ST MICROELECTRONICS STM32L476RCT6 Datasheet

STM32L476xx
UFBGA144 (10 × 10)
LQFP144 (20 × 20)
LQFP100 (14 × 14)
LQFP64 (10 × 10)
UFBGA132 (7 × 7)
WLCSP72 WLCSP81
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
Datasheet - production data
Features
Ultra-low-power with FlexPowerControl – 1.71 V to 3.6 V power supply – -40 °C to 85/105/125 °C temperature range – 300 nA in V
32x32-bit backup registers – 30 nA Shutdown mode (5 wakeup pins) – 120 nA Standby mode (5 wakeup pins) – 420 nA Standby mode with RTC – 1.1 µA Stop 2 mode, 1.4 µA with RTC – 100 µA/MHz run mode (LDO Mode) –39 A/MHz run mode (@3.3 V SMPS
Mode) – Batch acquisition mode (BAM) – 4 µs wakeup from Stop mode – Brown out reset (BOR) – Interconnect matrix
Core: Arm
®
Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait-state execution from Flash memory, frequency up to 80 MHz, MPU, 100DMIPS and DSP instructions
Performance benchmark – 1.25 DMIPS/MHz (Drystone 2.1) – 273.55 CoreMark
80 MHz)
Energy benchmark – 294 ULPMark™ CP score – 106 ULPMark™ PP score
Clock Sources – 4 to 48 MHz crystal oscillator – 32 kHz crystal oscillator for RTC (LSE) – Internal 16 MHz factory-trimmed RC (±1%) – Internal low-power 32 kHz RC (±5%) – Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than ±0.25 % accuracy)
– 3 PLLs for system clock, USB, audio, ADC
mode: supply for RTC and
BAT
32-bit Cortex®-M4 CPU with FPU,
®
(3.42 CoreMark/MHz @
Up to 114 fast I/Os, most 5 V-tolerant, up to 14 I/Os with independent supply down to 1.08 V
RTC with HW calendar, alarms and calibration
LCD 8× 40 or 4× 44 with step-up converter
Up to 24 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
16x timers: 2x 16-bit advanced motor-control, 2x 32-bit and 5x 16-bit general purpose, 2x 16­bit basic, 2x low-power 16-bit timers (available in Stop mode), 2x watchdogs, SysTick timer
Memories – Up to 1 MB Flash, 2 banks read-while-
write, proprietary code readout protection
– Up to 128 KB of SRAM including 32 KB
with hardware parity check
– External memory interface for static
memories supporting SRAM, PSRAM, NOR and NAND memories
– Quad SPI memory interface
4x digital filters for sigma delta modulator
Rich analog peripherals (independent supply)
– 3x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x 12-bit DAC output channels, low-power
sample and hold – 2x operational amplifiers with built-in PGA – 2x ultra-low-power comparators
20x communication interfaces – USB OTG 2.0 full-speed, LPM and BCD – 2x SAIs (serial audio interface) –3x I2C FM+(1 Mbit/s), SMBus/PMBus – 5x USARTs (ISO 7816, LIN, IrDA, modem) – 1x LPUART (Stop 2 wake-up)
June 2019 DS10198 Rev 8 1/270
This is information on a product in full production.
www.st.com
STM32L476xx
– 3x SPIs (and 1x Quad SPI) – CAN (2.0B Active) and SDMMC interface – SWPMI single wire protocol master I/F – IRTIM (Infrared interface)
14-channel DMA controller

