[24:0]
ST programmed default value
Flash: 0x0C00 0000
RSS: 0x0FF8 0000
Flash: 0x0C00 0000
RSS: 0x0FF8 0000
RSS: 0x0FF8 0000
Flash: 0x0C00 0000
The boot address option bytes enables the possibility to program any boot memory address. However, the allowed address space depends on Flash read protection RDP level.
If the programmed boot memory address is out of the allowed memory mapped area when RDP level is 0.5 or more, the default boot fetch address is forced to:
0x0800 0000 (when TZEN = 0)
RSS (when TZEN = 1)
Refer to Tab le 5.
RDP TZEN = 1 TZEN = 0
0 Any boot address Any boot address

Table 5. Boot space versus RDP protection

DS12736 Rev 2 25/323
79
Functional overview STM32L562xx
Table 5. Boot space versus RDP protection (continued)
RDP TZEN = 1 TZEN = 0
0.5
1 Any boot address
Boot address only in: – RSS – or secure Flash: 0x0C00 0000 -
0x0C07 FFFF
2
Otherwise boot address forced to RSS
N/A
If boot is configured for NSBOOTADD0 and NSBOOTADD0 in the range 0x0800 0000 ­0x0807 FFFF: boot at the address stored in NSBOOTADD0
If boot is configured for NSBOOTADD1 and NSBOOTADD1 in the range 0x0800 0000 ­0x0807 FFFF: boot at the address stored in NSBOOTADD1
Otherwise boot address is forced at 0x0800 0000

3.7 Global TrustZone controller (GTZC)

The GTZC includes three different sub-blocks:
TZSC: TrustZone® security controller This sub-block defines the secure/privilege state of slave/master peripherals. It also controls the non-secure area size for the watermark memory peripheral controller (MPCWM). The TZSC block informs some peripherals (such as RCC or GPIOs) about the secure status of each securable peripheral, by sharing with RCC and I/O logic.
1. MPCBB: block-based memory protection controller This sub-block controls secure states of all blocks (256-byte pages) of the associated SRAM.
2. TZIC: TrustZone illegal access controller This sub-block gathers all illegal access events in the system and generates a secure interrupt towards NVIC.
These sub-blocks are used to configure TrustZone and privileged attributes within the full system.
The GTZC main features are:
3 independent 32-bit AHB interface for TZSC, MPCBB and TZIC
MPCBB and TZIC accessible only with secure transactions
Secure and non-secure access supported for priv/non-priv part of TZSC
Register set to define security settings:
Secure blocks for internal SRAM – Non-secure regions for external memories – Secure/privilege access mode for securable and TZ-aware peripherals
Secure/privilege access mode for securable legacy masters.

3.8 TrustZone security architecture

The security architecture is based on Arm® TrustZone® with the ARMv8-M Main Extension.
26/323 DS12736 Rev 2
STM32L562xx Functional overview
The TrustZone security is activated by the TZEN option bit in the FLASH_OPTR register. When the TrustZone is enabled, the SAU (security attribution unit) and IDAU
(implementation defined attribution unit) defines the access permissions based on secure and non-secure state.
SAU: Up to 8 SAU configurable regions are available for security attribution.
IDAU: It provides a first memory partition as non-secure or non-secure callable
attributes. It is then combined with the results from the SAU security attribution and the higher security state is selected.
Based on IDAU security attribution, the Flash, system SRAMs and peripherals memory space is aliased twice for secure and non-secure state. However, the external memories space is not aliased.
Tab le 6 shows an example of typical SAU regions configuration based on IDAU regions.
The user can split and choose the secure, non-secure or NSC regions for external memories as needed.

Table 6. Example of memory map security attribution vs SAU configuration regions

(1) (2)
Region
description
Code - external memories
Code - Flash and SRAM
Code - external memories
SRAM
Peripherals
External memories
1. NSC = non-secure callable.
2. Different colors highlights the different configurations
Pink: Non-secure
Green: NSC (non-secure callable) Lighter green: Secure or non-secure or NSC
Address range
0x0000_0000
0x07FF_FFFF
0x0800_0000
0x0BFF_FFFF
0x0C00_0000
0x0FFF_FFFF
0x1000_0000
0x17FF_FFFF
0x1800_0000
0x1FFF_FFFF
0x2000_0000
0x2FFF_FFFF
0x3000_0000
0x3FFF_FFFF
0x4000_0000
0x4FFF_FFFF
0x5000_0000
0x5FFF_FFFF
0x6000_0000
0xDFFF_FFFF
IDAU security
attribution
Non-secure
Non-secure Non-secure Non-secure
NSC Secure or NSC Secure or NSC
Non-secure
Non-secure
NSC Secure or NSC Secure or NSC
Non-secure Non-secure Non-secure
NSC Secure or NSC Secure or NSC
Non-secure
SAU security
attribution typical
configuration
Secure or non-
secure or NSC
Non-secure
Secure or non-
secure or NSC
Final security
attribution
Secure or non-
secure or NSC
Secure or non-
secure or NSC
DS12736 Rev 2 27/323
79
Functional overview STM32L562xx

3.8.1 TrustZone peripheral classification

When the TrustZone security is active, a peripheral can be either Securable or TrustZone­aware type as follows:
Securable: a peripheral is protected by an AHB/APB firewall gate that is controlled from TZSC controller to define security properties.
TrustZone-aware: a peripheral connected directly to AHB or APB bus and is implementing a specific TrustZone behavior such as a subset of registers being secure.
The tables below summarize the list of Securable and TrustZone aware peripherals within the system.
Table 7. Securable peripherals by TZSC
Bus Peripheral
AHB3
AHB 2
AHB1
APB2
OCTOSPI1 registers
FMC registers
SDMMC1
RNG
HASH
AES
ADC
ICACHE registers
TSC
CRC
DFSDM1
SAI2
SAI1
TIM17
TIM16
TIM15
USART1
TIM8
SPI1
TIM1
COMP
VREFBUF
28/323 DS12736 Rev 2
STM32L562xx Functional overview
Table 7. Securable peripherals by TZSC (continued)
Bus Peripheral
UCPD1
USB FS
FDCAN1
LPTIM3
LPTIM2
I2C4
LPUART1
LPTIM1
OPAMP
DAC1
CRS
I2C3
I2C2
APB1
I2C1
UART5
UART4
USART3
USART2
SPI3
SPI2
IWDG
WWDG
TIM7
TIM6
TIM5
TIM4
TIM3
TIM2
DS12736 Rev 2 29/323
79
Functional overview STM32L562xx
Table 8. TrustZone-aware peripherals
Bus Peripheral
GPIOH
GPIOG
GPIOF
AHB2
AHB2 OTFDEC1
AHB1
GPIOE
GPIOD
GPIOC
GPIOB
GPIOA
MPCBB2
MPCBB1
MPCWM2
MPCWM1
TZIC
TZSC
EXTI
Flash memory
RCC
DMAMUX1
DMA2
DMA1
APB2 SYSCFG
APB1
PWR
RTC
30/323 DS12736 Rev 2
STM32L562xx Functional overview
Default TrustZone security state
The default system security state is:
CPU: –Cortex
Memory map: – SAU: is fully secure after reset. Consequently, all memory map is fully secure. Up
Flash: – Flash security area is defined by watermark user options. – Flash block based area is non-secure after reset.
SRAMs: – All SRAMs are secure after reset. MPCBB (memory protection block based
External memories: – FSMC, OCTOSPI banks are secure after reset. MPCWMx (memory protection
Peripherals – Securable peripherals are non-secure after reset. – TrustZone-aware peripherals (except the GPIO) are non-secure after reset. Their
®
-M33 is in secure state after reset. The boot address must be in secure
address.
to 8 SAU configurable regions are available for security attribution.
controller) is secure.
watermark based controller) are secure
secure configuration registers are secure.
Note: Refer to Ta bl e 7 and Ta b le 8 for a list of Securable and TrustZone-aware peripherals.
All GPIO are secure after reset.
Interrupts:
NVIC: All interrupts are secure after reset. NVIC is banked for secure and non-
secure state.
TZIC: All illegal access interrupts are disabled after reset.
DS12736 Rev 2 31/323
79
Functional overview STM32L562xx

3.9 Power supply management

The power controller (PWR) main features are:
Power supplies and supply domains – Core domains (VCORE) – VDD domain – Backup domain (VBAT) – Analog domain (VDDA) – VDDIO2 domain – VDDUSB for USB transceiver
System supply voltage regulation – SMPS step down converter – Voltage regulator (LDO)
Power supply supervision – POR/PDR monitor –BOR monitor –PVD monitor – PVM monitor (VDDA, VDDUSB, VDDIO2) – Temperature thresholds monitor – Upper VDD voltage threshold monitor
Power management – Operating modes – Voltage scaling control – Low-power modes
VBAT battery charging
TrustZone security

3.9.1 Power supply schemes

The devices require a 1.71 V to 3.6 V V supplies can be provided for specific peripherals:
VDD = 1.71 V to 3.6 V V
is the external power supply for the I/Os, the internal regulator and the system
DD
analog such as reset, power management and internal clocks. It is provided externally through the VDD pins.
V
= 1.62 V (ADCs/COMPs) / 1.8 V (DACs/OPAMPs) to 2.4 V (VREFBUF) to 3.6 V
DDA
V
is the external analog power supply for A/D converters, D/A converters, voltage
DDA
reference buffer, operational amplifiers and comparators. The V independent from the V
voltage and should preferably be connected to VDD when
DD
these peripherals are not used.
32/323 DS12736 Rev 2
operating voltage supply. Several independent
DD
voltage level is
DDA
STM32L562xx Functional overview
VDDSMPS = 1.71 V to 3.6 V VDDSMPS is the external power supply for the SMPS step down converter. It is provided externally through VDDSMPS supply pin, and shall be connected to the same supply as VDD.
VLXSMPS is the switched SMPS step down converter output.
V15SMPS are the power supply for the system regulator. It is provided externally
through the SMPS step down converter VLXSMPS output.
Note: The SMPS power supply pins are available only on a specific package with SMPS step
down converter option.
VDD12 = 1.05 to 1.32 V VDD12 is the external power supply bypassing the internal regulator when connected to an external SMPS. It is provided externally through VDD12 pins and only available on packages with the external SMPS supply option. VDD12 does not require any external decoupling capacitance and cannot support any external load.
VDDUSB = 3.0 V to 3.6 V VDDUSB is the external independent power supply for USB transceivers. The VDDUSB voltage level is independent from the VDD voltage and should preferably be connected to VDD when the USB is not used.
VDDIO2 = 1.08 V to 3.6 V
VDDIO2 is the external power supply for 14 I/Os (port G[15:2]). The VDDIO2 voltage
level is independent from the VDD voltage and should preferably be connected to VDD when PG[15:2] are not used.
V
V
= 1.55 V to 3.6 V
BAT
V
is the power supply for RTC, external clock 32 kHz oscillator and backup registers
BAT
(through power switch) when V
REF-, VREF+
V
is the input reference voltage for ADCs and DACs. It is also the output of the
REF+
is not present.
DD
internal voltage reference buffer when enabled. When V When V V
REF+
DDA
DDA
< 2 V V ≥ 2 V V
must be equal to V
REF+
must be between 2 V and V
REF+
DDA
.
.
DDA
can be grounded when ADC and DAC are not active.
The internal voltage reference buffer supports two output voltages, which are configured with VRS bit in the VREFBUF_CSR register:
–V –V
around 2.048 V. This requires V
REF+
around 2.5 V. This requires V
REF+
equal to or higher than 2.4 V.
DDA
equal to or higher than 2.8 V.
DDA
VREF- and VREF+ pins are not available on all packages. When not available, they are bonded to VSSA and VDDA, respectively. When the VREF+ is double-bonded with VDDA in a package, the internal voltage reference buffer is not available and must be kept disabled (refer to datasheet for packages pinout description). V
must always be equal to V
REF-
An embedded linear voltage-regulator is used to supply the internal digital power V V supplied by V
is the power supply for digital peripherals, SRAM1 and SRAM2. The Flash is
CORE
CORE
and VDD.
SSA
.
.
CORE
DS12736 Rev 2 33/323
79
Functional overview STM32L562xx
MSv49301V1
V
DDA
domain
Backup domain
Standby circuitry (Wakeup logic, IWDG)
Voltage regulator
Low voltage detector
LSE crystal 32 K osc BKP registers RCC BDCR register RTC
I/O ring
V
CORE
domain
Temp. sensor
Reset block
3 x PLL, HSI, MSI
Flash memory
USB transceivers
V
DDUSB
V
DDIO2
V
DDIO1
I/O ring
PG[15:2]
V
DDIO2
V
DDA
V
SSA
V
SS
V
SS
V
DDIO2
domain
V
DD
domain
V
CORE
V
SS
V
DD
V
BAT
Core
SRAM1 SRAM2
Digital
peripherals
2 x D/A converters
3 x A/D converters
2 x comparators
2 x operational amplifiers
Voltage reference buffer
Figure 2. STM32L562xx power supply overview
34/323 DS12736 Rev 2
STM32L562xx Functional overview
MSv49336V1
V
DDA
domain
Backup domain
Standby circuitry (Wakeup logic, IWDG)
Voltage regulator
Low voltage detector
LSE crystal 32 K osc BKP registers RCC BDCR register RTC
I/O ring
V
CORE
domain
Temp. sensor
Reset block
3 x PLL, HSI, MSI
Flash memory
USB transceivers
V
DDUSB
V
DDIO2
V
DDIO1
I/O ring
PG[15:2]
V
DDIO2
V
DDA
V
SSA
V
SS
V
SS
V
DDIO2
domain
V
DD
domain
V
CORE
V
SS
V
DD
V
BAT
Core
SRAM1 SRAM2
Digital
peripherals
2 x D/A converters
3 x A/D converters
2 x comparators
2 x operational amplifiers
Voltage reference buffer
2x V
DD12
Figure 3. STM32L562xxxxP power supply overview
DS12736 Rev 2 35/323
79
Functional overview STM32L562xx
MSv49332V1
V
DDA
domain
Backup domain
2 x D/A converters
2 x A/D converters
Standby circuitry (Wakeup logic, IWDG)
Voltage regulator
Low voltage detector
LSE crystal 32 K osc BKP registers RCC BDCR register RTC
2 x comparators
2 x operational amplifiers
Voltage reference buffer
I/O ring
V
CORE
domain
Temp. sensor
Reset block
3 x PLL, HSI, MSI
Flash memory
USB transceivers
V
DDUSB
V
DDIO2
V
DDIO1
I/O ring
V
DDIO2
V
DDA
V
SSA
V
SS
V
SS
V
DDIO2
domain
V
DD
domain
V
CORE
V
SS
V
DD
V
BAT
Core
SRAM1 SRAM2
Digital
peripherals
SMPS
LPR
V
LXSMPS
MR
V
SSSMPS
2 x V
15SMPS
V
DDSMPS
Figure 4. STM32L562xxxxQ power supply overview
36/323 DS12736 Rev 2
During power-up and power-down phases, the following power sequence requirements must be respected:
When V below VDD +300 mV.
When V
During the power-down phase, V
only if the energy provided to the MCU remains below 1 mJ; this allows external decoupling capacitors to be discharged with different time constants during the power­down transient phase.
is below 1 V, other power supplies (V
DD
is above 1 V, all power supplies are independent.
DD
, V
DDA
can temporarily become lower than other supplies
DD
DDIO2
and V
DDUSB
) must remain
STM32L562xx Functional overview
MSv47490V1
0.3
1
V
BOR0
3.6
Operating modePower-on Power-down time
V
V
DDX
(1)
V
DD
Invalid supply area V
DDX
< V
DD
+ 300 mV
V
DDX
independent from V
DD
Figure 5. Power-up/down sequence
1. V
refers to any power supply among V
DDX
DDA
, V
DDIO2
and V
DDUSB.

