STMicroelectronics STM32L4R9AI MCU User Manual

Introduction
UM2248
User manual
Evaluation board with STM32L4R9AI MCU
The STM32L4R9I-EVAL board is designed as a complete demonstration and development platform for the STMicroelectronics Arm microcontroller with four I²C buses, three SPI and six USART ports, CAN port, two SAI ports, 12-bit ADC, 12-bit DAC, internal 640-Kbyte SRAM and 2-Mbyte Flash memory, two Octo-SPI memory interfaces, touch-sensing capability, USB OTG FS port, LCD-TFT controller, MIPI interface and JTAG debugging support.
The STM32L4R9I-EVAL, shown in Figure 3, Figure 4, and Figure 5, is used as a reference design for user application development before porting to the final product.
The full range of hardware features on the board helps the user to evaluate all the peripherals (USB, USART, digital microphones, ADC and DAC, TFT LCD, MIPI DSI display, LDR, SRAM, NOR Flash memory device, Octo-SPI Flash memory device, microSD™ card, sigma-delta modulators, CAN transceiver, EEPROM) and develop applications. Extension headers allow easy connection of a daughterboard or wrapping board for a specific application.
An ST-LINK/V2-1 is integrated on the board, as the embedded in-circuit debugger and programmer for the STM32 MCU and the USB virtual COM port bridge.
DSI host controller, flexible memory controller (FMC), 8- to 14-bit camera
Cortex®-M4 core-based STM32L4R9AI
SM
September 2020 UM2248 Rev 4 1/72
www.st.com
1
Contents UM2248
Contents
1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Codification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Development environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Development toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Demonstration software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Delivery recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Technology partners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Hardware layout and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.1 STM32L4R9I-EVAL board views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 ST-LINK/V2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3.1 Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3.2 ST-LINK/V2-1 firmware upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.4 ETM trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.5 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.5.1 Supplying the board through ST-LINK/V2-1 USB port . . . . . . . . . . . . . . 20
6.5.2 Using ST-LINK/2-1 along with powering through the CN18 power jack 20
6.6 Clock references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.7 Reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.8 Boot option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.8.1 Bootloader limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.9 Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.9.1 Digital microphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.9.2 Headphones outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.9.3 Limitations in using audio features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.10 USB OTG FS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2/72 UM2248 Rev 4
UM2248 Contents
6.10.1 STM32L4R9I-EVAL used as a USB device . . . . . . . . . . . . . . . . . . . . . . 26
6.10.2 STM32L4R9I-EVAL used as a USB host . . . . . . . . . . . . . . . . . . . . . . . . 27
6.10.3 Limitations in using USB OTG FS port . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.10.4 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.11 RS232 port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.11.1 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.12 microSD™ card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.12.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.12.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.13 Motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.13.1 Board modifications to enable motor control . . . . . . . . . . . . . . . . . . . . . 30
6.13.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.14 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.14.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.14.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.15 Extension connectors CN5, CN6, CN13, and CN14 . . . . . . . . . . . . . . . . 34
6.16 User LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.17 Physical input devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.17.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.18 Operational amplifier and comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.18.1 Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.18.2 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.18.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.19 Analog input, output, VREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.20 SRAM device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.20.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.20.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.21 NOR Flash memory device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.21.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.21.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.22 EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.22.1 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.23 EXT_I2C connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.24 Octo-SPI Flash memory device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.24.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
UM2248 Rev 4 3/72
5
Contents UM2248
6.24.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.25 Octo-SPI DRAM device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.25.1 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.25.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.26 Touch-sensing button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.26.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.27 MFX MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.28 IDD measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.29 DSI display (MIPI) connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.29.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.30 TFT LCD (RGB and FMC mode) connector . . . . . . . . . . . . . . . . . . . . . . . 45
6.30.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.31 PMOD connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.32 MB1314 DSI display board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.33 MB1315 TFT LCD board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.1 CN1 motor-control connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 CN2 external I
7.3 CN3 USB OTG FS Micro-AB connector . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4 CN4 analog input-output connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.5 CN5, CN6, CN13, and CN14 extension connectors . . . . . . . . . . . . . . . . . 51
7.6 CN7 RS232 connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.7 CN8 microSD™ connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.8 CN9 MFX programming connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.9 CN11 STDC14 connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.10 CN12 trace debugging connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.11 CN15 TAG connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.12 CN16 DSI display connector (MIPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.13 CN17 JTAG connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.14 CN18 power connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.15 CN19 ST-LINK/V2-1 programming connector . . . . . . . . . . . . . . . . . . . . . 61
2
C connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.16 CN20 TFT LCD connector (RGB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.17 CN21 ST-LINK/V2-1 USB Micro-B connector . . . . . . . . . . . . . . . . . . . . . 61
4/72 UM2248 Rev 4
UM2248 Contents
7.18 CN22 CAN D-type male connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Appendix A I/O assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8 STM32L4R9I-EVAL board information . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.1 Product marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2 Board revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.3 Board known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
UM2248 Rev 4 5/72
5
List of tables UM2248
List of tables
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. Codification explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Setting of configuration elements for CN12 trace connector . . . . . . . . . . . . . . . . . . . . . . . 19
Table 4. Power supply related jumpers settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 5. X1 crystal related solder bridge settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. X2 crystal related solder bridge settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 7. Boot selection switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 8. Digital microphone-related jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 9. Motor-control terminal and function assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 10. CAN related jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 11. Port assignment for control of physical input devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 12. Configuration elements related to OpAmp1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 13. Configuration elements related to Comp2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. SRAM chip select configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 15. NOR Flash memory-related jumper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 16. Configuration elements related to Octo-SPI Flash device . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 17. Touch-sensing-related configuration elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 18. MFX signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 19. IDD measurement related jumper setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 20. CN16 DSI display module connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 21. CN20 TFT LCD module connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 22. P1 PMOD connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 23. Pin function description of the CN1 MB1314 board connector . . . . . . . . . . . . . . . . . . . . . . 46
Table 24. Pin function description of the CN1 MB1315 board connector . . . . . . . . . . . . . . . . . . . . . . 48
Table 25. CN1 motor-control connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 26. CN2 EXT_I2C connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 27. CN3 USB OTG FS Micro-AB connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 28. CN4 analog input-output connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 29. CN5 daughterboard extension connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 30. CN6 daughterboard extension connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 31. CN13 daughterboard extension connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 32. CN14 daughterboard extension connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 33. RS232 D-sub male connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 34. CN8 microSD™ connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 35. CN11 STDC14 debugging connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 36. CN12 trace debugging connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 37. CN15 TAG debugging connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 38. CN17 JTAG/SWD debugging connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 39. CN21 USB Micro-B connector (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 40. CN22 CAN D-type 9-pin male connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 41. STM32L4R9I-EVAL I/O assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 42. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6/72 UM2248 Rev 4
UM2248 List of figures
List of figures
Figure 1. STM32L4R9I-EVAL hardware block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. STM32L4R9I-EVAL board (top side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3. STM32L4R9I-EVAL board (top view) with round DSI display MB1314 daughterboard . . . 13
Figure 4. STM32L4R9I-EVAL board (top view) with TFT LCD MB1315 daughterboard . . . . . . . . . . 14
Figure 5. STM32L4R9I-EVAL board (bottom view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 6. MB1313 STM32L4R9I-EVAL board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 7. MB1314 DSI display daughterboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 8. USB composite device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 9. PCB top-side rework for motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 10. PCB bottom-side rework for motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 11. CN1 motor-control connector (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 12. CN2 EXT_I2C connector (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 13. CN3 USB OTG FS Micro-AB connector (front view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 14. CN4 analog input-output connector (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 15. RS232 D-sub male connector (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 16. CN8 microSD™ connector (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 17. CN11 STDC14 debugging connector (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 18. CN12 ETM trace debugging connector (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 19. CN17 JTAG/SWD debugging connector (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 20. CN18 power-supply connector (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 21. CN21 USB Micro-B connector (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 22. CN22 CAN D-type 9-pin male connector (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
UM2248 Rev 4 7/72
7
Features UM2248

1 Features

STM32L4R9AII6 Arm
®(a)
-based microcontroller with 2 Mbytes of Flash memory and
640 Kbytes of RAM in a UFBGA169 package
1.2” 390x390 pixels MIPI DSI
SM
round LCD
4.3” 480x272 pixels TFT LCD with RGB mode
Two ST-MEMS digital microphones
8-Gbyte microSD™ card bundled
16-Mbit (1 M x 16 bit) SRAM device
128-Mbit (8 M x 16 bit) NOR Flash memory device
512-Mbit Octo-SPI Flash memory device with double transfer rate (DTR) support
64-Mbit Octo-SPI SRAM memory device with HyperBus interface support
EEPROM supporting 1 MHz I²C-bus communication speed
Reset and wake-up/tamper buttons
Joystick with four-way controller and selector
Touch-sensing button
Light-dependent resistor (LDR)
Potentiometer
Coin battery cell for power backup
Board connectors:
Two jack outputs for a stereo audio headphone with independent content
Slot for microSD™ card supporting SD and SDHC
TFT LCD standard connector
–MIPI DSI
SM
display standard connector
EXT_I2C connector supports I²C bus
RS-232 port configurable for communication or MCU flashing
USB OTG FS Micro-AB port
CAN 2.0A/B-compliant port
Connector for ADC input and DAC output
JTAG/SWD connector
ETM trace debug connector
User interface through USB virtual COM port
Embedded ST-LINK/V2-1 debug and flashing facility
TAG connector
STDC14 connector
PMOD connector
Extension connector for the daughterboard
Motor-control connector on the daughterboard
Flexible power-supply options: power jack, ST-LINK/V2-1 USB connector,
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
8/72 UM2248 Rev 4
UM2248 Ordering information
USB OTG FS connector, daughterboard
On-board ST-LINK/V2-1 debugger/programmer with USB re-enumeration capability: mass storage, virtual COM port and debug port
Microcontroller supply voltage: fixed 3.3 V or adjustable range from 1.71 V to 3.6 V
MCU current consumption measurement circuit
Access to the comparator and operational amplifier of STM32L4R9AII6
Comprehensive free software libraries and examples available with the STM32Cube
package
Support of a wide choice of integrated development environments (IDEs) including IAR Embedded Workbench
, MDK-ARM, and STM32CubeIDE

2 Ordering information

To order the STM32L4R9I-EVAL Evaluation board, refer to Ta bl e 1. Additional information is available from the datasheet and reference manual of the target STM32.

Table 1. Ordering information

STM32L4R9I-EVAL
1. DSI display daughterboard
2. TFT LCD daughterboard

2.1 Codification

The meaning of the codification is explained in Tabl e 2.
STM32XXYY-EVAL Description Example: STM32L4R9I-EVAL
XX
YY
I
Order code
Board
reference
– MB1313 – MB1314 – MB1315
(1)
(2)
Targeted STM32
STM32L4R9AII6

Table 2. Codification explanation

MCU series in STM32 Arm Cortex MCUs
STM32 product line
in the
series
STM32 Flash memory size: – I for 2 Mbytes
STM32L4 Series
STM32L4R9
2 Mbytes
UM2248 Rev 4 9/72
71
Development environment UM2248

3 Development environment

3.1 System requirements

Windows® OS (7, 8, and 10), Linux® 64-bit, or macOS
USB Type-A or USB Type-C® to Micro-B cable

3.2 Development toolchains

IAR Systems - IAR Embedded Workbench
Keil® - MDK-ARM
STMicroelectronics - STM32CubeIDE
(b)

3.3 Demonstration software

The demonstration software, included in the STM32Cube MCU Package corresponding to the on-board microcontroller, is preloaded in the STM32 Flash memory for easy demonstration of the device peripherals in standalone mode. The latest versions of the demonstration source code and associated documentation can be downloaded from
www.st.com.
®(b)
®(a)

4 Delivery recommendations

Before the first use, make sure that no damage occurred to the boards during shipment and no socketed components are loosen in their sockets or fallen into the plastic bag.
In particular, pay attention to the following components:
1. microSD™ card in its CN8 receptacle
2. DSI display MB1314 daughterboard in its CN16 connector
For product information related to the STM32L4R9AII6 microcontroller, visit www.st.com website.