Table 1. Device summary

Reference Part numbers
STM32L476RG, STM32L476JG, STM32L476MG, STM32L476ME, STM32L476VG,
STM32L476xx
STM32L476QG, STM32L476ZG, STM32L476RE, STM32L476JE, STM32L476VE, STM32L476QE, STM32L476ZE, STM32L476RC, STM32L476VC
True random number generator
CRC calculation unit, 96-bit unique ID
Development support: serial wire debug
(SWD), JTAG, Embedded Trace Macrocell™
All packages are ECOPACK2
®
compliant
2/270 DS10198 Rev 8
STM32L476xx Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 18
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 21
3.9 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.10 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.11 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.12 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.13 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.14 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.14.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 40
3.14.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 40
3.15 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.15.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.15.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.15.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.16 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
DS10198 Rev 8 3/270
6
Contents STM32L476xx
3.17 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.18 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.19 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.20 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.21 Liquid crystal display controller (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22 Digital filter for Sigma-Delta Modulators (DFSDM) . . . . . . . . . . . . . . . . . . 45
3.23 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.24 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.24.1 Advanced-control timer (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.24.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,
TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.24.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.24.4 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 49
3.24.5 Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.24.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.24.7 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.24.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.25 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 51
3.26 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.27 Universal synchronous/asynchronous receiver transmitter (USART) . . . 53
3.28 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 54
3.29 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.30 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.31 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 56
3.32 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.33 Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 57
3.34 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 57
3.35 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 58
3.36 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.37 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.37.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.37.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4/270 DS10198 Rev 8
STM32L476xx Contents
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 119
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . 120
6.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.6 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 176
6.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.3.18 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 177
6.3.19 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 190
6.3.20 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 195
6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.3.22 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
DS10198 Rev 8 5/270
6
Contents STM32L476xx
6.3.24 V
6.3.25 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.3.26 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.3.27 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.3.28 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 208
6.3.29 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.3.30 SWPMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
BAT
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.1 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.2 UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.3 UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.4 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.5 WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.6 WLCSP72 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.7 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.8.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 261
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6/270 DS10198 Rev 8
STM32L476xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32L476xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 19
Table 4. STM32L476xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 5. Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6. STM32L476xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 7. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 8. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 9. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 10. DFSDM1 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 11. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 12. I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 13. STM32L476xx USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 14. SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 15. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 16. STM32L476xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 17. Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 18. Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 19. STM32L476xx memory map and peripheral register boundary addresses . . . . . . . . . . . 108
Table 20. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 21. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 22. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 23. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 24. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 25. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 26. Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 27. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 125
Table 28. Current consumption in Run modes, code with data processing running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 29. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 30. Current consumption in Run modes, code with data processing running from Flash,
ART disable and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . 128
Table 31. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 32. Current consumption in Run, code with data processing running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . 130
Table 33. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 131
Table 34. Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 35. Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.05 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 36. Typical current consumption in Run and Low-power run modes, with different codes
DS10198 Rev 8 7/270
10
List of tables STM32L476xx
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 37. Typical current consumption in Run modes, with different codes running from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . 133
Table 38. Typical current consumption in Run modes, with different codes running
from Flash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V) . . . . 133
Table 39. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 40. Typical current consumption in Run mode, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . 134
Table 41. Typical current consumption in Run mode, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V) . . . . . . . . . . . . . . . . . 135
Table 42. Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . 136
Table 43. Current consumption in Sleep, Flash ON and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 44. Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . 137
Table 45. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 46. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 47. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 48. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 49. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 50. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 51. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 52. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 53. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 54. Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 55. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 56. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 57. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 58. LSE oscillator characteristics (f
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
LSE
Table 59. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 60.
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 61. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 62. PLL, PLLSAI1, PLLSAI2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 63. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 64. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 65. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 66. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 67. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 68. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 69. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 70. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 71. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 72. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 73. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 74. EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 75. Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 76. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 77. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 78. ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 79. ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 80. ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 81. ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8/270 DS10198 Rev 8
