ST MICROELECTRONICS STM32L496RET6 Datasheet

Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
UFBGA132 (7 × 7)
LQFP144 (20 × 20)
UFBGA169 (7 x 7)
WLCSP100
LQFP100 (14 x 14)
LQFP64 (10 x 10)
Features
Ultra-low-power with FlexPowerControl
– 1.71 V to 3.6 V power supply – -40 °C to 85/125 °C temperature range – 320 nA in V
32x32-bit backup registers – 25 nA Shutdown mode (5 wakeup pins) – 108 nA Standby mode (5 wakeup pins) – 426 nA Standby mode with RTC – 2.57 µA Stop 2 mode, 2.86 µA Stop 2 with
RTC – 91 µA/MHz run mode (LDO Mode) – 37 μA/MHz run mode (@3.3 V SMPS
Mode) – Batch acquisition mode (BAM) – 5 µs wakeup from Stop mode – Brown out reset (BOR) in all modes except
shutdown – Interconnect matrix
Core: Arm
®
Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait-state execution from Flash memory, frequency up to 80 MHz, MPU, 100 DMIPS and DSP instructions
Performance benchmark
– 1.25 DMIPS/MHz (Drystone 2.1) – 273.55 Coremark
80 MHz)
Energy benchmark
– 279 ULPMark™ CP score – 80.2 ULPMark™ PP score
16 x timers: 2 x 16-bit advanced motor-control,
2 x 32-bit and 5 x 16-bit general purpose, 2 x 16-bit basic, 2 x low-power 16-bit timers (available in Stop mode), 2 x watchdogs, SysTick timer
RTC with HW calendar, alarms and calibration
mode: supply for RTC and
BAT
32-bit Cortex®-M4 CPU with FPU,
®
(3.42 Coremark/MHz @
STM32L496xx
Datasheet - production data
Up to 136 fast I/Os, most 5 V-tolerant, up to 14
I/Os with independent supply down to 1.08 V
Dedicated Chrom-ART Accelerator™ for
enhanced graphic content creation (DMA2D)
8- to 14-bit camera interface up to 32 MHz
(black&white) or 10 MHz (color)
Memories
– Up to 1 MB Flash, 2 banks read-while-
write, proprietary code readout protection
– 320 KB of SRAM including 64 KB with
hardware parity check
– External memory interface for static
memories supporting SRAM, PSRAM, NOR and NAND memories
– Dual-flash Quad SPI memory interface
Clock Sources
– 4 to 48 MHz crystal oscillator – 32 kHz crystal oscillator for RTC (LSE) – Internal 16 MHz factory-trimmed RC (±1%) – Internal low-power 32 kHz RC (±5%) – Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25% accuracy) – Internal 48 MHz with clock recovery – 3 PLLs for system clock, USB, audio, ADC
LCD 8 × 40 or 4 × 44 with step-up converterUp to 24 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
4 x digital filters for sigma delta modulatorRich analog peripherals (independent supply)
– 3 × 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
January 2020 DS11585 Rev 11 1/281
This is information on a product in full production.
www.st.com
STM32L496xx
– 2 x 12-bit DAC output channels, low-power
sample and hold – 2 x operational amplifiers with built-in PGA – 2 x ultra-low-power comparators
20 x communication interfaces
– USB OTG 2.0 full-speed, LPM and BCD – 2 x SAIs (serial audio interface) – 4 x I2C FM+(1 Mbit/s), SMBus/PMBus – 5 x U(S)ARTs (ISO 7816, LIN, IrDA,
modem)

