ST MICROELECTRONICS STM32L476RCT6 Datasheet

Page 1
STM32L476xx
UFBGA144 (10 × 10)
LQFP144 (20 × 20)
LQFP100 (14 × 14)
LQFP64 (10 × 10)
UFBGA132 (7 × 7)
WLCSP72 WLCSP81
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
Datasheet - production data
Features
Ultra-low-power with FlexPowerControl – 1.71 V to 3.6 V power supply – -40 °C to 85/105/125 °C temperature range – 300 nA in V
32x32-bit backup registers – 30 nA Shutdown mode (5 wakeup pins) – 120 nA Standby mode (5 wakeup pins) – 420 nA Standby mode with RTC – 1.1 µA Stop 2 mode, 1.4 µA with RTC – 100 µA/MHz run mode (LDO Mode) –39 A/MHz run mode (@3.3 V SMPS
Mode) – Batch acquisition mode (BAM) – 4 µs wakeup from Stop mode – Brown out reset (BOR) – Interconnect matrix
Core: Arm
®
Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait-state execution from Flash memory, frequency up to 80 MHz, MPU, 100DMIPS and DSP instructions
Performance benchmark – 1.25 DMIPS/MHz (Drystone 2.1) – 273.55 CoreMark
80 MHz)
Energy benchmark – 294 ULPMark™ CP score – 106 ULPMark™ PP score
Clock Sources – 4 to 48 MHz crystal oscillator – 32 kHz crystal oscillator for RTC (LSE) – Internal 16 MHz factory-trimmed RC (±1%) – Internal low-power 32 kHz RC (±5%) – Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than ±0.25 % accuracy)
– 3 PLLs for system clock, USB, audio, ADC
mode: supply for RTC and
BAT
32-bit Cortex®-M4 CPU with FPU,
®
(3.42 CoreMark/MHz @
Up to 114 fast I/Os, most 5 V-tolerant, up to 14 I/Os with independent supply down to 1.08 V
RTC with HW calendar, alarms and calibration
LCD 8× 40 or 4× 44 with step-up converter
Up to 24 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
16x timers: 2x 16-bit advanced motor-control, 2x 32-bit and 5x 16-bit general purpose, 2x 16­bit basic, 2x low-power 16-bit timers (available in Stop mode), 2x watchdogs, SysTick timer
Memories – Up to 1 MB Flash, 2 banks read-while-
write, proprietary code readout protection
– Up to 128 KB of SRAM including 32 KB
with hardware parity check
– External memory interface for static
memories supporting SRAM, PSRAM, NOR and NAND memories
– Quad SPI memory interface
4x digital filters for sigma delta modulator
Rich analog peripherals (independent supply)
– 3x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x 12-bit DAC output channels, low-power
sample and hold – 2x operational amplifiers with built-in PGA – 2x ultra-low-power comparators
20x communication interfaces – USB OTG 2.0 full-speed, LPM and BCD – 2x SAIs (serial audio interface) –3x I2C FM+(1 Mbit/s), SMBus/PMBus – 5x USARTs (ISO 7816, LIN, IrDA, modem) – 1x LPUART (Stop 2 wake-up)
June 2019 DS10198 Rev 8 1/270
This is information on a product in full production.
www.st.com
Page 2
STM32L476xx
– 3x SPIs (and 1x Quad SPI) – CAN (2.0B Active) and SDMMC interface – SWPMI single wire protocol master I/F – IRTIM (Infrared interface)
14-channel DMA controller

Table 1. Device summary

Reference Part numbers
STM32L476RG, STM32L476JG, STM32L476MG, STM32L476ME, STM32L476VG,
STM32L476xx
STM32L476QG, STM32L476ZG, STM32L476RE, STM32L476JE, STM32L476VE, STM32L476QE, STM32L476ZE, STM32L476RC, STM32L476VC
True random number generator
CRC calculation unit, 96-bit unique ID
Development support: serial wire debug
(SWD), JTAG, Embedded Trace Macrocell™
All packages are ECOPACK2
®
compliant
2/270 DS10198 Rev 8
Page 3
STM32L476xx Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 18
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 21
3.9 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.9.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.10 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.11 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.12 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.13 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.14 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.14.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 40
3.14.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 40
3.15 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.15.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.15.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.15.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.16 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
DS10198 Rev 8 3/270
6
Page 4
Contents STM32L476xx
3.17 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.18 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.19 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.20 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.21 Liquid crystal display controller (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22 Digital filter for Sigma-Delta Modulators (DFSDM) . . . . . . . . . . . . . . . . . . 45
3.23 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.24 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.24.1 Advanced-control timer (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.24.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,
TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.24.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.24.4 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 49
3.24.5 Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.24.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.24.7 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.24.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.25 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 51
3.26 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.27 Universal synchronous/asynchronous receiver transmitter (USART) . . . 53
3.28 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 54
3.29 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.30 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.31 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 56
3.32 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.33 Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 57
3.34 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 57
3.35 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 58
3.36 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.37 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.37.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.37.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4/270 DS10198 Rev 8
Page 5
STM32L476xx Contents
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 119
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . 120
6.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.6 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 176
6.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.3.18 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 177
6.3.19 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 190
6.3.20 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 195
6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.3.22 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
DS10198 Rev 8 5/270
6
Page 6
Contents STM32L476xx
6.3.24 V
6.3.25 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.3.26 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.3.27 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.3.28 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 208
6.3.29 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.3.30 SWPMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
BAT
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.1 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.2 UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.3 UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.4 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.5 WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.6 WLCSP72 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.7 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7.8.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 261
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6/270 DS10198 Rev 8
Page 7
STM32L476xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32L476xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 19
Table 4. STM32L476xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 5. Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6. STM32L476xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 7. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 8. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 9. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 10. DFSDM1 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 11. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 12. I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 13. STM32L476xx USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 14. SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 15. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 16. STM32L476xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 17. Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 18. Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 19. STM32L476xx memory map and peripheral register boundary addresses . . . . . . . . . . . 108
Table 20. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 21. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 22. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 23. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 24. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 25. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 26. Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 27. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 125
Table 28. Current consumption in Run modes, code with data processing running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Table 29. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 30. Current consumption in Run modes, code with data processing running from Flash,
ART disable and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . 128
Table 31. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 32. Current consumption in Run, code with data processing running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . 130
Table 33. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . 131
Table 34. Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 35. Typical current consumption in Run, with different codes running from Flash,
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS
(VDD12 = 1.05 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 36. Typical current consumption in Run and Low-power run modes, with different codes
DS10198 Rev 8 7/270
10
Page 8
List of tables STM32L476xx
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 37. Typical current consumption in Run modes, with different codes running from
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . 133
Table 38. Typical current consumption in Run modes, with different codes running
from Flash, ART disable and power supplied by external SMPS (VDD12 = 1.05 V) . . . . 133
Table 39. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 40. Typical current consumption in Run mode, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . 134
Table 41. Typical current consumption in Run mode, with different codes running from
SRAM1 and power supplied by external SMPS (VDD12 = 1.05 V) . . . . . . . . . . . . . . . . . 135
Table 42. Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . 136
Table 43. Current consumption in Sleep, Flash ON and power supplied by external SMPS
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 44. Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . 137
Table 45. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 46. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 47. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 48. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 49. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 50. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 51. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 52. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 53. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 54. Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 55. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 56. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 57. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 58. LSE oscillator characteristics (f
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
LSE
Table 59. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 60.
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 61. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 62. PLL, PLLSAI1, PLLSAI2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 63. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 64. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 65. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 66. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 67. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Table 68. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 69. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 70. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 71. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 72. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 73. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 74. EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 75. Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 76. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 77. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 78. ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 79. ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 80. ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 81. ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8/270 DS10198 Rev 8
Page 9
STM32L476xx List of tables
Table 82. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 83. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Table 84. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 85. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Table 86. OPAMP characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 87. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Table 88. V Table 89. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
BAT
Table 90. LCD controller characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 91. DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Table 92. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 93. IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 94. WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 95. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Table 96. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Table 97. Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 98. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Table 99. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Table 100. SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 216
Table 101. eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Table 102. USB OTG DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Table 103. USB OTG electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 104. USB BCD DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 105. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 223
Table 106. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 223
Table 107. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 224
Table 108. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 225
Table 109. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Table 110. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 226
Table 111. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Table 112. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 228
Table 113. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Table 114. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Table 115. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 233
Table 116. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Table 117. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Table 118. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Table 119. SWPMI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Table 120. LQFP - 144-pin, 20 x 20 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Table 121. UFBGA - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Table 122. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 244
Table 123. UFBGA - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Table 124. UFBGA132 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 247
Table 125. LQFP - 100 pins, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Table 126. WLCSP- 81-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Table 127. WLCSP81 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 253
Table 128. WLCSP - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip
DS10198 Rev 8 9/270
10
Page 10
List of tables STM32L476xx
scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Table 129. WLCSP72 recommended PCB design rules (0.4 mm pitch BGA) . . . . . . . . . . . . . . . . . . 256
Table 130. LQFP - 64 pins, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Table 131. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Table 132. STM32L476xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Table 133. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
10/270 DS10198 Rev 8
Page 11
STM32L476xx List of figures
List of figures
Figure 1. STM32L476xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 2. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3. Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 5. Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 6. STM32L476Zx LQFP144 pinout Figure 7. STM32L476Zx, external SMPS device, LQFP144 pinout Figure 8. STM32L476Zx UFBGA144 ballout Figure 9. STM32L476Qx UFBGA132 ballout
Figure 10. STM32L476Qx, external SMPS device, UFBGA132 ballout . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 11. STM32L476Vx LQFP100 pinout Figure 12. STM32L476Mx WLCSP81 ballout Figure 13. STM32L476Jx WLCSP72 ballout Figure 14. STM32L476Jx, external SMPS device, WLCSP72 ballout Figure 15. STM32L476Rx LQFP64 pinout Figure 16. STM32L476Rx, external SMPS device, LQFP64 pinout
Figure 17. STM32L476xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 18. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 19. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 20. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 21. Current consumption measurement scheme with and without external
SMPS power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 22. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 23. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 24. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 25. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 26. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 27. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 28. Typical current consumption versus MSI frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 29. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 30. I/O AC characteristics definition
Figure 31. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 32. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 33. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 34. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 35. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 36. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Figure 37. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Figure 38. Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 39. Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 40. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Figure 41. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 42. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Figure 43. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Figure 44. USB OTG timings – definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . 219
Figure 45. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 222
Figure 46. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 224
Figure 47. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 225
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
(1)
. . . . . . . . . . . . . . . . . . . . . . . . 62
(1)
. . . . . . . . . . . . . . . . . . . . . . . 66
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . 67
DS10198 Rev 8 11/270
12
Page 12
List of figures STM32L476xx
Figure 48. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 227
Figure 49. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Figure 50. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Figure 51. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 233
Figure 52. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Figure 53. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Figure 54. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Figure 55. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 236
Figure 56. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 237
Figure 57. LQFP - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 239
Figure 58. LQFP - 144-pin,20 x 20 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Figure 59. LQFP144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Figure 60. UFBGA - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Figure 61. UFBGA - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Figure 62. UFBGA144 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Figure 63. UFBGA - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Figure 64. UFBGA - 132-ball, 7 x 7 mm ultra thin fine pitch ball grid array
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Figure 65. UFBGA132 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Figure 66. LQFP - 100 pins, 14 x 14 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . 249
Figure 67. LQFP - 100 pins, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Figure 68. LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Figure 69. WLCSP - 81-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level
chip scale package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Figure 70. WLCSP81- 81-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Figure 71. WLCSP81 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Figure 72. WLCSP - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip
scale package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Figure 73. WLCSP72 - 72-ball, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level
chip scale package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Figure 74. WLCSP72 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Figure 75. LQFP - 64 pins, 10 x 10 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . 258
Figure 76. LQFP - 64 pins, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Figure 77. LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Figure 78. LQFP64 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
D
12/270 DS10198 Rev 8
Page 13
STM32L476xx Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32L476xx microcontrollers.
This document should be read in conjunction with the STM32L4x6 reference manual
(RM0351). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the Arm
Reference Manual, available from the www.arm.com website.
®(a)
Cortex®-M4 core, please refer to the Cortex®-M4 Technical
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS10198 Rev 8 13/270
60
Page 14
Description STM32L476xx