STM32L476xx List of tables
Table 82. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 83. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Table 84. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 85. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Table 86. OPAMP characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 87. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Table 88. V Table 89. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
BAT
Table 90. LCD controller characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 91. DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Table 92. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 93. IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 94. WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 95. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Table 96. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Table 97. Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 98. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Table 99. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Table 100. SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 216
Table 101. eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Table 102. USB OTG DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Table 103. USB OTG electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 104. USB BCD DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 105. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 223
Table 106. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 223
Table 107. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 224
Table 108. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 225
Table 109. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Table 110. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 226
Table 111. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Table 112. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 228
Table 113. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Table 114. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Table 115. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 233
Table 116. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Table 117. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Table 118. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Table 119. SWPMI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Table 120. LQFP - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Table 121. UFBGA - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Table 122. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 244
Table 123. UFBGA - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Table 124. UFBGA132 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 247
Table 125. LQFP - 100 pins, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Table 126. WLCSP- 81-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Table 127. WLCSP81 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 253
Table 128. WLCSP - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip
DS10198 Rev 8 9/270
10
List of tables STM32L476xx
scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Table 129. WLCSP72 recommended PCB design rules (0.4 mm pitch BGA) . . . . . . . . . . . . . . . . . . 256
Table 130. LQFP - 64 pins, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Table 131. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Table 132. STM32L476xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Table 133. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
10/270 DS10198 Rev 8
STM32L476xx List of figures
List of figures
Figure 1. STM32L476xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3. Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 5. Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 6. STM32L476Zx LQFP144 pinout Figure 7. STM32L476Zx, external SMPS device, LQFP144 pinout Figure 8. STM32L476Zx UFBGA144 ballout Figure 9. STM32L476Qx UFBGA132 ballout
Figure 10. STM32L476Qx, external SMPS device, UFBGA132 ballout . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 11. STM32L476Vx LQFP100 pinout Figure 12. STM32L476Mx WLCSP81 ballout Figure 13. STM32L476Jx WLCSP72 ballout Figure 14. STM32L476Jx, external SMPS device, WLCSP72 ballout Figure 15. STM32L476Rx LQFP64 pinout Figure 16. STM32L476Rx, external SMPS device, LQFP64 pinout
Figure 17. STM32L476xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 18. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 19. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 20. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 21. Current consumption measurement scheme with and without external
SMPS power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 22. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 23. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 24. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 25. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 26. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 27. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 28. Typical current consumption versus MSI frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 29. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 30. I/O AC characteristics definition
Figure 31. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 32. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 33. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 34. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 35. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 36. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Figure 37. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Figure 38. Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 39. Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 40. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Figure 41. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 42. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Figure 43. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Figure 44. USB OTG timings – definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . 219
Figure 45. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 222
Figure 46. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 224
Figure 47. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 225
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
(1)
. . . . . . . . . . . . . . . . . . . . . . . . 62
(1)
. . . . . . . . . . . . . . . . . . . . . . . 66
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . 67
DS10198 Rev 8 11/270
12
List of figures STM32L476xx
Figure 48. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 227
Figure 49. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Figure 50. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Figure 51. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 233
Figure 52. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Figure 53. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Figure 54. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Figure 55. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 236
Figure 56. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 237
Figure 57. LQFP - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 239
Figure 58. LQFP - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Figure 59. LQFP144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Figure 60. UFBGA - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Figure 61. UFBGA - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Figure 62. UFBGA144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Figure 63. UFBGA - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Figure 64. UFBGA - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Figure 65. UFBGA132 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Figure 66. LQFP - 100 pins, 14 x 14 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . 249
Figure 67. LQFP - 100 pins, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Figure 68. LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Figure 69. WLCSP - 81-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level
chip scale package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Figure 70. WLCSP81- 81-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Figure 71. WLCSP81 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Figure 72. WLCSP - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip
scale package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Figure 73. WLCSP72 - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level
chip scale package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Figure 74. WLCSP72 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Figure 75. LQFP - 64 pins, 10 x 10 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . 258
Figure 76. LQFP - 64 pins, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Figure 77. LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Figure 78. LQFP64 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
D
12/270 DS10198 Rev 8
STM32L476xx Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32L476xx microcontrollers.
This document should be read in conjunction with the STM32L4x6 reference manual
(RM0351). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the Arm
Reference Manual, available from the www.arm.com website.
®(a)
Cortex®-M4 core, please refer to the Cortex®-M4 Technical
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS10198 Rev 8 13/270
60
Description STM32L476xx