5 Technology partners

MACRONIX: 512-Mbit Octo-SPI Flash, part number MX25LM51245GXDI00
a. macOS® is a trademark of Apple Inc. registered in the U.S. and other countries.
b. On Windows only
10/72 UM2248 Rev 4
UM2248 Hardware layout and configuration
MSv46034V2
3.3 V
power supply
1.8 V
power supply
VDD ADJ
power supply
STM32L4R9AII6
UFBGA169
VBAT
RTC
Octo SPI1
Octo SPI2
SDIO1
OTG FS
TSC
LPUSART1
SPI2
CAN
UART3
DAP
DFSDM
SAI1
MIPI DSI
RGB
FMC
I2C2
ADC/DAC
OPAMP1
COMP2
GPIO
Audio codec
DSI LCD connector
TFT LCD connector
NOR Flash
SRAM/PSRAM
EEPROM
EXT_I2C connector
ADC/DAC connector
Potentiometer/LDR
Joystick/buttons
LEDs
Motor control
connector
PMOD connector
CAN connector
ST-LINK/V2-1
JTAG/SWD connector
TAG connector
Trace connector
STDC14 connector
3 V battery
32 KHz crystal
Octo SPI Flash
Octo SPI SRAM
microSD card
USB connector
One TS PAD
RS232 connector
MEMs

6 Hardware layout and configuration

The STM32L4R9I-EVAL board is designed around the STM32L4R9AII6 target microcontroller in a UFBGA 169-pin package. connections with peripheral components. Figure 2 shows the location of the main components on the Evaluation board. Figure 3, Figure 4, and Figure 5 are the three images showing the STM32L4R9I-EVAL board top view with round DSI display, top view with TFT LCD, and bottom view.

Figure 1. STM32L4R9I-EVAL hardware block diagram

Figure 1 illustrates the STM32L4R9AII6
UM2248 Rev 4 11/72
71
Hardware layout and configuration UM2248

Figure 2. STM32L4R9I-EVAL board (top side)

12/72 UM2248 Rev 4
UM2248 Hardware layout and configuration

6.1 STM32L4R9I-EVAL board views

Figure 3. STM32L4R9I-EVAL board (top view) with round DSI display MB1314 daughterboard

Picture is not contractual
UM2248 Rev 4 13/72
71
Hardware layout and configuration UM2248

Figure 4. STM32L4R9I-EVAL board (top view) with TFT LCD MB1315 daughterboard

Picture is not contractual
14/72 UM2248 Rev 4
UM2248 Hardware layout and configuration

Figure 5. STM32L4R9I-EVAL board (bottom view)

Picture is not contractual
UM2248 Rev 4 15/72
71
Hardware layout and configuration UM2248

6.2 Mechanical dimensions

Figure 6. MB1313 STM32L4R9I-EVAL board

16/72 UM2248 Rev 4
UM2248 Hardware layout and configuration

Figure 7. MB1314 DSI display daughterboard

6.3 ST-LINK/V2-1

ST-LINK/V2-1 facility for debugging and flashing of the STM32L4R9AII6 is integrated on the STM32L4R9I-EVAL board.
Compared to the ST-LINK/V2 stand-alone tool available from STMicroelectronics, ST­LINK/V2-1 offers new features and drops some others.
New features:
USB software re-enumeration
Virtual COM port interface on USB
Mass storage interface on USB
USB power management request for more than 100mA power on USB
UM2248 Rev 4 17/72
71
Hardware layout and configuration UM2248
Features dropped:
SWIM interface
The CN21 USB connector can be used to power STM32L4R9I-EVAL regardless of the ST-LINK/V2-1 facility use for debugging or for flashing STM32L4R9AII6. This holds also when the ST-LINK/V2 stand-alone tool is connected to CN12, CN17, CN11, or CN15 connector and used for debugging or flashing STM32L4R9AII6. Section 6.5 provides more details on powering STM32L4R9I-EVAL. For full detail on both versions of the debug and flashing tool, the stand-alone ST-LINK/V2 and the embedded ST-LINK/V2-1, refer to www.st.com.

6.3.1 Drivers

Before connecting STM32L4R9I-EVAL to a Windows (XP, 7, 8 10) PC via USB, a driver for ST-LINK/V2-1 must be installed. It is available from www.st.com.
In case the STM32L4R9I-EVAL board is connected to the PC before installing the driver, the Windows device manager may report some USB devices found on STM32L4R9I-EVAL as “Unknown”. To recover from this situation, after installing the dedicated driver downloaded from www.st.com, the association of “Unknown” USB devices found on STM32L4R9I-EVAL to this dedicated driver must be updated in the device manager manually. It is recommended to proceed using the USB Composite Device line, as shown in
Figure 8.
Figure 8. USB composite device

6.3.2 ST-LINK/V2-1 firmware upgrade

For its operation, ST-LINK/V2-1 employs a dedicated MCU with Flash memory. Its firmware determines ST-LINK/V2-1 functionality and performance. The firmware may evolve during the life span of STM32L4R9I-EVAL to include new functionality, fix bugs, or support new target microcontroller families. It is therefore recommended to keep ST-LINK/V2-1 firmware up to date. The latest version is available from www.st.com.

6.4 ETM trace

The CN12 connector is available to output trace signals used for debugging. By default, the Evaluation board is configured such that, STM32L4R9AII6 signals PE2, PE5, and PE6 are not connected to trace outputs Trace_CK, Trace_D2, and Trace_D3 of CN12. They are used for other functions.
18/72 UM2248 Rev 4
UM2248 Hardware layout and configuration
Tabl e 3 shows the setting of configuration elements to shunt PE2, PE5, and PE6 MCU ports
to the CN12 connector, to use them as debug trace signals.

Table 3. Setting of configuration elements for CN12 trace connector

Element Setting Configuration
R53
SB56
R209 SB59
R211 SB60
SB56 open
SB56 closed
SB59 open
R209 out
SB59 closed
SB60 open
R211 out
SB60 closed
Warning: Enabling the CN12 trace outputs through hardware modifications described in
Tabl e 3 results in reducing the memory address bus width to 20 address lines and so the
addressable space to 1 Mword of 16 bits. As a consequence, the onboard SRAM and NOR Flash memory usable capacity is reduced to 16 Mbits.

6.5 Power Supply

The STM32L4R9I-EVAL board is designed to be powered from 5 V DC power source. It incorporates a precise polymer Zener diode (Poly-Zen) protecting the board from damage due to the wrong power supply. One of the following four 5 an appropriate board configuration:
Power jack CN18 marked PSU_DC5V on the board. A jumper must be placed in E5V location of JP11. The positive pole is on the center pin as illustrated in Figure 20.
Micro-B USB receptacle CN21 of ST-LINK/V2-1 provides up to 500mA to the board. Offering enumeration feature described in Section 6.5.1.
Micro-AB USB receptacle CN3 of USB OTG interface marked USB OTG_FS on the board, supplies up to 500mA to the board.
Pin 39 of CN5 and Pin 39 of CN6 extension connectors for a custom daughterboard, marked D5V on the board.
R53 in
R53 out
R209 in
R211 in
Default setting. PE2 connected to memory address line A23.
PE2 connected to Trace_CK on CN12. A23 pulled down.
Default setting. PE5 connected to memory address line A21.
PE5 connected to Trace_D2 on CN12. A21 pulled down.
Default setting. PE6 connected to memory address line A22.
PE6 connected to Trace_D3 on CN12. A22 pulled down.
V DC power inputs is usable with
No external power supply is provided with the board.
LD7 red LED turns on when the voltage on the power line marked as +5 V is present. All supply lines required for the operation of the components on STM32L4R9I-EVAL are derived from that +5
V line.
Table 4 describes the setting of all jumpers related to powering the STM32L4R9I-EVAL and
its extension board. VDD_MCU is STM32L4R9AII6 digital supply voltage line. It is possible to drive the boards with either fixed 3.3 RV3 potentiometer and producing a range of voltages between 1.71
V or with an adjustable voltage regulator controlled by
V and 3.6 V.
UM2248 Rev 4 19/72
71
Hardware layout and configuration UM2248

6.5.1 Supplying the board through ST-LINK/V2-1 USB port

To power STM32L4R9I-EVAL in this way, the USB host (a PC) gets connected with the STM32L4R9I-EVAL board’s Micro-B USB receptacle, via a USB cable. This event is the beginning of the USB enumeration procedure. In its initial phase, the host’s USB port current supply capability is limited to 100 mA. It is enough because only the ST-LINK/V2-1 part of STM32L4R9I-EVAL draws power at that time. If the SB33 solder bridge is open, the U22 ST890 power switch is set in the OFF position, which isolates the remainder of STM32L4R9I-EVAL from the power source. In the next phase of the enumeration procedure, the host PC informs the ST-LINK/V2-1 facility of its capability to supply up to 300 mA of current. If the answer is positive, the ST-LINK/V2-1 sets the U22 ST890 switch to ON position to supply power to the remainder of the STM32L4R9I-EVAL board. If the PC USB port is not capable of supplying up to 300 mA of current, the CN18 power jack is available to supply the board.
If a short-circuit occurs on the board, the ST890 power switch protects the USB port of the host PC against a current exceeding 600 mA. In such an event, the LD8 LED lights on.
The STM32L4R9I-EVAL board is also supply-able from a USB power source not supporting enumeration, such as a USB charger, as shown in power switch ON regardless of the enumeration procedure result and passes the power unconditionally to the board.
The LD7 red LED turns on whenever the whole board is powered.
Table 4. ST-LINK/V2-1 turns the ST890

6.5.2 Using ST-LINK/2-1 along with powering through the CN18 power jack

If the board requires more than 300 mA of supply current, this cannot be provided by the host PC connected to the ST-LINK/2-1 USB port, used for debugging or flashing STM32L4R9AII6. In such a case, the board is supplied through CN18 (marked PSU_DC5V on the board).
To do this, it is important to power the board before connecting it with the host PC, which requires the following sequence to be respected:
1. Set the jumper in JP11 header in E5V position,
2. Connect the external 5 V power source to CN18,
3. Check the red LED LD7 is turned on,
4. Connect the host PC to the CN12 USB connector.
In case the board requires more than 300 mA and the host PC is connected via USB before the board is powered from CN18, there is a risk of the following events to occur, in the order of severity:
1. The host PC is capable of supplying 300 mA (the enumeration succeeds) but it does not incorporate any over-current protection on its USB port. It is damaged due to over­current.
2. The host PC is capable of supplying 300 mA (the enumeration succeeds) and it has built-in over-current protection on its USB port, limiting or shutting down the power out of its USB port when the excessive current requirement from STM32L4R9I-EVAL is detected. This causes an operating failure to STM32L4R9I-EVAL.
3. The host PC is not capable of supplying 300 mA (the enumeration fails) so ST-LINK/V2­1 does not supply the remainder of STM32L4R9I-EVAL from its USB port V
BUS
line.
20/72 UM2248 Rev 4
UM2248 Hardware layout and configuration
E5V
U5V
STlk D5V
E5V
U5V
STlk D5V
E5V
U5V
STlk D5V
E5V
U5V
STlk D5V
E5V
U5V
STlk D5V
1
3
2
1
3
2
1
3
2
1
3
2
1
3
2
1
3
2
Jumper /
solder bridge
JP11
Power
source
selector
JP8
Vbat
connection
JP10 VDD_MCU connection
JP1
VDD_USB connection
Table 4. Power supply related jumpers settings
Setting Configuration
STM32L4R9I-EVAL is supplied through the CN18 power jack (marked PSU_DC5V). CN5 and CN6 extension connectors do not pass the 5 V of STM32L4R9I-EVAL to the daughterboard.
STM32L4R9I-EVAL is supplied through the CN3 Micro-AB USB connector. CN5 and CN6 extension connectors do not pass the 5 V of STM32L4R9I-EVAL to the daughterboard.
Default setting. STM32L4R9I-EVAL is supplied through the CN21 Micro-B
USB connector. CN5 and CN6 extension connectors do not pass the 5 V of STM32L4R9I-EVAL to the daughterboard.
STM32L4R9I-EVAL is supplied through pin 39 of CN5 and pin 39 of CN6 extension connectors.
STM32L4R9I-EVAL is supplied through the CN18 power jack. CN5 and CN6 extension connectors pass the 5 V of STM32L4R9I-EVAL to the daughterboard. Make sure to disconnect from the daughterboard, any power supply that may generate conflict with the power supply on the CN18 power jack.
Vbat is connected to the battery.
Default setting. Vbat is connected to VDD.
Default setting. VDD_MCU (VDD terminals of STM32L4R9AII6) is
connected to fixed +3.3 V.
VDD_MCU is connected to voltage in the range from +1.71 V to +3.6 V, adjustable with potentiometer RV3.
Default setting. VDD_USB (VDD USB terminal of STM32L4R9AII6) is
connected with VDD_MCU.
VDD_USB is connected to +3.3 V.
UM2248 Rev 4 21/72
71
Hardware layout and configuration UM2248
1
3
2
1
3
2
1
2
1
2
Table 4. Power supply related jumpers settings (continued)
Jumper /
solder
bridge
JP2
VDDA
connection
Setting Configuration
Default setting. VDDA terminal of STM32L4R9AII6 is connected with
VDD_MCU.
VDDA terminal of STM32L4R9AII6 is connected to +3.3 V.
JP3
VDD_IO
connection
SB33
SB33 Off
Powering
through
USB of
ST-LINK/
V2-1
1. On all ST-LINK/V2-1 boards, the target application is now able to run even if the ST-LINK/V2-1 is either not connected to a USB host, or is powered through a USB charger (or through a not-enumerating USB host).
SB33 On

6.6 Clock references

Two clock references are available on STM32L4R9I-EVAL for the STM32L4R9AII6 microcontroller.
32.768 kHz crystal X1, for embedded RTC
25 MHz crystal X2, for the main clock generator
Default setting. VDD_IO (VDDIO2 terminals of STM32L4R9AII6) is
connected with VDD_MCU.
VDD_IO is open.
Default setting. The CN21 ST-LINK/V2-1 Micro-B USB connector can be
used to supply power to the STM32L4R9I-EVAL board remainder, depending on the powering capability of the host PC USB port declared in the enumeration.
CN21 Micro-B USB connector of ST-LINK/V2-1 supplies power to the STM32L4R9I-EVAL board remainder. This is the setting for powering the board through CN21 using a USB charger)
(1)
.
The main clock generation is possible via an internal RC oscillator, disconnected by removing resistors R61 and R65 when the internal RC clock is used.
Solder
bridge
SB50
22/72 UM2248 Rev 4

Table 5. X1 crystal related solder bridge settings

Setting Configuration
Default setting.
Open
Closed
PC14 OSC32_IN terminal is not routed to the CN5 extension connector. X1 is used as the clock reference.
PC14 OSC32_IN is routed to the CN5 extension connector. Resistor R50 must be removed, for the X1 quartz circuit not to disturb the clock reference or source on the daughterboard.
UM2248 Hardware layout and configuration
Table 5. X1 crystal related solder bridge settings (continued)
Solder
bridge
SB49
Solder
bridge
SB52
SB53
Setting Configuration
Default setting.
Open
Closed
PC15 OSC32_OUT terminal is not routed to the CN5 extension connector. X1 is used as the clock reference.
PC15 OSC32_OUT is routed to the CN5 extension connector. Resistor R49 must be removed, for the X1 quartz circuit not to disturb clock reference on the daughterboard.