3.9.2 Power supply supervisor

The devices have an integrated ultra-low-power Brownout reset (BOR) active in all modes (except for Shutdown mode). The BOR ensures proper operation of the devices after power­on and during power down. The devices remain in reset mode when the monitored supply voltage V
is below a specified threshold, without the need for an external reset circuit.
DD
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes.The devices feature an embedded programmable voltage detector (PVD) that monitors the V
power supply and compares it to the VPVD threshold.
DD
An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the devices embed a peripheral voltage monitor which compares the independent supply voltages V
DDA
, V
DDUSB
, V
with a fixed threshold in order to ensure
DDIO2
that the peripheral is in its functional supply range.

3.9.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
The LPR is used in Low-power run, Low-power sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 64 Kbytes or only 4 Kbytes of SRAM2 in standby with SRAM2 retention.
Both regulators are in power-down while they are in standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.
DS12736 Rev 2 37/323
79
Functional overview STM32L562xx
The ultra-low-power STM32L562xx devices support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the main regulator that supplies the logic (VCORE) can be adjusted according to the system’s maximum operating frequency.
The main regulator operates in the following ranges:
Range 0 with the CPU running at up to 110 MHz.
Range 1 with the CPU running at up to 80 MHz.
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
limited to 26 MHz.
The VCORE can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode.
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by the HSI16.

3.9.4 SMPS step down converter

The built-in SMPS step down converter is a highly power-efficient DC/DC non-linear switching regulator that improves low-power performance when the VDD voltage is high enough. This SMPS step down converter automatically enters in bypass mode when the VDD voltage falls below 2
Note: There is no automatic SMPS bypass in Range 2.
V in Range 0 and Range 1.
The SMPS step down converter can be configured in:
High-power mode (HPM): achieving a high efficiency at high current load. It is the default selected mode after POR reset.
Low power mode achieving very high efficiency at low load
Bypass mode
The SMPS step down converter can be switched in bypass mode at any time by the application software.
Note: The SMPS step down converter is available only on specific package.
SMPS step down converter power supply scheme
The SMPS step down converter requires an external coil with typical value of 4.7 μH to be connected between the VLXSMPS and the V15SMPS pins and a 4.7μF capacitor to be connected between the V15SMPS to VSSSMPS pins. It can be switched OFF by selecting the Bypass mode by software. Thus, only main regulator is used by the application.
38/323 DS12736 Rev 2
STM32L562xx Functional overview
MSv49346V1
Main
regulator
VDDSMPS
VLXSMPS
V
DD
SMPS
Step Down
Converter
VSSSMPS
V15SMPS
V
CORE
V15SMPS
VDD
VSS
Figure 6. SMPS step down converter power supply scheme
If the selected package is with the SMPS step down converter option but it is never used by the application, it is recommend to set the SMPS power supply pins as follows:
V
DDSMPS
V
15SMPS
Component Description Value
and V
LXSMPS
connected to VSS
connected to VDD
Table 9. SMPS external components
C SMPS output capacitor
L SMPS inductance
(2)
(1)
4.7 µF
4.7 µH
1. For example GRM155R60J475ME87J and GRM21BR71E475KA73L.
2. For example TDK MLP2016H4R7MT.
SMPS step down converter fast startup
After POR reset, the SMPS step down converter starts in High-power mode and in Low startup mode. The low-startup feature is selected to limit the inrush current after power-on reset.
However, it is possible to configure a faster startup on the fly and it is applied for next startup either after a system reset or wakeup from low-power mode except Shutdown and VBAT modes. The fast startup is selected by setting the SMPSFSTEN bit in the PWR_CR4 register.
DS12736 Rev 2 39/323
79
40/323 DS12736 Rev 2

3.9.5 Low-power modes

The ultra-low-power STM32L562xx devices support seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wake-up sources. modes overview.
Functional overview STM32L562xx
Tabl e 11 shows the related STM32L562xx
Table 10. STM32L562xx modes overview
Mode
Regulator and SMPS
mode
(1)
CPU Flash SRAM Clocks DMA and Peripherals
Ranges 0/1
SMPS HP mode
Run
Yes ON
Range 2
SMPS LP mode
LPRun LPR Yes ON
Ranges 0/1
SMPS HP mode
Sleep
No ON
Range 2
SMPS LP mode
Ranges 0/1
Sleep
No ON
Range 2 All except USB_FS, RNG
LPSleep LPR No ON
(3)
(3)
(3)
(3)
(3)
ON Any
ON
ON
ON
ON
(4)
(5)
(5)
except PLL
except PLL
Any
Any
Any
Any
(2)
Wakeup source
All
N/A
All except USB_FS, RNG
All except USB_FS, RNG N/A
All
Any interrupt or event
All except USB_FS, RNG
All
Any interrupt or event
All except USB_FS, RNG Any interrupt or event
Table 10. STM32L562xx modes overview (continued)
STM32L562xx Functional overview
DS12736 Rev 2 41/323
Mode
Stop 0
Regulator and SMPS
(6)
Ranges 0/1/2 No Off ON
mode
(1)
CPU Flash SRAM Clocks DMA and Peripherals
Stop 1 LPR No Off ON
Stop 2 LPR No Off ON
LSE
LSI
LSE
LSI
LSE
LSI
(2)
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...4)
(7)
(7)
(8)
LPTIMx (x=1,2)
***
All other peripherals are frozen
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...4)
(7)
(7)
(8)
LPTIMx (x=1,2)
***
All other peripherals are frozen
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
(8)
I2C3
LPUART1
(7)
LPTIMx (x= 1,3)
***
All other peripherals are frozen
Wakeup source
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...4)
(7)
(8)
LPTIMx (x=1,2)
USB_FS
(9)
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...4)
(7)
(8)
LPTIMx (x=1,2)
USB_FS
(9)
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
(8)
I2C3
LPUART1
(7)
LPTIMx (x= 1,3)
(7)
(7)
42/323 DS12736 Rev 2
Table 10. STM32L562xx modes overview (continued)
Functional overview STM32L562xx
Mode
Regulator and SMPS
mode
(1)
LPR
CPU Flash SRAM Clocks DMA and Peripherals
SRAM2 ON
BOR, RTC, IWDG
(2)
***
All other peripherals are powered
off ***
Standby
OFF
Powered
Off
Off
Powered
Off
LSE
LSI
I/O configuration can be floating,
pull-up or pull-down
RTC
***
Shutdown OFF
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
4. The SRAM1 and SRAM2 clocks can be gated on or off independently.
5. The SRAM1 and SRAM2 clocks can be gated on or off independently.
6. SMPS mode can be used in Stop 0 mode, but no significant power gain can be expected.
7. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
8. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
9. USB_FS wakeup by resume from suspend and attach detection protocol event.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
Powered
Off
Off
Powered
Off
LSE
All other peripherals are powered
off ***
I/O configuration can be floating,
pull-up or pull-down
(11)
Wakeup source
Reset pin
5 I/Os (WKUPx)
BOR, RTC, IWDG
Reset pin
5 I/Os (WKUPx)
RTC
(10)
(10)
STM32L562xx Functional overview
By default, the microcontroller is in Run mode after a system or a power reset. It is up to the user to select one of the low-power modes described below:
Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Low-power run mode This mode is achieved with VCORE supplied by the low-power regulator to minimize
the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.
Low-power sleep mode This mode is entered from the Low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the Low­power run mode.
Stop 0, Stop 1 and Stop 2 modes Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC). Some peripherals with wake-up capability can enable the HSI16 RC during Stop mode
to detect their wake-up condition. Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the VCORE domain is put in a lower leakage mode. Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.
Standby mode The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC). The Brownout reset (BOR) always remains active in Standby mode. The state of each I/O during Standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating. After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, the full SRAM2 or 4 Kbytes can be retained in Standby mode, supplied by the low-power regulator (standby with RAM2 retention mode).
DS12736 Rev 2 43/323
79
Functional overview STM32L562xx
The BORL (brown out detector low) can be configured in ultra-low-power mode to further reduce power consumption during standby mode.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
Shutdown mode The Shutdown mode allows to achieve the lowest power consumption. The internal
regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC). The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported. SRAM1, SRAM2 and register contents are lost except for registers in the Backup
domain. The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
44/323 DS12736 Rev 2
STM32L562xx Functional overview
Table 11. Functionalities depending on the working mode
(1)
Stop 0/1 Stop 2 Standby Shutdown
Peripheral Run Sleep
Low-
power
run
Low-
power
sleep
VBAT
-
-
Wakeup capability
Wakeup capability
-
Wakeup capability
-
Wakeup capability
CPU Y - Y - - --------
Flash memory
512 Kbyte)
(
SRAM1 (192 Kbytes)
SRAM2 (64 Kbytes) Y Y
FSMC OOOO-
OCTOSPI O O O O -
OTFDEC OOOO-
Backup registers Y Y Y Y Y
Brownout reset (BOR)
(2)
O
YY
(2)
O
(3)
(3)
(2)
O
YY
YY
(2)
O
(3)
(3)
- --------
Y -Y------
Y -Y-O
(4)
----
--------
--------
--------
-Y-Y-Y-Y
YYYYYYYYYY- --
Programmable voltage detector
OOOOO
OOO- ----
(PVD)
Peripheral voltage monitor (PVMx;
OOOOO
OOO- ----
x=1,2,3,4)
DMA OOOO-
--------
High speed internal (HSI16)
OOOO
(5)
Oscillator HSI48 O O - - - -
High speed external (HSE)
Low speed internal (LSI)
Low speed external (LSE)
Multi speed internal (MSI)
Clock security system (CSS)
Clock security system on LSE
OOOO-
OOOOO
OOOOO
OOOO-
OOOO-
OOOOO
DS12736 Rev 2 45/323
(5)
-
------
-
------
--------
-O-O----
-O-O-O-O
--------
--------
OOOOO- --
79
Functional overview STM32L562xx
Table 11. Functionalities depending on the working mode
(1)
(continued)
Stop 0/1 Stop 2 Standby Shutdown
Peripheral Run Sleep
Low-
power
run
Low-
power
sleep
VBAT
-
-
Wakeup capability
Wakeup capability
-
Wakeup capability
-
Wakeup capability
VDD voltage monitoring, temperature
OOOOO
OOOOO- --
monitoring
RTC / TAMP OOOOOOOOOOOOO
Number of RTC Tamper pins
USB, UCPD O
USARTx (x=1,2,3,4,5)
Low-power UART (LPUART)
88888
(8)
(8)
O
---O- ------
OOOOO
OOOOO
I2Cx (x=1,2,4) O O O O O
I2C3 OOOOO
O8O8O8O3
(6)O(6)
(6)O(6)O(6)O(6)
(7)O(7)
(7)O(7)O(7)O(7)
- ------
- ----
- ------
- ----
SPIx (x=1,2,3) O O O O -
FDCAN1 O O O O -
SDMMC1 OOOO-
SAIx (x=1,2) O O O O -
DFSDM1 OOOO-
ADCx (x=1,2) O O O O -
DAC1 O O O O O
VREFBUF O O O O O
OPAMPx (x=1,2) O O O O O
COMPx (x=1,2) OOOOO
Temperature sensor O O O O -
Timers (TIMx) O O O O -
--------
--------
--------
--------
--------
--------
--------
--------
--------
OOO- ----
--------
--------
Low-power timer 1, 3 (LPTIM1 and
OOOOO
OOO- ----
LPTIM3)
Low-power timer 2 (LPTIM2)
Independent watchdog (IWDG)
OOOOOO- ------
OOOOO
OOOOO- --
46/323 DS12736 Rev 2
STM32L562xx Functional overview
Table 11. Functionalities depending on the working mode
(1)
(continued)
Stop 0/1 Stop 2 Standby Shutdown
Peripheral Run Sleep
Window watchdog (WWDG)
OOOO-
Low-
power
run
Low-
power
sleep
-
-
Wakeup capability
Wakeup capability
-
-
Wakeup capability
--------
VBAT
Wakeup capability
SysTick timer O O O O - --------
Touch sensing controller (TSC)
Random number generator (RNG)
AES hardware accelerator
HASH hardware accelerator
OOOO---------
(8)
O
OOOO-
OOOO-
(8)
O
-----------
--------
--------
PKA O O O O - --------
CRC calculation unit
OOOO---------
5
GPIOs OOOOOOOO
1. Legend: Y = yes (enable). O = optional (disable by default, can be enabled by software). - = not available. Gray cells highlight the wakeup capability in each mode.
2. The Flash can be configured in Power-down mode. By default, it is not in Power-down mode.
3. The SRAM clock can be gated on or off.
4. 4 Kbytes or full SRAM2 content is preserved depending on RRS[1:0] bits configuration in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling ranges 0 and 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from standby/shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
(9)
pins
(10)
(11)
5
pins
(10)