Table 1. Device summary

Reference Part numbers
STM32L496xx
STM32L496AG, STM32L496QG, STM32L496RG, STM32L496VG, STM32L496ZG, STM32L496AE, STM32L496QE, STM32L496RE, STM32L496VE, STM32L496ZE
– 1 x LPUART – 3 x SPIs (4 x SPIs with the Quad SPI) – 2 x CAN (2.0B Active) and SDMMC – SWPMI single wire protocol master I/F – IRTIM (Infrared interface)
14-channel DMA controllerTrue random number generatorCRC calculation unit, 96-bit unique IDDevelopment support: serial wire debug
(SWD), JTAG, Embedded Trace Macrocell™
2/281 DS11585 Rev 11
STM32L496xx Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 18
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 22
3.10 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.10.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.10.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.11 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.13 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.14 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.15 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.16 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.16.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 41
3.16.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 41
3.17 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.17.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.17.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 43
DS11585 Rev 11 3/281
6
Contents STM32L496xx
3.17.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.18 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.19 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.20 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.21 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.23 Liquid crystal display controller (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.24 Digital filter for Sigma-Delta Modulators (DFSDM) . . . . . . . . . . . . . . . . . . 46
3.25 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.26 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.27 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.27.1 Advanced-control timer (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.27.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,
TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.27.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.27.4 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 50
3.27.5 Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.27.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.27.7 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.27.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.28 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 52
3.29 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.30 Universal synchronous/asynchronous receiver transmitter (USART) . . . 54
3.31 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 55
3.32 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.33 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.34 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 57
3.35 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.36 Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 58
3.37 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 58
3.38 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.39 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 59
3.40 Dual-flash Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . 60
3.41 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4/281 DS11585 Rev 11
STM32L496xx Contents
3.41.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.41.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 128
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . 128
6.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.6 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 185
6.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.3.18 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 186
DS11585 Rev 11 5/281
6
Contents STM32L496xx
6.3.19 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 199
6.3.20 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 204
6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.3.22 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.3.24 V
6.3.25 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.3.26 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.3.27 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.3.28 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 217
6.3.29 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6.3.30 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 247
6.3.31 SWPMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
6.3.32 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 249
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
BAT
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.1 UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.2 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
7.3 UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.4 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
7.5 WLCSP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.6 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.7.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.7.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 274
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
6/281 DS11585 Rev 11
STM32L496xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32L496xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 19
Table 4. STM32L496xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 5. Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 6. STM32L496xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 7. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 8. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 9. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 10. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 11. I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 12. STM32L496xx USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 13. SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 14. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 15. STM32L496xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 16. Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 17. Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 18. STM32L496xx memory map and peripheral register boundary addresses . . . . . . . . . . . 118
Table 19. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 20. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 21. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 22. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 23. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 24. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 25. Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 26. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 133
Table 27. Current consumption in Run modes, code with data processing running from Flash,
(ART enable Cache ON Prefetch OFF) and power supplied
(by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 28. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 29. Current consumption in Run modes, code with data proce
ART disable and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . 136
Table 30. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 31. Current consumption in Run, code with data processing running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . . . . 138
Table 32. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 139
Table 33. Typical current consumption in Run, with different codes running from Flash, ART
enable (Cache ON Prefetch OFF) and power supplied
(by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 34. Typical current consumption in Run, with different codes running from Flash, ART
enable (Cache ON Prefetch OFF) and power supplied
(by external SMPS (VDD12 = 1.05 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 35. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
ssing running from Flash,
DS11585 Rev 11 7/281
10
List of tables STM32L496xx
Table 36. Typical current consumption in Run modes, with different codesrunning from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . 141
Table 37. Typical current consumption in Run modes, with different codesrunning from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V) . . . . . . . . 141
Table 38. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 39. Typical current consumption in Run, with different codesrunning from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . . . . 142
Table 40. Typical current consumption in Run, with different codesrunning from
SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V). . . . . . . . . . . . . . . . . 143
Table 41. Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . 144
Table 42. Current consumption in Sleep, Flash ON and power supplied
by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 43. Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . 146
Table 44. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 45. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 46. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 47. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 48. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 49. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 50. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 51. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 52. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 53. Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 54. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 55. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 56. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 57. LSE oscillator characteristics (f
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
LSE
Table 58. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 59.
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
Table 60. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 61. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 62. PLL, PLLSAI1, PLLSAI2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 63. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 64. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 65. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 66. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 67. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 68. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 69. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 70. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 71. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 72. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 73. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 74. EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 75. Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 76. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 77. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 78. ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 79. ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 80. ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Table 81. ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8/281 DS11585 Rev 11