2 Description

The STM32L476xx devices are the ultra-low-power microcontrollers based on the high-
performance Arm
The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all
®
Arm
single-precision data-processing instructions and data types. It also implements a full
®
Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz.
set of DSP instructions and a memory protection unit (MPU) which enhances application
security.
The STM32L476xx devices embed high-speed memories (Flash memory up to 1 Mbyte, up
to 128
Kbyte of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), a Quad SPI flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L476xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.
The devices offer up to three fast 12-bit ADCs (5 Msps), two comparators, two operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support four digital filters for external sigma delta modulators (DFSDM).
In addition, up to 24 capacitive sensing channels are available. The devices also embed an integrated LCD driver 8x40 or 4x44, with internal step-up converter.
They also feature standard and advanced communication interfaces.
Three I2Cs
Three SPIs
Three USARTs, two UARTs and one Low-Power UART.
Two SAIs (Serial Audio Interfaces)
One SDMMC
One CAN
One USB OTG full-speed
One SWPMI (Single Wire Protocol Master Interface)
The STM32L476xx operates in the -40 to +85 °C (+105 °C junction), -40 to +105 °C (+125
°C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to
3.6
V VDD power supply when using internal LDO regulator and a 1.05 to 1.32V V power supply when using external SMPS supply. A comprehensive set of power-saving modes allows the design of low-power applications.
Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMPs and comparators, 3.3
V dedicated supply input for USB and up to 14 I/Os can be supplied independently down to 1.08V. A VBAT input allows to backup the RTC and backup registers. Dedicated V
power supplies can be used to bypass the internal
DD12
LDO regulator when connected to an external SMPS.
The STM32L476xx family offers six packages from 64-pin to 144-pin packages.
14/270 DS10198 Rev 8
DD12
Page 15
STM32L476xx Description

Table 2. STM32L476xx family device features and peripheral counts

Peripheral
Flash memory
STM32
L476Zx
512K
B
1MB
STM32
L476Qx
512K
B
1MB
STM32
L476Vx
256KB512K
B
1MB
512K
SRAM 128KB
External memory controller for static
Yes Yes Yes
(1)
memories
Quad SPI Yes
Advanced control
General purpose
2 (16-bit)
5 (16-bit) 2 (32-bit)
Basic 2 (16-bit)
Timers
Low -power 2 (16-bit)
SysTick timer
1
Watchdog timers (indepen-
2 dent, window)
SPI 3
2
C3
I
Comm. interfaces
USART UART LPUART
SAI 2
3
2
1
CAN 1
USB OTG FS
Yes
SDMMC Yes
SWPMI Yes
STM32
L476Mx
1MB
B
STM32
L476Jx
512K
B
1MB
256KB512K
No No No
STM32
L476Rx
B
1MB
Digital filters for sigma­delta modulators
Yes (4 filters)
Number of channels 8
RTC Yes
Tamper pins 3 2 2 2
LCD COM x SEG
Yes
8x40 or
4x44
Yes
8x40 or
4x44
Yes
8x40 or 4x44
Yes
8x30 or
4x32
Yes
8x28 or
4x32
Yes
8x28 or 4x32
DS10198 Rev 8 15/270
60
Page 16
Description STM32L476xx
Table 2. STM32L476xx family device features and peripheral counts (continued)
Peripheral
STM32
L476Zx
STM32
L476Qx
STM32
L476Vx
STM32
L476Mx
STM32
L476Jx
STM32
L476Rx
Random generator Yes
(2)
GPIOs Wakeup pins Nb of I/Os down to
114
5
14
109
5
14
82
65 5 0
4 6
57
51 4 6
4 0
1.08 V
Capacitive sensing Number of channels
12-bit ADCs Number of channels
24 24 21 12 12 12
24
3
3
19
16
3
16
3
16
3
3
16
12-bit DAC channels 2
Internal voltage reference buffer
Yes No
Analog comparator 2
Operational amplifiers 2
Max. CPU frequency 80 MHz
Operating voltage (V
Operating voltage (V
)
DD12
Operating temperature
Packages
1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select.
2. In case external SMPS package type is used, 2 GPIO's are replaced by VDD12 pins to connect the SMPS power supplies hence reducing the number of available GPIO's by 2.
) 1.71 to 3.6 V
DD
1.05 to 1.32 V
Ambient operating temperature: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C
LQFP144
UFBGA144
UFBGA
132
LQFP100 WLCSP81 WLCSP72 LQFP64
16/270 DS10198 Rev 8
Page 17
STM32L476xx Description
MS31263V8
USB OTG
Flash up to 1 MB
Flexible static memory controller (FSMC):
SRAM, PSRAM, NOR Flash,
NAND Flash
GPIO PORT A
AHB/APB2
EXT IT. WKUP
114 AF
PA[15:0]
TIM1 / PWM
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
USART1
RX, TX, CK,CTS,
RTS as AF
SPI1
MOSI, MISO,
SCK, NSS as AF
APB260 M Hz
APB1 30MHz
MOSI, MISO, SCK, NSS as AF
DAC1_OUT1
ITF
WWDG
RTC_TS
OSC32_IN
OSC32_OUT
smcard
IrDA
16b
SDIO / MMC
D[7:0]
CMD, CK as AF
VBAT = 1.55 to 3.6 V
SCL, SDA, SMBA as AF
JTAG & SW
ARM Cortex-M4
80 MHz
FPU
NVIC
ETM
MPU
DMA2
ART
ACCEL/
CACHE
CLK, NE[4:1], NL, NBL[1:0], A[25:0], D[15:0], NOE, NWE, NWAIT, NCE3, INT3 as AF
RNG
FIFO
@ VDDA
BOR
Supply
supervision
PVD, PVM
Int
reset
XTAL 32 kHz
MAN AGT
RTC
FCLK
Standby
interface
IWDG
@VBAT
@ VDD
@VDD
AWU
Reset & clock
control
PCLKx
Voltage regulator
3.3 to 1.2 V
VDD
Power management
@ VDD
RTC_TAMPx
Backup register
AHB bus-matrix
TIM15
2 channels,
1 compl. channel, BKIN as AF
TIM6
TIM7
TIM2
TIM3
TIM4
TIM5
USART2
USART3
I2C1/SMBUS
D-BUS
FIFO
APB1 80 MHz (max)
SRAM 96 KB
SRAM 32 KB
I-BUS
S-BUS
DMA1
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PF[15:0]
PG[15:0]
PH[1:0]
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
GPIO PORT F
GPIO PORT G
GPIO PORT H
TIM8 / PWM
16b
16b
TIM16
16b
TIM17
16b
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
1 channel,
1 compl. channel, BKIN as AF
1 channel,
1 compl. channel, BKIN as AF
DAC1_OUT2
16b
16b
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
MOSI, MISO, SCK, NSS as AF
TX, RX as AF
RX, TX, CTS, RTS as AF
RX, TX, CTS, RTS as AF
RX, TX, CK, CTS, RTS as AF
RX, TX, CK, CTS, RTS as AF
smcard
IrDA
smcard
IrDA
32b
16b
16b
32b
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
AHB/APB1
OSC_IN
OSC_OUT
HCLKx
XTAL OSC
4- 16MHz
8 analog inputs common
to the 3 ADCs
VREF+
USAR T 2M Bps
Temperature sensor
ADC1
ADC2
ADC3
IF
ITF
@ VDDA
8 analog inputs common
to the ADC1 & 2
8 analog inputs for ADC3
SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
SAI2
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
DFSDM
SDCKIN[7:0], SDDATIN[7:0],
SDCKOUT,SDTRIG as AF
Touch sensing controller
8 Groups of
3 channels max as AF
VOUT, VINM, VINP
LCD 8x40
LPUART1
SWPMI1
LPTIM1
LPTIM2
SEGx, COMx as AF
RX, TX, CTS, RTS as AF
IO RX, TX, SUSPEND as AF
IN1, IN2, OUT, ETR as AF
IN1, OUT, ETR as AF
RC HSI
RC LSI
PLL 1&2&3
MSI
Quad SPI memory interface
BK1_IO[3:0] CLK NCS
@ VDDUSB
COMP1
INP, INM, OUT
COMP2
INP, INM, OUT
@ VDDA
RTC_OUT
FIFO
PHY
AHB1 80 MHz
CRC
I2C2/SMBUS
I2C3/SMBUS
bxCAN1
OpAmp1
SP3
SP2
UART5
UART4
LCD Booster
V
LCD
V
LCD
= 2.5V to 3.6V
APB2 80MHz
AHB2 80 MHz
OpAmp2
@VDDA
Firewall
VREF Buffer
@ VDDA
@ VDD
DP DM
SCL, SDA, INTN, ID, VBUS, SOF
VDD = 1.71 to 3.6 V
VSS
VDDA, VSSA
VDD, VSS, NRST
VDDIO2, VDDUSB
VOUT, VINM, VINP
TRACECLK
TRACED[3:0]
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
VDD12 = 1.05 to 1.32 V
(1)
VDD12
1. Only available when using external SMPS supply mode.
DAC1

Figure 1. STM32L476xx block diagram

Note: AF: alternate function on I/O pins.
60
DS10198 Rev 8 17/270
Page 18
Functional overview STM32L476xx

3 Functional overview

3.1 Arm® Cortex®-M4 core with FPU

The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional code­efficiency, delivering the high-performance expected from an Arm usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L476xx family is compatible with all Arm® tools and software.
Figure 1 shows the general block diagram of the STM32L476xx family devices.
®
core in the memory size

3.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry­standard Arm the Arm processor to wait for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz.
®
®
Cortex®-M4 processors. It balances the inherent performance advantage of
Cortex®-M4 over Flash memory technologies, which normally requires the

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real­time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
18/270 DS10198 Rev 8
Page 19
STM32L476xx Functional overview

3.4 Embedded Flash memory

STM32L476xx devices feature up to 1 Mbyte of embedded Flash memory available for storing programs and data. The Flash memory is divided into two banks allowing read­while-write operations. This feature allows to perform a read operation from one bank while an erase or program operation is performed to the other bank. The dual bank boot is also supported. Each bank contains 256 pages of 2
Flexible protections can be configured thanks to option bytes:
Readout protection (RDP) to protect the whole memory. Three levels are available:
Level 0: no readout protection
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is selected
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

Table 3. Access status versus readout protection level and execution modes

Kbyte.
Area
Main
memory
System
memory
Option
bytes
Backup
registers
SRAM2
1. Erased when RDP change from Level 1 to Level 0.
Protection
level
1 Yes Yes Yes No No No
2 Yes Yes Yes N/A N/A N/A
1 Yes No No Yes No No
2 Yes No No N/A N/A N/A
1 Yes Yes Yes Yes Yes Yes
2 Yes No No N/A N/A N/A
1YesYesN/A
2 Yes Yes N/A N/A N/A N/A
1 Yes Yes Yes
2 Yes Yes Yes N/A N/A N/A
User execution
Read Write Erase Read Write Erase
(1)
(1)
Debug, boot from RAM or boot
from system memory (loader)
No No N/A
No No No
Write protection (WRP): the protected area is protected against erasing and programming. Two areas per bank can be selected, with 2-Kbyte granularity.
Proprietary code readout protection (PCROP): a part of the flash memory can be protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU, as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. One area per bank can be selected, with 64-bit granularity. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.
(1)
(1)
DS10198 Rev 8 19/270
60
Page 20
Functional overview STM32L476xx
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction
double error detection.
The address of the ECC fail can be read in the ECC register

3.5 Embedded SRAM

STM32L476xx devices feature up to 128 Kbyte of embedded SRAM. This SRAM is split into two blocks:
96 Kbyte mapped at address 0x2000 0000 (SRAM1)
32 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This block is accessed through the ICode/DCode buses for maximum performance. These 32 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.

3.6 Firewall

The device embeds a Firewall which protects code sensitive and secure data from any access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
Three segments can be protected and defined thanks to the Firewall registers: – Code segment (located in Flash or SRAM1 if defined as executable protected
area) – Non-volatile data segment (located in Flash) – Volatile data segment (located in SRAM1)
The start address and the length of each segments are configurable: – Code segment: up to 1024 Kbyte with granularity of 256 bytes – Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes – Volatile data segment: up to 96 Kbyte with a granularity of 64 bytes
Specific mechanism implemented to open the Firewall to get access to the protected areas (call gate entry sequence)
Volatile data segment can be shared or not with the non-protected code
Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of protection.
20/270 DS10198 Rev 8
Page 21
STM32L476xx Functional overview

3.7 Boot modes

At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, CAN or USB OTG FS in Device mode through DFU (device firmware upgrade).

3.8 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.