2 Description

The STM32L476xx devices are the ultra-low-power microcontrollers based on the high-
performance Arm
The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all
®
Arm
single-precision data-processing instructions and data types. It also implements a full
®
Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz.
set of DSP instructions and a memory protection unit (MPU) which enhances application
security.
The STM32L476xx devices embed high-speed memories (Flash memory up to 1 Mbyte, up
to 128
Kbyte of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), a Quad SPI flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L476xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.
The devices offer up to three fast 12-bit ADCs (5 Msps), two comparators, two operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four digital filters for external sigma delta modulators (DFSDM).
In addition, up to 24 capacitive sensing channels are available. The devices also embed an integrated LCD driver 8x40 or 4x44, with internal step-up converter.
They also feature standard and advanced communication interfaces.
Three I2Cs
Three SPIs
Three USARTs, two UARTs and one Low-Power UART.
Two SAIs (Serial Audio Interfaces)
One SDMMC
One CAN
One USB OTG full-speed
One SWPMI (Single Wire Protocol Master Interface)
The STM32L476xx operates in the -40 to +85 °C (+105 °C junction), -40 to +105 °C (+125
°C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to
3.6
V VDD power supply when using internal LDO regulator and a 1.05 to 1.32V V power supply when using external SMPS supply. A comprehensive set of power-saving modes allows the design of low-power applications.
Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMPs and comparators, 3.3
V dedicated supply input for USB and up to 14 I/Os can be supplied independently down to 1.08V. A VBAT input allows to backup the RTC and backup registers. Dedicated V
power supplies can be used to bypass the internal
DD12
LDO regulator when connected to an external SMPS.
The STM32L476xx family offers six packages from 64-pin to 144-pin packages.
14/270 DS10198 Rev 8
DD12
STM32L476xx Description