STM32L496xx List of tables
Table 82. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 83. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Table 84. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Table 85. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Table 86. OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 87. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 88. V Table 89. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
BAT
Table 90. LCD controller characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 91. DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Table 92. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Table 93. IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Table 94. WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Table 95. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Table 96. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Table 97. Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Table 98. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Table 99. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Table 100. SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 226
Table 101. eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Table 102. USB OTG DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Table 103. USB OTG electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Table 104. USB BCD DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Table 105. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 233
Table 106. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 233
Table 107. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 234
Table 108. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 235
Table 109. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Table 110. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 236
Table 111. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Table 112. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 238
Table 113. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Table 114. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Table 115. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 243
Table 116. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Table 117. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Table 118. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Table 119. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Table 120. SWPMI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Table 121. SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 250
Table 122. SD / MMC dynamic characteristics, VDD=1.71 V to 1.9 V
. . . . . . . . . . . . . . . . . . . . . . . . 250
Table 123. UFBGA169 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Table 124. UFBGA169 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . 253
Table 125. LQFP144 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Table 126. UFBGA132 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Table 127. UFBGA132 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . 262
Table 128. LQFP100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Table 129. WLCSP100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Table 130. WLCSP100 - Recommended PCB design rules (0.4 mm pitch). . . . . . . . . . . . . . . . . . . . 269
Table 131. LQFP64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Table 132. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Table 133. STM32L496xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
DS11585 Rev 11 9/281
10
List of tables STM32L496xx
Table 134. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
10/281 DS11585 Rev 11
STM32L496xx List of figures
List of figures
Figure 1. STM32L496xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2. Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 4. Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 5. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 6. Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 7. STM32L496Ax UFBGA169 pinout Figure 8. STM32L496Ax, external SMPS device, UFBGA169 pinout Figure 9. STM32L496Zx LQFP144 pinout Figure 10. STM32L496Zx, external SMPS device, LQFP144 pinout Figure 11. STM32L496Qx UFBGA132 ballout
Figure 12. STM32L496Qx, external SMPS device, UFBGA132 ballout . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 13. STM32L496Vx LQFP100 pinout Figure 14. STM32L496Vx, external SMPS device, LQFP100 pinout Figure 15. STM32L496Vx WLCSP100 pinout Figure 16. STM32L496Vx, external SMPS device, WLCSP100 pinout Figure 17. STM32L496Rx LQFP64 pinout Figure 18. STM32L496Rx, external SMPS, LQFP64 pinout
Figure 19. STM32L496xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 20. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 21. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 22. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 23. Current consumption measurement scheme with and without external
SMPS power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 24. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 25. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 26. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 27. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 28. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 29. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 30. Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 31. HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Figure 32. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 33. I/O AC characteristics definition
Figure 34. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 35. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 36. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 37. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Figure 38. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 39. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Figure 40. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Figure 41. Quad SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Figure 42. Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Figure 43. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Figure 44. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Figure 45. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Figure 46. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Figure 47. USB OTG timings – definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . 229
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
(1)
. . . . . . . . . . . . . . . . . . . . . . 62
(1)
. . . . . . . . . . . . . . . . . . . . . . . . 64
(1)
. . . . . . . . . . . . . . . . . . . . . . . . 67
(1)
. . . . . . . . . . . . . . . . . . . . . . 68
DS11585 Rev 11 11/281
12
List of figures STM32L496xx
Figure 48. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 232
Figure 49. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 234
Figure 50. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 235
Figure 51. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 237
Figure 52. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Figure 53. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Figure 54. Synchronous non-multiplexed NOR/PSRAM read timings. . . . . . . . . . . . . . . . . . . . . . . . 243
Figure 55. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Figure 56. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Figure 57. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Figure 58. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 246
Figure 59. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 247
Figure 60. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Figure 61. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Figure 62. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Figure 63. UFBGA169 - Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Figure 64. UFBGA169 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Figure 65. UFBGA169 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Figure 66. UFBGA169, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . 255
Figure 67. LQFP144 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Figure 68. LQFP144 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Figure 69. LQFP144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Figure 70. LQFP144, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . . . 260
Figure 71. UFBGA12 - Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Figure 72. UFBGA132 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Figure 73. UFBGA132 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Figure 74. UFBGA132, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . 263
Figure 75. LQFP100 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Figure 76. LQFP100 -Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Figure 77. LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Figure 78. LQFP100, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . . . 266
Figure 79. WLCSP100 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Figure 80. WLCSP100- Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Figure 81. WLCSP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Figure 82. WLCSP100, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . 270
Figure 83. LQFP64 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Figure 84. LQFP64 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Figure 85. LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Figure 86. LQFP64, external SMPS device, marking (package top view) . . . . . . . . . . . . . . . . . . . . . 273
12/281 DS11585 Rev 11
STM32L496xx Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32L496xx microcontrollers.
This document should be read in conjunction with the STM32L47x, STM32L48x,
STM32L49x and STM32L4Ax reference manual (RM0351). The reference manual is
available from the STMicroelectronics website www.st.com.
For information on the Arm
Reference Manual, available from the www.arm.com website.
®(a)
Cortex®-M4 core, please refer to the Cortex®-M4 Technical
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS11585 Rev 11 13/281
61
Description STM32L496xx