3.9.6 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is “analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.
-
DS12736 Rev 2 47/323
79
Functional overview STM32L562xx

3.9.7 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from V
when there is no external battery and when an external
DD
supercapacitor is present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode.
The VBAT operation is automatically activated when VDD is not present. An internal VBAT battery charging circuit is embedded and can be activated when V
is present.
DD
Note: When the microcontroller is supplied from VBAT, neither external interrupts nor RTC
alarm/events exit the microcontroller from the VBAT operation.

3.9.8 PWR TrustZone security

When the TrustZone security is activated by the TZEN option bit, the PWR is switched in TrustZone security mode.
The PWR TrustZone security allows to secure the following configuration:
Low-power mode
Wake-up (WKUP) pins
Voltage detection and monitoring
VBAT mode
Other PWR configuration bits are secure when:
The system clock selection is secure in RCC, the voltage scaling (VOS) configuration is secure
A GPIO is configured as secure, it's corresponding bit for Pull-up/Pull-down in standby mode is secure
The RTC is secure, the backup domain write protection bit in PWR is secure.

3.10 Peripheral interconnect matrix

Several peripherals have direct connections between them, which allow autonomous communication between them and support the saving of CPU resources (thus power supply consumption). In addition, these hardware connections allow fast and predictable latency.
Depending on the peripherals, these interconnections can operate in Run, Sleep, Low­power run and Sleep, Stop 0, Stop 1 and Stop 2 modes. See
Tab le 12 for more details.
48/323 DS12736 Rev 2
STM32L562xx Functional overview

Table 12. STM32L562xx peripherals interconnect matrix

Interconnect source
Interconnect
destination
Interconnect action
Run
Sleep
Low-power run
Stop 0 / Stop 1
Low-power sleep
TIMx Timers synchronization or chaining Y Y Y Y - -
ADC
TIMx
DAC1 DFSDM1
Conversion triggers Y Y Y Y - -
DMA Memory to memory transfer trigger Y Y Y Y - -
COMPx Comparator output blanking Y Y Y Y - -
TIM1, 8 TIM2, 3
Timer input channel, trigger, break from analog signals comparison
YYYY - -
COMPx
LPTIMERx
Low-power timer triggered by analog signals comparison
YYYYY
ADCx TIM1, 8 Timer triggered by analog watchdog Y Y Y Y - -
TIM16 Timer input channel from RTC events Y Y Y Y - -
RTC
All clocks sources (internal and external)
LPTIMERx
TIM2 TIM15, 16, 17
Low-power timer triggered by RTC alarms or tampers
Clock source used as input channel for RC measurement and trimming
YYYYY
YYYY - -
Stop 2
Y
(1)
Y
(1)
USB TIM2 Timer triggered by USB SOF Y Y - - - -
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx
TIM1,8 TIM15,16,17
Timer break Y Y Y Y - -
PVD DFSDM1 (analog
watchdog, short circuit detection)
TIMx External trigger Y Y Y Y - -
LPTIMERx External trigger Y Y Y Y Y
GPIO
ADC DAC1
Conversion external trigger Y Y Y Y - -
DFSDM1
1. LPTIM1 and LPTIM3 only.
(1)
Y
DS12736 Rev 2 49/323
79
Functional overview STM32L562xx

3.11 Reset and clock controller (RCC)

The clock controller (see Figure 7) distributes the clocks coming from the different oscillators to the core and to the peripherals. It also manages the clock gating for low-power modes and ensures the clock robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
Clock security system: clock sources can be changed safely on the fly in Run mode through a configuration register.
Clock management: to reduce the power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
System clock source: four different clock sources can be used to drive the master clock SYSCLK:
4 to 48 MHz high-speed external crystal or ceramic resonator (HSE), that can
supply a PLL. The HSE can also be configured in bypass mode for an external clock.
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the USB device, saving the need of an external high-speed crystal (HSE). The MSI can supply a PLL.
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 110 MHz.
RC48 with clock recovery system (HSI48): internal 48 MHz clock source (HSI48)can be used to drive the USB, the SDMMC or the RNG peripherals. This clock can be output on the MCO.
UCPD kernel clock: it is derived from HSI16 clock. The HSI16 RC oscillator must be enabled prior to the UCPD kernel clock use.
Auxiliary clock source: two ultra-low-power clock sources that can be used to drive the real-time clock:
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy. The LSI clock can be divided by 128 to output a 250 Hz as source clock.
Peripheral clock sources: several peripherals (USB, SDMMC, RNG, SAI, USARTs, I2Cs, LPTimers, ADC) have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the USB/SDMMC/RNG and the two SAIs.
Startup clock: after reset, the microcontroller restarts by default with an i clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI16 and a software
nternal 4 MHz
50/323 DS12736 Rev 2
STM32L562xx Functional overview
interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt.
Clock-out capability: – MCO (microcontroller clock output): it outputs one of the internal clocks for
external use by the application
LSCO (low-speed clock output): it outputs LSI or LSE in all low-power modes
(except VBAT).
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 110
MHz.
DS12736 Rev 2 51/323
79
Functional overview STM32L562xx
MSv49302V2
SYSCLK
MCO
LSCO
PLL
SAI2_EXTCLK
48 MHz clock to USB, RNG
to ADC
to IWDG
to RTC
to PWR
HCLK
to AHB bus, core, memory and DMA
FCLK Cortex free running clock
to Cortex system timer
to APB1 peripherals
to APB2 peripherals
PCLK1
PCLK2
to SAI1
to SAI2
LSE
HSI16
SYSCLK
to USARTx
X=2..5
to LPUART1
to I2Cx
x=1,2,3,4
to LPTIMx
x=1,2
SAI1_EXTCLK
to TIMx
x=2..7
OSC32_OUT
OSC32_IN
MSI HSI16 HSE
HSE
MSI
HSI16
MSI
SYSCLK
LSE OSC
32.768 kHz
/32
AHB PRESC
/ 1,2,..512
/ 8
APB1 PRESC
/ 1,2,4,8,16
x1 or x2
HSI16
SYSCLK
LSI
LSE
HSI16
APB2 PRESC
/ 1,2,4,8,16
to TIMx
x=1,8,15,16,17
x1 or x2
to
USART1
LSE
HSI16
SYSCLK
/ P
/ Q
/ R
PLLSAI1
/ P
/ Q
/ R
/ M
MSI RC
100 kHz – 48 MHz
HSI RC
16 MHz
HSE OSC
4-48 MHz
Clock
detector
OSC_OUT
OSC_IN
/ 1→16
LSI RC 32 kHz
Clock
source
control
PLLSAI3CLK
PLL48M1CLK
PLLCLK
PLLSAI1CLK
PLL48M2CLK
PLLADC1CLK
PLLSAI2CLK
HSI16
HSI16
HSI16
PLLSAI2
/ P
/ Q
/ R
HSI16
LSI
LSE
HSE SYSCLK
PLLCLK HSI48
MSI
OCTOSPI clock
MSI
MSI
HSI16
DFSDM audio clock
SDMMC clock
/ M
/ M
RC 48 MHz
CRS clock
FDCAN
HSE
MSI HSI16 HSE
MSI HSI16 HSE
To UCPD1
HSI16
48
MHz

Figure 7. STM32L562xx clock tree

52/323 DS12736 Rev 2
STM32L562xx Functional overview
TrustZone security
When the TrustZone security is activated by the TZEN option bit, the RCC is switched in TrustZone security mode.
The RCC TrustZone security allows to secure some RCC system configuration and peripheral configuration clock from being read or modified by non-secure accesses:
RCC system security: – HSE, HSE-CSS, HSI, MSI, LSI, LSE, LSE-CSS, HSI48 configuration and status
bits – Main PLL, PLLSAI1, PLLSAI2, AHB prescaler configuration and status bits – System clock SYSCLK and HSI48 source clock selection and status bits – MCO clock output configuration and STOPWUCK bit – Reset flag RMVF configuration bit
RCC peripheral security: – When a peripheral is secure, the related peripheral clock, reset, clock source
selection and clock enable during low power modes control bits are secure.
A peripheral is in secure state when: – For securable peripherals, when it's corresponding SEC security bit is set in the
TZSC (TrustZone security controller)
For TrustZone-aware peripherals, a security feature of this peripheral is enabled
through its dedicated bits.

3.12 Clock recovery system (CRS)

The devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.13 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.
After reset, all GPIOs are in Analog mode to reduce power consumption. The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
GPIO TrustZone security
Each I/O pin of GPIO port can be individually configured as secure. When the selected I/O pin is configured as secure, its corresponding configuration bits for alternate function, mode selection, I/O data are secure against a non-secure access. The associated registers bit access is restricted to a secure software only. After reset, all GPIO ports are secure.
DS12736 Rev 2 53/323
79
Functional overview STM32L562xx
MSv49331V1
CORTEX
®
-M33
with TrustZone and FPU
DMA1 DMA2
S-bus
Fast-bus
SDMMC1
Slow-bus
BusMatrix-S
8 KB I-Cache
C-bus
MPCBB1
MPCBB2
MPCWM1
MPCWM2 MPCWM3
OctoSPI1
AHB2
peripherals
AHB1
peripherals
SRAM2
SRAM1
FLASH
512 KB
FSMC
OTFDEC
MPCBBx: Memory protection controller block based
Bus multiplexer
Legend
Master Interface
Slave Interface
MPCWMx: Memory protection controller Watermark

3.14 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, SDMMC1) and the slaves (Flash memory, RAM, FMC, OCTOSPI, AHB and APB peripherals). It also ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Figure 8. Multi-AHB bus matrix

54/323 DS12736 Rev 2
STM32L562xx Functional overview

3.15 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to Ta b le 13: DMA1 and DMA2 implementation for the features implementation.
Direct memory access (DMA) is used in order to provide a high-speed data transfer between peripherals and memory as well as from memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps the CPU resources free for other operations.
The two DMA controllers have 16 channels in total, each one dedicated to manage memory access requests from one or more peripherals. Each controller has an arbiter for handling the priority between DMA requests.
The DMA supports 8 channels for each DMA1 and DMA2, independently configurable:
Each channel is associated either with a DMA request signal coming from a peripheral, or with a software trigger in memory-to-memory transfers. This configuration is done by software.
Priority between the requests is programmable by software (4 levels per channel: very high, high, medium, low) or by hardware in case of equality (such as request 1 has priority over request 2).
Transfer size of source and destination are independent (byte, half-word, word), emulating packing and unpacking. Source and destination addresses must be aligned on the data size.
Support of transfers from/to peripherals to/from memory with circular buffer management.
Programmable number of data to be transferred: 0 to 2
Generation of an interrupt request per channel. Each interrupt request is caused from
any of the three DMA events: transfer complete, half transfer, or transfer error.
TrustZone support: – Support for AHB secure and non-secure DMA transfers, independently at a first
channel level, and independently at a source and destination sub-level
TrustZone-aware AHB slave port, protecting any secure resource (register,
register field) from a non-secure software access
Privileged / unprivileged support: – Support for AHB privileged and unprivileged DMA transfers, independently at a
channel level
Privileged-aware AHB slave port.