Table 6. X2 crystal related solder bridge settings

Setting Configuration
Default setting.
Open
Closed
Open
Closed
PH0 OSC_IN terminal is not routed to the CN5 extension connector. X2 is used as the clock reference.
PH0 OSC_IN is routed to the CN5 extension connector. Resistor R61 must be removed, in order not to disturb clock reference or source on the daughterboard.
Default setting. PH1 OSC_OUT terminal is not routed to the CN5 extension
connector. X2 is used as the clock reference.
PH1 OSC_OUT is routed to the CN5 extension connector. Resistor R65 must be removed, in order not to disturb clock reference or source on the daughterboard.

6.7 Reset sources

The reset signal of the STM32L4R9I-EVAL board is active LOW.
Sources of reset are listed below:
reset button B2
CN17 JTAG/SWD connector, CN12 ETM trace connector, CN11 STDC14 connector
and CN15 TAG connector (reset from debug tools)
reset through pin 27 of CN6 extension connector (reset from daughterboard)
embedded ST-LINK/V2-1

6.8 Boot option

After reset, the STM32L4R9AII6 MCU boot is available from the following embedded memory locations:
main (user, non-protected) Flash memory
system (protected) Flash memory
RAM, for debugging
UM2248 Rev 4 23/72
71
Hardware layout and configuration UM2248
0<->1
0<->1
The boot option is configured by setting switch SW1 (BOOT) and the boot base address programmed in the nBOOT1, nBOOT0, and nSWBOOT0 of FLASH_OPTR option bytes.
Switch Setting Description
SW1

Table 7. Boot selection switch

Default setting. BOOT0 line is tied low. STM32L4R9AII6 boots from main Flash
memory or system memory.
BOOT0 line is tied high. STM32L4R9AII6 boots from system Flash memory (nBOOT1 bit of FLASH_OPTR register is set high) or from RAM (nBOOT1 is set low).

6.8.1 Bootloader limitations

Boot from system Flash memory results in executing bootloader code stored in the system Flash memory protected against writing and erasing. This allows in-system programming (ISP), that is, flashing the STM32 user Flash memory. It also allows writing data into RAM. The data come in via one of the communication interfaces such as USART, SPI, I2C bus, USB, or CAN.
The bootloader version is identified by reading the Bootloader ID at the address 0x1FFF6FFE: the content is 0x91 for bootloader V9.1 and 0x92 for V9.2.
The STM32L4R9AII6 part soldered on the STM32L4R9I-EVAL main board is marked with a date code corresponding to its date of manufacturing. STM32L4R9AII6 parts with a date code prior or equal to week 37 of 2017 are fitted with bootloader V9.1 affected by the limitations to be worked around, as described hereunder. Parts with the date code starting from week 38 of 2017 contain bootloader V9.2 in which the limitations no longer exist.
To locate the visual date code information on the STM32L4R9II6 package, refer to its datasheet (DS12023) available at www.st.com, section Package Information. Date code related portion of the package marking takes Y WW format, where Y is the last digit of the year and WW is the week. For example, a part manufactured in week 38 of 2017 bares the date code 7 38.
There is also another way to identify the need for a workaround: before opening the blister of the Discovery Kit, just check the backside of the blister. At the bottom left side, if the reference number is equal or higher than 32L4R9IDISCO/ 02-0, it means the bootloader version is V9.2 and there is no need to apply a workaround. Any other inferior number like 01-0 needs the workaround.
The bootloader ID for the bootloader V9.1 is 0x91.
The following limitation exists in the bootloader V9.1:
Some user Flash memory data get corrupted when written via SPI interface
Description:
During bootloader SPI Write Flash operation, some random 64-bits (2 double-words) may be left blank at 0xFF.
Workarounds:
24/72 UM2248 Rev 4
UM2248 Hardware layout and configuration
1
3
2
1
3
2
1
3
2
1
3
2
WA1: add a delay between sending the Write command and its ACK request. Its duration must be the duration of the 256-Byte Flash write time.
WA2: read back after each writing operation (256 bytes or at end of user code flashing) and in case of error start writing again.
WA3: Using bootloader, load a patch code in RAM to write in Flash memory through the same Write Memory write protocol as bootloader (code provided by ST).

6.9 Audio

A codec connected to the STM32L4R9AII6 SAI interface supports the DSAI port TDM feature. This offers STM32L4R9AII6 the capability to simultaneously stream two independent stereo audio channels to two separate stereo analog audio outputs.
There are two digital microphones on the STM32L4R9I-EVAL board.

6.9.1 Digital microphones

U30 and U31 on the STM32L4R9I-EVAL board are MP34DT01TR MEMS digital omnidirectional microphones providing PDM (pulse density modulation) outputs. To share the same data line, their outputs are interlaced. The combined data output of the microphones is directly routed to STM32L4R9AII6 terminals, thanks to the integrated input digital filters. The microphones are supplied with a programmable clock generated directly by STM32L4R9AII6.
As an option, the microphones are connected to U26 WM8994, the Wolfson audio codec device. In that configuration, U26 also supplies the PDM clock to the microphones.
Regardless of where the microphones are routed to, STM32L4R9AII6 or WM8994, their power supplier is either VDD or MICBIAS1 output of the WM8994 codec device.
Tabl e 8 shows the settings of all jumpers associated with the digital microphones on the
board.
Jumper Setting Configuration
JP16
JP15
Table 8. Digital microphone-related jumper settings
The PDM clock for digital microphones comes from the WM8994 codec.
Default setting. The PDM clock for digital microphones comes from
STM32L4R9AII6.
The power supply of digital microphones is generated by WM8994 codec.
Default setting. The power supply of digital microphones is V
DD
.
UM2248 Rev 4 25/72
71
Hardware layout and configuration UM2248

6.9.2 Headphones outputs

The STM32L4R9I-EVAL board potentially drives two sets of stereo headphones. Identical or different stereo audio contents are played back in each set of headphones. STM32L4R9AII6 sends up to two independent stereo audio channels, via its SAI1 TDM port, to the WM8994 codec device. The codec device converts the digital audio stream to stereo analog signals. It then boosts them for direct drive of headphones connecting to 3.5 on the board, CN24 for Audio-output1, and CN23 for Audio_output2.
The CN23 jack takes its signal from the output of the WM8994 codec device intended for driving an amplifier for loudspeakers. A hardware adaptation is incorporated on the board to make it compatible with a direct headphone drive. The adaptation consists of coupling capacitors blocking the DC component of the signal, attenuator, and anti-pop resistors. The loudspeaker output of the WM8994 codec device must be configured by software in a linear mode called “class AB” and not in a switching mode called “class D”.
The I²C-bus address of WM8994 is 0b0011 010x.
mm stereo jack receptacles

6.9.3 Limitations in using audio features

Due to the share of some terminals of STM32L4R9AII6 by multiple peripherals, the following limitations apply in using the audio features:
If the SAI1_MCLKA and SAI1_FSA are used as part of SAI1 port, it cannot be used as
CAN peripheral.
If the SAI1_SDB is used as part of the SAI1 port, it cannot be used as the Comp2_OUT
signal.
If the SAI1 port of STM32L4R9AII6 is used for streaming audio to the WM8994 codec
IC, STM32L4R9AII6 cannot control the motor.
If the digital microphones are attached to STM32L4R9AII6, control the motor cannot be
driven.

6.10 USB OTG FS port

The STM32L4R9I-EVAL board supports USB OTG full-speed (FS) communication. The CN3 USB OTG connector is Micro-AB type.

6.10.1 STM32L4R9I-EVAL used as a USB device

When a “USB host” connection to the CN3 Micro-AB USB connector of STM32L4R9I-EVAL is detected, the board starts behaving like a “USB device”. Depending on the powering capability of the USB host, the board potentially takes power from the V In the board schematic diagrams, the corresponding power voltage line is called U5V.
Section 6.5 provides information on how to set associated jumpers for this powering option.
The resistor R23 must be left open to prevent STM32L4R9I-EVAL from sourcing 5 V to the V
terminal, which would cause conflict with the 5 V sourced by the USB host. This may
BUS
happen if the MFX_GPIO6 is controlled by the software of the MFX MCU such that, it enables the output of the U2 power switch.
26/72 UM2248 Rev 4
terminal of CN3.
BUS
UM2248 Hardware layout and configuration

6.10.2 STM32L4R9I-EVAL used as a USB host

When a “USB device” connection to the CN3 Micro-AB USB connector is detected, the STM32L4R9I-EVAL board starts behaving like a “USB host”. It sources 5 terminal of the CN3 Micro-AB USB connector to power the USB device. For this to happen, the STM32L4R9AII6 sets the U2 power switch STMPS2151STR to ON state. The LD6 green LED marked OTG_FS indicates that the peripheral is supplied from the board. The LD5 red LED marked FS_OC lights up if over-current is detected. The resistor R23 must be closed to allow the MFX_GPIO6 from MFX MCU to control the U2 power switch.
In any other STM32L4R9I-EVALpowering option, the resistor R23 must be open, to avoid accidental damage caused to an external USB host.
V on the V
BUS

6.10.3 Limitations in using USB OTG FS port

The USB OTG FS port operation is exclusive with motor control

6.10.4 Operating voltage

The USB-related operating supply voltage of STM32L4R9AII6 (VDD_USB line) must be within the range from 3.0
V to 3.6 V.

6.11 RS232 port

The STM32L4R9I-EVAL board offers one RS-232 communication port. The RS-232 communication port uses the CN7 DB9 male connector. RX, TX, RTS, and CTS signals of the STM32L4R9AII6 LPUSART1 interface are routed to CN7.

6.11.1 Operating voltage

The RS-232 operating supply voltage of STM32L4R9AII6 (VDD line) must be within the range from 1.71
V to 3.6 V.

6.12 microSD™ card

The CN8 slot for microSD™ card is routed to STM32L4R9AII6 SDIO port, accepting SD (up to 2
Gbytes) and SDHC (up to 32 Gbytes) cards. One 8-Gbyte microSD™ card is delivered as part of STM32L4R9I-EVAL. The card insertion switch is routed to the MFX_GPIO5 of MFX MCU port.

6.12.1 Limitations

Due to the share of SDIO port, the following limitations apply:
The microSD™ card cannot be operated simultaneously with motor control.
The microSD™ card cannot be operated for 4 bits date when SDIO_D1 and SDIO_D2
used as Trace_D0 and Trace_D1 signals.

6.12.2 Operating voltage

The supply voltage for the STM32L4R9I-EVAL microSD™ card operation must be within the range from 2.7
V to 3.6 V.
UM2248 Rev 4 27/72
71
Hardware layout and configuration UM2248

6.13 Motor control

The CN1 connector is designed to receive a motor-control (MC) module. Table 9 shows the assignment of CN1 and STM32L4R9AII6 terminals.
Table 9 also lists the modifications to be made on the board versus its by-default
configuration. Refer to Section 6.13.1 for further details.