3.9 Power supply management

3.9.1 Power supply schemes

VDD = 1.71 to 3.6 V: external power supply for I/Os (V the system analog such as reset, power management and internal clocks. It is provided externally through VDD pins.
V
V
V
V
V
V
Note: When the functions supplied by V
should preferably be shorted to V
= 1.05 to 1.32 V: external power supply bypassing internal regulator when
DD12
connected to an external SMPS. It is provided externally through VDD12 pins and only available on packages with the external SMPS supply option. VDD12 does not require any external decoupling capacitance and cannot support any external load.
= 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMPs) to 3.6 V: external analog power
DDA
supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The V voltage level is independent from the V
= 3.0 to 3.6 V: external independent power supply for USB transceivers. The
DDUSB
V
voltage level is independent from the VDD voltage.
DDUSB
= 1.08 to 3.6 V: external power supply for 14 I/Os (PG[15:2]). The V
DDIO2
voltage level is independent from the V
= 2.5 to 3.6 V: the LCD controller can be powered either externally through VLCD
LCD
pin, or internally from an internal voltage generated by the embedded step-up converter.
= 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
BAT
backup registers (through power switch) when V
, V
DDA
.
DD
DD
DD
DDUSB
voltage.
voltage.
or V
DDIO2
), the internal regulator and
DDIO1
is not present.
DD
are not used, these supplies
DDIO2
DDA
DS10198 Rev 8 21/270
60
Page 22
Functional overview STM32L476xx
MSv45700V1
Low voltage detector
V
DDA
V
DDA
domain
V
SS
V
DD
V
BAT
3 x A/D converters 2 x comparators 2 x D/A converters 2 x operational amplifiers Voltage reference buffer
V
DD
domain
I/O ring
V
SSA
Reset block Temp. sensor 3 x PLL, HSI, MSI
Standby circuitry (Wakeup logic, IWDG)
Voltage regulator
V
DDIO1
LSE crystal 32 K osc BKP registers RCC BDCR register RTC
Backup domain
Core SRAM1 SRAM2 Digital peripherals
V
CORE
domain
V
CORE
LCD
V
LCD
USB transceivers
V
DDUSB
V
SS
V
DDIO2
domain
I/O ring
V
DDIO2
V
SS
PG[15:2]
Flash memory
V
DD12
Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant (refer to
Tabl e 20: Voltage characteristics).
Note: V
DDIOx
V
DDIO2
is the I/Os general purpose digital functions supply. V , with V
DDIO1
= VDD. V
supply voltage level is independent from V
DDIO2
Figure 2. Power supply overview
represents V
DDIOx
DDIO1
DDIO1
or
.
During power-up and power-down phases, the following power sequence requirements must be respected:
When VDD is below 1 V, other power supplies (V
When V
During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 capacitors to be discharged with different time constants during the power-down transient phase.
remain below V
, V
+ 300 mV.
DD
is above 1 V, all power supplies are independent.
DD
DDA
mJ; this allows external decoupling
DDUSB
, V
DDIO2
, V
LCD
) must
22/270 DS10198 Rev 8
Page 23
STM32L476xx Functional overview
MSv47490V1
0.3
1
V
BOR0
3.6
Operating modePower-on Power-down time
V
V
DDX
(1)
V
DD
Invalid supply area V
DDX
< V
DD
+ 300 mV
V
DDX
independent from V
DD
Figure 3. Power-up/down sequence
1. V
refers to any power supply among V
DDX

3.9.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes.The device features an embedded programmable voltage detector (PVD) that monitors the V interrupt can be generated when V higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltages V that the peripheral is in its functional supply range.
power supply and compares it to the VPVD threshold. An
DD
DDA
, V
DDA
drops below the VPVD threshold and/or when VDD is
DD
, V
DDUSB
DDUSB
, V
, V
, V
LCD
.
is below a
DD
DDIO2
with a fixed threshold in order to ensure
DDIO2
DS10198 Rev 8 23/270
60
Page 24
Functional overview STM32L476xx

3.9.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 32 Kbyte SRAM2 in Standby with SRAM2 retention.
Both regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The ultralow-power STM32L476xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (V
There are two power consumption ranges:
Range 1 with the CPU running at up to 80 MHz.
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
) can be adjusted according to the system’s maximum operating frequency.
CORE
limited to 26 MHz.
The V
can be supplied by the low-power regulator, the main regulator being switched
CORE
off. The system is then in Low-power run mode.
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by HSI16.
When the MR is in use, the STM32L476xx with the external SMPS option allows to force an external V
When V
DD12
supply on the VDD12 supply pins.
CORE
is forced by an external source and is higher than the output of the internal LDO, the current is taken from this external supply and the overall power efficiency is significantly improved if using an external step down DC/DC converter.

3.9.4 Low-power modes

The ultra-low-power STM32L476xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.
24/270 DS10198 Rev 8
Page 25
STM32L476xx Functional overview
Table 4. STM32L476xx modes overview
DS10198 Rev 8 25/270
Mode
Regulator
(1)
CPU Flash SRAM Clocks DMA & Peripherals
MR
range 1
SMPS
range 2
High
Run
Yes ON
MR
range2
SMPS
range 2
Low
LPRun LPR Yes ON
MR range
1
SMPS
range 2
High
Sleep
No ON
MR
range2
SMPS
range 2
Low
LPSleep LPR No ON
(4)
(4)
(4)
(4)
ON Any
ON
ON
ON
(7)
(7)
except
except
Any
PLL
Any
Any
PLL
(2)
Wakeup source Consumption
112 µA/MHz
All
40 µA/MHz
N/A
100 µA/MHz
All except OTG_FS, RNG
39 µA/MHz
All except OTG_FS, RNG N/A 136 µA/MHz
37 µA/MHz
All
13 µA/MHz
Any interrupt or
event
35 µA/MHz
All except OTG_FS, RNG
15 µA/MHz
All except OTG_FS, RNG
Any interrupt or
event
40 µA/MHz 6 cycles
(3)
(5)
(6)
to Range 1: 4 µs
to Range 2: 64 µs
(5)
(6)
Wakeup time
N/A
6 cycles
6 cycles
Page 26
26/270 DS10198 Rev 8
Table 4. STM32L476xx modes overview (continued)
Functional overview STM32L476xx
Mode
Stop 0
Regulator
(1)
Range 1
Range 2
CPU Flash SRAM Clocks DMA & Peripherals
(8)
No Off ON
(8)
Stop 1 LPR No Off ON
LSE
LSI
LSE
LSI
(2)
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...3)
(9)
(9)
(10)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1,2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...3)
(9)
(9)
(10)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
Wakeup source Consumption
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...3)
(9)
(9)
108 µA
(10)
LPTIMx (x=1,2)
OTG_FS SWPMI1
(11)
(12)
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
(9)
USARTx (x=1...5)
LPUART1
I2Cx (x=1...3)
(9)
(10)
6.6 µA w/o RTC
6.9 µA w RTC
LPTIMx (x=1,2)
OTG_FS SWPMI1
(11)
(12)
(3)
0.7 µs in SRAM
4.5 µs in Flash
Wakeup time
4 µs in SRAM
6 µs in Flash
Page 27
Table 4. STM32L476xx modes overview (continued)
STM32L476xx Functional overview
DS10198 Rev 8 27/270
Mode
Regulator
(1)
CPU Flash SRAM Clocks DMA & Peripherals
Stop 2 LPR No Off ON
LPR
Standby
OFF
Shutdown OFF
Powered
Off
Powered
Off
Off
Off
Powered
Powered
SRAM2
ON
Off
Off
LSE
LSI
LSE
LSI
LSE
(2)
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
(10)
I2C3
LPUART1
(9)
LPTIM1
***
All other peripherals are
frozen.
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-down
RTC
***
All other peripherals are
powered off.
***
I/O configuration can be
floating, pull-up or pull-
down
(14)
Wakeup source Consumption
Reset pin, all I/Os
BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1..2)
(10)
I2C3
LPUART1
(9)
1.1 µA w/o RTC
1.4 µA w/RTC
LPTIM1
0.35 µA w/o RTC
0.65 µA w/ RTC
Reset pin
5 I/Os (WKUPx)
BOR, RTC, IWDG
(13)
0.12 µA w/o RTC
0.42 µA w/ RTC
Reset pin
5 I/Os (WKUPx)
RTC
0.03 µA w/o RTC
(13)
0.33 µA w/ RTC
(3)
Wakeup time
5 µs in SRAM
7 µs in Flash
14 µs
256 µs
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at V LPRun/LPSleep.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. Theoretical value based on V
6. Theoretical value based on V
7. The SRAM1 and SRAM2 clocks can be gated on or off independently.
= 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
DD
= 3.3 V, DC/DC Efficiency of 85%, V
DD
= 3.3 V, DC/DC Efficiency of 85%, V
DD
CORE
CORE
= 1.10 V
= 1.05 V
Page 28
28/270 DS10198 Rev 8
8. SMPS mode can be used in STOP0 Mode, but no significant power gain can be expected.
9. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
10. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
11. OTG_FS wakeup by resume from suspend and attach detection protocol event.
12. SWPMI1 wakeup by resume from suspend.
13. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
14. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
Functional overview STM32L476xx
Page 29
STM32L476xx Functional overview
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Low-power run mode
This mode is achieved with V
supplied by the low-power regulator to minimize the
CORE
regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the low­power run mode.
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the V
domain are stopped, the PLL, the MSI
CORE
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the V
domain is put in a lower leakage mode.
CORE
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the V
domain is powered off. The PLL, the
CORE
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
DS10198 Rev 8 29/270
60
Page 30
Functional overview STM32L476xx
Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the V
domain is powered off. The PLL, the HSI16,
CORE
the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
30/270 DS10198 Rev 8
Page 31
STM32L476xx Functional overview
Table 5. Functionalities depending on the working mode
(1)
Stop 0/1 Stop 2 Standby Shutdown
Peripheral Run Sleep
Low-
power
run
Low-
power
sleep
VBAT
-
-
Wakeup capability
Wakeup capability
-
Wakeup capability
-
Wakeup capability
CPU Y - Y - - --------
Flash memory (up to 1 MB)
SRAM1 (up to 96 KB)
SRAM2 (32 KB) Y Y
FSMC OOOO-
Quad SPI O O O O -
Backup Registers Y Y Y Y Y
Brown-out reset (BOR)
(2)
O
YY
(2)
O
(3)
(3)
(2)
O
YY
YY
(2)
O
(3)
(3)
- --------
Y -Y------
Y -Y-O
YYYYY
(4)
----
--------
--------
-Y-Y-Y-Y
YYYYY- --
Programmable Voltage Detector
OOOOOOOO- ----
(PVD)
Peripheral Voltage Monitor (PVMx;
OOOOO
OOO- ----
x=1,2,3,4)
DMA OOOO-
High Speed Internal (HSI16)
High Speed External (HSE)
OOOO
OOOO-
--------
(5)
(5)
-
------
--------
Low Speed Internal (LSI)
Low Speed External (LSE)
Multi-Speed Internal (MSI)
Clock Security System (CSS)
Clock Security System on LSE
OOOOO
OOOOO
OOOO-
OOOO-
OOOOO
-O-O----
-O-O-O-O
--------
--------
OOOOO- --
RTC / Auto wakeup O O O O O OOOOOOOO
Number of RTC Tamper pins
33333
O3O3O3O3
DS10198 Rev 8 31/270
60
Page 32
Functional overview STM32L476xx
Table 5. Functionalities depending on the working mode
(1)
(continued)
Stop 0/1 Stop 2 Standby Shutdown
Peripheral Run Sleep
Low-
power
run
Low-
power
sleep
VBAT
-
-
Wakeup capability
Wakeup capability
-
Wakeup capability
-
Wakeup capability
LCD OOOOOOOO- ----
USB OTG FS O
USARTx (x=1,2,3,4,5)
Low-power UART (LPUART)
(8)
OOOOO
OOOOO
I2Cx (x=1,2) O O O O O
I2C3 OOOOO
SPIx (x=1,2,3) O O O O -
CAN OOOO-
SDMMC1 O O O O -
(8)
O
---O- ------
(6)O(6)
(6)O(6)O(6)O(6)
(7)O(7)
(7)O(7)O(7)O(7)
- ------
- ----
- ------
- ----
--------
--------
--------
SWPMI1 OOOO-
SAIx (x=1,2) O O O O -
DFSDM1 OOOO-
ADCx (x=1,2,3) O O O O -
DAC1 O O O O O
VREFBUF O O O O O
OPAMPx (x=1,2) O O O O O
COMPx (x=1,2) O O O O O
Temperature sensor O O O O -
Timers (TIMx) O O O O -
Low-power timer 1 (LPTIM1)
Low-power timer 2 (LPTIM2)
Independent watchdog (IWDG)
Window watchdog (WWDG)
OOOOOOOO- ----
OOOOO
OOOOO
OOOO-
O- ------
--------
--------
--------
--------
--------
--------
OOO- ----
--------
--------
O- ------
OOOOO- --
--------
SysTick timer O O O O - --------
Touch sensing controller (TSC)
OOOO---------
32/270 DS10198 Rev 8
Page 33
STM32L476xx Functional overview
Table 5. Functionalities depending on the working mode
(1)
(continued)
Stop 0/1 Stop 2 Standby Shutdown
Peripheral Run Sleep
Random number generator (RNG)
(8)
O
Low-
power
run
(8)
O
Low-
power
sleep
-
-
Wakeup capability
Wakeup capability
-
-
Wakeup capability
VBAT
Wakeup capability
-----------
CRC calculation unit O O O O - --------
5
GPIOs OOOOO
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
OOO
(9)
pins
(10)
(11)
5
pins
(10)
-

3.9.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is “analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.9.6 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from V present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti­tamper detection pins are available in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is present.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
when no external battery and an external supercapacitor are
DD
DS10198 Rev 8 33/270
60
Page 34
Functional overview STM32L476xx

3.10 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run and sleep, Stop 0, Stop 1 and Stop 2 modes.