Table 13. DMA1 and DMA2 implementation

18
- 1.
Feature DMA1 DMA2
Number of DMA channels 8 8
TrustZone 1 (supported) 1 (supported)
DS12736 Rev 2 55/323
79
Functional overview STM32L562xx

3.16 DMA request router (DMAMUX)

When a peripheral indicates a request for DMA transfer by setting its DMA request line, the DMA request is pending until it is served and the corresponding DMA request line is reset. The DMA request router allows to route the DMA control lines between the peripherals and the DMA controllers of the product.
An embedded multi-channel DMA request generator can be considered as one of such peripherals. The routing function is ensured by a multi-channel DMA request line multiplexer. Each channel selects a unique set of DMA control lines, unconditionally or synchronously with events on synchronization inputs.
DMAMUX main features
16-channel programmable DMA request line multiplexer output
4-channel DMA request generator
23 trigger inputs to DMA request generator
23 synchronization inputs
Per DMA request generator channel:
DMA request trigger input selector – DMA request counter – Event overrun flag for selected DMA request trigger input
Per DMA request line multiplexer channel output: – 90 input DMA request lines from peripherals – One DMA request line output – Synchronization input selector – DMA request counter – Event overrun flag for selected synchronization input – One event output, for DMA request chaining
TrustZone support: – Support for AHB secure and non-secure DMA transfers, independently at a
channel level.
TrustZone-aware AHB slave port, protecting any secure resource (register,
register field) from a non-secure software access, with configurable interrupt event.
Two secure and non-secure interrupt requests, resulting from any of the
respectively secure and non-secure channels. Each channel event being caused from any of the two DMAMUX input events: trigger or synchronization overrun, associated with a respectively secure and non-secure channels.
Privileged / Unprivileged support: – Support for AHB privileged and unprivileged DMA transfers, independently, at a
channel level.
Privileged-aware AHB slave port.
56/323 DS12736 Rev 2
STM32L562xx Functional overview

3.17 Interrupts and events

3.17.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller which is able to manage 8 priority levels, and to handle up to 109 maskable interrupt channels plus the 16 interrupt lines of the
®
Cortex The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
TrustZone support. The NVIC registers are banked across secure and non-secure
The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.
-M33.
states

3.17.2 Extended interrupt/event controller (EXTI)

The Extended interrupts and event controller (EXTI) manages the individual CPU and system wakeup through configurable and direct event inputs. It provides wakeup requests to the power control, and generates an interrupt request to the CPU NVIC and events to the CPU event input. For the CPU an additional Event Generation block (EVG) is needed to generate the CPU event signal.
The EXTI wakeup requests allow the system to be woken up from Stop modes. The interrupt request and event request generation can also be used in RUN modes. The
EXTI also includes the EXTI mux IOport selection. The EXTI main features are the following: The EXTI main features are the following:
43 input events supported
All event inputs allow to wake up the system.
Events which do not have an associated wakeup flag in the peripheral, have a flag in
the EXTI and generate an interrupt to the CPU from the EXTI.
DS12736 Rev 2 57/323
79
Functional overview STM32L562xx
The asynchronous event inputs are classified in 2 groups:
Configurable events (signals from I/Os or peripherals able to generate a pulse) – Configurable events have the following features:
Selectable active trigger edge Interrupt pending status register bit independent for the rising and falling edge. Individual interrupt and event generation mask, used for conditioning the CPU wakeup, interrupt and event generation. SW trigger possibility
Direct events (interrupt and wakeup sources from peripherals having an associated flag which requiring to be cleared in the peripheral)
Direct events have the following features:
Fixed rising edge active trigger No interrupt pending status register bit in the EXTI. (The interrupt pending status flag is provided by the peripheral generating the event.) Individual interrupt and event generation mask, used for conditioning the CPU wakeup and event generation. No SW trigger possibility
TrustZone secure events – The access to control and configuration bits of secure input events can be made
secure.
EXTI IO port selection

3.18 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator with polynomial value and size.
Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the Flash memory integrity.
The CRC calculation unit helps to compute a signature of the software during runtime, which can be ulteriorly compared with a reference signature generated at link-time and which can be stored at a given memory location.

3.19 Flexible static memory controller (FSMC)

The flexible static memory controller (FSMC) includes two memory controllers:
The NOR/PSRAM memory controller
The NAND/memory controller
This memory controller is also named flexible memory controller (FMC).
58/323 DS12736 Rev 2
STM32L562xx Functional overview
The main features of the FSMC controller are the following:
Interface with static-memory mapped devices including: – Static random access memory (SRAM) – NOR Flash memory/OneNAND Flash memory – PSRAM (four memory banks) – NAND Flash memory with ECC hardware to check up to 8 Kbytes of data – Ferroelectric RAM (FRAM)
8-,16- bit data bus width
Independent chip select control for each memory bank
Independent configuration for each memory bank
Write FIFO
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high­performance solutions using external controllers with dedicated acceleration.
TrustZone security
When the TrustZone security is enabled, the whole FSMC banks are secure after reset. Non-secure area can be configured using the TZSC MPCWMx controller.
The FSMC NOR/PSRAM bank: – Up to two non-secure area can be configured thought the TZSC MPCWM2
controller with a granularity of 64 Kbytes.
The FSMC NAND bank: – Can be either configured as fully secure or fully non-secure using the TZSC
MPCWM3 controller.
The FSMC registers can be configured as secure through the TZSC controller.

3.20 Octo-SPI interface (OCTOSPI)

The OCTOSPI is a specialized communication interface targetting single, dual, quad or octal SPI memories. It can operate in any of the three following modes:
Indirect mode: all the operations are performed using the OCTOSPI registers
Status polling mode: the external memory status register is periodically read and an
interrupt can be generated in case of flag setting
Memory-mapped mode: the external memory is memory mapped and is seen by the system as if it were an internal memory supporting read and write operation
The OCTOSPI supports two frame formats:
Classical frame format with command, address, alternate byte, dummy cycles and data phase over 1, 2, 4 or 8 data pins
HyperBus
The OCTOSPI offers the following features:
TM
frame format
DS12736 Rev 2 59/323
79
Functional overview STM32L562xx
Three functional modes: indirect, status-polling, and memory-mapped
Read and write support in memory-mapped mode
Supports for single, dual, quad and octal communication
Dual-quad mode, where 8 bits can be sent/received simultaneously by accessing two
quad memories in parallel.
SDR and DTR support
Data strobe support
Fully programmable opcode for both indirect and memory mapped mode
Fully programmable frame format for both indirect and memory mapped mode
Each of the five following phases can be configured independently (enable, length,
single/dual/quad communication) – Instruction phase – Address phase – Alternate bytes phase – Dummy cycles phase – Data phase
HyperBus
TM
support
Integrated FIFO for reception and transmission
8, 16, and 32-bit data accesses are allowed
DMA channel for indirect mode operations
Timeout management
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
TrustZone security
When the TrustZone security is enabled, the whole OCTOSPI bank is secure after reset. Up to two non-secure area can be configured thought the TZSC MPCWM1 controller with a
granularity of 64 Kbytes. The OCTOSPI registers can be configured as secure through the TZSC controller.
60/323 DS12736 Rev 2
STM32L562xx Functional overview

3.21 Analog-to-digital converter (ADC)

The device embeds two successive approximation analog-to-digital converters with the following features:
12-bit native resolution, with built-in calibration
5.33 Msps maximum conversion rate with full resolution
Down to 18.75 ns sampling time – Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit
resolution)
Up to 16 external channels
5 internal channels: internal reference voltage, temperature sensor, VBAT/3 and DAC1
outputs
One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
Single-ended and differential mode inputs
Low-power design
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface – Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
Each ADC support multiple trigger inputs for synchronization with on-chip timers
and external signals – Results stored into a data register or in RAM with DMA controller support – Data pre-processing: left/right alignment and per channel offset compensation – Built-in oversampling unit for enhanced SNR – Channel-wise programmable sampling time – Analog watchdog for automatic voltage monitoring, generating interrupts and
trigger for selected timers – Hardware assistant to prepare the context of the injected channels to allow fast
context switching

3.21.1 Temperature sensor

The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature. The temperature sensor is internally connected to the ADC1_IN17 input channels which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.
DS12736 Rev 2 61/323
79
Functional overview STM32L562xx
Table 14. Temperature sensor calibration values
Calibration value name Description Memory address
TS ADC raw data acquired at a
TS_CAL1
temperature of 30 °C (± 5 °C), V
DDA
TS ADC raw data acquired at a
TS_CAL2
temperature of 110 °C (± 5 °C), V
DDA
3.21.2 Internal voltage reference (V
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and the comparators. The VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.
Calibration value name Description Memory address
Table 15. Internal voltage reference calibration values
Raw data acquired at a
VREFINT
temperature of 30 °C (± 5 °C), V
DDA
= V
REF+
= V
REF+
REFINT
= V
REF+
0x0BFA 05A8 - 0x0BFA 05A9
= 3.0 V (± 10 mV)
0x0BFA 05CA- 0x0BFA 05CB
= 3.0 V (± 10 mV)
)
0x0BFA 05AA - 0x0BFA 05AB
= 3.0 V (± 10 mV)
3.21.3 V
This embedded hardware enables the application to measure the V the internal ADC channel ADC1_IN18. As the V and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third of the V
battery voltage monitoring
BAT
battery voltage using
voltage may be higher than the VDDA,
BAT
BAT
BAT
voltage.
62/323 DS12736 Rev 2
STM32L562xx Functional overview
MSv40197V1
VREFBUF
Low frequency cut-off capacitor
DAC, ADC
Bandgap +
V
DDA
-
100 nF
VREF+

3.22 Digital to analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
This digital interface supports the following features:
Up to two DAC output channels
8-bit or 12-bit output mode
Buffer offset calibration (factory and user trimming)
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability for each channel
External triggers for conversion
Sample and hold low-power mode, with internal or external capacitor
The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.23 Voltage reference buffer (VREFBUF)

The devices embed a voltage reference buffer which can be used as voltage reference for ADC, DACs and also as voltage reference for external components through the VREF+ pin.
The internal voltage reference buffer supports two voltages:
2.048 V
2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.
The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

Figure 9. Voltage reference buffer

DS12736 Rev 2 63/323
79
Functional overview STM32L562xx

3.24 Comparators (COMP)

The devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output channels
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can also be combined into a window comparator.

3.25 Operational amplifier (OPAMP)

The devices embed two operational amplifiers with external or internal follower routing and PGA capability.
The operational amplifier features:
Low input bias current
Low offset voltage
Low-power mode
Rail-to-rail input

3.26 Digital filter for sigma-delta modulators (DFSDM)

The devices embed one DFSDM with four digital filters modules and eight external input serial channels (transceivers) or alternately eight internal parallel inputs support.
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to the microcontroller and then to perform digital filtering of the received data streams (which represent analog value on Σ∆ modulators inputs).
The DFSDM can also interface the PDM (pulse density modulation) microphones and perform PDM to PCM conversion and filtering in hardware. The DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM).
The DFSDM transceivers support several serial interface formats (to support various Σ∆ modulators) and the DFSDM digital filter modules perform digital processing according to the user’s selected filter parameters with up to 24-bit final ADC resolution.
64/323 DS12736 Rev 2
STM32L562xx Functional overview
The DFSDM peripheral supports:
Up to 4 multiplexed input digital serial channels: – Configurable SPI interface to connect various ΣΔ modulators – Configurable Manchester coded 1 wire interface support – Clock output for ΣΔ modulator(s)
Alternative inputs from up to 4 internal digital parallel channels: – Inputs with up to 16 bit resolution – Internal sources: ADCs data or memory (CPU/DMA write) data streams
Adjustable digital signal processing: – Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024) – Integrator: oversampling ratio (1..256)
Up to 24-bit output data resolution: – Right bit-shifter on final data (0..31 bits)
Signed output data format
Automatic data offset correction (offset stored in register by user)
Continuous or single conversion
Start-of-conversion synchronization with:
Software trigger – Internal timers – External events – Start-of-conversion synchronously with first DFSDM filter (DFSDM_FLT0)
Analog watchdog feature: – Low value and high value data threshold registers – Own configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32) – Input from output data register or from one or more input digital serial channels – Continuous monitoring independently from standard conversion
Short-circuit detector to detect saturated analog input values (bottom and top ranges): – Up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on input data stream – Mnitoring continuously each channel (4 serial channel transceiver outputs)
Break generation on analog watchdog event or short-circuit detector event
Extremes detector:
Store minimum and maximum values of output data values – Refreshed by software
DMA may be used to read the conversion data
Interrupts: end of conversion, overrun, analog watchdog, short-circuit, channel clock
absence
“Regular” or “injected” conversions: – “Regular” conversions can be requested at any time or even in continuous mode
without having any impact on the timing of “injected” conversions.
DS12736 Rev 2 65/323
79
Functional overview STM32L562xx

3.27 Touch sensing controller (TSC)

The touch sensing controller provides a simple solution to add capacitive sensing functionality to any application. A capacitive sensing technology is able to detect finger presence near an electrode that is protected from direct touch by a dielectric (glass, plastic or other). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.
The main features of the touch sensing controller are the following:
Proven and robust surface charge transfer acquisition principle
Supports up to 22 capacitive sensing channels
Up to 3 capacitive sensing channels can be acquired in parallel offering a very good
response time
Spread spectrum feature to improve system robustness in noisy environments
Full hardware management of the charge transfer acquisition sequence
Programmable charge transfer frequency
Programmable sampling capacitor I/O pin
Programmable channel I/O pin
Programmable max count value to avoid long acquisition when a channel is faulty
Dedicated end of acquisition and max count error flags with interrupt capability
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
Designed to operate with STMTouch touch sensing firmware library
Note: The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.