Table 9. Motor-control terminal and function assignment

CN1 motor-control
connector
Ter min al
1
2GND- GND --
3 PWM_1H PC6 TIM8_CH1 -
4GND- GND --
5 PWM_1L PH13 TIM8_CH1N -
6GND- GND --
7 PWM_2H PC7 TIM8_CH2 -
8GND- GND --
9 PWM_2L PH14 TIM8_CH2N -
10 GND - GND - -
Terminal
name
Emergency
Stop
Port
name
PI4 TIM8_BKIN -
STM32L4R9AII6 microcontroller
Function
Alternate
function
Close SB3. Remove R234.
Close SB21. Remove R44 or no
daughterboard.
Close SB46. Remove R186.
Close SB19. Open SB20. Remove R46 or no
daughterboard.
Close SB44. Remove R185.
Board modifications for
enabling motor control
11 PWM_3H PC8 TIM8_CH3 -
12 GND - GND - -
13 PWM_3L PH15 TIM8_CH3N -
14 Bus Voltage PC4 ADC1_IN13 -
15
16
28/72 UM2248 Rev 4
PhaseA
current+
PhaseA current-
PC0 ADC1_IN1 -
-GND --
Close SB2. Remove R195.
Close SB45. Remove R184.
Close SB55. Remove R75.
Close SB36. Remove R242.
UM2248 Hardware layout and configuration
Table 9. Motor-control terminal and function assignment (continued)
CN1 motor-control
connector
Ter min al
17
18
19
20
Terminal
name
PhaseB
current+
PhaseB current-
PhaseC
current+
PhaseC current-
Port
name
PC1 ADC1_IN2 -
-GND --
PC2 ADC1_IN3 -
-GND --
STM32L4R9AII6 microcontroller
Function
Alternate
function
21 ICL Shutout PG9 GPIO -
22 GND - GND - -
23
24
Dissipative
Brake
PFC indirect
current
PG13 GPIO -
PA0 ADC1_IN5 -
25 +5V - +5V - -
Board modifications for
enabling motor control
Close SB37. Remove R244.
Close SB43. Remove R217.
Close SB34. Remove R236.
Close SB47. Remove SB29 and no board
on the PMOD connector.
Close SB38 Remove R214 and SB39
26
Heatsink
Te mp .
PA1 ADC1_IN6 -
27 PFC Sync PB14 TIM15_CH1 -
28 +3.3V - +3.3V - -
29 PFC PWM PB15 TIM15_CH2 -
30
PFC
Shutdown
PA9 TIM15_BKIN -
31 Encoder A PB6 TIM4_CH1 ADC12_IN
32 PFC Vac PC3 ADC1_IN4 -
Close SB40. Remove R216.
Close SB41. Remove R207 and no board
on the PMOD connector.
Close SB51. Remove R187.
Close SB35. Remove R203.
Close SB14. Remove SB15 and SB16. Remove R26 or no
daughterboard.
Close SB54. Remove R67.
UM2248 Rev 4 29/72
71
Hardware layout and configuration UM2248
Table 9. Motor-control terminal and function assignment (continued)
CN1 motor-control
connector
Ter min al
33 Encoder B PB7 TIM4_CH2 ADC12_IN
34
Terminal
name
Encoder
Index
Port
name
PB8 TIM4_CH3 ADC12_IN
STM32L4R9AII6 microcontroller
Function
Alternate
function

6.13.1 Board modifications to enable motor control

Figure 9 (top side) and Figure 10 (bottom side) illustrate the board modifications listed in Table 9, required for the operation of motor control. The red color denotes a component to be
removed. The green color denotes a component to be fitted.

6.13.2 Limitations

Motor-control operation is exclusive with Octo-SPIP1 Flash memory device, audio codec, potentiometer, LDR, microSD™ card, LED1 to LED4 drive, MEMS, MFX, PMOD, USB OTG_FS, TFT LCD connector, DSI display connector, and touch sensing.
Board modifications for
enabling motor control
Close SB17. Remove SB18. Remove R30 or no
daughterboard.
Close SB42. Remove R235 and open JP12.
30/72 UM2248 Rev 4
UM2248 Hardware layout and configuration
Figure 9. PCB top-side rework for motor control
UM2248 Rev 4 31/72
71
Hardware layout and configuration UM2248
Figure 10. PCB bottom-side rework for motor control
32/72 UM2248 Rev 4
UM2248 Hardware layout and configuration
1
3
2
1
3
2
1
2
1
2
1
2
1
2

6.14 CAN

The STM32L4R9I-EVAL board supports one CAN2.0A/B channel compliant with CAN specification. The CN22 DB9 male connector is available as the CAN interface.
A 3.3 V CAN transceiver is fitted between the CN22 connector and the CAN controller port of STM32L4R9AII6.
The JP14 jumper selects one of the high-speed, standby, and slope control modes of the CAN transceiver. The JP13 jumper allows integrating a CAN termination resistor. The JP12 is used to connected the CAN transceiver avoiding unknown signals from the CAN transceiver.
Jumper Setting Configuration
JP14

Table 10. CAN related jumpers

Default setting. CAN transceiver operates in high-speed mode.
CAN transceiver is in standby mode.
JP13
JP12

6.14.1 Limitations

CAN operation is exclusive with the audio codec and MC operation.

6.14.2 Operating voltage

The supply voltage for STM32L4R9I-EVAL CAN operation must be within the range from
3.0
V to 3.6 V.
Default setting. Termination resistor fitted on CAN physical link.
No termination resistor on CAN physical link.
Default setting. CAN_TX is not used for CAN transceiver.
CAN_TX is used from the STM32L4R9AII6 terminal.
UM2248 Rev 4 33/72
71
Hardware layout and configuration UM2248

6.15 Extension connectors CN5, CN6, CN13, and CN14

The CN5, CN6, CN13, and CN14 headers complement to give access to all GPIOs of the STM32L4R9AII6 microcontroller. In addition to GPIOs, the following signals and power supply lines are also routed on CN5 or CN6 or CN13 or CN14:
GND
+5 V
+3.3 V
D5V
VDD
RESET#
Clock terminals PC14-OSC32_IN, PC15-OSC32_OUT, PH0-OSC_IN, PH1-OSC_OUT
Each header has two rows of 20 pins, with 1.27 mm pitch and 2.54 mm row spacing. For extension modules, SAMTEC RSM-120-02-L-D-xxx and SMS-120-x-x-D are recommendable as SMD and through-hole receptacles, respectively (x is a wild card).

6.16 User LEDs

Four general-purpose color LEDs (LD1, LD2, LD3, LD4) are available as light indicators. Each LED is ON with a low level of the corresponding ports of STM32L4R9AII6.
And the four LEDs are exclusive with MC operation.

6.17 Physical input devices

The STM32L4R9I-EVAL board provides several input devices for physical human control, listed below:
four-way joystick controller with select key (B1)
wake-up/ tamper button (B3)
reset button (B2)
10 k potentiometer (RV2)
light-dependent resistor, LDR (R121)
The potentiometer and the light-dependent resistor are mutually exclusively rout-able to either PB4 or PA0 port of STM32L4R9AII6. jumpers.
As illustrated in the schematic diagram, the PB4 port is routed, in the STM32L4R9AII6, to the non-inverting input of comparator Comp2. The PA0 is routed to the non-inverting input of the operational amplifier OpAmp1.
Tabl e 11 depicts the setting of associated configuration
34/72 UM2248 Rev 4
UM2248 Hardware layout and configuration
1
3
2
1
3
2
1
3
2
1
3
2
1
3
2
1
3
2
1
3
2
1
3
2

Table 11. Port assignment for control of physical input devices

Jumper Setting Routing
JP9
A potentiometer is routed to pin PB4 o fSTM32L4R9AII6.
JP5
JP9
Default setting. A potentiometer is routed to pin PA0 of STM32L4R9AII6.
JP5
JP9
LDR is routed to pin PB4 of STM32L4R9AII6.
JP5
JP9
LDR is routed to pin PA0 of STM32L4R9AII6.
JP5

6.17.1 Limitations

The potentiometer and the light-dependent resistor are exclusive with MFX, audio codec, OctoSPIP1, the debugging connector, and MC operation. They are mutually exclusive.

6.18 Operational amplifier and comparator

6.18.1 Operational amplifier

STM32L4R9AII6 provides two onboard operational amplifiers, one of which, OpAmp1, is made accessible on STM32L4R9I-EVAL. OpAmp1 has its inputs and its output routed to I/O ports PA0, PA1, and PA3, respectively. The non-inverting input PA0 is accessible on the terminal 1 of the JP5 jumper header. On top of the possibility of routing either of the potentiometer or LDR to PA0, an external source is also connectible to it, using the terminal 1 of JP5.
The PA3 output of the operational amplifier is accessible on test point TP9. Refer to the schematic diagram.
The gain of OpAmp1 is determined by the ratio of the variable resistor RV1 and the resistor R246, as shown in the following equation:
Gain = 1 + RV1 / R246
With the RV1 ranging from 0 to 10 k and R246 being 1 k, the gain varies from 1 to 11.
UM2248 Rev 4 35/72
71
Hardware layout and configuration UM2248
The R108 resistor in series with PA0 is beneficial for reducing the output offset.
Table 12 shows the configuration elements and their settings allowing them to access the
OpAmp1 function.
Element Setting Configuration
SB39 SB38 R214
Table 12. Configuration elements related to OpAmp1
SB38 open
SB39 closed
R214 out
SB38 open
SB39 closed
R214 in
SB38 closed
SB39 open
R214 out
OpAmp1_INP is routed to pin PA0 of STM32L4R9AII6.
Default setting. PA0 port of STM32L4R9AII6 is routed to MFX_IRQ_OUT or
motor control signal.
PA0 port of STM32L4R9AII6 is routed to the motor-control signal.
R216 SB40
R215 R221

6.18.2 Comparator

STM32L4R9AII6 provides two onboard comparators, one of which, Comp2, is made accessible on STM32L4R9I-EVAL. Comp2 has its non-inverting input and its output routed to I/O ports PB4 and PB5, respectively. The input is accessible on the terminal 3 of the JP5 jumper header. On top of the possibility of routing either the potentiometer or LDR to PB4, an external source is connectible to it, using the terminal 3 of JP5.
The PB5 output of the comparator is accessible on test point TP6. Refer to the schematic diagram.
Table 13 shows the configuration elements and their settings allowing them to access the
Comp2 function.
R216 in
SB40 open
R216 out
SB40 closed
R215 in
R221 out
R215 out
R221 in
Default setting. OpAmp1_INM is routed to pin PA1 of STM32L4R9AII6.
PA1 port of STM32L4R9AII6 is routed to the motor-control signal.
OpAmp1_VOUT is routed to pin PA3 of STM32L4R9AII6.
Default setting. OpAmp1_VOUT is not routed to pin PA3 of STM32L4R9AII6. PA3
port of STM32L4R9AII6 is routed to OctoSPI1_CLK.
Table 13. Configuration elements related to Comp2
Element Setting Configuration
R200 out
R200 SB22
36/72 UM2248 Rev 4
SB22 closed
R200 in
SB22 open
Default setting. Comp2_INP is routed to pin PB4 of STM32L4R9AII6.
PB4 port of STM32L4R9AII6 is routed to the TRST signal.
UM2248 Hardware layout and configuration
Table 13. Configuration elements related to Comp2 (continued)
Element Setting Configuration
R204 SB48
R204 out
SB48 open
R204 in
SB48 closed
Comp2_OUT is routed to pin PB5 of STM32L4R9AII6.
Default setting. Comp2_OUT is not routed to pin PB4 of STM32L4R9AII6. PB4
port of STM32L4R9AII6 is routed to SAI1_SDB.

6.18.3 Limitations

The OpAmp1 is exclusive with MFX, OctoSPIP1, and MC operation.
The Comp2 is exclusive with the debugging connector and SAI1.

6.19 Analog input, output, VREF

STM32L4R9AII6 provides onboard analog-to-digital converter ADC, and digital-to-analog converter DAC. The port PA4 is configurable to operate either as ADC input or as DAC output. PA4 is routed to the two-way header CN4 allowing to fetch signals to or from PA4 or to ground it by fitting a jumper into CN4.
Parameters of the ADC input low-pass filter formed with R31 and C21 are adjustable by replacing these components according to application requirements. Similarly, parameters of the DAC output low-pass filter formed with R32 and C21 are modifiable by replacing these components according to application requirements.
The VREF+ terminal of STM32L4R9AII6 is used as the reference voltage for both ADC and DAC. By default, it is routed to VDDA through a jumper fitted into the two-way header CN10. The jumper is removable and an external voltage applied to the terminal 1 of CN10, for specific purposes.

6.20 SRAM device

IS61WV102416BLL, a 16-Mbit static RAM (SRAM), 1 M x 16 bit, is fitted on the STM32L4R9I-EVAL main board, in U17 position. The STM32L4R9I-EVAL main board, as well as the addressing capabilities of FMC, allow hosting SRAM devices up to 64 the reason why the schematic diagram mentions several SRAM devices.
The SRAM device is attached to the 16-bit data bus and accessed with FMC. The base address is 0x6000 selected with the FMC_NE1 chip select. FMC_NBL0 and FMC_NBL1 signals allow selecting 8-bit and 16-bit data word operating modes.
By removal of R134, a zero-ohm resistor, the SRAM is deselected and the STM32L4R9AII6 ports PD7, PE0, and PE1 corresponding to FMC_NE1, FMC_NBL0, and FMC_NBL1 signals, respectively, are usable for other application purposes.
Mbytes. This is
0000, corresponding to NOR/SRAM1 bank1. The SRAM device is
UM2248 Rev 4 37/72
71
Hardware layout and configuration UM2248
1
2
1
2
.