2 Description

The STM32L496xx devices are the ultra-low-power microcontrollers based on the high-
performance Arm
The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all
®
Arm
single-precision data-processing instructions and data types. It also implements a full
®
Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz.
set of DSP instructions and a memory protection unit (MPU) which enhances application
security.
The STM32L496xx devices embed high-speed memories (up to 1 Mbyte of Flash memory,
320
Kbyte of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), a Quad SPI flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L496xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.
The devices offer up to three fast 12-bit ADCs (5 Msps), two comparators, two operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four digital filters for external sigma delta modulators (DFSDM).
In addition, up to 24 capacitive sensing channels are available. The devices also embed an integrated LCD driver 8x40 or 4x44, with internal step-up converter.
They also feature standard and advanced communication interfaces.
Four I2Cs Three SPIs Three USARTs, two UARTs and one Low-Power UART. Two SAIs (Serial Audio Interfaces) One SDMMC Two CAN One USB OTG full-speed One SWPMI (Single Wire Protocol Master Interface) Camera interface DMA2D controller
The STM32L496xx operates in the -40 to +85 °C (+105 °C junction), -40 to +125 °C (+130
°C junction) temperature ranges from a 1.71 to 3.6 V VDD power supply when using
internal LDO regulator and a 1.05 to 1.32V V
DD12
supply. A comprehensive set of power-saving modes allows the design of low-power applications.
Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMPs and comparators, 3.3
V dedicated supply input for USB and up to 14 I/Os can be supplied independently down to 1.08V. A VBAT input allows to backup the RTC and backup registers. Dedicated V
power supplies can be used to bypass the internal
DD12
LDO regulator when connected to an external SMPS.
14/281 DS11585 Rev 11
power supply when using external SMPS
STM32L496xx Description
The STM32L496xx family offers six packages from 64-pin to 169-pin packages.