3.28 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.29 Advanced encryption standard hardware accelerator (AES)

The devices embed an AES hardware accelerator that can be used both to encipher and to decipher data using an AES algorithm.
66/323 DS12736 Rev 2
STM32L562xx Functional overview
The AES peripheral supports:
Encryption/decryption using AES Rijndael block cipher algorithm
NIST FIPS 197 compliant implementation of AES encryption/decryption algorithm
128-bit and 256-bit register for storing the encryption, decryption or derivation key (4x
32-bit registers)
Electronic codebook (ECB), cipher block chaining (CBC), Counter mode (CTR), Galois Counter Mode (GCM), Galois Message Authentication Code mode (GMAC) and Cipher Message Authentication Code mode (CMAC) supported
Key scheduler
Key derivation for decryption
128-bit data block processing
128-bit, 256-bit key length
1x32-bit INPUT buffer and 1x32-bit OUTPUT buffer
Register access supporting 32-bit data width only
One 128-bit Register for the initialization vector when AES is configured in CBC mode
or for the 32-bit counter initialization when CTR mode is selected, GCM mode or CMAC mode
Automatic data flow control with support of direct memory access (DMA) using 2 channels, one for incoming data, and one for out coming data
Suspend a message if another message with a higher priority needs to be processed.

3.30 HASH hardware accelerator (HASH)

The hash processor is a fully compliant implementation of the secure hash algorithm (SHA­1, SHA-224, SHA-256), the MD5 (message-digest algorithm 5) hash algorithm and the HMAC (keyed-hash message authentication code) algorithm suitable for a variety of applications.
It computes a message digest (160 bits for the SHA-1 algorithm, 256 bits for the SHA-256 algorithm and 224 bits for the SHA-224 algorithm,128 bits for the MD5 algorithm) for messages of up to (264 - 1) bits, while the HMAC algorithms provide a way of authenticating messages by means of hash functions. The HMAC algorithms consist in calling the SHA-1, SHA-224, SHA-256 or MD5 hash function twice.

3.31 Public key accelerator PKA

The public key accelerator (PKA) is intended for the computation of cryptographic public key primitives, specifically those related to RSA, Diffie-Hellmann or ECC (elliptic curve cryptography) over GF(p) (Galois fields). To achieve high performance at a reasonable cost, these operations are executed in the Montgomery domain.
All needed computations are performed within the accelerator, so no further hardware/software elaboration is needed to process the inputs or the outputs.
DS12736 Rev 2 67/323
79
Functional overview STM32L562xx
PKA main features:
Acceleration of RSA, DH and ECC over GF(p) operations, based on the Montgomery method for fast modular multiplications. More specifically:
RSA modular exponentiation, RSA Chinese remainder theorem (CRT)
exponentiation – ECC scalar multiplication, point on curve check – ECDSA signature generation and verification
Capability to handle operands up to 3136 bits for RSA/DH and 640 bits for ECC.
Arithmetic and modular operations such as addition, subtraction, multiplication,
modular reduction, modular inversion, comparison, and Montgomery multiplication.
Built-in Montgomery domain inward and outward transformations
AMBA AHB slave peripheral, accessible through 32-bit word single accesses only
(otherwise, for writes, an AHB bus error is generated, and write accesses are ignored)

3.32 On-the-fly decryption engine (OTFDEC)

The embedded OTFDEC decrypts in real-time the encrypted content stored in the external Octo-SPI memories used in Memory-mapped mode.
The OTFDEC uses the AES-128 algorithm in counter mode (CTR). The OTFDEC main features are the following:
Zero latency 128-bit decryption during STM32 AHB OCTOSPI read operations (single or multiple).
Minimum read granularity is 8-bit, maximum is 512-bit – AES-CTR algorithm
Up to four independent encrypted regions – Granularity of the region definition: 4096 bytes – Region configuration write locking mechanism – Option to condition data decryption on instruction fetches only.
128-bit data decryption specific to each protected region. – Each region has its firmware version (two bytes), its 128-bit key and a fixed 64-bit
nonce.
Keystream based on the data system address
Encryption keys confidentiality and integrity protection – Write only registers, with software locking mechanism
Support for STM32 OCTOSPI pre-fetching mechanism. – AES-CTR keystream FIFO (depth=2)
Possibility to select an enhanced encryption mode to add a proprietary layer of protection on top of AES stream cipher.

3.33 Timers and watchdogs

The devices include two advanced control timers, up to nine general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer.
68/323 DS12736 Rev 2
STM32L562xx Functional overview
The Tabl e 16 below compares the features of the advanced control, general-purpose and basic timers.

Table 16. Timer feature comparison

Timer type Timer
Advanced
control
General-
purpose
General-
purpose
General-
purpose
General-
purpose
Basic TIM6, TIM7 16-bit Up
TIM1, TIM8 16-bit
TIM2, TIM5 32-bit
TIM3, TIM4 16-bit
TIM15 16-bit Up
TIM16, TIM17 16-bit Up
Counter
resolution
Counter
type
Up, down,
Up/down
Up, down,
Up/down
Up, down,
Up/down
Prescaler
factor
Any integer
between 1
and 65536
Any integer
between 1
and 65536
Any integer
between 1
and 65536
Any integer
between 1
and 65536
Any integer
between 1
and 65536
Any integer
between 1
and 65536
DMA
request
generation
Yes 4 3
Yes 4 No
Yes 4 No
Yes 2 1
Yes 1 1
Yes 0 No
Capture/
compare
channels
Complementary
outputs

3.33.1 Advanced-control timer (TIM1, TIM8)

The advanced-control timers can each be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted dead­times. They can also be seen as complete general-purpose timers.
The four independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled in order to turn off any power switches driven by these outputs.
Many features are shared with the general-purpose TIMx timers (described in
Section 3.33.2) using the same architecture, so the advanced-control timers can work
together with the TIMx timers via the Timer Link feature for synchronization or event chaining.
DS12736 Rev 2 69/323
79
Functional overview STM32L562xx

3.33.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)

There are up to seven synchronizable general-purpose timers embedded in the STM32L562xx devices (see Tab le Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.
TIM2, TIM3, TIM4 and TIM5
They are full-featured general-purpose timers: – TIM2 and TIM5 have a 32-bit auto-reload up/downcounter and 32-bit prescaler – TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler. These timers feature four independent channels for input capture/output compare,
PWM or one-pulse mode output. They can work together, or with the other general­purpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode. All have independent DMA request generation and support quadrature encoders.
TIM15, 16 and 17
They are general-purpose timers with mid-range features: They have 16-bit auto-reload upcounters and 16-bit prescalers. – TIM15 has two channels and one complementary channel – TIM16 and TIM17 have one channel and one complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode
output. The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation. The counters can be frozen in debug mode.
16 for differences).

3.33.3 Basic timers (TIM6 and TIM7)

The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases.

3.33.4 Low-power timers (LPTIM1, LPTIM2 and LPTIM3)

The devices embed two low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wakeup the system from Stop mode.
LPTIM1 and LPTIM3 are active in Stop 0, Stop 1 and Stop 2 modes. LPTIM2 is active in Stop 0 and Stop 1 mode.
70/323 DS12736 Rev 2
STM32L562xx Functional overview
This low-power timer supports the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous/ one shot mode
Selectable software/hardware input trigger
Selectable clock source
Internal clock sources: LSE, LSI, HSI16 or APB clock – External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
Programmable digital glitch filter
Encoder mode (LPTIM1 only).

3.33.5 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is clocked from an independent 32 from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.
kHz internal RC (LSI) and as it operates independently

3.33.6 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.33.7 SysTick timer

The Cortex®-M33 with TrustZone embeds two SysTick timers. When TrustZone is activated, two SysTick timer are available:
SysTick, Secure instance.
SysTick, Non-secure instance.
When TrustZone is disabled, only one SysTick timer is available. This timer (secure or non-secure) is dedicated to real-time operating systems, but could
also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
DS12736 Rev 2 71/323
79
Functional overview STM32L562xx

3.34 Real-time clock (RTC)

The RTC supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to V
mode.
BAT
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
TrustZone support:
RTC fully securable – Alarm A, alarm B, wakeup Timer and timestamp individual secure or non-secure
configuration
The RTC is supplied through a switch that takes power either from the VDD supply when present or from the V
The RTC clock sources can be:
A 32.768 kHz external crystal (LSE)
An external resonator or oscillator (LSE)
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
The high-speed external clock (HSE), divided by a prescaler in the RCC.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp) can generate an interrupt and wakeup the device from the low-power modes.
BAT
pin.

3.35 Tamper and backup registers (TAMP)

32 32-bit backup registers are retained in all low-power modes and also in VBAT mode. They can be used to store sensitive data as their content is protected by an tamper detection circuit. 8 tamper pins and 7 internal tampers are available for anti-tamper detection.
The external tamper pins can be configured for edge detection, or level detection with or without filtering, or active tamper which increases the security level by auto checking that the tamper pins are not externally opened or shorted.
72/323 DS12736 Rev 2
STM32L562xx Functional overview
TAMP main features:
32 backup registers:
The backup registers (TAMP_BKPxR) are implemented in the RTC domain that
remains powered-on by VBAT when the VDD power is switched off
8 external tamper detection events
Each external event can be configured to be active or passive – External passive tampers with configurable filter and internal pull-up
5 internal tamper events
Any tamper detection can generate a RTC timestamp event
Any tamper detection can erase the backup registers
TrustZone support:
Tamper secure or non-secure configuration. – Backup registers configuration in 3 configurable-size areas:
1 read/write secure area 1 write secure/read non-secure area 1 read/write non-secure area
Monotonic counter.
DS12736 Rev 2 73/323
79
Functional overview STM32L562xx

3.36 Inter-integrated circuit interface (I2C)

The device embeds four I2C. Refer to Ta bl e 17: I2C implementation for the features implementation.
The I2C bus interface handles communications between the microcontroller and the serial
2
I
C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
I2C-bus specification and user manual rev. 5 compatibility:
Slave and master modes, multimaster capability – Standard-mode (Sm), with a bitrate up to 100 kbit/s – Fast-mode (Fm), with a bitrate up to 400 kbit/s – Fast-mode plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os – 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses – Programmable setup and hold times – Optional clock stretching
System management bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (packet error checking) generation and verification with ACK
control – Address resolution protocol (ARP) support – SMBus alert
Power system management protocol (PMBus
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 7: STM32L562xx clock tree
Wakeup from Stop mode on address match
Programmable analog and digital noise filters
1-byte buffer with DMA capability
I2C features

Table 17. I2C implementation

(1)
TM
) specification rev 1.1 compatibility
I2C1 I2C2 I2C3 I2C4
Standard-mode (up to 100 kbit/s) X X X X
Fast-mode (up to 400 kbit/s) X X X X
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X X X X
Programmable analog and digital noise filters X X X X
SMBus/PMBus hardware support X X X X
Independent clock X X X X
Wakeup from Stop 0, Stop 1 mode on address match X X X X
Wakeup from Stop 2 mode on address match - - X -
1. X: supported
74/323 DS12736 Rev 2
STM32L562xx Functional overview

3.37 Universal synchronous/asynchronous receiver transmitter (USART)

The devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4, UART5).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN master/slave capability. They provide hardware management of the CTS and RTS signals, and RS485 driver enable. They are able to communicate at speeds of up to 10
Mbit/s.
The USART1, USART2 and USART3 also provide a Smartcard mode (ISO 7816 compliant) and an SPI-like communication capability.
All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2,3,4,5) to wake up the MCU from Stop mode using baudrates up to 200 wake up events from Stop mode are programmable and can be:
Start bit detection
Any received data frame
A specific programmed data frame
Kbaud. The
All USART interfaces can be served by the DMA controller.
USART modes/features
Hardware flow control for modem XXXXX X
Continuous communication using DMA XXXXX X
Multiprocessor communication XXXXX X
Synchronous mode X X X - - -
Smartcard mode X X X - - -
Single-wire half-duplex communication XXXXX X
IrDA SIR ENDEC block XXXXX -
LIN mode XXXXX -
Dual clock domain XXXXX X
Wakeup from Stop 0 / Stop 1 modes XXXXX X
Wakeup from Stop 2 mode ----- X
Receiver timeout interrupt XXXXX -
Modbus communication XXXXX -
Auto baud rate detection X (4 modes) -
Driver enable XXXXX X

Table 18. USART/UART/LPUART features

(1)
USART1 USART2 USART3 UART4 UART5 LPUART1
LPUART/USART data length 7, 8 and 9 bits
1. X = supported.
DS12736 Rev 2 75/323
79
Functional overview STM32L562xx

3.38 Low-power universal asynchronous receiver transmitter (LPUART)

The devices embed one low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half-duplex single-wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 mode are programmable and can be:
Start bit detection
Any received data frame
A specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.
The LPUART interface can be served by the DMA controller.
Kbaud. The wake up events from Stop

3.39 Serial peripheral interface (SPI)

Three SPI interfaces allow communication up to slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives eight master mode frequencies and the frame size is configurable from 4 and hardware CRC calculation.
All SPI interfaces can be served by the DMA controller.
bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode

3.40 Serial audio interfaces (SAI)

The devices embed two SAI. Refer to Tab le 19: SAI implementation for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.
The SAI peripheral supports:
Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
8-word integrated FIFOs for each audio sub-block.
Synchronous or asynchronous mode between the audio sub-blocks.
Master or slave configuration independent for both audio sub-blocks.
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
Peripheral with large configurability and flexibility allowing to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF out.
76/323 DS12736 Rev 2
STM32L562xx Functional overview
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
Number of bits by frame may be configurable.
Frame synchronization active level configurable (offset, bit length, level).
First active bit position in the slot is configurable.
LSB first or MSB first for data transfer.
Mute mode.
Stereo/Mono audio frame capability.
Communication clock strobing edge configurable (SCK).
Error flags with associated interrupts if enabled respectively.
Overrun and underrun detection. – Anticipated frame synchronization signal detection in slave mode. – Late frame synchronization signal detection in slave mode. – Codec not ready for the AC’97 mode in reception.
Interruption sources when enabled:
–Errors. – FIFO requests.
DMA interface with two dedicated channels to handle access to the dedicated
integrated FIFO of each SAI audio sub-block.
SAI features

Table 19. SAI implementation

(1)
SAI1 SAI2
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 X X
Mute mode X X
Stereo/Mono audio frame capability. X X
16 slots X X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X X
FIFO size X (8 Word) X (8 Word)
SPDIF X X
PDM X -
1. X: supported

3.41 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The SD/SDIO, MultiMediaCard (MMC) host interface (SDMMC) provides an interface between the AHB bus and SD memory cards, SDIO cards and MMC devices.
DS12736 Rev 2 77/323
79
Functional overview STM32L562xx
The SDMMC features include the following:
Full compliance with MultiMediaCard System Specification Version 4.51. Card support
for three different databus modes: 1-bit (default), 4-bit and 8-bit
Full compatibility with previous versions of MultiMediaCards (backward compatibility)
Full compliance with SD Memory Card Specifications Version 4.1. (SDR104
SDMMC_CK speed limited to maximum allowed IO speed, SPI mode and UHS-II mode not supported)
Full compliance with SDIO Card Specification Version 4.0: card support for two different
databus modes: 1-bit (default) and 4-bit. (SDR104 SDMMC_CK speed limited to maximum allowed IO speed, SPI mode and UHS-II mode not supported)
Data transfer up to 104 Mbyte/s for the 8-bit mode (depending maximum allowed IO
speed)
Data and command output enable signals to control external bidirectional drivers.

3.42 Controller area network (FDCAN)

The controller area network (CAN) subsystem consists of one CAN modules and message RAM memory.
The CAN module (FDCAN) is compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.
A 1 Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers.

3.43 Universal serial bus (USB FS)

The devices embed a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and battery charging detection according to Battery Charging Specification Revision
1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support
for USB 2.0 link power management. It has software-configurable endpoint setting with packet memory up-to 1 Kbyte and suspend/resume support.
This interface requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator (HSI48) in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal less operation.

3.44 USB Type-C™ / USB Power Delivery controller (UCPD)

The device embeds one controller (UCPD) compliant with USB Type-C Rev. 1.2 and USB Power Delivery Rev. 3.0 specifications.
78/323 DS12736 Rev 2
STM32L562xx Functional overview
The controller uses specific I/Os supporting the USB Type-C and USB Power Delivery requirements, featuring:
USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors
“Dead battery” support
USB Power Delivery message transmission and reception
FRS (fast role swap) support
The digital controller handles notably:
USB Type-C level detection with debounce, generating interrupts
FRS detection, generating an interrupt
Byte-level interface for USB Power Delivery payload, generating interrupts (DMA
compatible)
USB Power Delivery timing dividers (including a clock pre-scaler)
CRC generation/checking
4b5b encode/decode
Ordered sets (with a programmable ordered set mask at receive)
Frequency recovery in receiver during preamble
The interface offers low-power operation compatible with Stop mode, maintaining the capacity to detect incoming USB Power Delivery messages and FRS signaling.

3.45 Development support

3.45.1 Serial wire JTAG debug port (SWJ-DP)

The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using two pins only instead of five required by the JTAG (JTAG pins could be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.45.2 Embedded Trace Macrocell™

The Arm® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the devices through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
DS12736 Rev 2 79/323
79
Pinouts and pin description STM32L562xx
MSv49322V1
LQFP48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14_OSC32_IN
PC15_OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
36
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19
PA3
PA4
PA7
PB2
VDD
PA5
PA6
PB10
PB0
PB1
PB11
VSS
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PH3-BOOT0
PB5
PA14
PB9
PB8
PB4
PB7
PB6
PB3
PA15
MSv49311V1
LQFP48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14-OSC_IN
PC15-OSC_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
36
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19
PA3
PA4
PA7
PB2
VDD
PA5
PA6
PB10
PB0
PB1
VDD12_1
VSS
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PH3-BOOT0
PB5
PA14
VDD12_2
PB8
PB4
PB7
PB6
PB3
PA15

4 Pinouts and pin description

Figure 10. STM32L562xx LQFP48 pinout

1. The above figure shows the package top view.

Figure 11. STM32L562xxxxP LQFP48 external SMPS pinout

80/323 DS12736 Rev 2
1. The above figure shows the package top view.
STM32L562xx Pinouts and pin description
MSv49321V1
UFQFPN48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
36
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19
PA3
PA4
PA7
PB2
VDD
PA5
PA6
PB10
PB0
PB1
PB11
VSS
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PH3-BOOT0
PB5
PA14
PB9
PB8
PB4
PB7
PB6
PB3
PA15
MSv49310V1
UFQFPN48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14-OSC_IN
PC15-OSC_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
36
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19
PA3
PA4
PA7
PB2
VDD
PA5
PA6
PB10
PB0
PB1
VDD12_1
VSS
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PH3-BOOT0
PB5
PA14
VDD12_2
PB8
PB4
PB7
PB6
PB3
PA15

Figure 12. STM32L562xx UFQFPN48 pinout

1. The above figure shows the package top view.

Figure 13. STM32L562xxxxP UFQFPN48 external SMPS pinout

1. The above figure shows the package top view.
DS12736 Rev 2 81/323
138
Pinouts and pin description STM32L562xx
MSv49323V1
LQFP64
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
PC13
48
46
45
44
43
42
41
40
39
38
37
36
35
34
33
47
55
5352515049
56
54
61
59
57
646362
60
58
26
2829303132
25
27
20
22
24
171819
21
23
PA3
VSS
PA5
PC4
PB2
VDD
PA4
PC5
PB11
PA6
PA7
VSS
PB0
PB1
PB10
VDD
VDDUSB
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
VSS
VDD
VSS
PH3-BOOT0
PB5
PC12
PB9
PB8
PB4
PC10
PB7
PB6
PA15
PB3
PD2
PC11
PA14
MSv49316V1
LQFP64
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
PC13
48
46
45
44
43
42
41
40
39
38
37
36
35
34
33
47
55
5352515049
56
54
61
59
57
646362
60
58
26
2829303132
25
27
20
22
24
171819
21
23
PA3
VSS
PA5
PB0
VDDSMPS
VDD
PA4
PB1
VSSSMPS
PA6
PA7
VSS
PB2
PB10
VLXSMPS
V15SMPS_1
VDDUSB
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
VDD
VSS
VDD
V15SMPS_2
PH3-BOOT0
PB5
PC12
VSS
PB8
PB4
PC10
PB7
PB6
PA15
PB3
PD2
PC11
PA14

Figure 14. STM32L562xx LQFP64 pinout

1. The above figure shows the package top view.

Figure 15. STM32L562xxxxQ LQFP64 SMPS step down converter pinout

82/323 DS12736 Rev 2
1. The above figure shows the package top view.
STM32L562xx Pinouts and pin description
MSv49312V2
LQFP64
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
PC13
48
46
45
44
43
42
41
40
39
38
37
36
35
34
33
47
55
5352515049
56
54
61
59
57
646362
60
58
26
2829303132
25
27
20
22
24
171819
21
23
PA3
VSS
PA5
PC4
PB10
VDD
PA4
PB0
VDD12_1
PA6
PA7
VSS
PB1
PB2
PB11
VDD
VDDUSB
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
VSS
VDD
VSS
PB8
PB6
PC12
VDD12_2
PB9
PB5
PC10
PH3-BOOT0
PB7
PA15
PB4
PB3
PC11
PA14
MSv49317V1
VDD PC10 PD2 PG13 VDDIO2 PB5 PB9 V15SMPS_2
12345678
A
B
C
D
E
F
G
H
VDDUSB VSS PC12 PG12 VSS PB4 PC13 VSS
PA11 PA12 PC11 PG10 PG15
PC15-
OSC32_OUT
PA9 PA13 PA14
PC6 PC7 PA10
PB15 PB13
PB14 PB12
VDD VSS VLXSMPS
PC9
PC8
PB1
PA6
PB11
PC4
PA4
PC3
PC2
PC0
PH3-BOOT0
PA5
PA2
PB6 PB8
PA0
VREF+
PC1
VSS
PH1-
OSC_OUT
VDD
9
VBAT
PC14-
OSC32_IN
VDDA
VSSA/VREF-
VDD
NRST
PH0-OSC_IN
J
V15SMPS_1 VSSSMPS VDDSMPS PB2PB10 PA7PB0 VDD VSS
PG9 PG14 PB7
PA15 PG11 PB3
PA8 PA 3 PA1

Figure 16. STM32L562xxxxP LQFP64 external SMPS pinout

1. The above figure shows the package top view.

Figure 17. STM32L562xxxxQ WLCSP81 SMPS step down converter ballout

1. The above figure shows the package top view.
DS12736 Rev 2 83/323
138
Pinouts and pin description STM32L562xx
MSv49313V1
VDD PC10 PD2 PG13 VDDIO2 PB5 PB9 VDD12_2
12345678
A
B
C
D
E
F
G
H
VDDUSB VSS PC12 PG12 VSS PB4 PC13 VSS
PA11 PA12 PC11 PG10 PG15
PC15-
OSC32_OUT
PA9 PA13 PA14
PC6 PC7 PA10
PB15 PB13
PB14 PB12
VDD VSS PE15
PC9
PC8
PB1
PA6
PE14
PC4
PA4
PC3
PC2
PC0
PH3-BOOT0
PA5
PA2
PB6 PB8
PA0
VREF+
PC1
VSS
PH1-
OSC_OUT
VDD
9
VBAT
PC14-
OSC32_IN
VDDA
VSSA/VREF-
VDD
NRST
PH0-OSC_IN
J
VDD12_1 PB11 PB10 PB2PE13 PA7PB0 VDD VSS
PG9 PG14 PB7
PA15 PG11 PB3
PA8 PA 3 PA1
MSv49324V1
LQFP100
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
9
11
4
6
8
1
2
3
5
7
VSS
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREF-
VREF+
VDDA
PA0
PA1
PA2
PC15-OSC32_OUT
VDD
PE5
VBAT
PC14-OSC32_IN
PE2
PE3
PE4
PE6
PC13
66
64
63
62
61
60
59
58
57
56
55
54
53
52
51
67
65
72
70
68
75
74
73
71
69
91
89888786858483828180797877
76
92
90
97
95
93
100
99
98
96
94
35
37383940414243444546474849
50
34
36
29
31
33
262728
30
32
PA3
VSS
PA5
PC4
PB2
VDD
PA4
PC5
PE8
PE11
PA6
PA7
PE9
PE12
PE15
PB0
PB1
PE13
PB10
VSS
PE7
PE10
PE14
PB11
VDD
PC9
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA8
PC8
PA13
PA11
PA9
VDD
VSS
VDDUSB
PA12
PA10
VDD
VSS
PB9
PB7
PB3
PE1
PE0
PB6
PD6
PD3
PB8
PH3-BOOT0
PD5
PD2
PC12
PB5
PB4
PD1
PC11
PA15
PD7
PD4
PD0
PC10
PA14

Figure 18. STM32L562xxxxP WLCSP81 external SMPS ballout

1. The above figure shows the package top view.

Figure 19. STM32L562xx LQFP100 pinout

84/323 DS12736 Rev 2
1. The above figure shows the package top view.
STM32L562xx Pinouts and pin description
MSv49318V1
LQFP100
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
9
11
4
6
8
1
2
3
5
7
VSS
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREF-
VREF+
VDDA
PA0
PA1
PA2
PA3
PC15-OSC32_OUT
VDD
PE5
VBAT
PC14-OSC32_IN
PE2
PE3
PE4
PE6
PC13
66
64
63
62
61
60
59
58
57
56
55
54
53
52
51
67
65
72
70
68
75
74
73
71
69
91
89888786858483828180797877
76
92
90
97
95
93
100
99
98
96
94
35
37383940414243444546474849
50
34
36
29
31
33
262728
30
32
VSS
VDD
PA6
PB1
PE9
PA4
PA5
PB2
PE11
PE14
PA7
PB0
PE12
PE15
VDDSMPS
PE7
PE8
PB10
VLXSMPS
VSS
PE10
PE13
PB11
VSSSMPS
V15SMPS_1
PC9
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
VDD
PA8
PC8
PA13
PA11
PA9
VDD
VSS
VDDUSB
PA12
PA10
VDD
V15SMPS_2
PB9
PB7
PB3
VSS
PE0
PB6
PD6
PD3
PB8
PH3-BOOT0
PD5
PD2
PC12
PB5
PB4
PD1
PC11
PA15
PD7
PD4
PD0
PC10
PA14