Table 2. STM32L476xx family device features and peripheral counts

Peripheral
Flash memory
STM32
L476Zx
512K
B
1MB
STM32
L476Qx
512K
B
1MB
STM32
L476Vx
256KB512K
B
1MB
512K
SRAM 128KB
External memory controller for static
Yes Yes Yes
(1)
memories
Quad SPI Yes
Advanced control
General purpose
2 (16-bit)
5 (16-bit) 2 (32-bit)
Basic 2 (16-bit)
Timers
Low -power 2 (16-bit)
SysTick timer
1
Watchdog timers (indepen-
2 dent, window)
SPI 3
2
C3
I
Comm. interfaces
USART UART LPUART
SAI 2
3
2
1
CAN 1
USB OTG FS
Yes
SDMMC Yes
SWPMI Yes
STM32
L476Mx
1MB
B
STM32
L476Jx
512K
B
1MB
256KB512K
No No No
STM32
L476Rx
B
1MB
Digital filters for sigma­delta modulators
Yes (4 filters)
Number of channels 8
RTC Yes
Tamper pins 3 2 2 2
LCD COM x SEG
Yes
8x40 or
4x44
Yes
8x40 or
4x44
Yes
8x40 or 4x44
Yes
8x30 or
4x32
Yes
8x28 or
4x32
Yes
8x28 or 4x32
DS10198 Rev 8 15/270
60
Description STM32L476xx
Table 2. STM32L476xx family device features and peripheral counts (continued)
Peripheral
STM32
L476Zx
STM32
L476Qx
STM32
L476Vx
STM32
L476Mx
STM32
L476Jx
STM32
L476Rx
Random generator Yes
(2)
GPIOs Wakeup pins Nb of I/Os down to
114
5
14
109
5
14
82
65 5 0
4 6
57
51 4 6
4 0
1.08 V
Capacitive sensing Number of channels
12-bit ADCs Number of channels
24 24 21 12 12 12
24
3
3
19
16
3
16
3
16
3
3
16
12-bit DAC channels 2
Internal voltage reference buffer
Yes No
Analog comparator 2
Operational amplifiers 2
Max. CPU frequency 80 MHz
Operating voltage (V
Operating voltage (V
)
DD12
Operating temperature
Packages
1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.
2. In case external SMPS package type is used, 2 GPIO's are replaced by VDD12 pins to connect the SMPS power supplies hence reducing the number of available GPIO's by 2.
) 1.71 to 3.6 V
DD
1.05 to 1.32 V
Ambient operating temperature: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C
LQFP144
UFBGA144
UFBGA
132
LQFP100 WLCSP81 WLCSP72 LQFP64
16/270 DS10198 Rev 8
STM32L476xx Description
MS31263V8
USB OTG
Flash up to 1 MB
Flexible static memory controller (FSMC):
SRAM, PSRAM, NOR Flash,
NAND Flash
GPIO PORT A
AHB/APB2
EXT IT. WKUP
114 AF
PA[15:0]
TIM1 / PWM
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
USART1
RX, TX, CK,CTS,
RTS as AF
SPI1
MOSI, MISO,
SCK, NSS as AF
APB260 M Hz
APB1 30MHz
MOSI, MISO, SCK, NSS as AF
DAC1_OUT1
ITF
WWDG
RTC_TS
OSC32_IN
OSC32_OUT
smcard
IrDA
16b
SDIO / MMC
D[7:0]
CMD, CK as AF
VBAT = 1.55 to 3.6 V
SCL, SDA, SMBA as AF
JTAG & SW
ARM Cortex-M4
80 MHz
FPU
NVIC
ETM
MPU
DMA2
ART
ACCEL/
CACHE
CLK, NE[4:1], NL, NBL[1:0], A[25:0], D[15:0], NOE, NWE, NWAIT, NCE3, INT3 as AF
RNG
FIFO
@ VDDA
BOR
Supply
supervision
PVD, PVM
Int
reset
XTAL 32 kHz
MAN AGT
RTC
FCLK
Standby
interface
IWDG
@VBAT
@ VDD
@VDD
AWU
Reset & clock
control
PCLKx
Voltage regulator
3.3 to 1.2 V
VDD
Power management
@ VDD
RTC_TAMPx
Backup register
AHB bus-matrix
TIM15
2 channels,
1 compl. channel, BKIN as AF
TIM6
TIM7
TIM2
TIM3
TIM4
TIM5
USART2
USART3
I2C1/SMBUS
D-BUS
FIFO
APB1 80 MHz (max)
SRAM 96 KB
SRAM 32 KB
I-BUS
S-BUS
DMA1
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PF[15:0]
PG[15:0]
PH[1:0]
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
GPIO PORT F
GPIO PORT G
GPIO PORT H
TIM8 / PWM
16b
16b
TIM16
16b
TIM17
16b
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
1 channel,
1 compl. channel, BKIN as AF
1 channel,
1 compl. channel, BKIN as AF
DAC1_OUT2
16b
16b
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
MOSI, MISO, SCK, NSS as AF
TX, RX as AF
RX, TX, CTS, RTS as AF
RX, TX, CTS, RTS as AF
RX, TX, CK, CTS, RTS as AF
RX, TX, CK, CTS, RTS as AF
smcard
IrDA
smcard
IrDA
32b
16b
16b
32b
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
AHB/APB1
OSC_IN
OSC_OUT
HCLKx
XTAL OSC
4- 16MHz
8 analog inputs common
to the 3 ADCs
VREF+
USAR T 2M Bps
Temperature sensor
ADC1
ADC2
ADC3
IF
ITF
@ VDDA
8 analog inputs common
to the ADC1 & 2
8 analog inputs for ADC3
SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
SAI2
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
DFSDM
SDCKIN[7:0], SDDATIN[7:0],
SDCKOUT,SDTRIG as AF
Touch sensing controller
8 Groups of
3 channels max as AF
VOUT, VINM, VINP
LCD 8x40
LPUART1
SWPMI1
LPTIM1
LPTIM2
SEGx, COMx as AF
RX, TX, CTS, RTS as AF
IO RX, TX, SUSPEND as AF
IN1, IN2, OUT, ETR as AF
IN1, OUT, ETR as AF
RC HSI
RC LSI
PLL 1&2&3
MSI
Quad SPI memory interface
BK1_IO[3:0] CLK NCS
@ VDDUSB
COMP1
INP, INM, OUT
COMP2
INP, INM, OUT
@ VDDA
RTC_OUT
FIFO
PHY
AHB1 80 MHz
CRC
I2C2/SMBUS
I2C3/SMBUS
bxCAN1
OpAmp1
SP3
SP2
UART5
UART4
LCD Booster
V
LCD
V
LCD
= 2.5V to 3.6V
APB2 80MHz
AHB2 80 MHz
OpAmp2
@VDDA
Firewall
VREF Buffer
@ VDDA
@ VDD
DP DM
SCL, SDA, INTN, ID, VBUS, SOF
VDD = 1.71 to 3.6 V
VSS
VDDA, VSSA
VDD, VSS, NRST
VDDIO2, VDDUSB
VOUT, VINM, VINP
TRACECLK
TRACED[3:0]
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
VDD12 = 1.05 to 1.32 V
(1)
VDD12
1. Only available when using external SMPS supply mode.
DAC1

Figure 1. STM32L476xx block diagram

Note: AF: alternate function on I/O pins.
60
DS10198 Rev 8 17/270
Functional overview STM32L476xx

3 Functional overview

3.1 Arm® Cortex®-M4 core with FPU

The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional code­efficiency, delivering the high-performance expected from an Arm usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L476xx family is compatible with all Arm® tools and software.
Figure 1 shows the general block diagram of the STM32L476xx family devices.
®
core in the memory size