Table 14. SRAM chip select configuration

Resistor Fitting Configuration
In
R134
Out
Default setting. SRAM chip select is controlled with FMC_NE1
SRAM is deselected. FMC_NE1 is freed for other application purposes.

6.20.1 Limitations

The SRAM addressable space is limited if some or all of A21 FMC address lines are shunted to the CN12 connector for debug trace purposes. In such a case, the disconnected addressing inputs of the SRAM device are pulled down by resistors. the associated configuration elements.

6.20.2 Operating voltage

The SRAM device operating voltage is in the range from 2.4 V to 3.6 V.

6.21 NOR Flash memory device

M29W128GL70ZA6E, a 128-Mbit NOR Flash memory, 8 M x16 bit, is fitted on the STM32L4R9I-EVAL main board, in U11 position. The STM32L4R9I-EVAL main board, as well as the addressing capabilities of FMC, allow hosting M29W256GL70ZA6E, a 256-Mbit NOR Flash memory device. This is the reason why the schematic diagram mentions both devices.
Section 6.4 provides information on
The NOR Flash memory device is attached to the 16-bit data bus and accessed with FMC. The base address is 0x6800 memory device is selected with the FMC_NE3 chip select signal. 16-bit data word operation mode is selected by a pull-up resistor connected to the BYTE terminal of NOR Flash memory. The jumper JP6 is dedicated to writing protect configuration.
By default, the FMC_NWAIT signal is not routed to the RB port of the NOR Flash memory device, and, to know its ready status, its status register is polled by the demo software fitted in STM32L4R9I-EVAL. This is modifiable with configuration elements, as shown in
Jumper Setting Configuration
JP6

6.21.1 Limitations

The NOR Flash memory device’s addressable space is limited if some or all of A21, A22, and A23 FMC address lines are shunted to the CN12 connector for debug trace purposes. In such
0000, corresponding to NOR/SRAM2 bank1. The NOR Flash

Table 15. NOR Flash memory-related jumper

Default setting. NOR Flash memory write is enabled.
NOR Flash memory write is inhibited. Write protect is activated.
Tab le 15.
38/72 UM2248 Rev 4
UM2248 Hardware layout and configuration
a case, the disconnected addressing inputs of the NOR Flash memory device are pulled down by resistors.
Section 6.4 provides information on the associated configuration elements.

6.21.2 Operating voltage

NOR Flash memory operating voltage must be in the range from 1.65 V to 3.6 V.

6.22 EEPROM

M24128-DFDW6TP, a 128-Kbit I²C-bus EEPROM device, is fitted on the main board of STM32L4R9I-EVAL, in U3 position. It is accessed with I²C-bus lines I2C2_SCL and I2C2_SDA of STM32L4R9AII6. It supports all I²C-bus modes with speeds up to 1 base I²C-bus address is 0xA0. Write-protecting the EEPROM is possible through opening the SB13 solder bridge. By default, SB13 is closed and writing into the EEPROM enabled.

6.22.1 Operating voltage

The M24128-DFDW6TP EEPROM device’s operating voltage must be in the range from
1.7
V to 3.6 V.
MHz. The

6.23 EXT_I2C connector

The connection of CN2 EXT_I2C to the I²C bus daughterboard is possible. MFX_GPIO8 of MFX MCU provides the EXT_RSET signal, and the SB12 solder bridge is used to connect the +5
V power supply of the daughterboard.

6.24 Octo-SPI Flash memory device

MX25LM51245GXDI00, a 512-Mbit Octo-SPI Flash memory device, is fitted on the STM32L4R9I-EVAL main board, in U6 position. It allows evaluating STM32L4R9AII6 Octo-SPI interface.
MX25LM51245GXDI00 operates in a single transfer rate (STR) mode or a double transfer rate (DTR) mode.
Ta bl e 16 shows the configuration elements and their settings allowing them to access the
Octo-SPI Flash memory device.
.
Element Setting Configuration

Table 16. Configuration elements related to Octo-SPI Flash device

R221 R215
R221 in
R215 out
R221 out
R215 in
Default setting. OctoSPI1_CLK is available to the Octo-SPI Flash memory device.
OctoSPI1_CLK is not available to the Octo-SPI Flash memory device. PA3 port of STM32L4R9AII6 is routed to the OpAmp1_Vout signal.
UM2248 Rev 4 39/72
71
Hardware layout and configuration UM2248
Table 16. Configuration elements related to Octo-SPI Flash device (continued)
Element Setting Configuration
R67 in
R67
SB54
R75
SB55
SB54 open
R67 out
SB54 closed
R75 in
SB55 open
R75 out
SB55 closed

6.24.1 Limitations

Octo-SPI Flash memory device operation is exclusive with OpAmp1 and with motor control.

6.24.2 Operating voltage

The voltage of Octo-SPI Flash memory device MX25LM51245GXDI00 is in the range of
2.7 V to 3.6 V.
Default setting. OctoSPI1_IO6 data line is available to the Octo-SPI Flash memory
device.
OctoSPI1_IO6 is not available to the Octo-SPI Flash memory device. PC3 port of SSTM32L4R9AII6 is routed to the motor-control signal.
Default setting. OctoSPI1_IO7 data line is available to the Octo-SPI Flash memory
device.
OctoSPI1_IO7 is not available to the Octo-SPI Flash memory device. PC4 port of STM32L4R9AII6 is routed to the motor-control signal.

6.25 Octo-SPI DRAM device

IS66WVH8M8BLL-100BLI, a 64-Mbit self-refresh dynamic RAM (DRAM) device with a HyperBus interface, is fitted on the STM32L4R9I-EVAL main board, in U5 position. It allows the evaluation of the STM32L4R9AII6 Octo-SPI interface.

6.25.1 Operating voltage

The voltage of the Octo-SPI DRAM device IS66WVH8M8BLL-100BLI is in the range of
2.7
V to 3.6 V.

6.25.2 Limitations

Board does not support Octo-SPI operation with IS66WVH8M8BLL-100BLI. No workaround is available. Please refer to STM32L4Rxxx and STM32L4Sxxx device errata (ES0393).

6.26 Touch-sensing button

The STM32L4R9I-EVAL board supports a touch sensing button based on either RC charging or charge-transfer technique. The latter is enabled, by default.
The touch sensing button is connected to the PC6 port of STM32L4R9AII6 and the related charge capacitor is connected to PC7.
40/72 UM2248 Rev 4
UM2248 Hardware layout and configuration
An active shield is designed in layer 2 of the main PCB, under the button footprint. It allows reducing disturbances from other circuits to prevent false touch detections.
The active shield is connected to the PB6 port of STM32L4R9AII6 through the resistor R22. The related charge capacitor is connected to PB7.
Ta bl e 17 shows the configuration elements related to the touch sensing function. Some of
them serve to enable or disable its operation. However, most of them serve to optimize the touch sensing performance, by isolating copper tracks to avoid disturbances due to their antenna effect.
.
Element Setting Configuration

Table 17. Touch-sensing-related configuration elements

In
R44
Out
Open
SB21
Closed
In
R46
Out
Open
SB19
Closed
Open
SB20
Closed
In
R26
Out
Open
SB14
Closed
SB15 Open
PC6 port is routed to the CN6 connector of the daughterboard. This setting is not good for the robustness of touch sensing.
Default setting. PC6 port is cut from CN6.
Default setting. PC6 is not routed to motor control.
PC6 is routed to motor control. This setting is not good for the robustness of touch sensing.
PC7 port is routed to the CN6 connector of the daughterboard. This setting is not good for the robustness of touch sensing.
Default setting. PC7 port is cut from CN6.
Default setting. PC7 is not routed to motor control.
PC7 is routed to motor control. This setting is not good for the robustness of touch sensing.
PC7 is not routed to the sampling capacitor. Touch sensing cannot operate.
Default setting. PC7 is routed to the sampling capacitor. Touch sensing available.
PB6 port is routed to the CN5 connector of the daughterboard. This setting is not good for the robustness of touch sensing.
Default setting. PB6 port is cut from CN5.
Default setting. PB6 is not routed to motor control.
PB6 is routed to motor control. This setting is not good for the robustness of touch sensing.
PB6 is not routed to the active shield under the touch sensing button. This setting is not good for the robustness of touch sensing.
UM2248 Rev 4 41/72
71
Hardware layout and configuration UM2248
Table 17. Touch-sensing-related configuration elements (continued)
Element Setting Configuration
Default setting.
Closed
PB6 is routed to the active shield under the touch sensing button. This setting is not good for the robustness of touch sensing.
SB16
R30
SB17
SB18
Open
Closed
In
Out
Open
Closed
Open
Closed
Default setting. PB6 is not routed to the CN16 DSI display connector.
PB6 is routed to the CN16 DSI display connector. This setting is not good for the robustness of touch sensing.
PB7 port is routed to the CN5 connector of the daughterboard. This setting is not good for the robustness of touch sensing.
Default setting. PB7 port is cut from CN5.
Default setting. PB7 is not routed to motor control.
PB7 is routed to motor control. This setting is not good for the robustness of touch sensing.
PB7 is not routed to the sampling capacitor of the active shield under the touch sensing button.
This setting is not good for the robustness of touch sensing.
Default setting. PB6 is routed to the sampling capacitor of the active shield under the
touch sensing button. This setting is not good for the robustness of touch sensing.

6.26.1 Limitations

The touch-sensing button is exclusive with the DSI display connector, motor control, and daughterboard connector.

6.27 MFX MCU

The MFX MCU is used as MFX (multi-function expander) and IDD measurement.
The MFX circuit on the STM32L4R9I-EVAL board acts as IO-expander. The communication interface between MFX and STM32L4R9AII6 is the I2C2 bus. The signals connected to MFX are listed in
Pin number
of MFX
42/72 UM2248 Rev 4
Tab le 18.

Table 18. MFX signals

Pin name
of MFX
15 PA5 MFX_GPIO5 uS_Detect Input microSD™
16 PA6 MFX_GPIO6 USB _PSON Output USB_FS
17 PA7 MFX_GPIO7 USB_OVRCR Input USB_FS
MFX functions
STM32L4R9AII6
Function of
Direction
(for MFX)
Termi nal
device
UM2248 Hardware layout and configuration
1
3
2
1
3
2
Table 18. MFX signals (continued)
Pin number
of MFX
Pin name
of MFX
MFX functions
18 PB0 MFX_GPIO0 JOY_SEL Input Joystick
19 PB1 MFX_GPIO1 JOY_DOWN Input Joystick
20 PB2 MFX_GPIO2 JOY_LEFT Input Joystick
26 PB13 MFX_GPIO13 - - -
27 PB14 MFX_GPIO14 - - -
28 PB15 MFX_GPIO15 - - -
29 PA8 MFX_GPIO8 EXT_RESET Output EXT_I2C
30 PA9 MFX_GPIO9 DSI_RST Output DSI LCD
31 PA10 MFX_GPIO10 - - -
32 PA11 MFX_GPIO11 LCD_DISP Output TFT LCD
33 PA12 MFX_GPIO12 LCD_RST Output TFT LCD
39 PB3 MFX_GPIO3 JOY_RIGHT Input Joystick
40 PB4 MFX_GPIO4 JOY_UP Input Joystick

6.28 IDD measurement

Function of
STM32L4R9AII6
Direction
(for MFX)
Termi nal
device
STM32L4R9AII6 has a built-in circuit allowing to measure its current consumption (IDD) in Run and Low-power modes, except for Shutdown mode. It is strongly recommended that the MCU supply voltage (VDD_MCU line) does not exceed 3.3 components on STM32L4R9I-EVAL supplied from 3.3 through I/O ports. Voltage exceeding 3.3
3.3
V-supplied peripheric I/Os and false the MCU current consumption measurement.
V on the MCU output port may inject current into
Ta bl e 19 shows the setting of jumpers associated with the IDD measurement on the board.
s
Jumper Setting Configuration
JP4

Table 19. IDD measurement related jumper setting

Default setting. STM32L4R9AII6 has a built-in circuit allowing to measure its
current consumption.
IDD measurement is not available, bypass mode only for STM32L4R9AII6 VDD_MCU power supply.