Figure 20. STM32L562xxxxQ LQFP100 SMPS step down converter pinout

1. The above figure shows the package top view.
DS12736 Rev 2 85/323
138
Pinouts and pin description STM32L562xx
MSv49325V1
PB9
4
PG15
PE0
VDD
PB2
VDD
PB1
PB0
VSS
PC3
PA1
VSS
PE5 PE3 PE1 PB6 PG12 PD6 PD5 PD2 PC11 PA15 VDDUSB
123 56789101112
A
B
C
D
E
F
G
H
J
K
L
M
VBAT PE4 PE2 PH3-BOOT0 PB4 PG9 PD4 PD1 PC12 PC10 PA12
PC14-
OSC32_IN
PE6 PC13 PB8 PD3 PD0 PA13 PA14 PA11
PC15-
OSC32_OUT
PF0 PF3 PA9 PA10 PA8
PF2 PF1 PF4 PC7 PC9 PC8
PH0-OSC_IN PF5 PC6 PG8
PH1-
OSC_OUT
NRST PG3 PG5
VSSA/VREF- PC0
OPAMP1_VI
NM
PD14 PD13 PD15
VREF+ PA0 PC5 PD9 PD11 PD12
VDDA PA2 PA 7 PF11 PE14 PB10 PB13 PB14 PB15
PA3 PA 6 PA4 PF12 PF15 PE11 PE15 PB11 VSS PB12 PD8
PA5
OPAMP2_VI
NM
PC4 PF13 PG0 PE9 PE13 PG14 PG13 PG11 PD10
PB3 PG10
PB7 PB5 PD7 VDDIO2 VDD
VSS VDD
VDD VSS
PC2
PC1
PF14 PE8 PE10 PE12 VDD
PG1 PE7
VSS
PG6
PG4
VSS
PG7
PG2
MSv49319V1
PB9
4
V15SMPS_2
PE0
VDD
PB2
VDD
PB1
PB0
VSS
PC3
PA1
VSS
PE5 PE3 PE1 PB6 PG12 PD6 PD5 PD2 PC11 PA15 VDDUSB
123 56789101112
A
B
C
D
E
F
G
H
J
K
L
M
VBAT PE4 PE2 PH3-BOOT0 PB4 PG9 PD4 PD1 PC12 PC10 PA12
PC14-
OSC32_IN
PE6 PC13 PB8 PD3 PD0 PA13 PA14 PA 11
PC15-
OSC32_OUT
PF0 PF3 PA9 PA10 PA8
PF2 PF1 PF4 PC7 PC9 PC8
PH0-OSC_IN PF5 PC6 PG8
PH1-
OSC_OUT
NRST PG3 PG5
VSSA/VREF- PC0
OPAMP1_VI
NM
PD14 PD13 PD15
VREF+ PA0 PC5 PD9 PD11 PD12
VDDA PA2 PA 7 PF11 PE14 PB10 PB13 PB14 PB15
PA3 PA 6 PA4 PF12 PF15 PE11 PE15 PB11 VSSSMPS PB12 PD8
PA5
OPAMP2_VI
NM
PC4 PF13 PG0 PE9 PE13 VDDSMPS VLXSMPS V15SMPS_1 PD10
PB3 PG10
PB7 PB5 PD7 VDDIO2 VDD
VSS VDD
VDD VSS
PC2
PC1
PF14 PE8 PE10 PE12 VDD
PG1 PE7
VSS
PG6
PG4
VSS
PG7
PG2

Figure 21. STM32L562xx UFBGA132 ballout

1. The above figure shows the package top view.

Figure 22. STM32L562xxxxQ UFBGA132 SMPS step down converter ballout

86/323 DS12736 Rev 2
1. The above figure shows the package top view.
STM32L562xx Pinouts and pin description
MSv49326V1
LQFP144
23 24 25 26 27 28 29 30 31 32 33 34 35 36
20
22
15
17
19
13 14
16
18
PF9
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA0 PA1 PA2
PF8
PF10
PF5
VDD
PF7
PF3 PF4
VSS
PF6
88
86 85 84 83 82 81 80 79 78 77 76 75 74 73
89
87
94
92
90
97 96 95
93
91
135
133
132
131
130
129
128
127
126
125
124
123
122
121
136
134
141
139
137
144
143
142
140
138
47495051525354555657585960
61
72
46
48
41
43
45
383940
42
44
VSS
VDD
PA6
PC5
PF11
PA4
PA5
PB0
VSS
PF14
PA7
PC4
VDD
PF15
PE7
PB1
PB2
PG0
PE8
VSS
PF12
PF13
PG1
PE9
VDD
PG3
PD15 PD14 VDD VSS PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PG4
PG2
VSS
PG7
PG5
PC7 PC6 VDDIO2
PG8
PG6
VDD
VSS
PB9
PB7
PB3
PE1
PE0
PB6
VDDIO2
PG13
PB8
PH3-BOOT0
VSS
PG12
PG9
PB5
PB4
PG11
PD7
VDD
PG15
PG14
PG10
PD6
120 VSS
119 PD5
118 PD4
117 PD3
116 PD2
115 PD1
114 PD0
113 PC12
112 PC11
111 PC10
110 PA15
109 PA14
108 VDD
104
107 106 105
103
PA12
VSS VDDUSB PA13
PA11
9998PC9
PC8
101 100
PA9 PA8
102 PA10
686970
71
PE15
PB10
VSS
PB11
646566
67
PE11
PE12
PE14
PE13
62
63
VDD
PE10
37
PA3
12
11
6
8
10
4 5
7
9
PF2
PF1
VBAT
PC14-OSC32_IN
PF0
PE5 PE6
PC13
PC15-OSC32_OUT
3PE4
2PE3
1PE2
21

Figure 23. STM32L562xx LQFP144 pinout

1. The above figure shows the package top view.
DS12736 Rev 2 87/323
138
Pinouts and pin description STM32L562xx
MSv49320V1
LQFP144
23 24 25 26 27 28 29 30 31 32 33 34 35 36
20
22
15
17
19
13 14
16
18
PF9
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA/VREF-
VREF+
VDDA
PA0 PA1 PA2 PA3
PF8
PF10
PF5
VDD
PF7
PF3 PF4
VSS
PF6
88
86 85 84 83 82 81 80 79 78 77 76 75 74 73
89
87
94
92
90
97 96 95
93
91
135
133
132
131
130
129
128
127
126
125
124
123
122
121
136
134
141
139
137
144
143
142
140
138
47495051525354555657585960
61
72
46
48
41
43
45
383940
42
44
VDD
PA4
PA7
PB2
VDD
PA5
PA6
PF11
PF14
PG1
PB0
PB1
PF15
PE7
VSS
PF12
VSS
PE8
VDD
PE11
PF13
PG0
PE9
PE10
V15SMPS_1
PG3
PD15 PD14 VDD VSS PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 VDD
PG4
PG2
VSS
PG7
PG5
PC7 PC6 VDDIO2
PG8
PG6
VDD
V15SMPS_2
PE0
PH3-BOOT0
PB4
VSS
PE1
PB7
PG15
PG14
PB9
PB8
VDDIO2
PG13
PG9
PB6
PB5
PG12
PD7
VDD
PB3
VSS
PG10
PD6
120 VSS
119 PD5
118 PD4
117 PD3
116 PD2
115 PD1
114 PD0
113 PC12
112 PC11
111 PC10
110 PA15
109 PA14
108 VDD
104
107 106 105
103
PA12
VSS VDDUSB PA13
PA11
9998PC9
PC8
101 100
PA9 PA8
102 PA10
686970
71
VDDSMPS
VLXSMPS
VSS
VSSSMPS
646566
67
PE14
PE15
PB11
PB10
62
63
PE12
PE13
37
VSS
12
11
6
8
10
4 5
7
9
PF2
PF1
VBAT
PC14-OSC32_IN
PF0
PE5 PE6
PC13
PC15-OSC32_OUT
3PE4
2PE3
1PE2
21

Figure 24. STM32L562xxxxQ LQFP144 SMPS step down converter pinout

1. The above figure shows the package top view.
88/323 DS12736 Rev 2

Table 20. Legend/abbreviations used in the pinout table

Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name
S Supply pin
Pin type
I Input only pin
I/O Input / output pin
FT 5 V tolerant I/O
TT 3.6 V tolerant I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
STM32L562xx Pinouts and pin description
DS12736 Rev 2 89/323
I/O structure
_f
_u
_a
_s
(1)
(2)
(3)
(4)
I/O, Fm+ capable
I/O, with USB function supplied by V
I/O, with Analog switch function supplied by V
I/O supplied only by V
_c I/O, USB Type-C PD capable
_d I/O, USB Type-C PD dead battery function
Notes Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Alternate
Pin
functions
functions
Additional
functions
1. The related I/O structures in Table 21 are: FT_f, FT_fa.
2. The related I/O structures in Table 21 are: FT_u.
3. The related I/O structures in Table 21 are: FT_a, FT_fa, TT_a.
4. The related I/O structures in Table 21 are: FT_s, FT_fs.
Functions selected through GPIOx_AFR registers
Functions directly selected/enabled through peripheral registers
Option for TT or FT I/Os
DDUSB
DDA
DDIO2
90/323 DS12736 Rev 2