3.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry­standard Arm the Arm processor to wait for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz.
®
®
Cortex®-M4 processors. It balances the inherent performance advantage of
Cortex®-M4 over Flash memory technologies, which normally requires the

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real­time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
18/270 DS10198 Rev 8
STM32L476xx Functional overview

3.4 Embedded Flash memory

STM32L476xx devices feature up to 1 Mbyte of embedded Flash memory available for storing programs and data. The Flash memory is divided into two banks allowing read­while-write operations. This feature allows to perform a read operation from one bank while an erase or program operation is performed to the other bank. The dual bank boot is also supported. Each bank contains 256 pages of 2
Flexible protections can be configured thanks to option bytes:
Readout protection (RDP) to protect the whole memory. Three levels are available:
Level 0: no readout protection
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is selected
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

Table 3. Access status versus readout protection level and execution modes

Kbyte.
Area
Main
memory
System
memory
Option
bytes
Backup
registers
SRAM2
1. Erased when RDP change from Level 1 to Level 0.
Protection
level
1 Yes Yes Yes No No No
2 Yes Yes Yes N/A N/A N/A
1 Yes No No Yes No No
2 Yes No No N/A N/A N/A
1 Yes Yes Yes Yes Yes Yes
2 Yes No No N/A N/A N/A
1YesYesN/A
2 Yes Yes N/A N/A N/A N/A
1 Yes Yes Yes
2 Yes Yes Yes N/A N/A N/A
User execution
Read Write Erase Read Write Erase
(1)
(1)
Debug, boot from RAM or boot
from system memory (loader)
No No N/A
No No No
Write protection (WRP): the protected area is protected against erasing and programming. Two areas per bank can be selected, with 2-Kbyte granularity.
Proprietary code readout protection (PCROP): a part of the flash memory can be protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU, as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. One area per bank can be selected, with 64-bit granularity. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.
(1)
(1)
DS10198 Rev 8 19/270
60
Functional overview STM32L476xx
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction
double error detection.
The address of the ECC fail can be read in the ECC register

3.5 Embedded SRAM

STM32L476xx devices feature up to 128 Kbyte of embedded SRAM. This SRAM is split into two blocks:
96 Kbyte mapped at address 0x2000 0000 (SRAM1)
32 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This block is accessed through the ICode/DCode buses for maximum performance. These 32 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.

3.6 Firewall

The device embeds a Firewall which protects code sensitive and secure data from any access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
Three segments can be protected and defined thanks to the Firewall registers: – Code segment (located in Flash or SRAM1 if defined as executable protected
area) – Non-volatile data segment (located in Flash) – Volatile data segment (located in SRAM1)
The start address and the length of each segments are configurable: – Code segment: up to 1024 Kbyte with granularity of 256 bytes – Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes – Volatile data segment: up to 96 Kbyte with a granularity of 64 bytes
Specific mechanism implemented to open the Firewall to get access to the protected areas (call gate entry sequence)
Volatile data segment can be shared or not with the non-protected code
Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of protection.
20/270 DS10198 Rev 8
STM32L476xx Functional overview

3.7 Boot modes

At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, CAN or USB OTG FS in Device mode through DFU (device firmware upgrade).

3.8 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.