6.29 DSI display (MIPI) connector

The CN16 connector is designed to connect a DSI display daughterboard. MB1314 daughterboard is available to mount on the STM32L4R9I-EVAL board. assignment of CN16 and STM32L4R9AII6 terminals.
V. This is because there are
V that communicate with the MCU
Ta bl e 20 shows the
UM2248 Rev 4 43/72
71
Hardware layout and configuration UM2248

Table 20. CN16 DSI display module connector

Pin No. Description Pin connection Pin No. Description Pin connection
1GND - 2 - -
3 DSI_CK_P - 4 DSI_INT PC2
5 DSI_CK_N - 6 GND -
7 GND - 8 RFU GND
9 DSI_D0_P - 10 RFU GND
11 DSI_D0_N - 12 GND -
13 GND - 14 RFU GND
15 DSI_D1_P - 16 RFU GND
17 DSI_D1_N - 18 GND -
19 GND - 20 - -
21 BLVDD (5 V) - 22 SPI_CS PG12
23 BLVDD (5 V) - 24 SPI_CLK/UART_CK PI1/PG13
25 - - 26 SPI_SDI/UART_TX PI3/PB6
27 BLGND - 28 SPI_DCX PI2
29 BLGND - 30 - -
31 - - 32 - -
33 - - 34 - -
35 SCLK/MCLK PA8 36 3.3 V -
37 LRCLK PB9 38 VDD -
39 I2S_DATA PC1 40 I2C_SDA PH5
41 - - 42 - -
43 SWIRE PG6 44 I2C_SCL PH4
45 CEC_CLK NA 46 - -
47 CEC NA 48 - -
49 DSI_TE PF11 50 - -
51 - - 52 - -
53 DSI_BL_CTRL PB14 54 - -
55 - - 56 - -
57 DSI_RST MFX_GPIO9 58 - -
59 - - 60 1.8 V -

6.29.1 Limitations

The DSI display module connector signal INT is used both for TFT LCD and DSI display connector.
44/72 UM2248 Rev 4
UM2248 Hardware layout and configuration

6.30 TFT LCD (RGB and FMC mode) connector

The CN20 50-pin 1.27 mm-pitch female connector is designed to connect TFT LCD daughterboard, supporting RGB and FMC modes. MB1315 daughterboard is available to mount on the STM32L4R9I-EVAL board with RGB mode. CN20 and STM32L4R9AII6 terminals.
.

Table 21. CN20 TFT LCD module connector

Ta bl e 21 shows the assignment of
Pin No.
RGB mode
description
1 GND GND - 2 GND GND -
3 R0 - PE2 4 G0 - PF14
5 R1 RS(A19) PE3 6 G1 - PF15
7 R2 D12 PE15 8 G2 D6 PE9
9 R3 D13 PD8 10 G3 D7 PE10
11 R4 D14 PD9 12 G4 D8 PE11
13 R5 D15 PD10 14 G5 D9 PE12
15 R6 - PD11 16 G6 D10 PE13
17 R7 - PD12 18 G7 D11 PE14
19 GND GND - 20 GND GND -
21 B0 - PE4 22 DE TE PF11
23 B1 - PF13 24 LCD_DSIP -
25 B2 D0 PD14 26 HSYNC - PE0
27 B3 D1 PD15 28 VSYNC - PE1
29 B4 D2 PD0 30 GND GND -
FMC mode
description
Pin
connection
Pin No.
RGB mode
description
FMC mode
description
Pin
connection
MFX_
GPIO11
31 B5 D3 PD1 32 PCLK - PD3
33 B6 D4 PE7 34 GND GND -
35 B7 D5 PE8 36 RST# RST#
37 GND GND - 38 SDA SDA PH5
39 INT INT PC2 40 SCL SCL PH4
41 - RS PE2 42 - NOE PD4
43 BL_CTRL BL_CTRL PA5 44 - NWE PD5
45 BL+5 V BL+5 V - 46 - CS PG12
47 BLGND BLGND - 48 VDD VDD -
49 BLGND BLGND - 50 +3.3 V +3.3 V -
UM2248 Rev 4 45/72
MFX_
GPIO12
71
Hardware layout and configuration UM2248

6.30.1 Limitations

The TFT LCD module connector supports RGB mode or FMC mode only at the same time. The signal INT is used both for TFT LCD and DSI display connectors. When RGB mode TFT LCD is used, STM32L4R9AII6 cannot access onboard SRAM and NOR Flash memory.

6.31 PMOD connector

The P1 PMOD-standard connector is available on the STM32L4R9I-EVAL board to support flexibility in small form factor applications. The PMOD connector implements the PMOD type 2A and 4A on the STM32L4R9I-EVAL board.
Pin number Description Pin number Description
1 SS/CTS (PI0/PB13) 7 INT (PG13)
2 MOSI/TXD (PI3/PG7) 8 RESET (PB14)
3 MISO/RXD (PI2/PG8) 9 -
4 SCK/RTS (PI1/PB12) 10 -
5GND11GND

Table 22. P1 PMOD connector

6 3.3 V 12 3.3 V

6.32 MB1314 DSI display board

MB1314 is the DSI display daughterboard that is available to mount on the STM32L4R9I­EVAL board via CN1 connector. GVO IEG1120TB103GF-001 is selected for round LCD with one data lane, 390x390 resolution, 24 bpp with capacitive touch panel (FocalTech FT3x67 driver).
Tab le 23 shows the pin function description of the CN1 MB1314 board connector.

Table 23. Pin function description of the CN1 MB1314 board connector

Pin number Description Pin number Description
1GND2 -
3 DSI_CK_P 4 DSI_INT
5 DSI_CK_N 6 GND
7GND8RFU
9 DSI_D0_P 10 RFU
11 DSI_D0_N 12 GND
13 GND 14 RFU
15 RFU 16 RFU
17 RFU 18 GND
19 GND 20 -
21 BLVDD (5 V) 22 RFU
46/72 UM2248 Rev 4
UM2248 Hardware layout and configuration
Table 23. Pin function description of the CN1 MB1314 board connector (continued)
Pin number Description Pin number Description
23 BLVDD (5 V) 24 RFU
25 - 26 RFU
27 BLGND 28 RFU
29 BLGND 30 -
31 - 32 -
33 - 34 -
35 RFU 36 3.3 V
37 RFU 38 VDD
39 RFU 40 I2C_SDA
41 - 42 -
43 SWIRE 44 I2C_SCL
45 RFU 46 -
47 RFU 48 -
49 DSI_TE 50 -
51 - 52 -
53 DSI_BL_CTRL 54 -
55 - 56 -
57 DSI_RST 58 -
59 - 60 RFU
Warning: Permanent Image sticking may occur if AMOLED displays the
same image for an extended time.

6.33 MB1315 TFT LCD board

MB1315 is the TFT LCD daughterboard supporting RGB mode, available to mount on the STM32L4R9I-EVAL board via CN1 connector.
The 4.3” TFT LCD uses LCD RK043FN48H-CT672B with a capacitive touch panel which only supports 3.3 TFT RGB LCD daughterboard to support a wide power supply range. function description of the CN1 MB1315 board connector.
V power and interface. So a level shifter SN74LVC16T245DGGR is requested on
Tab le 24 shows the pin
UM2248 Rev 4 47/72
71
Hardware layout and configuration UM2248

Table 24. Pin function description of the CN1 MB1315 board connector

Pin number Description Pin number Description
1 GND 2 GND
3R04G0
5R16G1
7R28G2
9R310G3
11 R4 12 G4
13 R5 14 G5
15 R6 16 G6
17 R7 18 G7
19 GND 20 GND
21 B0 22 DE
23 B1 24 LCD_DSIP
25 B2 26 HSYNC
27 B3 28 VSYNC
29 B4 30 GND
31 B5 32 PCLK
33 B6 34 GND
35 B7 36 RST#
37 GND 38 SDA
39 INT 40 SCL
41 - 42 -
43 BL_CTRL 44 -
45 BL+5 V 46 -
47 BLGND 48 VDD
49 BLGND 50 +3.3 V
48/72 UM2248 Rev 4
UM2248 Connectors
MSv46051V1
31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 133
32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 234

7 Connectors

7.1 CN1 motor-control connector

Figure 11. CN1 motor-control connector (top view)

Description
Emergency STOP PI4 1 2 - GND
PWM_1H PC6 3 4 - GND
PWM_1L PH13 5 6 - GND
PWM_2H PC7 7 8 - GND
PWM_2L PH14 9 10 - GND
PWM_3H PC8 11 12 - GND
PWM_3L PH15 13 14 PC4 BUS VOLTAGE
CURRENT A PC0 15 16 - GND
CURRENT B PC1 17 18 - GND
CURRENT C PC2 19 20 - GND
ICL Shutout PG9 21 22 - GND
DISSIPATIVE
BRAKE
+5 V power - 25 26 PA1
PFC SYNC PB14 27 28 - 3.3 V power

Table 25. CN1 motor-control connector

Pin of
STM32L4R9AII6
PG13 23 24 PA0 PCD Ind. Current
Pin
number
of CN1
Pin
number
of CN1
Pin of
STM32L4R9AII6
Description
Heatsink
temperature
PFC PWM PB15 29 30 PA9 PFC Shut Down
Encoder A PB6 31 32 PC3 PFC Vac
Encoder B PB7 33 34 PB8 Encoder Index
UM2248 Rev 4 49/72
71
Connectors UM2248
MS30715V2
17
28

7.2 CN2 external I2C connector

Figure 12. CN2 EXT_I2C connector (front view)

Pin number Description Pin number Description
1 I2C1_SDA (PH5) 5 VDD
2NC6NC
3 I2C_SCL (PH4) 7 GND
4 EXT_RESET (MFX_GPIO8) 8 NC

Table 26. CN2 EXT_I2C connector

7.3 CN3 USB OTG FS Micro-AB connector

Figure 13. CN3 USB OTG FS Micro-AB connector (front view)

Pin number Description Pin number Description
1V
2 DM (PA11) 5 GND
3DP (PA12)- -

Table 27. CN3 USB OTG FS Micro-AB connector

BUS
50/72 UM2248 Rev 4
(PA9) 4 ID (PA10)
UM2248 Connectors
MSv46052V1
21

7.4 CN4 analog input-output connector

Figure 14. CN4 analog input-output connector (top view)

Table 28. CN4 analog input-output connector

Pin number Description Pin number Description
1 GND 2 Analog input-output PA4

7.5 CN5, CN6, CN13, and CN14 extension connectors

All GPIO signals from STM32L4R9AII6 are connected to CN5, CN6, CN13, and CN14 extension connectors. CN13 and CN14 extension connectors are also used for the FMC device.
Pin
number
Description Alternative functions
1 PH9 OCTO-SPI2_IO4 Remove U5.
3 PH14 LED3, MC Remove R185, open SB44.
5 PH15 LED4, MC Remove R184, open SB45.
7 PI3 SPI2_MOSI No connection for CN16 and P1
9GND - -
11 PH13 LED2, MC Remove R186, open SB46.
13 PG13
15 PB5
17 PI9 OCTO-SPI2_IO2 Remove U5.
19 PI11 OCTO-SPI2_IO0 Remove U5.

Table 29. CN5 daughterboard extension connector

How to disconnect alternative functions to
use on the extension connector
PMOD_INT, USART1_CK, MC
SAI1_SDB, Comp2_OUT
Open SB29, SB47. No connection for P1
Remove R204, open SB48.
21 NC - -
23 PC14 OSC32_IN Remove R50, close SB50.
25 PC13 Wakeup Remove R188.
27 PH1 OSC_OUT Remove R65, close SB53.
29 GND - -
31 PA5 TFT LCD_BL_CTRL No connection for CN20
33 PC2
DSI LCD_INT, TFT LCD_INT, MC
Remove R217, open SB43.
UM2248 Rev 4 51/72
71
Connectors UM2248
Table 29. CN5 daughterboard extension connector (continued)
Pin
number
Description Alternative functions
How to disconnect alternative functions to
use on the extension connector
35 PH8 OCTO-SPI2_IO3 Remove U5.
37 PH10 OCTO-SPI2_IO5 Remove U5.
39 D5V - -
2 PI5 OCTO-SPI2_NCS Remove U5.
4 PH12 OCTO-SPI2_IO7 Remove U5.
6 PI6 OCTO-SPI2_CLK Remove U5.
8 PG15 OCTO-SPI2_DQS Remove U5.
10 GND - -
12 PB4 Comp2_INP, TRST Remove R200, open SB22.
14 PB6
TS_SHIELD, USART1_TX, MC
Closed R26, open SB14, SB16, and SB15.
16 PB7 TS_SHIELD_CS, MC Closed R30, open SB17 and SB18.
18 PI10 OCTO-SPI2_IO1 Remove U5.
20 PI7 - -
22 PH3 BOOT0 Remove R1.
24 PC15 OSC32_OUT Remove R49, close SB49.
26 PH0 OSC_IN Remove R61, close SB52.
28 PA0
MFX_IRQ_OUT, OpAmp1_INP, MC
Remove R214, open SB38 and SB39.
30 GND - -
32 PA1 OpAmp1_INM, MC Remove R216, open SB40.
34 PA4 ADC_DAC Remove R32.
36 PH11 OCTO-SPI2_IO6 Remove U5.
38 VDD - -
40 +3V3 - -
Pin
number
Description Alternative functions