Table 6. STM32L476xx peripherals interconnect matrix

Interconnect source
TIMx
TIM16/TIM17 IRTIM Infrared interface output generation Y Y Y Y - -
COMPx
ADCx TIM1, 8 Timer triggered by analog watchdog Y Y Y Y - -
RTC
Interconnect
destination
TIMx Timers synchronization or chaining Y Y Y Y - -
ADCx DAC1 DFSDM1
DMA Memory to memory transfer trigger Y Y Y Y - -
COMPx Comparator output blanking Y Y Y Y - -
TIM1, 8 TIM2, 3
LPTIMERx
TIM16 Timer input channel from RTC events Y Y Y Y - -
LPTIMERx
Conversion triggers Y Y Y Y - -
Timer input channel, trigger, break from analog signals comparison
Low-power timer triggered by analog signals comparison
Low-power timer triggered by RTC alarms or tampers
Interconnect action
Run
Sleep
Low-power sleep
Stop 0 / Stop 1
Low-power run
YYYY - -
YYYYY
YYYYY
Stop 2
Y
(1)
Y
(1)
All clocks sources (internal and external)
USB TIM2 Timer triggered by USB SOF Y Y - - - -
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD DFSDM1 (analog
watchdog, short circuit detection)
34/270 DS10198 Rev 8
TIM2 TIM15, 16, 17
TIM1,8 TIM15,16,17
Clock source used as input channel for RC measurement and trimming
Timer break Y Y Y Y - -
YYYY - -
Page 35
STM32L476xx Functional overview
Table 6. STM32L476xx peripherals interconnect matrix (continued)
Interconnect source
GPIO
1. LPTIM1 only.
Interconnect
destination
Interconnect action
Run
Sleep
Low-power run
Stop 0 / Stop 1
Low-power sleep
TIMx External trigger Y Y Y Y - -
LPTIMERx External trigger Y Y Y Y Y
ADCx DAC1
Conversion external trigger Y Y Y Y - -
DFSDM1
Stop 2
Y
(1)
DS10198 Rev 8 35/270
60
Page 36
Functional overview STM32L476xx

3.11 Clocks and startup

The clock controller (see Figure 4) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply
a PLL. The HSE can also be configured in bypass mode for an external clock.
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the USB device, saving the need of an external high-speed crystal (HSE). The MSI can supply a PLL.
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 80 MHz.
Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the LCD controller and the real-time clock:
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy.
Peripheral clock sources: Several peripherals (USB, SDMMC, RNG, SAI, USARTs,
I2Cs, LPTimers, ADC, SWPMI) have their own independent clock whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the USB/SDMMC/RNG and the two SAIs.
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI16 and a software
36/270 DS10198 Rev 8
Page 37
STM32L476xx Functional overview
interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt.
Clock-out capability:
MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSI, LSE) are available down to Stop 1 low power state.
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes
down to Standby mode. LSE can also be output on LSCO in Shutdown mode. LSCO is not available in VBAT mode.
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 80 MHz.
DS10198 Rev 8 37/270
60
Page 38
Functional overview STM32L476xx
PLLCLK
MS32440V3
SYSCLK
MCO
LSCO
SAI2_EXTCLK
48 MHz clock to USB, RNG, SDMMC
to ADC
to IWDG
to RTC and LCD
to PWR
HCLK
to AHB bus, core, memory and DMA
FCLK Cortex free running clock
to Cortex system timer
to APB1 peripherals
to APB2 peripherals
PCLK1
PCLK2
to SAI1
to SAI2
LSE
HSI16
SYSCLK
to USARTx
x=2..5
to LPUART1
to I2Cx
x=1,2,3
to LPTIMx
x=1,2
SAI1_EXTCLK
to SWPMI
to TIMx
x=2..7
OSC32_OUT
OSC32_IN
MSI
HSI16
HSE
HSI16
LSI
LSE
HSE
SYSCLK
HSE
MSI
HSI16
MSI
SYSCLK
LSE OSC
32.768 kHz
/32
AHB
PRESC
/ 1,2,..512
/ 8
APB1
PRESC
/ 1,2,4,8,16
x1 or x2
HSI16
SYSCLK
LSI
LSE
HSI16
HSI16
APB2
PRESC
/ 1,2,4,8,16
to TIMx
x=1,8,15,16,17
x1 or x2
to
USART1
LSE
HSI16
SYSCLK
/ M
MSI RC
100 kHz – 48 MHz
HSI RC 16 MHz
HSE OSC 4-48 MHz
Clock
detector
OSC_OUT
OSC_IN
/ 1→16
LSI RC 32 kHz
Clock source control
PLLSAI3CLK
PLL48M1CLK
PLLCLK
PLLSAI1CLK
PLL48M2CLK
PLLADC1CLK
PLLSAI2CLK
PLLADC2CLK
MSI
PLLSAI1
VCO
F
VCO
/ P
/ R
/ Q
PLLSAI2
VCO
F
VCO
/ P
/ R
/ Q
PLL
VCO
F
VCO
/ P
/ R
/ Q

Figure 4. Clock tree

38/270 DS10198 Rev 8
Page 39
STM32L476xx Functional overview

3.12 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.13 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to Tab le 7: DMA implementation for the features implementation.
Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.
The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests.
The DMA supports:
14 independently configurable channels (requests)
Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.
Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, etc.)
Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
Support for circular buffer management
3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel
Memory-to-memory transfer
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers
Access to Flash, SRAM, APB and AHB peripherals as source and destination
Programmable number of data to be transferred: up to 65536.
DMA features DMA1 DMA2

Table 7. DMA implementation

Number of regular channels 7 7
DS10198 Rev 8 39/270
60
Page 40
Functional overview STM32L476xx

3.14 Interrupts and events

3.14.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the Cortex M4.
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.14.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 40 edge detector lines used to generate interrupt/event requests and wake-up the system from Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines.
®
-
40/270 DS10198 Rev 8
Page 41
STM32L476xx Functional overview

3.15 Analog to digital converter (ADC)

The device embeds 3 successive approximation analog-to-digital converters with the following features:
12-bit native resolution, with built-in calibration
5.33 Msps maximum conversion rate with full resolution
Down to 18.75 ns sampling time
Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit
resolution)
Up to 24 external channels, some of them shared between ADC1 and ADC2, or ADC1, ADC2 and ADC3.
5 internal channels: internal reference voltage, temperature sensor, VBAT/3, DAC1_OUT1 and DAC1_OUT2.
One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
Single-ended and differential mode inputs
Low-power design
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
Handles two ADC converters for dual mode operation (simultaneous or
interleaved sampling modes)
Each ADC support multiple trigger inputs for synchronization with on-chip timers
and external signals
Results stored into 3 data register or in RAM with DMA controller support
Data pre-processing: left/right alignment and per channel offset compensation
Built-in oversampling unit for enhanced SNR
Channel-wise programmable sampling time
Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers
Hardware assistant to prepare the context of the injected channels to allow fast
context switching

3.15.1 Temperature sensor

The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 and ADC3_IN17 input channels which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
DS10198 Rev 8 41/270
60
Page 42
Functional overview STM32L476xx
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.
Calibration value name Description Memory address
TS_CAL1
TS_CAL2
Table 8. Temperature sensor calibration values
TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), V
= V
DDA
TS ADC raw data acquired at a temperature of 110 °C (± 5 °C), V
= V
DDA
= 3.0 V (± 10 mV)
REF+
= 3.0 V (± 10 mV)
REF+
0x1FFF 75A8 - 0x1FFF 75A9
0x1FFF 75CA - 0x1FFF 75CB
3.15.2 Internal voltage reference (V
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.
3.15.3 V
This embedded hardware feature allows the application to measure the V using the internal ADC channel ADC1_IN18 or ADC3_IN18. As the V higher than V connected to a bridge divider by 3. As a consequence, the converted digital value is one third the V
Calibration value name Description Memory address
battery voltage monitoring
BAT
BAT
Table 9. Internal voltage reference calibration values
Raw data acquired at a
VREFINT
, and thus outside the ADC input range, the VBAT pin is internally
DDA
temperature of 30 °C (± 5 °C), V
DDA
voltage.
REFINT
= V
REF+
)
= 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
battery voltage
BAT
voltage may be
BAT

3.16 Digital to analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
42/270 DS10198 Rev 8
Page 43
STM32L476xx Functional overview
MSv40197V1
VREFBUF
Low frequency cut-off capacitor
DAC, ADC
Bandgap +
V
DDA
-
100 nF
VREF+
This digital interface supports the following features:
Up to two DAC output channels
8-bit or 12-bit output mode
Buffer offset calibration (factory and user trimming)
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability for each channel
External triggers for conversion
Sample and hold low-power mode, with internal or external capacitor
The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.17 Voltage reference buffer (VREFBUF)

The STM32L476xx devices embed an voltage reference buffer which can be used as voltage reference for ADCs, DAC and also as voltage reference for external components through the VREF+ pin.
The internal voltage reference buffer supports two voltages:
2.048 V
2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.
The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

Figure 5. Voltage reference buffer

DS10198 Rev 8 43/270
60
Page 44
Functional overview STM32L476xx

3.18 Comparators (COMP)

The STM32L476xx devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output channels
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.19 Operational amplifier (OPAMP)

The STM32L476xx embeds two operational amplifiers with external or internal follower routing and PGA capability.
The operational amplifier features:
Low input bias current
Low offset voltage
Low-power mode
Rail-to-rail input

3.20 Touch sensing controller (TSC)

The touch sensing controller provides a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.
44/270 DS10198 Rev 8
Page 45
STM32L476xx Functional overview
The main features of the touch sensing controller are the following:
Proven and robust surface charge transfer acquisition principle
Supports up to 24 capacitive sensing channels
Up to 3 capacitive sensing channels can be acquired in parallel offering a very good
response time
Spread spectrum feature to improve system robustness in noisy environments
Full hardware management of the charge transfer acquisition sequence
Programmable charge transfer frequency
Programmable sampling capacitor I/O pin
Programmable channel I/O pin
Programmable max count value to avoid long acquisition when a channel is faulty
Dedicated end of acquisition and max count error flags with interrupt capability
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
Designed to operate with STMTouch touch sensing firmware library
Note: The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.

3.21 Liquid crystal display controller (LCD)

The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels.
Internal step-up converter to guarantee functionality and contrast control irrespective of V
. This converter can be deactivated, in which case the VLCD pin is used to provide
DD
the voltage to the LCD
Supports static, 1/2, 1/3, 1/4 and 1/8 duty
Supports static, 1/2, 1/3 and 1/4 bias
Phase inversion to reduce power consumption and EMI
Integrated voltage output buffers for higher LCD driving capability
Up to 8 pixels can be programmed to blink
Unneeded segments and common pins can be used as general I/O pins
LCD RAM can be updated at any time owing to a double-buffer
The LCD controller can operate in Stop mode

3.22 Digital filter for Sigma-Delta Modulators (DFSDM)

The device embeds one DFSDM with 4 digital filters modules and 8 external input serial channels (transceivers) or alternately 8 internal parallel inputs support.
The DFSDM peripheral is dedicated to interface the external  modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on  modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in
DS10198 Rev 8 45/270
60
Page 46
Functional overview STM32L476xx
hardware. DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM).
DFSDM transceivers support several serial interface formats (to support various  modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution.
The DFSDM peripheral supports:
8 multiplexed input digital serial channels:
configurable SPI interface to connect various SD modulator(s)
configurable Manchester coded 1 wire interface support
PDM (Pulse Density Modulation) microphone input support
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
clock output for SD modulator(s): 0..20 MHz
alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
internal sources: device memory data streams (DMA)
4 digital filter modules with adjustable digital signal processing:
–Sinc
x
filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
integrator: oversampling ratio (1..256)
up to 24-bit output data resolution, signed output data format
automatic data offset correction (offset stored in register by user)
continuous or single conversion
start-of-conversion triggered by:
software trigger
internal timers
external events
start-of-conversion synchronously with first digital filter module (DFSDM1_FLT0)
analog watchdog feature:
low value and high value data threshold registers
dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
input from final output data or from selected input digital serial channels
continuous monitoring independently from standard conversion
short circuit detector to detect saturated analog input values (bottom and top range):
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream
monitoring continuously each input serial channel
break signal generation on analog watchdog event or on short circuit detector event
extremes detector:
storage of minimum and maximum values of final conversion data
refreshed by software
DMA capability to read the final conversion data
interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial
channel clock absence
“regular” or “injected” conversions:
“regular” conversions can be requested at any time or even in continuous mode
46/270 DS10198 Rev 8
Page 47
STM32L476xx Functional overview
without having any impact on the timing of “injected” conversions
“injected” conversions for precise timing and with high conversion priority
DFSDM features DFSDM1
Number of channels 8
Number of filters 4
Input from internal ADC -
Supported trigger sources 10
Pulses skipper -
ID registers support -