Table 2. STM32L496xx family device features and peripheral counts

Peripheral STM32L496Ax STM32L496Zx STM32L496Qx STM32L496Vx STM32L496Rx
Flash memory 512KB 1MB 512KB 1MB 512KB 1MB 512KB 1MB 512KB 1MB
SRAM 320 KB
External memory controller for static
Yes Yes Yes Yes
memories
Quad SPI Yes
Advanced control
General purpose
2 (16-bit)
5 (16-bit) 2 (32-bit)
Basic 2 (16-bit)
Timers
Low power 2 (16-bit)
SysTick timer 1
Watchdog timers (independent
2
window)
(1)
No
SPI 3
2
C4
I
Comm. interfaces
USART UART LPUART
SAI 2
3 2 1
CAN 2
USB OTG FS Yes
SDMMC Yes
SWPMI Yes
Digital filters for sigma­delta modulators
Yes (4 filters)
Number of channels 8
RTC Yes
Ta mp e r p in s 3
Camera interface Yes Yes
Chrom-ART Accelerator™
LCD COM x SEG
Yes
Yes
8x40 or 4x44
(2)
DS11585 Rev 11 15/281
61
Description STM32L496xx
Table 2. STM32L496xx family device features and peripheral counts (continued)
Peripheral STM32L496Ax STM32L496Zx STM32L496Qx STM32L496Vx STM32L496Rx
Random generator Yes
(3)
GPIOs Wakeup pins Nb of I/Os down to
1.08 V
136
5
14
115
5
14
110
5
14
83
52 5 0
4 0
Capacitive sensing Number of channels
12-bit ADCs Number of channels
24 24 24 21 21
3
24
24
3
19
3
16
3
16
3
12-bit DAC channels 2
Internal voltage reference buffer
Yes
Analog comparator 2
Operational amplifiers 2
Max. CPU frequency 80 MHz
Operating voltage (V
Operating voltage
)
(V
DD12
Operating temperature
Packages UFBGA169 LQFP144 UFBGA132
1. For the LQFP100 and WLCSP100 packages, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.
2. Only up to 13 data bits.
3. In case external SMPS package type is used, 2 GPIO's are replaced by VDD12 pins to connect the SMPS power supplies hence reducing the number of available GPIO's by 2.
) 1.71 to 3.6 V
DD
1.05 to 1.32 V
Ambient operating temperature: -40 to 85 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to 130 °C
LQFP100
WLCSP100
LQFP64
16/281 DS11585 Rev 11
STM32L496xx Description
MS50053V1
USB OTG
Flash up to 1 MB
Flexible static memory controller (FSMC):
SRAM, PSRAM, NOR Flash,
NAND Flash
GPIO PORT A
AHB/APB2
EXT IT. WKUP
114 AF
PA[15:0]
TIM1 / PWM
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
USART1
RX, TX, CK,CTS,
RTS as AF
SPI1
MOSI, MISO,
SCK, NSS as AF
APB260 M Hz
APB1 30MHz
MOSI, MISO, SCK, NSS as AF
DAC1_OUT1
ITF
WWDG
RTC_TS
OSC32_IN
OSC32_OUT
VDDA, VSSA
VDD, VSS, NRST
smcard
IrDA
16b
SDIO / MMC
D[7:0]
CMD, CK as AF
VBAT = 1.55 to 3.6 V
SCL, SDA, SMBA as AF
JTAG & SW
ARM Cortex-M4
80 MHz
FPU
NVIC
ETM
MPU
TRACECLK
TRACED[3:0]
DMA2
ART
ACCEL/
CACHE
CLK, NE[4:1], NL, NBL[1:0], A[25:0], D[15:0], NOE, NWE, NWAIT, NCE3, INT3 as AF
RNG
DP
DM SCL, SDA, INTN, ID, VBUS, SOF
FIFO
@ VDDA
BOR
Supply
supervision
PVD, PVM
Int
reset
XTAL 32 kHz
MAN AGT
RTC
FCLK
Standby
interface
IWDG
@VBAT
@ VDD
@VDD
AWU
Reset & clock
control
PCLKx
VDD = 1.71 to 3.6 V
VSS
Voltage
regulator
3.3 to 1.2 V
VDD
Power management
@ VDD
RTC_TAMPx
Backup register
AHB bus-matrix
TIM15
2 channels,
1 compl. channel, BKIN as
AF
DAC1
TIM6
TIM7
TIM2
TIM3
TIM4
TIM5
USART2
USART3
I2C1/SMBUS
D-BUS
APB1 80 MHz (max)
SRAM 256 KB
SRAM 64 KB
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
I-BUS
S-BUS
DMA1
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PF[15:0]
PG[15:0]
PH[15:0]
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
GPIO PORT F
GPIO PORT G
GPIO PORT H
TIM8 / PWM
16b
16b
TIM16
16b
TIM17
16b
3 compl. Channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
1 channel,
1 compl. channel, BKIN as AF
1 channel,
1 compl. channel, BKIN as AF
DAC1_OUT2
16b
16b
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
MOSI, MISO, SCK, NSS as AF
TX, RX as AF
RX, TX, CTS, RTS as AF
RX, TX, CTS, RTS as AF
RX, TX, CK, CTS, RTS as AF
RX, TX, CK, CTS, RTS as AF
smcard
IrDA
smcard
IrDA
32b
16b
16b
32b
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
AHB/APB1
OSC_IN
OSC_OUT
HCLKx
XTAL OSC
4- 48MHz
8 analog inputs common to the 3 ADCs
VREF+
USAR T 2MBps
Temperature sensor
ADC1
ADC2
ADC3
IF
ITF
@ VDDA
8 analog inputs common to the ADC1 & 2
8 analog inputs for ADC3
SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
SAI2
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
DFSDM
SDCKIN[7:0], SDDATIN[7:0],
SDCKOUT,SDTRIG as AF
Touch sensing controller
8 Groups of 4 channels max as AF
OUT, INN, INP
LCD 8x40
LPUART1
SWPMI
LPTIM1
LPTIM2
SEGx, COMx as AF
RX, TX, CTS, RTS as AF
SWP
IN1, IN2, OUT, ETR as AF
IN1, OUT, ETR as AF
RC HSI
RC LSI
PLL 1&2&3
MSI
Quad SPI memory interface
D0[3:0], D1[3:0], CLK0, CLK1, CS
@ VDDUSB
COMP1
INP, INN, OUT
COMP2
INP, INN, OUT
@ VDDA
RTC_OUT
VDDIO, VDDUSB
FIFO
PHY
AHB1 80 MHz
CRC
OUT, INN, INP
I2C2/SMBUS
I2C3/SMBUS
OpAmp1
SP3
SP2
UART5
UART4
LCD Booster
V
LCD
V
LCD
= 2.5V to 3.6V
APB2 80MHz
AHB2 80 MHz
OpAmp2
@VDDA
Firewall
VREF Buffer
@ VDDA
@ VDD
Camera Interface
FIFO
HSYNC, VSYNC, PIXCLK, D[13:0]
CHROM-ART
DMA2D
FIFO
PI[11:0]
GPIO PORT I
TX, RX as AF
bxCAN1
SCL, SDA, SMBA as AF
I2C4/SMBUS
HSI48
bxCAN1
FIFO
CRS
CRS_SYNC
VDD12
VDD12 = 1.05 to 1.32 V
(1)
1. Only available when using external SMPS supply mode

Figure 1. STM32L496xx block diagram

Note: AF: alternate function on I/O pins.
DS11585 Rev 11 17/281
61
Functional overview STM32L496xx

3 Functional overview

3.1 Arm® Cortex®-M4 core with FPU

The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional code­efficiency, delivering the high-performance expected from an Arm usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L496xx family is compatible with all Arm® tools and software.
Figure 1 shows the general block diagram of the STM32L496xx family devices.
®
core in the memory size

3.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry­standard Arm the Arm processor to wait for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz.
®
®
Cortex®-M4 processors. It balances the inherent performance advantage of
Cortex®-M4 over Flash memory technologies, which normally requires the