3.9 Power supply management

3.9.1 Power supply schemes

VDD = 1.71 to 3.6 V: external power supply for I/Os (V the system analog such as reset, power management and internal clocks. It is provided externally through VDD pins.
V
V
V
V
V
V
Note: When the functions supplied by V
should preferably be shorted to V
= 1.05 to 1.32 V: external power supply bypassing internal regulator when
DD12
connected to an external SMPS. It is provided externally through VDD12 pins and only available on packages with the external SMPS supply option. VDD12 does not require any external decoupling capacitance and cannot support any external load.
= 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMPs) to 3.6 V: external analog power
DDA
supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The V voltage level is independent from the V
= 3.0 to 3.6 V: external independent power supply for USB transceivers. The
DDUSB
V
voltage level is independent from the VDD voltage.
DDUSB
= 1.08 to 3.6 V: external power supply for 14 I/Os (PG[15:2]). The V
DDIO2
voltage level is independent from the V
= 2.5 to 3.6 V: the LCD controller can be powered either externally through VLCD
LCD
pin, or internally from an internal voltage generated by the embedded step-up converter.
= 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
BAT
backup registers (through power switch) when V
, V
DDA
.
DD
DD
DD
DDUSB
voltage.
voltage.
or V
DDIO2
), the internal regulator and
DDIO1
is not present.
DD
are not used, these supplies
DDIO2
DDA
DS10198 Rev 8 21/270
60
Functional overview STM32L476xx
MSv45700V1
Low voltage detector
V
DDA
V
DDA
domain
V
SS
V
DD
V
BAT
3 x A/D converters 2 x comparators 2 x D/A converters 2 x operational amplifiers Voltage reference buffer
V
DD
domain
I/O ring
V
SSA
Reset block Temp. sensor 3 x PLL, HSI, MSI
Standby circuitry (Wakeup logic, IWDG)
Voltage regulator
V
DDIO1
LSE crystal 32 K osc BKP registers RCC BDCR register RTC
Backup domain
Core SRAM1 SRAM2 Digital peripherals
V
CORE
domain
V
CORE
LCD
V
LCD
USB transceivers
V
DDUSB
V
SS
V
DDIO2
domain
I/O ring
V
DDIO2
V
SS
PG[15:2]
Flash memory
V
DD12
Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant (refer to
Tabl e 20: Voltage characteristics).
Note: V
DDIOx
V
DDIO2
is the I/Os general purpose digital functions supply. V , with V
DDIO1
= VDD. V
supply voltage level is independent from V
DDIO2
Figure 2. Power supply overview
represents V
DDIOx
DDIO1
DDIO1
or
.
During power-up and power-down phases, the following power sequence requirements must be respected:
When VDD is below 1 V, other power supplies (V
When V
During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 capacitors to be discharged with different time constants during the power-down transient phase.
remain below V
, V
+ 300 mV.
DD
is above 1 V, all power supplies are independent.
DD
DDA
mJ; this allows external decoupling
DDUSB
, V
DDIO2
, V
LCD
) must
22/270 DS10198 Rev 8
STM32L476xx Functional overview
MSv47490V1
0.3
1
V
BOR0
3.6
Operating modePower-on Power-down time
V
V
DDX
(1)
V
DD
Invalid supply area V
DDX
< V
DD
+ 300 mV
V
DDX
independent from V
DD
Figure 3. Power-up/down sequence
1. V
refers to any power supply among V
DDX

3.9.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes.The device features an embedded programmable voltage detector (PVD) that monitors the V interrupt can be generated when V higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltages V that the peripheral is in its functional supply range.
power supply and compares it to the VPVD threshold. An
DD
DDA
, V
DDA
drops below the VPVD threshold and/or when VDD is
DD
, V
DDUSB
DDUSB
, V
, V
, V
LCD
.
is below a
DD
DDIO2
with a fixed threshold in order to ensure
DDIO2
DS10198 Rev 8 23/270
60
Functional overview STM32L476xx

3.9.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 32 Kbyte SRAM2 in Standby with SRAM2 retention.
Both regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The ultralow-power STM32L476xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (V
There are two power consumption ranges:
Range 1 with the CPU running at up to 80 MHz.
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
) can be adjusted according to the system’s maximum operating frequency.
CORE
limited to 26 MHz.
The V
can be supplied by the low-power regulator, the main regulator being switched
CORE
off. The system is then in Low-power run mode.
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by HSI16.
When the MR is in use, the STM32L476xx with the external SMPS option allows to force an external V
When V
DD12
supply on the VDD12 supply pins.
CORE
is forced by an external source and is higher than the output of the internal LDO, the current is taken from this external supply and the overall power efficiency is significantly improved if using an external step down DC/DC converter.