Table 10. DFSDM1 implementation

3.23 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.24 Timers and watchdogs

The STM32L476xx includes two advanced control timers, up to nine general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.
Timer type Timer
Advanced
control
General-
purpose
General-
purpose
General-
purpose
TIM1, TIM8 16-bit
TIM2, TIM5 32-bit
TIM3, TIM4 16-bit
TIM15 16-bit Up

Table 11. Timer feature comparison

Counter
resolution
Counter
type
Up, down,
Up/down
Up, down,
Up/down
Up, down,
Up/down
Prescaler
factor
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
DMA
request
generation
Yes 4 3
Yes 4 No
Yes 4 No
Yes 2 1
Capture/ compare
channels
Complementary
outputs
DS10198 Rev 8 47/270
60
Page 48
Functional overview STM32L476xx
Table 11. Timer feature comparison (continued)
Timer type Timer
General-
purpose
Basic TIM6, TIM7 16-bit Up
TIM16, TIM17 16-bit Up
Counter
resolution
Counter
type
Prescaler
factor
Any integer
between 1 and 65536
Any integer
between 1 and 65536

3.24.1 Advanced-control timer (TIM1, TIM8)

The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead­times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.
DMA
request
generation
Yes 1 1
Yes 0 No
Capture/ compare
channels
Complementary
outputs
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.24.2) using the same architecture, so the advanced-control timers can work
together with the TIMx timers via the Timer Link feature for synchronization or event chaining.
48/270 DS10198 Rev 8
Page 49
STM32L476xx Functional overview

3.24.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)

There are up to seven synchronizable general-purpose timers embedded in the STM32L476xx (see generate PWM outputs, or act as a simple time base.
TIM2, TIM3, TIM4 and TIM5
They are full-featured general-purpose timers:
TIM2 and TIM5 have a 32-bit auto-reload up/downcounter and 32-bit prescaler
TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler.
These timers feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
TIM15, 16 and 17
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
TIM15 has 2 channels and 1 complementary channel
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode output.
The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
Tabl e 11 for differences). Each general-purpose timer can be used to

3.24.3 Basic timers (TIM6 and TIM7)

The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases.

3.24.4 Low-power timer (LPTIM1 and LPTIM2)

The devices embed two low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wakeup the system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 is active in Stop 0 and Stop 1 mode.
DS10198 Rev 8 49/270
60
Page 50
Functional overview STM32L476xx
This low-power timer supports the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous/ one shot mode
Selectable software/hardware input trigger
Selectable clock source
Internal clock sources: LSE, LSI, HSI16 or APB clock
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
Programmable digital glitch filter
Encoder mode (LPTIM1 only)

3.24.5 Infrared interface (IRTIM)

The STM32L476xx includes one infrared interface (IRTIM). It can be used with an infrared LED to perform remote control functions. It uses TIM16 and TIM17 output channels to generate output signal waveforms on IR_OUT pin.

3.24.6 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.
kHz internal RC (LSI) and as it operates independently

3.24.7 System window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.24.8 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
50/270 DS10198 Rev 8
Page 51
STM32L476xx Functional overview

3.25 Real-time clock (RTC) and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
Three anti-tamper detection pins with programmable filter.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode.
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either from the V
supply when present or from the VBAT pin.
DD
The backup registers are 32-bit registers used to store 128 bytes of user application data when V
power is not present. They are not reset by a system or power reset, or when the
DD
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
A 32.768 kHz external crystal (LSE)
An external resonator or oscillator (LSE)
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.
DS10198 Rev 8 51/270
60
Page 52
Functional overview STM32L476xx

3.26 Inter-integrated circuit interface (I2C)

The device embeds three I2C. Refer to Table 12: I2C implementation for the features implementation.
The I2C bus interface handles communications between the microcontroller and the serial
2
I
C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
I2C-bus specification and user manual rev. 5 compatibility:
Slave and master modes, multimaster capability
Standard-mode (Sm), with a bitrate up to 100 kbit/s
Fast-mode (Fm), with a bitrate up to 400 kbit/s
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
Programmable setup and hold times
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
Address resolution protocol (ARP) support
SMBus alert
Power System Management Protocol (PMBus
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 4: Clock tree.
Wakeup from Stop mode on address match
Programmable analog and digital noise filters
1-byte buffer with DMA capability
I2C features

Table 12. I2C implementation

(1)
TM
) specification rev 1.1 compatibility
I2C1 I2C2 I2C3
Standard-mode (up to 100 kbit/s) X X X
Fast-mode (up to 400 kbit/s) X X X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X X
Programmable analog and digital noise filters X X X
SMBus/PMBus hardware support X X X
Independent clock X X X
Wakeup from Stop 0 / Stop 1 mode on address match X X X
Wakeup from Stop 2 mode on address match - - X
1. X: supported
52/270 DS10198 Rev 8
Page 53
STM32L476xx Functional overview

3.27 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32L476xx devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4, UART5).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 10Mbit/s.
USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and SPI-like communication capability.
All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2,3,4,5) to wake up the MCU from Stop mode using baudrates up to 204 wake up events from Stop mode are programmable and can be:
Start bit detection
Any received data frame
A specific programmed data frame
Kbaud. The
All USART interfaces can be served by the DMA controller.
USART modes/features
Hardware flow control for modem XXXXX X
Continuous communication using DMA XXXXX X
Multiprocessor communication XXXXX X
Synchronous mode X X X - - -
Smartcard mode X X X - - -
Single-wire half-duplex communication XXXXX X
IrDA SIR ENDEC block XXXXX -
LIN mode XXXXX -
Dual clock domain XXXXX X
Wakeup from Stop 0 / Stop 1 modes XXXXX X
Wakeup from Stop 2 mode ----- X
Receiver timeout interrupt XXXXX -
Modbus communication XXXXX -
Auto baud rate detection X (4 modes) -
Driver Enable XXXXX X

Table 13. STM32L476xx USART/UART/LPUART features

(1)
USART1 USART2 USART3 UART4 UART5 LPUART1
LPUART/USART data length 7, 8 and 9 bits
1. X = supported.
DS10198 Rev 8 53/270
60
Page 54
Functional overview STM32L476xx

3.28 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 mode are programmable and can be:
Start bit detection
Any received data frame
A specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.
LPUART interface can be served by the DMA controller.
Kbaud. The wake up events from Stop
54/270 DS10198 Rev 8
Page 55
STM32L476xx Functional overview

3.29 Serial peripheral interface (SPI)

Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.
All SPI interfaces can be served by the DMA controller.

3.30 Serial audio interfaces (SAI)

The device embeds 2 SAI. Refer to Tab le 14: SAI implementation for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.
The SAI peripheral supports:
Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
8-word integrated FIFOs for each audio sub-block.
Synchronous or asynchronous mode between the audio sub-blocks.
Master or slave configuration independent for both audio sub-blocks.
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
Peripheral with large configurability and flexibility allowing to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF out.
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
Number of bits by frame may be configurable.
Frame synchronization active level configurable (offset, bit length, level).
First active bit position in the slot is configurable.
LSB first or MSB first for data transfer.
Mute mode.
Stereo/Mono audio frame capability.
Communication clock strobing edge configurable (SCK).
Error flags with associated interrupts if enabled respectively.
Overrun and underrun detection.
Anticipated frame synchronization signal detection in slave mode.
Late frame synchronization signal detection in slave mode.
Codec not ready for the AC’97 mode in reception.
Interruption sources when enabled:
–Errors.
FIFO requests.
DMA interface with 2 dedicated channels to handle access to the dedicated integrated
FIFO of each SAI audio sub-block.
DS10198 Rev 8 55/270
60
Page 56
Functional overview STM32L476xx
SAI features
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 X X
Mute mode X X
Stereo/Mono audio frame capability. X X
16 slots X X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X X
FIFO Size X (8 Word) X (8 Word)
SPDIF X X
1. X: supported

Table 14. SAI implementation

(1)
SAI1 SAI2

3.31 Single wire protocol master interface (SWPMI)

The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are:
full-duplex communication mode
automatic SWP bus state management (active, suspend, resume)
configurable bitrate up to 2 Mbit/s
automatic SOF, EOF and CRC handling
SWPMI can be served by the DMA controller.

3.32 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.
56/270 DS10198 Rev 8
Page 57
STM32L476xx Functional overview
The CAN peripheral supports:
Supports CAN protocol version 2.0 A, B Active
Bit rates up to 1 Mbit/s
Transmission
Three transmit mailboxes
Configurable transmit priority
Reception
Two receive FIFOs with three stages
14 Scalable filter banks
Identifier list feature
Configurable FIFO overrun
Time-triggered communication option
Disable automatic retransmission mode
16-bit free running timer
Time Stamp sent in last two data bytes
Management
Maskable interrupts
Software-efficient mailbox mapping at a unique address space

3.33 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The card host interface (SDMMC) provides an interface between the APB peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.
The SDMMC features include the following:
Full compliance with MultiMediaCard System Specification Version 4.2. Card support
for three different databus modes: 1-bit (default), 4-bit and 8-bit
Full compatibility with previous versions of MultiMediaCards (forward compatibility)
Full compliance with SD Memory Card Specifications Version 2.0
Full compliance with SD I/O Card Specification Version 2.0: card support for two
different databus modes: 1-bit (default) and 4-bit
Data transfer up to 48 MHz for the 8 bit mode
Data write and read with DMA capability

3.34 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 2.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that can be provided by the internal multispeed oscillator (MSI) automatically trimmed by 32.768 kHz external oscillator (LSE).This allows to use the USB device without external high speed crystal (HSE).
DS10198 Rev 8 57/270
60
Page 58
Functional overview STM32L476xx
The major features are:
Combined Rx and Tx FIFO size of 1.25 KB with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
12 host channels with periodic OUT support
HNP/SNP/IP inside (no need for any external resistor)
USB 2.0 LPM (Link Power Management) support
Battery Charging Specification Revision 1.2 support
Internal FS OTG PHY support
For OTG/Host modes, a power switch is needed in case bus-powered devices are connected.

3.35 Flexible static memory controller (FSMC)

The Flexible static memory controller (FSMC) includes two memory controllers:
The NOR/PSRAM memory controller
The NAND/memory controller
This memory controller is also named Flexible memory controller (FMC).
The main features of the FMC controller are the following:
Interface with static-memory mapped devices including:
Static random access memory (SRAM)
NOR Flash memory/OneNAND Flash memory
PSRAM (4 memory banks)
NAND Flash memory with ECC hardware to check up to 8 Kbyte of data
8-,16- bit data bus width
Independent Chip Select control for each memory bank
Independent configuration for each memory bank
Write FIFO
The Maximum FMC_CLK frequency for synchronous accesses is HCLK/2.
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.
58/270 DS10198 Rev 8
Page 59
STM32L476xx Functional overview

3.36 Quad SPI memory interface (QUADSPI)

The Quad SPI is a specialized communication interface targeting single, dual or quad SPI flash memories. It can operate in any of the three following modes:
Indirect mode: all the operations are performed using the QUADSPI registers
Status polling mode: the external flash status register is periodically read and an
interrupt can be generated in case of flag setting
Memory-mapped mode: the external Flash is memory mapped and is seen by the
system as if it were an internal memory
The Quad SPI interface supports:
Three functional modes: indirect, status-polling, and memory-mapped
SDR and DDR support
Fully programmable opcode for both indirect and memory mapped mode
Fully programmable frame format for both indirect and memory mapped mode
Each of the 5 following phases can be configured independently (enable, length,
single/dual/quad communication)
Instruction phase
Address phase
Alternate bytes phase
Dummy cycles phase
Data phase
Integrated FIFO for reception and transmission
8, 16, and 32-bit data accesses are allowed
DMA channel for indirect mode operations
Programmable masking for external flash flag management
Timeout management
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
DS10198 Rev 8 59/270
60
Page 60
Functional overview STM32L476xx

3.37 Development support

3.37.1 Serial wire JTAG debug port (SWJ-DP)

The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.37.2 Embedded Trace Macrocell™