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real­time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
18/281 DS11585 Rev 11
STM32L496xx Functional overview

3.4 Embedded Flash memory

STM32L496xx devices feature up to 1 Mbyte of embedded Flash memory available for storing programs and data. The Flash memory is divided into two banks allowing read­while-write operations. This feature allows to perform a read operation from one bank while an erase or program operation is performed to the other bank. The dual bank boot is also supported. Each bank contains 256 pages of 2
Flexible protections can be configured thanks to option bytes: Readout protection (RDP) to protect the whole memory. Three levels are available:
Level 0: no readout protection – Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is selected
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

Table 3. Access status versus readout protection level and execution modes

Kbyte.
Area
Main
memory
System
memory
Option
bytes
Backup
registers
SRAM2
1. Erased when RDP change from Level 1 to Level 0.
Protection
level
1 Yes Yes Yes No No No
2 Yes Yes Yes N/A N/A N/A
1 Yes No No Yes No No
2 Yes No No N/A N/A N/A
1 Yes Yes Yes Yes Yes Yes
2 Yes No No N/A N/A N/A
1YesYesN/A
2 Yes Yes N/A N/A N/A N/A
1 Yes Yes Yes
2 Yes Yes Yes N/A N/A N/A
User execution
Read Write Erase Read Write Erase
(1)
(1)
Debug, boot from RAM or boot
from system memory (loader)
No No N/A
No No No
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas per bank can be selected, with 2-Kbyte granularity.
Proprietary code readout protection (PCROP): a part of the flash memory can be
protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU, as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. One area per bank can be selected, with 64-bit granularity. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.
(1)
(1)
DS11585 Rev 11 19/281
61
Functional overview STM32L496xx
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction double error detection. The address of the ECC fail can be read in the ECC register

3.5 Embedded SRAM

STM32L496xx devices feature 320 Kbyte of embedded SRAM. This SRAM is split into two blocks:
256 Kbyte mapped at address 0x2000 0000 (SRAM1) 64 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2004 0000, offering a contiguous address space with the SRAM1.
This block is accessed through the ICode/DCode buses for maximum performance. These 64 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.
20/281 DS11585 Rev 11
STM32L496xx Functional overview
MSv38030V3
ARM
®
CORTEX
®
-M4 with FPU
DMA1 DMA2
FMC
AHB2
peripherals
AHB1
peripherals
SRAM2
FLASH
1 MB
ACCEL
S0 S1 S2 S3 S4
M0 M1 M2 M3 M4 M5 M6
ICode
DCode
QUADSPI
M7
DMA2D
S5
BusMatrix-S
128KB
128KB
SRAM1

3.6 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs and the DMA2D) and the slaves (Flash memory, RAM, FMC, QUADSPI, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high speed peripherals work simultaneously.

Figure 2. Multi-AHB bus matrix

3.7 Firewall

The device embeds a Firewall which protects code sensitive and secure data from any access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
DS11585 Rev 11 21/281
61
Functional overview STM32L496xx
The Firewall main features are the following: Three segments can be protected and defined thanks to the Firewall registers:
Code segment (located in Flash or SRAM1 if defined as executable protected
area) – Non-volatile data segment (located in Flash) – Volatile data segment (located in SRAM1)
The start address and the length of each segments are configurable:
Code segment: up to 1024 Kbyte with granularity of 256 bytes – Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes – Volatile data segment: up to 256 Kbyte of SRAM1 with a granularity of 64 bytes
Specific mechanism implemented to open the Firewall to get access to the protected
areas (call gate entry sequence)
Volatile data segment can be shared or not with the non-protected code Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of protection.

3.8 Boot modes

At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:
Boot from user Flash Boot from system memory Boot from embedded SRAM
BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed.
A Flash empty check mechanism is implemented to force the boot from system flash if the first flash memory location is not programmed and if the boot selection is configured to boot from main flash.
The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, CAN or USB OTG FS in Device mode through DFU (device firmware upgrade).

3.9 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.
22/281 DS11585 Rev 11
STM32L496xx Functional overview