3.9.4 Low-power modes

The ultra-low-power STM32L476xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.
24/270 DS10198 Rev 8
STM32L476xx Functional overview
Table 4. STM32L476xx modes overview
DS10198 Rev 8 25/270
Mode
Regulator
(1)
CPU Flash SRAM Clocks DMA & Peripherals
MR
range 1
SMPS
range 2
High
Run
Yes ON
MR
range2
SMPS
range 2
Low
LPRun LPR Yes ON
MR range
1
SMPS
range 2
High
Sleep
No ON
MR
range2
SMPS
range 2
Low
LPSleep LPR No ON
(4)
(4)
(4)
(4)
ON Any
ON
ON
ON
(7)
(7)
except
except
Any
PLL
Any
Any
PLL
(2)
Wakeup source Consumption
112 µA/MHz
All
40 µA/MHz
N/A
100 µA/MHz
All except OTG_FS, RNG
39 µA/MHz
All except OTG_FS, RNG N/A 136 µA/MHz
37 µA/MHz
All
13 µA/MHz
Any interrupt or
event
35 µA/MHz
All except OTG_FS, RNG
15 µA/MHz
All except OTG_FS, RNG
Any interrupt or
event
40 µA/MHz 6 cycles
(3)
(5)
(6)
to Range 1: 4 µs
to Range 2: 64 µs
(5)
(6)
Wakeup time
N/A
6 cycles
6 cycles
26/270 DS10198 Rev 8
Table 4. STM32L476xx modes overview (continued)
Functional overview STM32L476xx
Mode
Stop 0
Regulator
(1)
Range 1
Range 2
CPU Flash SRAM Clocks DMA & Peripherals
(8)
No Off ON
(8)
Stop 1 LPR No Off ON
LSE
LSI
LSE
LSI
(2)
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...3)
(9)
(9)
(10)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...3)
(9)
(9)
(10)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Wakeup source Consumption
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...3)
(9)
(9)
108 µA
(10)
LPTIMx (x=1,2)
OTG_FS SWPMI1
(11)
(12)
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
(9)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...3)
(9)
(10)
6.6 µA w/o RTC
6.9 µA w RTC
LPTIMx (x=1,2)
OTG_FS SWPMI1
(11)
(12)
(3)
0.7 µs in SRAM
4.5 µs in Flash
Wakeup time
4 µs in SRAM
6 µs in Flash
Table 4. STM32L476xx modes overview (continued)
STM32L476xx Functional overview
DS10198 Rev 8 27/270
Mode
Regulator
(1)
CPU Flash SRAM Clocks DMA & Peripherals
Stop 2 LPR No Off ON
LPR
Standby
OFF
Shutdown OFF
Powered
Off
Powered
Off
Off
Off
Powered
Powered
SRAM2
ON
Off
Off
LSE
LSI
LSE
LSI
LSE
(2)
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
(10)
I2C3
LPUART1
(9)
LPTIM1
***
All other peripherals are
frozen.
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-down
RTC
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-
down
(14)
Wakeup source Consumption
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
(10)
I2C3
LPUART1
(9)
1.1 µA w/o RTC
1.4 µA w/RTC
LPTIM1
0.35 µA w/o RTC
0.65 µA w/ RTC
Reset pin
5 I/Os (WKUPx)
BOR, RTC, IWDG
(13)
0.12 µA w/o RTC
0.42 µA w/ RTC
Reset pin
5 I/Os (WKUPx)
RTC
0.03 µA w/o RTC
(13)
0.33 µA w/ RTC
(3)
Wakeup time
5 µs in SRAM
7 µs in Flash
14 µs
256 µs
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at V LPRun/LPSleep.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. Theoretical value based on V
6. Theoretical value based on V
7. The SRAM1 and SRAM2 clocks can be gated on or off independently.
= 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
DD
= 3.3 V, DC/DC Efficiency of 85%, V
DD
= 3.3 V, DC/DC Efficiency of 85%, V
DD
CORE
CORE
= 1.10 V
= 1.05 V
28/270 DS10198 Rev 8
8. SMPS mode can be used in STOP0 Mode, but no significant power gain can be expected.
9. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
10. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
11. OTG_FS wakeup by resume from suspend and attach detection protocol event.
12. SWPMI1 wakeup by resume from suspend.
13. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
14. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
Functional overview STM32L476xx
STM32L476xx Functional overview
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Low-power run mode
This mode is achieved with V
supplied by the low-power regulator to minimize the
CORE
regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the low­power run mode.
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the V
domain are stopped, the PLL, the MSI
CORE
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the V
domain is put in a lower leakage mode.
CORE
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the V
domain is powered off. The PLL, the
CORE
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
DS10198 Rev 8 29/270
60
Functional overview STM32L476xx
Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the V
domain is powered off. The PLL, the HSI16,
CORE
the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
30/270 DS10198 Rev 8
Loading...
+ 240 hidden pages