The Arm® Embedded Trace Macrocell™ provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L476xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell™ operates with third party debugger software tools.
60/270 DS10198 Rev 8
Page 61
STM32L476xx Pinouts and pin description
MS31270V5
LQFP144
23 24 25 26 27 28 29 30 31 32 33 34 35 36
20
22
15
17
19
13 14
16
18
PF9
PH0-OSC_IN (PH0)
PH1-OSC_OUT (PH1)
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA0 PA1 PA2
PF8
PF10
PF5
VDD
PF7
PF3 PF4
VSS
PF6
88
86 85 84 83 82 81 80 79 78 77 76 75 74 73
89
87
94
92
90
97 96 95
93
91
135
133
132
131
130
129
128
127
126
125
124
123
122
121
136
134
141
139
137
144
143
142
140
138
47495051525354555657585960
61
72
46
48
41
43
45
383940
42
44
VSS
VDD
PA6
PC5
PF11
PA4
PA5
PB0
VSS
PF14
PA7
PC4
VDD
PF15
PE7
PB1
PB2
PG0
PE8
VSS
PF12
PF13
PG1
PE9
VDD
PG3
PD15 PD14 VDD VSS PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PG4
PG2
VSS
PG7
PG5
PC7 PC6 VDDIO2
PG8
PG6
VDD
VSS
PB9
PB7
PB3 (JTDO-TRACESWO)
PE1
PE0
PB6
VDDIO2
PG13
PB8
BOOT0
VSS
PG12
PG9
PB5
PB4 (NJTRST)
PG11
PD7
VDD
PG15
PG14
PG10
PD6
120 VSS
119 PD5
118 PD4
117 PD3
116 PD2
115 PD1
114 PD0
113 PC12
112 PC11
111 PC10
110 PA15 (JTDI)
109 PA14 (JTCK-SWCLK)
108 VDD
104
107 106 105
103
PA12
VSS VDDUSB PA13 (JTMS-SWDIO)
PA11
9998PC9
PC8
101 100
PA9 PA8
102 PA10
686970
71
PE15
PB10
VSS
PB11
646566
67
PE11
PE12
PE14
PE13
62
63
VDD
PE10
37
PA3
12
11
6
8
10
4 5
7
9
PF2
PF1
VBAT
PC14-OSC32_IN (PC14)
PF0
PE5 PE6
PC13
PC15-OSC32_OUT (PC15)
3PE4
2PE3
1PE2
21

4 Pinouts and pin description

Figure 6. STM32L476Zx LQFP144 pinout
(1)
1. The above figure shows the package top view.
DS10198 Rev 8 61/270
111
Page 62
Pinouts and pin description STM32L476xx
MSv43895V2
LQFP144
23 24 25 26 27 28 29 30 31 32 33 34 35 36
20
22
15
17
19
13 14
16
18
PF9
PH0-OSC_IN (PH0)
PH1-OSC_OUT (PH1)
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA0 PA1 PA2
PF8
PF10
PF5
VDD
PF7
PF3 PF4
VSS
PF6
88
86 85 84 83 82 81 80 79 78 77 76 75 74 73
89
87
94
92
90
97 96 95
93
91
135
133
132
131
130
129
128
127
126
125
124
123
122
121
136
134
141
139
137
144
143
142
140
138
47495051525354555657585960
61
72
46
48
41
43
45
383940
42
44
VSS
VDD
PA6
PC5
PF11
PA4
PA5
PB0
VSS
PF14
PA7
PC4
VDD
PF15
PE7
PB1
PB2
PG0
PE8
VSS
PF12
PF13
PG1
PE9
VDD
PG3
PD15 PD14 VDD VSS PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PG4
PG2
VSS
PG7
PG5
PC7 PC6 VDDIO2
PG8
PG6
VDD
VSS
PE0
BOOT0
PB4 (NJTRST)
VDD12
PE1
PB7
VDDIO2
PG13
PB9
PB8
VSS
PG12
PG9
PB6
PB5
PG11
PD7
VDD
PB3 (JTDO-TRACESWO)
PG14
PG10
PD6
120 VSS
119 PD5
118 PD4
117 PD3
116 PD2
115 PD1
114 PD0
113 PC12
112 PC11
111 PC10
110 PA15 (JTDI)
109 PA14 (JTCK-SWCLK)
108 VDD
104
107 106 105
103
PA12
VSS VDDUSB PA13 (JTMS-SWDIO)
PA11
9998PC9
PC8
101 100
PA9 PA8
102 PA10
686970
71
PE15
PB10
VSS
VDD12
646566
67
PE11
PE12
PE14
PE13
62
63
VDD
PE10
37
PA3
12
11
6
8
10
4 5
7
9
PF2
PF1
VBAT
PC14-OSC32_IN (PC14)
PF0
PE5 PE6
PC13
PC15-OSC32_OUT (PC15)
3PE4
2PE3
1PE2
21
Figure 7. STM32L476Zx, external SMPS device, LQFP144 pinout
(1)
62/270 DS10198 Rev 8
1. The above figure shows the package top view.
Page 63
STM32L476xx Pinouts and pin description
MSv50902V1
VSS PE0 PB8 BOOT0 PB7 PG14 PG12 PD7 PD6 PD1 PD0 VSS
123456789101112
A
B
C
D
E
F
G
H
J
K
L
M
VBAT PE4 PE3 PE1 PB6 PG15 PG11 PD5 PC12 PC10 PA12 PA11
PC15-
OSC32_OUT
PE5 PE2 PB9 PB5 PD4 PC11 PA14 PA13 PA10
PF4
PC14-
OSC32_IN
PE6 PA15 PA9 PA 8
PF6 PF1 PF0 PC6 PC9 PC8
PF8 PF7 PG8 PC7
PH1-
OSC_OUT
PH0-OSC_IN PG3 PG5
PC2 PC0 PC1 PD11 PD14 PG2
VSSA VREF- PA0 PB14 PD10 PD15
VREF+ VDDA PA1 PA 6 PB2 PE11 PB11 PB12 PD8 PD9
OPAMP1
_VINM
PA2 PA 4
OPAMP2
_VINM
PB0 PF13 PE8 PE12 PE13 PE14 PB10 PB15
VSS PA3 PA5 PA 7 PC5 PB1 PF14 PE7 PF15 PE10 PE15 VSS
PC13 PB4 PG13 PG10
PB3 PG9
PD3 PD2
VSS VDDUSBVDDIO2 VDDPF2 VSS
PF5 PG6VDDIO2 PG7VSS VSSPF3 VDD
PF10 PD13VDD PG4VSS VSSPF9 VDD
VSS PD12VDD VDDNRST
PE9 PB13PF11 PG1PC3 PC4
PF12 PG0
VSS
MSv35003V7
PE3 PE1 PB8 BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12
123456789101112
A
B
C
D
E
F
G
H
J
K
L
M
PE4 PE2 PB9 PB7 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA11
PC13 PE5 PE0 VDD PB5 PD2 PD0 PC11 VDDUSB PA10
PC14-
OSC32_IN
PE6 VSS PA9 PA8 PC9
PC15-
OSC32_OUT
VBAT VSS PC8 PC7 PC6
PH0-OSC_IN VSS VSS VSS
PH1-
OSC_OUT
VDD VDD VDD
PC0 NRST VDD PD15 PD14 PD13
VSSA/VREF- PC1 PC2 PD12 PD11 PD10
PG15 PC3 PA2 PA 5 PC4 PD9 PD8 PB15 PB14 PB13
VREF+ PA0 PA3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 PB11 PB12
VDDA PA 1
OPAMP1_
VINM
OPAMP2_
VINM
PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15
PG14 PG13
PF2 PF1 PF0 PG12 PG10 PG9
VSS VSS
VDD VDDIO2
PF4
PG11
PF3
PF5
PG6
PG7
PA4 PA 7 PG8 PF12 PF14 PF15
PF11 PF13
PG5
PG3
PG1
PG0
PG4
PG2
Figure 8. STM32L476Zx UFBGA144 ballout
1. The above figure shows the package top view.
Figure 9. STM32L476Qx UFBGA132 ballout
(1)
(1)
1. The above figure shows the package top view.
DS10198 Rev 8 63/270
111
Page 64
Pinouts and pin description STM32L476xx
MSv47486V1
BOOT0
4
PB7
VDD
PF2
PA5
PA4
PA6
OPAMP2_
VINM
PF3
PF5
PG6
PG7
PE3 PE1 PB8 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12
123 56789101112
A
B
C
D
E
F
G
H
J
K
L
M
PE4 PE2 PB9 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA11
PC13 PE5 PE0 PB5 PD2 PD0 PC11 VDDUSB PA10
PC14-
OSC32_IN
PE6 VSS PA9 PA8 PC9
PC15-
OSC32_OUT
VBAT VSS PC8 PC7 PC6
PH0-OSC_IN VSS VSS VSS
PH1-
OSC_OUT
VDD VDD VDD
PC0 NRST VDD PD15 PD14 PD13
VSSA/VREF- PC1 PC2 PD12 PD11 PD10
PG15 PC3 PA2 PC4 PD9 PD8 PB15 PB14 PB13
VREF+ PA0 PA3 PC5 PB2 PE8 PE10 PE12 PB10 VDD12 PB12
VDDA PA 1
OPAMP1_
VINM
PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15
VDD12 PG13
PF1 PF0 PG12 PG10 PG9
VSS VSS
VDD VDDIO2
PF4
PG11
PA7 PG8 PF12 PF14 PF15
PF11 PF13
PG5
PG3
PG1
PG0
PG4
PG2
MS31271V3
LQFP100
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PE11
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE12
PE13
PE14
PE15
PB10
PB11
VSS
VDD
26272829303132423334353637383940414344454647484950
VBAT
PE2 PE3 PE4 PE5 PE6
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VSS
VDD
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA0 PA1 PA2
6
1 2 3 4 5
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
70
75 74 73 72 71
69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
PA11
VDD VSS VDDUSB PA13 PA12
PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PD0
PA14
PA15
PC10
PC11
PC12
PD1
PD2
PD3
PD4
PD5
PD6
PD7
PB3
PB4
PB5
PB6
PB7
BOOT0
PB8
PB9
PE0
PE1
VSS
VDD
81
7677787980
8283848586878889909192939495969798
99
100

Figure 10. STM32L476Qx, external SMPS device, UFBGA132 ballout

1. The above figure shows the package top view.
Figure 11. STM32L476Vx LQFP100 pinout
64/270 DS10198 Rev 8
1. The above figure shows the package top view.
(1)
Page 65
STM32L476xx Pinouts and pin description
MSv38020V3
VDDUSB PA15 PD2 PG9 PG14 PB3 PB7 VSS
12345678
A
B
C
D
E
F
G
H
VSS PA14 PC12 PG10 PG13 VDDIO2 PB6 PC13
PA12 PA13 PC11 PG11 PG12
PC15-
OSC32_OUT
PA11 PA10 PC10
PC9 PA 8 PA9
PC7 PC8
PB15 PB14
PB12 PB13 PB10
PB11
PC6
PA6
PA4
PA7
PA1
PA3
PC3
PC2
PB8
BOOT0
PA5
PA2
PB4 PB5
PA0
VREF+
PC1
PB9
PH1-
OSC_OUT
VDD
9
VBAT
PC14-
OSC32_IN
VDDA
VSSA/VREF-
PC0
NRST
PH0-OSC_IN
J
VDD VSS PB2 PB0PB1 PC4PC5 VDD VSS
PD5 PD6 PD7
VDD PD4 PE7
PD9 PD8 PE8
MSv35083V7
VDDUSB PA15 PD2 PG9 PG14 PB3 PB7 VSS
12345678
A
B
C
D
E
F
G
H
VSS PA14 PC12 PG10 PG13 VDDIO2 PB6 PC13
PA12 PA13 PC11 PG11 PG12
PC15-
OSC32_OUT
PA11 PA10 PC10
PC9 PA 8 PA9
PC7 PC8
PB15 PB14
PB12 PB13 PB10
PB11
PC6
PA6
PA4
PA7
PA1
PA3
PC3
PC2
PB8
BOOT0
PA5
PA2
PB4 PB5
PA0
VREF+
PC1
PB9
PH1-
OSC_OUT
VDD
9
VBAT
PC14-
OSC32_IN
VDDA
VSSA/VREF-
PC0
NRST
PH0-OSC_IN
J
VDD VSS PB2 PB0PB1 PC4PC5 VDD VSS
WLCSP72
Figure 12. STM32L476Mx WLCSP81 ballout
1. The above figure shows the package top view.
Figure 13. STM32L476Jx WLCSP72 ballout
(1)
(1)
1. The above figure shows the package top view.
DS10198 Rev 8 65/270
111
Page 66
Pinouts and pin description STM32L476xx
MSv43896V1
VDDUSB PC10 PD2 PG9 PG14 PB3 BOOT0 VSS
12345678
A
B
C
D
E
F
G
H
VSS PA14 PC12 PG10 PG13 VDDIO2 PB7 VDD12
PA12 PA13 PA15 PG12 PB4
PC15-
OSC32_OUT
PA11 PA10 PC11
PC9 PA 8 PA9
VDD PC7
PB15 PC6
PB12 PB13 PB11
PB14
PC8
PA5
PA0
PA7
PA2
PA3
PC3
PC2
PB5
PB9
PA4
PA1
PB8 PC13
VDD
VREF+
PC1
PB6
PH1-
OSC_OUT
VDD
9
VBAT
PC14-
OSC32_IN
VDDA
VSSA/VREF-
PC0
NRST
PH0-OSC_IN
J
VDD12 VSS PB10 PB1PB0 PC4PB2 PA6 VSS
WLCSP72
MS31272V5
LQFP64
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
VBAT
PC14-OSC32_IN (PC14)
PC15-OSC32_OUT (PC15)
PH0-OSC_IN (PH0)
PH1-OSC_OUT (PH1)
NRST
PC0
PC1
PC2
PC3
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
PC13
48
46
45
44
43
42
41
40
39
38
37
36
35
34
33
47
55
5352515049
56
54
61
59
57
646362
60
58
26
2829303132
25
27
20
22
24
171819
21
23
PA3
VSS
PA5
PC4
PB2
VDD
PA4
PC5
PB11
PA6
PA7
VSS
PB0
PB1
PB10
VDD
VDDUSB
PA13 (JTMS-SWDIO)
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
VSS
VDD
VSS
BOOT0
PB5
PC12
PB9
PB8
PB4 (NJTRST)
PC10
PB7
PB6
PA15 (JTDI)
PB3 (JTDO-TRACESWO)
PD2
PC11
PA14 (JTCK-SWCLK)
Figure 14. STM32L476Jx, external SMPS device, WLCSP72 ballout
1. The above figure shows the package top view.
Figure 15. STM32L476Rx LQFP64 pinout
(1)
(1)
66/270 DS10198 Rev 8
1. The above figure shows the package top view.
Page 67
STM32L476xx Pinouts and pin description
MSv45744V1
LQFP64
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
VBAT
PC14-OSC32_IN (PC14)
PC15-OSC32_OUT (PC15)
PH0-OSC_IN (PH0)
PH1-OSC_OUT (PH1)
NRST
PC0
PC1
PC2
PC3
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
PC13
48
46
45
44
43
42
41
40
39
38
37
36
35
34
33
47
55
5352515049
56
54
61
59
57
646362
60
58
26
2829303132
25
27
20
22
24
171819
21
23
PA3
VSS
PA5
PC4
PB10
VDD
PA4
PB0
VDD12
PA6
PA7
VSS
PB1
PB2
PB11
VDD
VDDUSB
PA13 (JTMS-SWDIO)
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
VSS
VDD
VSS
PB8
PB6
PC12
VDD12
PB9
PB5
PC10
BOOT0
PB7
PA15 (JTDI)
PB4 (NJTRST)
PB3 (JTDO-TRACESWO)
PC11
PA14 (JTCK-SWCLK)
Figure 16. STM32L476Rx, external SMPS device, LQFP64 pinout
(1)
Name Abbreviation Definition
Pin name
Pin type
I/O structure
1. The above figure shows the package top view.