3.10 Power supply management

3.10.1 Power supply schemes

VDD = 1.71 to 3.6 V: external power supply for I/Os (V
), the internal regulator and
DDIO1
the system analog such as reset, power management and internal clocks. It is provided externally through VDD pins.
V
= 1.05 to 1.32 V: external power supply bypassing internal regulator when
DD12
connected to an external SMPS. It is provided externally through VDD12 pins and only available on packages with the external SMPS supply option. VDD12 does not require any external decoupling capacitance and cannot support any external load.
V
V
V
V
= 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMPs) to 3.6 V: external analog power
DDA
supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The V voltage level is independent from the V
= 3.0 to 3.6 V: external independent power supply for USB transceivers. The
DDUSB
V
voltage level is independent from the VDD voltage.
DDUSB
= 1.08 to 3.6 V: external power supply for 14 I/Os (PG[15:2]). The V
DDIO2
voltage level is independent from the V
= 2.5 to 3.6 V: the LCD controller can be powered either externally through VLCD
LCD
voltage.
DD
voltage.
DD
DDIO2
DDA
pin, or internally from an internal voltage generated by the embedded step-up converter.
V
Note: When the functions supplied by V
should preferably be shorted to V
= 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
BAT
backup registers (through power switch) when V
DDA
DD
, V
.
DDUSB
or V
is not present.
DD
are not used, these supplies
DDIO2
Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant (refer to
Table 19: Voltage characteristics).
Note: V
DDIOx
V
DDIO2
is the I/Os general purpose digital functions supply. V , with V
DDIO1
= VDD. V
supply voltage level is independent from V
DDIO2
DS11585 Rev 11 23/281
represents V
DDIOx
DDIO1
DDIO1
or
.
61
Functional overview STM32L496xx
MSv43899V1
V
DDA
domain
Backup domain
D/A converters
A/D converters
Standby circuitry (Wakeup logic, IWDG)
Voltage regulator
Low voltage detector
LSE crystal 32 K osc BKP registers RCC BDCR register RTC
comparators
operational amplifiers
Voltage reference buffer
I/O ring
V
CORE
domain
Temp. sensor
Reset block
PLL, HSI, MSI
LCD
V
LCD
USB transceivers
V
DDUSB
V
DDIO2
V
DDIO1
I/O ring
PG[15:2]
V
DDIO2
V
DDA
V
SSA
V
SS
V
SS
V
DDIO2
domain
V
DD
domain
V
CORE
V
SS
V
DD
V
BAT
Core
Digital
peripherals
Memories
V
DD12
Figure 3. Power supply overview
During power-up and power-down phases, the following power sequence requirements must be respected:
When VDD is below 1 V, other power supplies (V
remain below V
When V During the power-down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 capacitors to be discharged with different time constants during the power-down transient phase.
24/281 DS11585 Rev 11
+ 300 mV.
DD
DD
is above 1 V, all power supplies are independent.
DDA
, V
DDUSB
, V
DDIO2
, V
LCD
) must
mJ; this allows external decoupling
STM32L496xx Functional overview
MSv47490V1
0.3
1
V
BOR0
3.6
Operating modePower-on Power-down time
V
V
DDX
(1)
V
DD
Invalid supply area V
DDX
< V
DD
+ 300 mV
V
DDX
independent from V
DD
Figure 4. Power-up/down sequence
1. V
refers to any power supply among V
DDX

3.10.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes.The device features an embedded programmable voltage detector (PVD) that monitors the V interrupt can be generated when V higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltages V that the peripheral is in its functional supply range.
power supply and compares it to the VPVD threshold. An
DD
, V
DDA
drops below the VPVD threshold and/or when VDD is
DD
, V
DDA
DDUSB
DDUSB
, V
, V
DDIO2
, V
LCD
.
is below a
DD
DDIO2
with a fixed threshold in order to ensure
DS11585 Rev 11 25/281
61
Functional overview STM32L496xx

3.10.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).
The MR is used in the Run and Sleep modes and in the Stop 0 mode. The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 64 Kbyte SRAM2 in Standby with SRAM2 retention.
Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The ultralow-power STM32L496xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (V
There are two power consumption ranges:
Range 1 with the CPU running at up to 80 MHz. Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
) can be adjusted according to the system’s maximum operating frequency.
CORE
limited to 26 MHz.
The V
can be supplied by the low-power regulator, the main regulator being switched
CORE
off. The system is then in Low-power run mode. Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.
When the MR is in use, the STM32L496xx with the external SMPS option allows to force an external V
When V
DD12
supply on the VDD12 supply pins.
CORE
is forced by an external source and is higher than the output of the internal LDO, the current is taken from this external supply and the overall power efficiency is significantly improved if using an external step down DC/DC converter.