Table 30. CN6 daughterboard extension connector

How to disconnect alternative functions to
use on the extension connector
1 PH2 OCTO-SPI1_IO4 Remove U6.
3 PI0 SPI2_NSS No connection for P1
5 PD2 SDIO1_CMD Remove R55, no SD card insert.
7 PI1 SPI2_SCK No connection for CN16 and P1
9GND - -
11 PA12 USB OTG_DP No connection for CN3
52/72 UM2248 Rev 4
UM2248 Connectors
Table 30. CN6 daughterboard extension connector (continued)
Pin
number
Description Alternative functions
How to disconnect alternative functions to
use on the extension connector
13 PA11 USB OTG_DM No connection for CN3
15 PG8 LPUART1_RX Remove U9.
17 PA9 VBUS_FS, MC Remove R203, open SB35.
19 PC9 SDIO1_D1, Trace_D0 Remove R205, open SB57.
21 PC7 TS_KEY_CS, MC Closed R46, open SB19 and SB20.
23 PB15 LED1, MC Remove R187, open SB51.
25 PB13 LPUART1_CTS Remove U9.
27 RESET# - -
29 GND - -
31 PA3
OpAmp1_VOUT, OCTO-SPI1_CLK
Remove R221, R215.
33 PA7 OCTO-SPI1_IO2 Remove U6.
35 PC4 OCTO-SPI1_IO7, MC Remove R75, open SB55.
37 PC3 OCTO-SPI1_IO6, MC Remove R67, open SB54.
39 D5V - -
2 PG11 OCTO-SPI1_IO5 Remove U6.
4 PI2 SPI2_MISO No connection for CN16 and P1
6 PC8 SDIO1_D0, MC Remove R195, open SB2.
8 PC10 SDIO1_D2, Trace_D1 Remove R197, open SB58.
10 GND - -
12 PC11 SDIO1_D3 Remove R60, no SD card insert.
14 PC12 SDIO1_CLK no SD card insert.
16 PA10 USB OTG_ID No connection for CN3
18 PC6 TS_KEY, MC Closed R44, open SB21.
20 PG7 LPUART1_TX Remove R19 and U1.
22 PB14
DSI LCD_BL_CTRL, PMOD_RST, MC
Remove R207, open SB41. No connection for P1
24 PB12 LPUART1_RTS Remove R5 and U1.
26 PF11
DSI LCD_TE, TFT LCD_DE
No connection for CN16 and CN20
28 PB0 OCTO-SPI1_IO1 Remove U6.
30 GND - -
32 PB1 OCTO-SPI1_IO0 Remove U6.
34 PB2 OCTO-SPI1_DQS Remove U6.
36 PA6 OCTO-SPI1_IO3 Remove U6.
UM2248 Rev 4 53/72
71
Connectors UM2248
Table 30. CN6 daughterboard extension connector (continued)
Pin
number
Description Alternative functions
How to disconnect alternative functions to
use on the extension connector
38 PA2 OCTO-SPI1_NCS Remove U6.
40 +5V - -
Pin
number
Description Alternative functions

Table 31. CN13 daughterboard extension connector

How to disconnect alternative functions to
use on the extension connector
1 PD1 FMC_D3 -
3 PD0 FMC_D2 -
5 PB8
SAI1_MCLKA, CAN_RX, MC
Remove R235, open SB42 and JP12.
7PG10 FMC_NE3 -
9GND - -
11 PE0 FMC_NBL0 -
13 PG12 FMC_NE4, SPI Remove R238, open SB26.
15 PE4 FMC_A20 -
17 PE5 FMC_A21 Keep CN12 open.
19 PF1 FMC_A1 -
21 PF2 FMC_A2 -
23 PB9 SAI1_FSA, CAN_TX Remove R243, R247.
25 PF10 DFSDM_CLK Open JP16.
27 PF5 FMC_A5 -
29 GND - -
31 PF4 FMC_A4 -
33 PF15 FMC_A9 -
35 PG0 FMC_A10 -
37 PE10 FMC_D7 -
39 VDD - -
2NC - -
4 PD6 FMC_NWAIT -
6 PD4 FMC_NOE -
8 PE1 FMC_NBL1 -
10 GND - -
12 PD5 FMC_NWE -
14 PE2 FMC_A23 Keep CN12 open.
16 PE3 FMC_A19 -
54/72 UM2248 Rev 4
UM2248 Connectors
Table 31. CN13 daughterboard extension connector (continued)
Pin
number
Description Alternative functions
How to disconnect alternative functions to
use on the extension connector
18 PE6 FMC_A22 Keep CN12 open.
20 PF0 FMC_A0 -
22 PC0 DFSDM, MC Remove R242, open SB36.
24 PC1 SAI1, MC Remove R244, open SB37.
26 PF3 FMC_A3 -
28 PG4 FMC_A14 -
30 GND - -
32 PG1 FMC_A11 -
34 PF12 FMC_A6 -
36 PF13 FMC_A7 -
38 PF14 FMC_A8 -
40 +3V3 - -
Pin
number
Description Alternative functions

Table 32. CN14 daughterboard extension connector

How to disconnect alternative functions to
use on the extension connector
1 PA14 JTAG_TCK/SWCLK
Do not use CN11, CN12, CN15, and CN17 for debug connector.
3 PD7 FMC_NE1 -
5 PD3 TFT LCD_CLK No connection for CN20
7 PB3 JTAG_TDO/SWO
Do not use CN11, CN12, CN15, and CN17 for debug connector.
9GND - -
11 PG5 FM C_A15 -
13 PD15 FMC_D1 -
15 PD14 FMC_D0 -
17 PD10 FMC_D15 -
19 PH5 I2C2_SDA Remove R2.
21 PB10 UART3_TX
Remove R173. No connection for CN11
23 PD8 FMC_D13 -
25 PD13 FMC_A18 -
27 PE12 FMC_D9 -
29 GND - -
31 NC - -
UM2248 Rev 4 55/72
71
Connectors UM2248
Table 32. CN14 daughterboard extension connector (continued)
Pin
number
33 PE7 FMC_D4 -
35 PE14 FMC_D11 -
37 PE15 FMC_D12 -
39 VDD - -
2 PA13 JTAG_TMS/SWDIO
4PA15 JTAG_TDI
6 PI4 Audio_INT, MC Remove R234, open SB3.
8 PG9 MFX_WAKUP, MC Remove R236, open SB34.
10 GND - -
12 PA8 SAI1_SCKA Remove U26.
14 PG3 FMC_A13 -
16 PG6 DSI LCD_SWIRE No connection for CN16
18 PG2 FMC_A12 -
20 PD11 FMC_A16 -
22 PH4 I2C2_SCL Remove R3.
Description Alternative functions
How to disconnect alternative functions to
use on the extension connector
Do not use CN11, CN12, CN15, and CN17 for debug connector.
Do not use CN11, CN12, CN15, and CN17 for debug connector.
24 PB11 UART3_RX
26 PD9 FMC_D14 -
28 PD12 FMC_A17 -
30 GND - -
32 PE13 FMC_D10 -
34 PE8 FMC_D5 -
36 PE11 FMC_D8 -
38 PE9 FMC_D6 -
40 +3V3 - -
Remove R171. No connection for CN11
56/72 UM2248 Rev 4
UM2248 Connectors
MS30720V1

7.6 CN7 RS232 connector

Figure 15. RS232 D-sub male connector (front view)

Pin number Description
1NC6 NC
2 RS232_RX (PG8) 7 RS232_RTS (PB12)
3 RS232_TX (PG7) 8 RS232_CTS (PB13)
4NC9 NC
5GND- -

Table 33. RS232 D-sub male connector

7.7 CN8 microSD™ connector

Figure 16. CN8 microSD™ connector (top view)

Pin
number
Description
UM2248 Rev 4 57/72
71
Connectors UM2248
Pin
number

Table 34. CN8 microSD™ connector

Description
number
1 SDIO_D2 (PC10) 6 Vss/GND
2 SDIO_D3 (PC11) 7 SDIO_D0 (PC8)
3 SDIO_CMD (PD2) 8 SDIO_D1 (PC9)
4 VDD 9 GND
5 SDIO_CLK (PC12) 10 MicroSDcard_detect (MFX GPIO15)

7.8 CN9 MFX programming connector

The CN9 connector is used only for embedded MFX (multi-function expander) programming during board manufacture. It is not populated by default and not for the end-user.

7.9 CN11 STDC14 connector

Figure 17. CN11 STDC14 debugging connector (top view)

Pin
Description

Table 35. CN11 STDC14 debugging connector

Terminal Function / MCU port Terminal Function / MCU port
1-2-
3 VDD 4 SWDIO/TMS (PA13)
5 GND 6 SWDCLK/TCK (PA14)
7 GND 8 SWO/TDO (PB3)
9 KEY 10 TDI (PA15)
11 GND 12 RESET#
13 VCP_RX (PB11)
1. Due to discrepancies between the port terminal and sheet symbol, VCP_RX and VCP_TX are not
connected to MCU
(1)
58/72 UM2248 Rev 4
14 VCP_TX (PB10)
(1)
UM2248 Connectors
MS30722V2
19 15 13 1
20 18
17
16 14 1112910 8642
75 3

7.10 CN12 trace debugging connector

Figure 18. CN12 ETM trace debugging connector (top view)

Pin
number

Table 36. CN12 trace debugging connector

Description
1 +3.3 V 2 TMS/PA13
3 GND 4 TCK/PA14
5 GND 6 TDO/PB3
7 KEY 8 TDI/PA15
9 GND 10 RESET#
11 GND 12 Trace_CLK/PE2
13 GND 14 Trace_D0/PC9 or SWO/PB3
15 GND 16 Trace_D1/PC10 or nTRST/PB4
17 GND 18 Trace_D2/PE5
19 GND 20 Trace_D3/PE6

7.11 CN15 TAG connector

.

Table 37. CN15 TAG debugging connector

Pin
number
Description
Terminal Function / MCU port Terminal Function / MCU port
1 VDD 2 SWDIO/TMS (PA13)
3 GND 4 SWDCLK/TCK (PA14)
5 GND 6 SWO/TDO (PB3)
7 NC 8 TDI (PA15)
9 TRST (PB4) 10 RESET#
UM2248 Rev 4 59/72
71
Connectors UM2248
MSv30722V2
19 15 13 1
20 18
17
16 14 1112910 8642
75 3

7.12 CN16 DSI display connector (MIPI)

A TFT color LCD with the MIPI DSISM interface board is mounted on CN16. Refer to
Section 6.29 for detail.

7.13 CN17 JTAG connector

Figure 19. CN17 JTAG/SWD debugging connector (top view)

Pin
number

Table 38. CN17 JTAG/SWD debugging connector

Description
Pin
number
Description
1 VDD power 2 VDD power
3 PB4 4 GND
5PA156GND
7PA138GND
9PA1410GND
11 N C 1 2 GND
13 PB3 14 GND
15 RESET# 16 GND
17 - 18 GND
19 - 20 GND
60/72 UM2248 Rev 4
UM2248 Connectors
MS30721V1
DC +5V
GND

7.14 CN18 power connector

The STM32L4R9I-EVAL board is power-able with a DC 5 V power supply via the external power supply jack (CN18) shown in
Figure 20. The central pin of CN18 must be positive.

Figure 20. CN18 power-supply connector (front view)

7.15 CN19 ST-LINK/V2-1 programming connector

The CN19 connector is used only for embedded ST-LINK/V2-1 programming during board manufacturing. It is not populated by default and not for end-users.

7.16 CN20 TFT LCD connector (RGB)

A TFT-color LCD board is mounted on CN20. Refer to Section 6.30 for details.

7.17 CN21 ST-LINK/V2-1 USB Micro-B connector

The CN21 USB connector is used to connect on-board ST-LINK/V2-1 facility to a PC for programming and debugging purposes.