Table 15. Legend/abbreviations used in the pinout table

Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name
S Supply pin
I Input only pin
I/O Input / output pin
FT 5 V tolerant I/O
TT 3.6 V tolerant I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
_u
_a
_s
_f
_l
(1)
(2)
(3)
(4)
(5)
I/O, Fm+ capable
I/O, with LCD function supplied by V
I/O, with USB function supplied by V
I/O, with Analog switch function supplied by V
I/O supplied only by V
DS10198 Rev 8 67/270
Option for TT or FT I/Os
DDIO2
LCD
DDUSB
DDA
111
Page 68
Pinouts and pin description STM32L476xx
Table 15. Legend/abbreviations used in the pinout table (continued)
Name Abbreviation Definition
Notes Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Alternate
Pin
functions
functions
Additional
functions
1. The related I/O structures in Table 16 are: FT_f, FT_fa, FT_fl, FT_fla.
2. The related I/O structures in Table 16 are: FT_l, FT_fl, FT_lu.
3. The related I/O structures in Table 16 are: FT_u, FT_lu.
4. The related I/O structures in Table 16 are: FT_a, FT_la, FT_fa, FT_fla, TT_a, TT_la.
5. The related I/O structures in Table 16 are: FT_s, FT_fs.
Functions selected through GPIOx_AFR registers
Functions directly selected/enabled through peripheral registers
68/270 DS10198 Rev 8
Page 69