3.10.4 Low-power modes

The ultra-low-power STM32L496xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.
26/281 DS11585 Rev 11
Mode Regulator
(1)
Table 4. STM32L496xx modes overview
CPU Flash SRAM Clocks DMA & Peripherals
(2)
Wakeup source Consumption
(3)
STM32L496xx Functional overview
Wakeup time
DS11585 Rev 11 27/281
MR range 1
SMPS range 2 High 40 µA/MHz
Run
Yes ON
MR range2
SMPS range 2 Low 39 µA/MHz
LPRun LPR Yes ON
MR range 1
SMPS range 2 High 11.5 µA/MHz
Sleep
No ON
MR range2
SMPS range 2 Low 13 µA/MHz
LPSleep LPR No ON
MR Range 1
Stop 0
MR Range 2
(8)
No OFF ON
(8)
(4)
(4)
(4)
(4)
ON Any
ON
except
(7)
ON
(7)
ON
except
LSE
Any
PLL
Any
Any
PLL
LSI
All
108 µA/MHz
N/A
93 µA/MHz
All except OTG_FS, RNG
All except OTG_FS, RNG N/A 129 µA/MHz
32 µA/MHz
All
Any interrupt or
event
30 µA/MHz
All except OTG_FS, RNG
All except OTG_FS, RNG
Any interrupt or
event
51 µA/MHz 6 cycles
BOR, PVD, PVM RTC,LCD, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...4)
(9)
(9)
(10)
LPTIMx (x=1,2)
***
All other peripherals are
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...4)
(9)
(10)
LPTIMx (x=1,2)
OTG_FS SWPMI1
(11) (12)
TBD
(9)
127 µA
frozen.
(5)
N/A
(6)
to Range 1: 4 µs
to Range 2: 64 µs
(5)
6 cycles
(6)
2.7 µs in SRAM
6.2 µs in Flash
28/281 DS11585 Rev 11
Mode Regulator
(1)
CPU Flash SRAM Clocks DMA & Peripherals
Table 4. STM32L496xx modes overview (continued)
(2)
Wakeup source Consumption
(3)
Wakeup time
Functional overview STM32L496xx
BOR, PVD, PVM
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...4)
(9)
(10)
LPTIMx (x=1,2)
OTG_FS SWPMI1
(11) (12)
(9)
11. 2 µA w/o RTC
11.8 µA w RT C
6.6 µs in SRAM
7.8 µs in Flash
Stop 1 LPR No Off ON
LSE
LSI
RTC, LCD, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...4)
(9)
(9)
(10)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
BOR, PVD, PVM
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
(10)
I2C3
LPUART1
(9)
LPTIM1
2.57 µA w/o RTC
2.86 µA w/RTC
6.8 µs in SRAM
8.2 µs in Flash
Stop 2 LPR No Off ON
LSE
LSI
RTC, LCD, IWDG
COMPx (x=1..2)
(10)
I2C3
LPUART1
(9)
LPTIM1
***
All other peripherals are
frozen.
Mode Regulator
(1)
Table 4. STM32L496xx modes overview (continued)
CPU Flash SRAM Clocks DMA & Peripherals
(2)
Wakeup source Consumption
(3)
STM32L496xx Functional overview
Wakeup time
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
Reset pin
5 I/Os (WKUPx)
BOR, RTC, IWDG
(13)
Standby
LPR
OFF
Power
ed Off
Off
SRAM
2 ON
Power
ed
Off
LSE
LSI
floating, pull-up or pull-down
RTC
***
All other peripherals are
powered off.
I/O configuration can be
floating, pull-up or pull-
down
= 1.10 V
CORE
= 1.05 V
CORE
***
(14)
Shutdown OFF
Power
ed Off
Off
Power
ed
Off
LSE
DS11585 Rev 11 29/281
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at V LPRun/LPSleep.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. Theoretical value based on V
6. Theoretical value based on V
7. The SRAM1 and SRAM2 clocks can be gated on or off independently.
8. SMPS mode can be used in STOP0 Mode, but no significant power gain can be expected.
9. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
10. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
11. OTG_FS wakeup by resume from suspend and attach detection protocol event.
12. SWPMI1 wakeup by resume from suspend.
13. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
14. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
= 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
DD
= 3.3 V, DC/DC Efficiency of 85%, V
DD
= 3.3 V, DC/DC Efficiency of 85%, V
DD
Reset pin
5 I/Os (WKUPx)
RTC
(14)
0.48 µA w/o RTC
0.78 µA w/ RTC
0.11 µA w/o RTC
0.42 µA w/ RTC
0.03 µA w/o RTC
0.23 µA w/ RTC
15.3 µs
306 µs
Functional overview STM32L496xx
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Low-power run mode
This mode is achieved with V
supplied by the low-power regulator to minimize the
CORE
regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the low­power run mode.
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the V
domain are stopped, the PLL, the MSI
CORE
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC). Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode
to detect their wakeup condition. Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the V
domain is put in a lower leakage mode.
CORE
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the V
domain is powered off. The PLL, the
CORE
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off. The RTC can remain active (Standby mode with RTC, Standby mode without RTC). The brown-out reset (BOR) always remains active in Standby mode. The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating. After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
30/281 DS11585 Rev 11
Loading...
+ 251 hidden pages