Figure 21. CN21 USB Micro-B connector (front view)

Pin number Description Pin number Description

Table 39. CN21 USB Micro-B connector (front view)

1V
(power) 4 GND
BUS
UM2248 Rev 4 61/72
71
Connectors UM2248
MS30720V1
Table 39. CN21 USB Micro-B connector (front view) (continued)
Pin number Description Pin number Description
2DM 5 Shield
3DP - -

7.18 CN22 CAN D-type male connector

Figure 22. CN22 CAN D-type 9-pin male connector (front view)

Table 40. CN22 CAN D-type 9-pin male connector

Pin number Description Pin number Description
1,4,8,9 NC 7 CANH
2 CANL 3,5,6 GND
62/72 UM2248 Rev 4
UM2248 I/O assignment

Appendix A I/O assignment

Primary
key
UFBGA 169 DSI

Table 41. STM32L4R9I-EVAL I/O assignment

Pin name Pinout assignment
RGB LCD with
FMC mode
Motor-control
connector
1 K12 DSI_CKN - - -
2 K11 DSI_CKP - - -
3 L12 DSI_D0N - - -
4 L11 DSI_D0P - - -
5 J12 DSI_D1N - - -
6 J11 DSI_D1P - - -
7 L13 VCAPDSI - - -
8 [L13] VDD12DSI - - -
9 [L13] VDD12DSI - - -
10 J13 VSSDSI - - -
11 K13 VSSDSI - - -
12 H3 NRST NRST - -
13 K3 PA0 OPAMP1_VINP || MFX_IRQ_OUT - PFC indirect current
14 M1 PA1 OPAMP1_VINM - Heatsink Temp.
15 N1 PA2 OCTOSPIP1_NCS - -
16 M2 PA3
OCTOSPIP1_ CLK ||
OPAMP1_VOUT
--
17 N2 PA4 ADC/DAC - -
18 L3 PA5 LCD_BL_CTRL - -
19 L4 PA6 OCTOSPIP1_IO3 - -
20 M4 PA7 OCTOSPIP1_IO2 - -
21 E11 PA8 SAI1_SCK_A - -
22 E12 PA9 OTG_FS_VBUS - PFC shutdown
23 D11 PA10 OTG_FS_ID - -
24 E13 PA11 OTG_FS_DM - -
25 D13 PA12 OTG_FS_DP - -
26 A11 PA13 JTMS/SWDIO - -
27 A10 PA14 JTCK/SWCLK - -
28 A9 PA15 JTDI - -
29 N4 PB0 OCTOSPIP1_IO1 - -
30 L5 PB1 OCTOSPIP1_IO0 - -
31 N5 PB2 OCTOSPIP1_DQS - -
UM2248 Rev 4 63/72
71
I/O assignment UM2248
Table 41. STM32L4R9I-EVAL I/O assignment (continued)
Primary
key
32 A6 PB3 JTDO/TRACESWO - -
33 A5 PB4 NJTRST || COMP2_INP - -
34 B5 PB5 SAI1_SD_B || COMP2_OUT - -
35 C5 PB6 TSC_G2_IO3 || USART1_TX - Encoder A
36 D5 PB7 TSC_G2_IO4 - Encoder B
37 C4 PB8 SAI1_MCLK_A || CAN1_RX - Encoder Index
38 D4 PB9 SAI1_FS_A || CAN1_TX - -
39 N9 PB10 UART3_TX - -
40 H7 PB11 UART3_RX - -
41 N12 PB12 LPUART1_RTS_DE - -
42 N13 PB13 LPUART1_CTS - -
43 M12 PB14 PMOD_RST/DSI_BL_CTRL - PFC sync
44 L10 PB15 LED1 - PFC PWM
45 J2 PC0 DFSDM1_DATIN4 - PhaseA Current+
46 J3 PC1 SAI1_SD_A - PhaseB Current+
47 J4 PC2 LCD_INT - PhaseC Current+
48 K1 PC3 OCTOSPIP1_IO6 - PFC Vac
UFBGA 169 DSI
Pin name Pinout assignment
RGB LCD with
FMC mode
Motor-control
connector
49 K4 PC4 OCTOSPIP1_IO7 - Bus Voltage
50 F11 PC6 TSC_G4_IO1 - MC_PWM_1H
51 G11 PC7 TSC_G4_IO2 - MC_PWM_2H
52 F9 PC8 uSD1_D0 - MC_PWM_3H
53 G13 PC9 uSD1_D1 || TRACED0 - -
54 D9 PC10 uSD1_D2 || TRACED1 - -
55 E9 PC11 uSD1_D3 - -
56 F8 PC12 uSD1_CK - -
57 E1 PC13 TAMP1/WKUP2 - -
58 F1
59 G1
60 B8 PD0 FMC_D2 LCD_B4 -
61 C8 PD1 FMC_D3 LCD_B5 -
62 D8 PD2 uSD1_CMD - -
63 E8 PD3 - LCD_CLK -
64 C7 PD4 FMC_NOE LCD_NOE -
PC14-
OSC32_IN
PC15-
OSC32_OUT
OSC32_IN - -
OSC32_OUT - -
64/72 UM2248 Rev 4
UM2248 I/O assignment
Table 41. STM32L4R9I-EVAL I/O assignment (continued)
Primary
key
UFBGA 169 DSI
Pin name Pinout assignment
RGB LCD with
FMC mode
65 D7 PD5 FMC_NWE LCD_NWE -
66 E7 PD6 FMC_NWAIT LCD_DE -
67 F7 PD7 FMC_NE1 - -
68 K10 PD8 FMC_D13 LCD_R3 -
69 K9 PD9 FMC_D14 LCD_R4 -
70 J10 PD10 FMC_D15 LCD_R5 -
71 J9 PD11 FMC_A16 LCD_R6 -
72 J8 PD12 FMC_A17 LCD_R7 -
73 H8 PD13 FMC_A18 - -
74 H11 PD14 FMC_D0 LCD_B2 -
75 H10 PD15 FMC_D1 LCD_B3 -
76 A4 PE0 FMC_NBL0 LCD_HSYNC -
77 B4 PE1 FMC_NBL1 LCD_VSYNC -
78 D3 PE2 FMC_A23 || TRACECK LCD_R0 -
79 D2 PE3 FMC_A19 LCD_R1 -
80 D1 PE4 FMC_A20 LCD_B0 -
81 E4 PE5 FMC_A21 || TRACED2 - -
Motor-control
connector
82 E3 PE6 FMC_A22 || TRACED3 - -
83 L7 PE7 FMC_D4 LCD_B6 -
84 K6 PE8 FMC_D5 LCD_B7 -
85 J6 PE9 FMC_D6 LCD_G2 -
86 H6 PE10 FMC_D7 LCD_G3 -
87 N8 PE11 FMC_D8 LCD_G4 -
88 M8 PE12 FMC_D9 LCD_G5 -
89 L8 PE13 FMC_D10 LCD_G6 -
90 K7 PE14 FMC_D11 LCD_G7 -
91 J7 PE15 FMC_D12 LCD_R2 -
92 F5 PF0 FMC_A0 - -
93 F4 PF1 FMC_A1 - -
94 F3 PF2 FMC_A2 - -
95 G3 PF3 FMC_A3 - -
96 G4 PF4 FMC_A4 - -
97 G5 PF5 FMC_A5 - -
98 H4 PF10 DFSDM1_CKOUT - -
UM2248 Rev 4 65/72
71
I/O assignment UM2248
Table 41. STM32L4R9I-EVAL I/O assignment (continued)
Primary
key
99 M5 PF11 DSI_TE/LCD_DE - -
100 N6 PF12 FMC_A6 - -
101 M6 PF13 FMC_A7 LCD_B1 -
102 L6 PF14 FMC_A8 LCD_G0 -
103 K5 PF15 FMC_A9 LCD_G1 -
104 J5 PG0 FMC_A10 - -
105 H5 PG1 FMC_A11 - -
106 H9 PG2 FMC_A12 - -
107 G8 PG3 FMC_A13 - -
108 G7 PG4 FMC_A14 - -
109 G9 PG5 FMC_A15 - -
110 G12 PG 6 S WIRE - -
111 G10 PG7 LPUART1_TX - -
112 F10 PG8 LPUART1_RX - -
113 B7 PG9 MFX_WAKEUP - ICL shutout
114 D 6 PG10 F MC_NE3 - -
115 E6 PG11 OCTOSPIP1_IO5 - -
UFBGA 169 DSI
Pin name Pinout assignment
RGB LCD with
FMC mode
Motor-control
connector
116 F6 PG12 SPI_CS LCD_NE4 -
117 G6 PG13 PMOD_INT/ USART1_CK - Dissipative Brake
118 C6 PG15 OCTOSPIP2_DQS - -
119 H1 PH0-OSC_IN OSC_IN - -
120 J1 PH1-OSC_OUT OSC_OUT - -
121 A2 PH2 OCTOSPIP1_IO4 - -
122 E5 PH3-BOOT0 - - -
123 K8 PH4 I2C2_SCL - -
124 L9 PH5 I2C2_SDA - -
125 N10 PH8 OCTOSPIP2_IO3 - -
126 C11 PH9 OCTOSPIP2_IO4 - -
127 M9 PH10 OCTOSPIP2_IO5 - -
128 M10 PH11 OCTOSPIP2_IO6 - -
129 B13 PH12 OCTOSPIP2_IO7 - -
130 C9 PH13 LED2 - MC_PWM_1L
131 A13 PH14 LED3 - MC_PWM_2L
132 B12 PH15 LED4 - MC_PWM_3L
66/72 UM2248 Rev 4
UM2248 I/O assignment
Table 41. STM32L4R9I-EVAL I/O assignment (continued)
Primary
key
UFBGA 169 DSI
Pin name Pinout assignment
RGB LCD with
FMC mode
Motor-control
133 A12 PI0 SPI2_NSS - -
134 B11 PI1 SPI2_SCK - -
135 B10 PI2 SPI2_MISO - -
136 C10 PI3 SPI2_MOSI - -
137 D10 PI4 Audio_INT -
MC_EmergencyST
138 E10 PI5 OCTOSPIP2_NCS - -
139 B9 PI6 OCTOSPIP2_CLK - -
140 B2 PI7 - - -
141 B1 PI9 OCTOSPIP2_IO2 - -
142 A1 PI10 OCTOSPIP2_IO1 - -
143 C3 PI11 OCTOSPIP2_IO0 - -
144 E2 VBAT - - -
145 N11 VDD - - -
146 H13 VDD - - -
147 C1 VDD - - -
148 A3 VDD - - -
connector
OP
149 C13 VDD - - -
150 N3 VDD - - -
151 G2 VDD - - -
152 N7 VDD - - -
153 A8 VDD - - -
154 M13 VDDDSI - - -
155 L2 VDDA - - -
156 F12 VDDIO2 - - -
157 B6 VDDIO2 - - -
158 D12 VDDUSB - - -
159 L1 VREF+ - - -
160 K2 VREF- - - -
161 A7 VSS - - -
162 C2 VSS - - -
163 H12 VSS - - -
164 M11 VSS - - -
165 B3 VSS - - -
UM2248 Rev 4 67/72
71
I/O assignment UM2248
Table 41. STM32L4R9I-EVAL I/O assignment (continued)
Primary
key
166 C12 VSS - - -
167 H2 VSS - - -
168 F2 VSS - - -
169 M7 VSS - - -
170 M3 VSS - - -
171 F13 VSS - - -
UFBGA 169 DSI
Pin name Pinout assignment
RGB LCD with
FMC mode
Motor-control
connector
68/72 UM2248 Rev 4
UM2248 STM32L4R9I-EVAL board information

8 STM32L4R9I-EVAL board information

8.1 Product marking

The sticker located on the top or bottom side of the PCB board shows the information about product identification such as board reference, revision, and serial number.
The first identification line has the following format: ‘MBxxxx-Variant-yzz’, where ‘MBxxxx’ is the board reference, ‘Variant’ (optional) identifies the mounting variant when several exist, ‘y’ is the PCB revision and ‘zz’ is the assembly revision: for example B01.
The second identification line is the board serial number used for traceability.
Evaluation tools marked as “ES” or “E” are not yet qualified and therefore not ready to be used as reference design or in production. Any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering sample tools as reference design or in production.
‘E’ or ‘ES’ marking examples of location:
On the target STM32 that is soldered on the board (for illustration of STM32 marking,
refer to the STM32 datasheet “Package information” paragraph at the www.st.com website).
Next to the evaluation tool ordering part number that is stuck or silk-screen printed on
the board.
Some boards feature a specific STM32 device version that allows the operation of any stack or library. This STM32 device shows a ‘U’ marking option at the end of the standard part number and is not available for sales.
In order to use the same commercial stack in his application, a developer may need to purchase a part number specific to this stack/library. The price of those part numbers includes the stack/library royalties.
The board reference for the STM32L4R9I-EVAL Evaluation board is MB1313, MB1314 for the DSI display daughterboard, and MB1315 for the TFT LCD daughterboard.
UM2248 Rev 4 69/72
71
STM32L4R9I-EVAL board information UM2248

8.2 Board revision history

MB1313
Revision B01
The revision B-01 is the initial release.
MB1314
Revision B01
The revision B-01 is the initial release.
Revision C01
CN2 changed to BM20B(0.8)-24DS-0.4V(51)
MB1315
Revision A01
The revision A-01 is the initial release.

8.3 Board known limitations

MB1313
Revision B01
None
MB1314
Revision C01
ZZ1 update to IEG1120TB105GG-001 with a different connector
MB1315
Revision A01
None
70/72 UM2248 Rev 4
UM2248 Revision history

Revision history

Table 42. Document revision history

Date Revision Changes
18-Aug-2017 1 Initial version
Added: STM32L4R9I-EVAL board bottom view in Figure 5 Bootloader limitation in Chapter 9.8.1
25-Oct-2017 2
Warning on AMOLED display in Chapter 9.32 Updated: Cover views Figure 3 and Figure 4 moved to Section 9.1
Table 27 and Tab l e 3 9 alternative function removed Figure 23, Figure 24, and Figure 37 in Electrical schematics
Updated:
9-Jan-2018 3
Section 9.8.1: WA3 simplified Table 34: PE3 replaced by PC9, PE4 replaced by PC10
Reorganized the entire document: – Updated Features, Ordering information, Development
environment, Development toolchains, and Demonstration
9-Sep-2020 4
software
– Added Codification, Section 6.25.2: Limitations, and
Section 8: STM32L4R9I-EVAL board information
– Removed Electrical schematics
UM2248 Rev 4 71/72
71
UM2248
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2020 STMicroelectronics – All rights reserved
72/72 UM2248 Rev 4
Loading...