Table 21. STM32L562xx pin definitions

Pin Number
STM32L562xxxxP STM32L562xxxxQ STM32L562xx
Pinouts and pin description STM32L562xx
Pin name
SMPS
UFQFPN48_Ext-
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
------1B31---1B31PE2I/OFT-
------2A22---2A22PE3I/OFT-
------3B23---3B23PE4I/OFT-
LQFP64_SMPS
WLCSP81_Ext-SMPS
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFBGA132_SMPS
LQFP48
LQFP64
UFQFPN48
LQFP100
LQFP144
UFBGA132
Pin type
(function after reset)
Notes
I/O structure
Alternate functions
TRACECK, TIM3_ETR,
SAI1_CK1,
TSC_G7_IO1,
FMC_A23,
SAI1_MCLK_A,
EVENTOUT
TRACED0, TIM3_CH1,
OCTOSPI1_DQS,
TSC_G7_IO2,
FMC_A19,
SAI1_SD_B,
EVENTOUT
TRACED1, TIM3_CH2,
SAI1_D2,
DFSDM1_DATIN3,
TSC_G7_IO3,
FMC_A20, SAI1_FS_A,
EVENTOUT
Additional
functions
-
-
-
------4A14---4A14PE5I/OFT-
TRACED2, TIM3_CH3,
SAI1_CK2,
DFSDM1_CKIN3,
TSC_G7_IO4,
FMC_A21,
SAI1_SCK_A,
EVENTOUT
-
Table 21. STM32L562xx pin definitions (continued)
Pin Number
STM32L562xxxxP STM32L562xxxxQ STM32L562xx
STM32L562xx Pinouts and pin description
DS12736 Rev 2 91/323
Additional
functions
WKUP3,
TAMP_IN3/TAMP_
OUT6
Notes
I/O structure
SMPS
UFQFPN48_Ext-
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
WLCSP81_Ext-SMPS
LQFP64_SMPS
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFBGA132_SMPS
Pin name
LQFP48
LQFP64
UFQFPN48
LQFP100
LQFP144
UFBGA132
Pin type
(function after reset)
------5C25---5C25PE6I/OFT-
Alternate functions
TRACED3, TIM3_CH4,
SAI1_D1, FMC_A22,
SAI1_SD_A,
EVENTOUT
111B91B96B161116B16VBATS-- - -
WKUP2,
222B72B77C372227C37PC13I/OFT
(1) (2)
EVENTOUT
RTC_TS/RTC_
OUT1,
TAMP_IN1/TAMP_
OUT2
PC14-
333C93C98C183338C18
OSC3
2_IN
I/O FT
(1) (2)
EVENTOUT OSC32_IN
(PC14
)
PC15-
444C84C89D194449D19
OSC3
2_OU
T
I/O FT
(1) (2)
EVENTOUT OSC32_OUT
(PC15
)
-------D210----D210PF0I/O
FT
_f
I2C2_SDA, FMC_A0,
­EVENTOUT
-
92/323 DS12736 Rev 2
Table 21. STM32L562xx pin definitions (continued)
Pin Number
STM32L562xxxxP STM32L562xxxxQ STM32L562xx
Pinouts and pin description STM32L562xx
Alternate functions
FT
_f
FT _a
FT _a
FT _a
FT _a
FT _a
I/O structure
Notes
I2C2_SCL, FMC_A1,
-
-
-
-
-
-
EVENTOUT
I2C2_SMBA, FMC_A2,
EVENTOUT
LPTIM3_IN1, FMC_A3,
EVENTOUT
LPTIM3_ETR,
FMC_A4, EVENTOUT
LPTIM3_OUT,
FMC_A5, EVENTOUT
TIM5_ETR, TIM5_CH1,
OCTOSPI1_IO3,
SAI1_SD_B,
EVENTOUT
TIM5_CH2,
OCTOSPI1_IO2,
SAI1_MCLK_B,
EVENTOUT
Pin name
SMPS
UFQFPN48_Ext-
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
-------E211----E211PF1I/O
-------E112----E112PF2I/OFT-
-------D313----D313PF3I/O
-------E314----E314PF4I/O
-------F215----F215PF5I/O
------10F616---10F616VSSS-- - -
------11F717---11F717VDDS-- - -
--------18-----18PF6I/O
--------19-----19PF7I/O
LQFP64_SMPS
WLCSP81_Ext-SMPS
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFBGA132_SMPS
LQFP48
LQFP64
UFQFPN48
LQFP100
LQFP144
UFBGA132
Pin type
(function after reset)
Additional
functions
-
-
-
-
-
-
TAMP_IN6/TAMP_
OUT3
Table 21. STM32L562xx pin definitions (continued)
Pin Number
STM32L562xxxxP STM32L562xxxxQ STM32L562xx
STM32L562xx Pinouts and pin description
DS12736 Rev 2 93/323
Pin name
SMPS
UFQFPN48_Ext-
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
--------20-----20PF8I/O
--------21-----21PF9I/O
--------22-----22PF10I/O
5 5 5D95D912F123 5 5 512F123
6 6 6D86D813G1246 6 613G124
LQFP64_SMPS
WLCSP81_Ext-SMPS
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFBGA132_SMPS
LQFP48
LQFP64
UFQFPN48
LQFP100
LQFP144
UFBGA132
PH0-
OSC_
IN
(PH0)
PH1-
OSC_
OUT
(PH1)
Pin type
(function after reset)
FT _a
FT _a
FT _a
I/O FT - EVENTOUT OSC_IN
I/O FT - EVENTOUT OSC_OUT
I/O structure
Alternate functions
Notes
TIM5_CH3,
OCTOSPI1_IO0,
-
-
-
SAI1_SCK_B,
EVENTOUT
TIM5_CH4,
OCTOSPI1_IO1,
SAI1_FS_B,
TIM15_CH1,
EVENTOUT
OCTOSPI1_CLK,
DFSDM1_CKOUT,
SAI1_D3, TIM15_CH2,
EVENTOUT
Additional
functions
TAMP_IN7/TAMP_
OUT8
TAMP_IN8/TAMP_
OUT7
-
7 7 7E97E914G2257 7 714G225NRSTI-O
RS
-- -
T
94/323 DS12736 Rev 2
Table 21. STM32L562xx pin definitions (continued)
Pin Number
STM32L562xxxxP STM32L562xxxxQ STM32L562xx
Pinouts and pin description STM32L562xx
Pin name
SMPS
UFQFPN48_Ext-
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
- - 8E78E715H226- - 815H226PC0I/O
- - 9 F8 9 F8 16 G3 27 - - 9 16 G3 27 PC1 I/O
- - 10 F7 10 F7 17 F3 28 - - 10 17 F3 28 PC2 I/O
LQFP64_SMPS
WLCSP81_Ext-SMPS
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFBGA132_SMPS
LQFP48
LQFP64
UFQFPN48
LQFP100
LQFP144
UFBGA132
Pin type
(function after reset)
FT
_fa
FT
_fa
FT _a
I/O structure
Alternate functions
Notes
LPTIM1_IN1,
OCTOSPI1_IO7,
I2C3_SCL,
-
-
-
LPUART1_RX,
SDMMC1_D5,
SAI2_FS_A,
LPTIM2_IN1,
EVENTOUT
TRACED0,
LPTIM1_OUT,
SPI2_MOSI,
I2C3_SDA,
LPUART1_TX,
OCTOSPI1_IO4,
SAI1_SD_A,
EVENTOUT
LPTIM1_IN2,
SPI2_MISO,
DFSDM1_CKOUT,
OCTOSPI1_IO5,
EVENTOUT
Additional
functions
ADC12_IN1
ADC12_IN2
ADC12_IN3
Table 21. STM32L562xx pin definitions (continued)
Pin Number
STM32L562xxxxP STM32L562xxxxQ STM32L562xx
STM32L562xx Pinouts and pin description
DS12736 Rev 2 95/323
Alternate functions
FT _a
I/O structure
Notes
LPTIM1_ETR, LPTIM3_OUT,
SAI1_D1, SPI2_MOSI,
-
OCTOSPI1_IO6,
SAI1_SD_A,
LPTIM2_ETR,
EVENTOUT
Pin name
SMPS
UFQFPN48_Ext-
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
- - 11 G7 11 G7 18 F4 29 - - 11 18 F4 29 PC3 I/O
------------19-30VSSA S - - - -
------------20-31
8 8 12 G9 12 G9 19 H1 30 8 8 12 - H1 -
- - - G8 - G8 20 J1 31 - - - 21 J1 32
- - - H9 - H9 21 K1 32 - - - 22 K1 33 VDDA S - - - -
9913-13----9913---
LQFP64_SMPS
WLCSP81_Ext-SMPS
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFBGA132_SMPS
LQFP48
LQFP64
UFQFPN48
LQFP100
LQFP144
UFBGA132
VREF
-
VSSA
/VREF-S-- - -
VREF
+
VDDA
/VREF+S-- - -
Pin type
(function after reset)
S-- - -
S - - - VREFBUF_OUT
Additional
functions
ADC12_IN4
96/323 DS12736 Rev 2
Table 21. STM32L562xx pin definitions (continued)
Pin Number
STM32L562xxxxP STM32L562xxxxQ STM32L562xx
Pinouts and pin description STM32L562xx
Pin name
SMPS
UFQFPN48_Ext-
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
10 10 14 H8 14 H8 22 J2 33 10 10 14 23 J2 34 PA0 I/O
-------H3-----H3-
11 11 15 F6 15 F6 23 G4 34 11 11 15 24 G4 35 PA1 I/O
LQFP64_SMPS
WLCSP81_Ext-SMPS
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFBGA132_SMPS
LQFP48
LQFP64
UFQFPN48
LQFP100
LQFP144
UFBGA132
(function after reset)
OPAM P1_VINMITT- - -
Pin type
I/O structure
FT _a
FT _a
Alternate functions
Notes
TIM2_CH1, TIM5_CH1,
TIM8_ETR,
USART2_CTS/USART
-
2_NSS, UART4_TX,
SAI1_EXTCLK,
TIM2_ETR,
EVENTOUT
TIM2_CH2, TIM5_CH2,
I2C1_SMBA,
SPI1_SCK,
USART2_RTS/USART
-
2_DE, UART4_RX,
OCTOSPI1_DQS,
TIM15_CH1N,
EVENTOUT
Additional
functions
OPAMP1_VINP,
ADC12_IN5,
WKUP1,
TAMP_IN2/TAMP_
OUT1
OPAMP1_VINM,
ADC12_IN6,
TAMP_IN5/TAMP_
OUT4
Table 21. STM32L562xx pin definitions (continued)
Pin Number
STM32L562xxxxP STM32L562xxxxQ STM32L562xx
STM32L562xx Pinouts and pin description
DS12736 Rev 2 97/323
Alternate functions
FT _a
TT _a
I/O structure
Notes
TIM2_CH3, TIM5_CH3,
USART2_TX,
LPUART1_TX,
OCTOSPI1_NCS,
-
UCPD1_FRSTX1,
SAI2_EXTCLK,
TIM15_CH1,
EVENTOUT
TIM2_CH4, TIM5_CH4,
SAI1_CK1,
USART2_RX,
-
LPUART1_RX,
OCTOSPI1_CLK,
SAI1_MCLK_A,
TIM15_CH2,
EVENTOUT
Pin name
SMPS
UFQFPN48_Ext-
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
12 12 16 G6 16 G6 24 K2 35 12 12 16 25 K2 36 PA2 I/O
13 13 17 F5 17 F5 25 L1 36 13 13 17 26 L1 37 PA3 I/O
- - 18 H2 18 H2 26 G7 37 - - 18 27 G7 38 VSS S - - - -
- - 19 - 19 - 27 G6 38 - - 19 28 G6 39 VDD S - - - -
LQFP64_SMPS
WLCSP81_Ext-SMPS
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFBGA132_SMPS
LQFP48
LQFP64
UFQFPN48
LQFP100
LQFP144
UFBGA132
Pin type
(function after reset)
Additional
functions
ADC12_IN7,
WKUP4/LSCO,
COMP1_INP
OPAMP1_VOUT,
ADC12_IN8
14 14 20 H7 20 H7 28 L3 39 14 14 20 29 L3 40 PA4 I/O
TT _a
OCTOSPI1_NCS,
SPI1_NSS, SPI3_NSS,
-
USART2_CK,
SAI1_FS_B,
LPTIM2_OUT,
EVENTOUT
ADC12_IN9,
DAC1_OUT1
98/323 DS12736 Rev 2
Table 21. STM32L562xx pin definitions (continued)
Pin Number
STM32L562xxxxP STM32L562xxxxQ STM32L562xx
Pinouts and pin description STM32L562xx
Pin name
SMPS
UFQFPN48_Ext-
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
15 15 21 H6 21 H6 29 M1 40 15 15 21 30 M1 41 PA5 I/O
16 16 22 G5 22 G5 30 L2 41 16 16 22 31 L2 42 PA6 I/O
-------M2-----M2-
LQFP64_SMPS
WLCSP81_Ext-SMPS
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFBGA132_SMPS
LQFP48
LQFP64
UFQFPN48
LQFP100
LQFP144
UFBGA132
(function after reset)
OPAM P2_VINMITT- - -
Pin type
I/O structure
TT _a
FT _a
Alternate functions
Notes
TIM2_CH1, TIM2_ETR,
TIM8_CH1N,
-
-
SPI1_SCK,
LPTIM2_ETR,
EVENTOUT
TIM1_BKIN,
TIM3_CH1, TIM8_BKIN, SPI1_MISO,
USART3_CTS/USART
3_NSS,
LPUART1_CTS,
OCTOSPI1_IO3,
TIM16_CH1,
EVENTOUT
Additional
functions
ADC12_IN10,
DAC1_OUT2
OPAMP2_VINP,
ADC12_IN11
Table 21. STM32L562xx pin definitions (continued)
Pin Number
STM32L562xxxxP STM32L562xxxxQ STM32L562xx
STM32L562xx Pinouts and pin description
DS12736 Rev 2 99/323
Pin name
SMPS
UFQFPN48_Ext-
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
17 17 23 J7 23 J7 31 K3 42 17 17 23 32 K3 43 PA7 I/O
- - 24 G4 - G4 - M3 - - - 24 33 M3 44 PC4 I/O
-------J3---2534J345PC5I/O
18 18 25 J6 24 J6 32 M4 43 18 18 26 35 M4 46 PB0 I/O
LQFP64_SMPS
WLCSP81_Ext-SMPS
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFBGA132_SMPS
LQFP48
LQFP64
UFQFPN48
LQFP100
LQFP144
UFBGA132
Pin type
(function after reset)
FT
_fa
FT _a
FT _a
TT _a
I/O structure
Alternate functions
Notes
TIM1_CH1N,
TIM3_CH2,
TIM8_CH1N,
-
-
-
-
I2C3_SCL,
SPI1_MOSI,
OCTOSPI1_IO2,
TIM17_CH1,
EVENTOUT
USART3_TX,
OCTOSPI1_IO7,
EVENTOUT
SAI1_D3,
USART3_RX,
EVENTOUT
TIM1_CH2N,
TIM3_CH3,
TIM8_CH2N,
SPI1_NSS,
USART3_CK,
OCTOSPI1_IO1,
COMP1_OUT,
SAI1_EXTCLK,
EVENTOUT
Additional
functions
OPAMP2_VINM,
ADC12_IN12
COMP1_INM,
ADC12_IN13
ADC12_IN14,
WKUP5,
TAMP_IN4/TAMP_
OUT5,
COMP1_INP
OPAMP2_VOUT,
ADC12_IN15
100/323 DS12736 Rev 2
Table 21. STM32L562xx pin definitions (continued)
Pin Number
STM32L562xxxxP STM32L562xxxxQ STM32L562xx
Pinouts and pin description STM32L562xx
Alternate functions
FT _a
I/O structure
Notes
TIM1_CH3N,
TIM3_CH4,
TIM8_CH3N,
DFSDM1_DATIN0,
USART3_RTS/USART
­LPUART1_RTS/LPUA
3_DE,
RT1_DE,
OCTOSPI1_IO0,
LPTIM2_IN1,
EVENTOUT
LPTIM1_OUT,
I2C3_SMBA,
DFSDM1_CKIN0, OCTOSPI1_DQS, UCPD1_FRSTX1,
EVENTOUT
OCTOSPI1_NCLK,
EVENTOUT
Pin name
SMPS
UFQFPN48_Ext-
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
19 19 26 H5 25 H5 33 L4 44 19 19 27 36 L4 47 PB1 I/O
20 20 27 J5 26 J5 34 K4 45 20 20 28 37 K4 48 PB2 I/O FT -
-------K546----K549PF11I/OFT-
-------L547----L550PF12I/OFT-FMC_A6, EVENTOUT -
---J9-J9--48-----51VSSS-- - -
LQFP64_SMPS
WLCSP81_Ext-SMPS
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFBGA132_SMPS
LQFP48
LQFP64
UFQFPN48
LQFP100
LQFP144
UFBGA132
Pin type
(function after reset)
Additional
functions
COMP1_INM,
ADC12_IN16
RTC_OUT2,
COMP1_INP
-
---J8-J8--49-----52VDDS-- - -
-------M550----M553PF13I/OFT-
I2C4_SMBA, FMC_A7,
EVENTOUT
-
Loading...