Table 16. STM32L476xx pin definitions

STM32L476xx Pinouts and pin description
DS10198 Rev 8 69/270
Pin Number
Pin functions
Pin name
(function
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
after
reset)
Pin type
LQFP144
LQFP144_SMPS
UFBGA144
I/O structure
Alternate functions Additional functions
Notes
TRACECK, TIM3_ETR,
TSC_G7_IO1,
-----1B2B211C3 PE2 I/OFT_l-
LCD_SEG38, FMC_A23,
SAI1_MCLK_A,
EVENTOUT
TRACED0, TIM3_CH1,
-----2A1A122B3 PE3 I/OFT_l-
TSC_G7_IO2,
LCD_SEG39, FMC_A19,
SAI1_SD_B, EVENTOUT
TRACED1, TIM3_CH2,
-----3B1B133B2 PE4 I/OFT -
DFSDM1_DATIN3, TSC_G7_IO3, FMC_A20, SAI1_FS_A, EVENTOUT
TRACED2, TIM3_CH3,
DFSDM1_CKIN3,
-----4C2C244C2 PE5 I/OFT -
TSC_G7_IO4, FMC_A21,
SAI1_SCK_A,
EVENTOUT
TRACED3, TIM3_CH4,
-----5D2D255D3 PE6 I/OFT -
FMC_A22, SAI1_SD_A,
RTC_TAMP3/WKUP3
EVENTOUT
1 1 B9 B9 B9 6 E2 E2 6 6 B1 VBAT S - - - -
2 2 B8 C7 B8 7 C1 C1 7 7 D4 PC13 I/O FT
(1)
(2)
EVENTOUT
RTC_TAMP1/RTC_TS/
RTC_OUT/WKUP2
-
-
-
-
Page 70
70/270 DS10198 Rev 8
Table 16. STM32L476xx pin definitions (continued)
Pinouts and pin description STM32L476xx
Pin Number
Pin functions
Pin name
(function
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
3 3 C9 C9 C9 8 D1 D1 8 8 D2
after
reset)
UFBGA144
PC14-
OSC32_
Pin type
I/O FT
I/O structure
Alternate functions Additional functions
Notes
(1)
(2)
EVENTOUT OSC32_IN
IN (PC14)
4 4 C8 C8 C8 9 E1 E1 9 9 C1
PC15-
OSC32_
OUT
I/O FT
(1)
(2)
EVENTOUT OSC32_OUT
(PC15)
- - - - - - D6 D6 10 10 E3 PF0 I/O FT_f -
- - - - - - D5 D5 11 11 E2 PF1 I/O FT_f -
----- -D4D41212E4 PF2 I/OFT -
I2C2_SDA, FMC_A0,
EVENTOUT
I2C2_SCL, FMC_A1,
EVENTOUT
I2C2_SMBA, FMC_A2,
EVENTOUT
-
-
-
- - - - - - E4 E4 13 13 F4 PF3 I/O FT_a - FMC_A3, EVENTOUT ADC3_IN6
- - - - - - F3 F3 14 14 D1 PF4 I/O FT_a - FMC_A4, EVENTOUT ADC3_IN7
- - - - - - F4 F4 15 15 F3 PF5 I/O FT_a - FMC_A5, EVENTOUT ADC3_IN8
- - - - - 10 F2 F2 16 16 F6 VSS S - - - -
- - - - - 11 G2 G2 17 17 G5 VDD S - - - -
----- - - -1818E1 PF6 I/OFT_a-
TIM5_ETR, TIM5_CH1,
SAI1_SD_B, EVENTOUT
ADC3_IN9
TIM5_CH2,
----- - - -1919F2 PF7 I/OFT_a-
SAI1_MCLK_B,
ADC3_IN10
EVENTOUT
Page 71
Table 16. STM32L476xx pin definitions (continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 71/270
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
----- - - -2020F1 PF8 I/OFT_a-
----- - - -2121G4 PF9 I/OFT_a-
- - - - - - - - 22 22 G3 PF10 I/O FT_a - TIM15_CH2, EVENTOUT ADC3_IN13
PH0-
5 5 D9 D9 D9 12 F1 F1 23 23 G2
6 6 D8 D8 D8 13 G1 G1 24 24 G1
7 7 E9 E9 E9 14 H2 H2 25 25 H4 NRST I/O RST - - -
8 8 F9 F9 F9 15 H1 H1 26 26 H2 PC0 I/O FT_fla -
9 9 F8 F8 F8 16 J2 J2 27 27 H3 PC1 I/O FT_fla -
OSC_IN
(PH0)
PH1-
OSC_
OUT
(PH1)
I/O FT - EVENTOUT OSC_IN
I/O FT - EVENTOUT OSC_OUT
I/O structure
Alternate functions Additional functions
Notes
TIM5_CH3, SAI1_SCK_B,
EVENTOUT
TIM5_CH4, SAI1_FS_B,
TIM15_CH1, EVENTOUT
LPTIM1_IN1, I2C3_SCL,
DFSDM1_DATIN4,
LPUART1_RX,
LCD_SEG18,
LPTIM2_IN1, EVENTOUT
LPTIM1_OUT, I2C3_SDA,
DFSDM1_CKIN4,
LPUART1_TX,
LCD_SEG19,
EVENTOUT
Pin functions
ADC3_IN11
ADC3_IN12
ADC123_IN1
ADC123_IN2
Page 72
72/270 DS10198 Rev 8
Table 16. STM32L476xx pin definitions (continued)
Pinouts and pin description STM32L476xx
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
10 10 F7 F7 F7 17 J3 J3 28 28 H1 PC2 I/O FT_la -
11 11 G7 G7 G7 18 K2 K2 29 29 J4 PC3 I/O FT_a -
- - - - - 19 - - 30 30 J1 VSSA S - - - -
- - - - - 20 - - 31 31 J2 VREF- S - - - -
12 12 G9 G9 G9 - J1 J1 - - -
- - G8 G8 G8 21 L1 L1 32 32 K1 VREF+ S - - - VREFBUF_OUT
- - H9 H9 H9 22 M1 M1 33 33 K2 VDDA S - - - -
1313----- ----
14 14 H8 G5 H8 23 L2 L2 34 34 J3 PA0 I/O FT_a -
VSSA/ VREF-
VDDA/
VREF+
S- - - -
S- - - -
I/O structure
Alternate functions Additional functions
Notes
LPTIM1_IN2,
SPI2_MISO,
DFSDM1_CKOUT,
LCD_SEG20,
EVENTOUT
LPTIM1_ETR,
SPI2_MOSI, LCD_VLCD,
SAI1_SD_A,
LPTIM2_ETR,
EVENTOUT
TIM2_CH1, TIM5_CH1,
TIM8_ETR,
USART2_CTS,
UART4_TX,
SAI1_EXTCLK,
TIM2_ETR, EVENTOUT
Pin functions
ADC123_IN3
ADC123_IN4
OPAMP1_VINP,
ADC12_IN5,
RTC_TAMP2/WKUP1
Page 73
Table 16. STM32L476xx pin definitions (continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 73/270
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
----- -M3M3- -L1
15 15 G4 G6 G4 24 M2 M2 35 35 K3 PA1 I/O FT_la
16 16 G6 G4 G6 25 K3 K3 36 36 L2 PA2 I/O FT_la -
17 17 H7 H7 H7 26 L3 L3 37 37 M2 PA3 I/O TT_la -
18 18 J9 J9 J9 27 E3 E3 38 38 F7 VSS S - - - -
OPAMP1
_VINM
I/O structure
ITT- - -
Alternate functions Additional functions
Notes
TIM2_CH2, TIM5_CH2,
(3)
USART2_RTS_DE, UART4_RX, LCD_SEG0,
TIM15_CH1N,
EVENTOUT
TIM2_CH3, TIM5_CH3,
USART2_TX,
LCD_SEG1,
SAI2_EXTCLK,
TIM15_CH1, EVENTOUT
TIM2_CH4, TIM5_CH4,
USART2_RX,
LCD_SEG2, TIM15_CH2,
EVENTOUT
Pin functions
OPAMP1_VINM,
ADC12_IN6
ADC12_IN7,
WKUP4/LSCO
OPAMP1_VOUT,
ADC12_IN8
19 19 J8 H8 J8 28 H3 H3 39 39 G8 VDD S - - - -
SPI1_NSS, SPI3_NSS,
20 20 G5 H6 G5 29 J4 J4 40 40 L3 PA4 I/O TT_a -
USART2_CK,
SAI1_FS_B,
LPTIM2_OUT,
EVENTOUT
ADC12_IN9,
DAC1_OUT1
Page 74
74/270 DS10198 Rev 8
Table 16. STM32L476xx pin definitions (continued)
Pinouts and pin description STM32L476xx
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
21 21 H6 H5 H6 30 K4 K4 41 41 M3 PA5 I/O TT_a -
22 22 H5 J8 H5 31 L4 L4 42 42 K4 PA6 I/O FT_la -
----- -M4M4- -L4
23 23 H4 H4 H4 32 J5 J5 43 43 M4 PA7 I/O FT_la
OPAMP2
_VINM
I/O structure
ITT- - -
Pin functions
Alternate functions Additional functions
Notes
TIM2_CH1, TIM2_ETR,
TIM8_CH1N, SPI1_SCK,
LPTIM2_ETR,
EVENTOUT
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN, SPI1_MISO,
USART3_CTS,
QUADSPI_BK1_IO3,
LCD_SEG3, TIM1_BKIN_COMP2, TIM8_BKIN_COMP2,
TIM16_CH1, EVENTOUT
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N, SPI1_MOSI,
(3)
QUADSPI_BK1_IO2,
LCD_SEG4, TIM17_CH1,
EVENTOUT
ADC12_IN10,
DAC1_OUT2
OPAMP2_VINP,
ADC12_IN11
OPAMP2_VINM,
ADC12_IN12
24 24 J7 J7 J7 33 K5 K5 44 44 J5 PC4 I/O FT_la -
25 - J6 - J6 34 L5 L5 45 45 M5 PC5 I/O FT_la -
USART3_TX, LCD_SEG22,
EVENTOUT
USART3_RX, LCD_SEG23,
EVENTOUT
COMP1_INM,
ADC12_IN13
COMP1_INP,
ADC12_IN14, WKUP5
Page 75
Table 16. STM32L476xx pin definitions (continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 75/270
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
26 25 J5 J4 J5 35 M5 M5 46 46 L5 PB0 I/O TT_la -
27 26 J4 J5 J4 36 M6 M6 47 47 M6 PB1 I/O FT_la -
28 27 J3 J6 J3 37 L6 L6 48 48 K5 PB2 I/O FT_a -
- - - - - - K6 K6 49 49 J6 PF11 I/O FT - EVENTOUT -
I/O structure
Alternate functions Additional functions
Notes
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N,
USART3_CK,
QUADSPI_BK1_IO1,
LCD_SEG5,
COMP1_OUT,
EVENTOUT
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N, DFSDM1_DATIN0, USART3_RTS_DE,
QUADSPI_BK1_IO0,
LCD_SEG6, LPTIM2_IN1,
EVENTOUT
RTC_OUT, LPTIM1_OUT,
I2C3_SMBA,
DFSDM1_CKIN0,
EVENTOUT
Pin functions
OPAMP2_VOUT,
ADC12_IN15
COMP1_INM,
ADC12_IN16
COMP1_INP
- - - - - - J7 J7 50 50 K6 PF12 I/O FT - FMC_A6, EVENTOUT -
----- - - -5151G6 VSS S - - - -
----- - - -5252H6 VDD S - - - -
----- -K7K75353L6 PF13I/OFT -
DFSDM1_DATIN6,
FMC_A7, EVENTOUT
-
Page 76
76/270 DS10198 Rev 8
Table 16. STM32L476xx pin definitions (continued)
Pinouts and pin description STM32L476xx
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
----- -J8J85454M7 PF14I/OFT -
----- -J9J95555M9 PF15I/OFT -
- - - - - - H9 H9 56 56 K7 PG0 I/O FT -
- - - - - - G9 G9 57 57 J7 PG1 I/O FT -
- - - - E6 38 M7 M7 58 58 M8 PE7 I/O FT -
- - - - F6 39 L7 L7 59 59 L7 PE8 I/O FT -
Notes
Pin functions
Alternate functions Additional functions
DFSDM1_CKIN6,
TSC_G8_IO1, FMC_A8,
EVENTOUT
TSC_G8_IO2, FMC_A9,
EVENTOUT
TSC_G8_IO3, FMC_A10,
EVENTOUT
TSC_G8_IO4, FMC_A11,
EVENTOUT
TIM1_ETR,
DFSDM1_DATIN2,
FMC_D4, SAI1_SD_B,
EVENTOUT
TIM1_CH1N,
DFSDM1_CKIN2,
FMC_D5, SAI1_SCK_B,
EVENTOUT
-
-
-
-
-
-
TIM1_CH1,
- - - - - 40 M8 M8 60 60 J8 PE9 I/O FT -
----- -F6F66161G7 VSS S - - - -
----- -G6G66262E7 VDD S - - - -
DFSDM1_CKOUT,
FMC_D6, SAI1_FS_B,
EVENTOUT
-
Page 77
Table 16. STM32L476xx pin definitions (continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 77/270
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
- - - - - 41 L8 L8 63 63 M10 PE10 I/O FT -
- - - - - 42 M9 M9 64 64 K8 PE11 I/O FT -
- - - - - 43 L9 L9 65 65 L8 PE12 I/O FT -
- - - - - 44 M10 M10 66 66 L9 PE13 I/O FT -
- - - - - 45 M11 M11 67 67 L10 PE14 I/O FT -
I/O structure
Pin functions
Alternate functions Additional functions
Notes
TIM1_CH2N, DFSDM1_DATIN4,
TSC_G5_IO1,
QUADSPI_CLK,
FMC_D7, SAI1_MCLK_B,
EVENTOUT
TIM1_CH2,
DFSDM1_CKIN4,
TSC_G5_IO2,
QUADSPI_NCS,
FMC_D8, EVENTOUT
TIM1_CH3N, SPI1_NSS,
DFSDM1_DATIN5,
TSC_G5_IO3,
QUADSPI_BK1_IO0,
FMC_D9, EVENTOUT
TIM1_CH3, SPI1_SCK,
DFSDM1_CKIN5,
TSC_G5_IO4,
QUADSPI_BK1_IO1,
FMC_D10, EVENTOUT
TIM1_CH4, TIM1_BKIN2,
TIM1_BKIN2_COMP2,
SPI1_MISO,
QUADSPI_BK1_IO2,
FMC_D11, EVENTOUT
-
-
-
-
-
Page 78
78/270 DS10198 Rev 8
Table 16. STM32L476xx pin definitions (continued)
Pinouts and pin description STM32L476xx
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
- - - - - 46 M12 M12 68 68 M11 PE15 I/O FT -
29 28 H3 J3 H3 47 L10 L10 69 69 L11 PB10 I/O FT_fl -
30 29 G3 H3 G3 48 L11 - 70 - K9 PB11 I/O FT_fl -
- 30 - B8 - - - L11 - 70 - VDD12 S - - - -
31 31 J2 J2 J2 49 F12 F12 71 71 H5 VSS S - - - -
I/O structure
Alternate functions Additional functions
Notes
TIM1_BKIN,
TIM1_BKIN_COMP1,
SPI1_MOSI,
QUADSPI_BK1_IO3,
FMC_D12, EVENTOUT
TIM2_CH3, I2C2_SCL,
SPI2_SCK,
DFSDM1_DATIN7,
USART3_TX,
LPUART1_RX,
QUADSPI_CLK,
LCD_SEG10, COMP1_OUT, SAI1_SCK_A,
EVENTOUT
TIM2_CH4, I2C2_SDA,
DFSDM1_CKIN7,
USART3_RX,
LPUART1_TX,
QUADSPI_NCS,
LCD_SEG11, COMP2_OUT,
EVENTOUT
Pin functions
-
-
-
32 32 J1 F1 J1 50 G12 G12 72 72 - VDD S - - - -
Page 79
Table 16. STM32L476xx pin definitions (continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 79/270
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
33 33 H1 H1 H1 51 L12 L12 73 73 K10 PB12 I/O FT_l -
34 34 H2 H2 H2 52 K12 K12 74 74 J9 PB13 I/O FT_fl -
I/O structure
Pin functions
Alternate functions Additional functions
Notes
TIM1_BKIN,
TIM1_BKIN_COMP2,
I2C2_SMBA, SPI2_NSS,
DFSDM1_DATIN1,
USART3_CK,
LPUART1_RTS_DE,
TSC_G1_IO1,
LCD_SEG12,
SWPMI1_IO, SAI2_FS_A, TIM15_BKIN, EVENTOUT
TIM1_CH1N, I2C2_SCL,
SPI2_SCK,
DFSDM1_CKIN1,
USART3_CTS,
LPUART1_CTS,
TSC_G1_IO2,
LCD_SEG13,
SWPMI1_TX, SAI2_SCK_A, TIM15_CH1N,
EVENTOUT
-
-
Page 80
80/270 DS10198 Rev 8
Table 16. STM32L476xx pin definitions (continued)
Pinouts and pin description STM32L476xx
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
35 35 G2 G3 G2 53 K11 K11 75 75 J10 PB14 I/O FT_fl -
36 36 G1 G1 G1 54 K10 K10 76 76 L12 PB15 I/O FT_l -
- - - - F5 55 K9 K9 77 77 K11 PD8 I/O FT_l -
I/O structure
Pin functions
Alternate functions Additional functions
Notes
TIM1_CH2N,
TIM8_CH2N, I2C2_SDA,
SPI2_MISO, DFSDM1_DATIN2, USART3_RTS_DE,
TSC_G1_IO3,
LCD_SEG14, SWPMI1_RX,
SAI2_MCLK_A,
TIM15_CH1, EVENTOUT
RTC_REFIN, TIM1_CH3N,
TIM8_CH3N, SPI2_MOSI,
DFSDM1_CKIN2,
TSC_G1_IO4,
LCD_SEG15,
SWPMI1_SUSPEND,
SAI2_SD_A, TIM15_CH2,
EVENTOUT
USART3_TX,
LCD_SEG28, FMC_D13,
EVENTOUT
-
-
-
- - - - F4 56 K8 K8 78 78 K12 PD9 I/O FT_l -
USART3_RX,
LCD_SEG29, FMC_D14,
SAI2_MCLK_A,
EVENTOUT
-
Page 81
Table 16. STM32L476xx pin definitions (continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 81/270
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
- - - - - 57 J12 J12 79 79 J11 PD10 I/O FT_l -
- - - - - 58 J11 J11 80 80 H10 PD11 I/O FT_l -
- - - - - 59 J10 J10 81 81 H9 PD12 I/O FT_l -
I/O structure
Pin functions
Alternate functions Additional functions
Notes
USART3_CK,
TSC_G6_IO1,
LCD_SEG30, FMC_D15,
SAI2_SCK_A,
EVENTOUT
USART3_CTS,
TSC_G6_IO2,
LCD_SEG31, FMC_A16,
SAI2_SD_A,
LPTIM2_ETR,
EVENTOUT
TIM4_CH1,
USART3_RTS_DE,
TSC_G6_IO3,
LCD_SEG32, FMC_A17,
SAI2_FS_A, LPTIM2_IN1,
EVENTOUT
-
-
-
TIM4_CH2,
TSC_G6_IO4,
- - - - - 60 H12 H12 82 82 G10 PD13 I/O FT_l -
----- - - -8383E5 VSS S - - - -
----- - - -8484F5 VDD S - - - -
- - - - - 61 H11 H11 85 85 H11 PD14 I/O FT_l -
LCD_SEG33, FMC_A18,
LPTIM2_OUT,
EVENTOUT
TIM4_CH3, LCD_SEG34,
FMC_D0, EVENTOUT
-
-
Page 82
82/270 DS10198 Rev 8
Table 16. STM32L476xx pin definitions (continued)
Pinouts and pin description STM32L476xx
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
- - - - - 62 H10 H10 86 86 J12 PD15 I/O FT_l -
- - - - - - G10 G10 87 87 H12 PG2 I/O FT_s -
----- -F9F98888G11 PG3 I/OFT_s-
- - - - - - F10 F10 89 89 G9 PG4 I/O FT_s -
- - - - - - E9 E9 90 90 G12 PG5 I/O FT_s -
- - - - - - G4 G4 91 91 F10 PG6 I/O FT_s -
Notes
Pin functions
Alternate functions Additional functions
TIM4_CH4, LCD_SEG35,
FMC_D1, EVENTOUT
SPI1_SCK, FMC_A12,
SAI2_SCK_B,
EVENTOUT
SPI1_MISO, FMC_A13,
SAI2_FS_B, EVENTOUT
SPI1_MOSI, FMC_A14,
SAI2_MCLK_B,
EVENTOUT
SPI1_NSS,
LPUART1_CTS,
FMC_A15, SAI2_SD_B,
EVENTOUT
I2C3_SMBA,
LPUART1_RTS_DE,
EVENTOUT
-
-
-
-
-
-
I2C3_SCL,
- - - - - - H4 H4 92 92 F9 PG7 I/O FT_fs -
----- -J6J69393F11 PG8 I/OFT_fs-
----- - - -9494M12 VSS S - - - -
----- - - -9595F8VDDIO2S - - - -
LPUART1_TX, FMC_INT,
EVENTOUT
I2C3_SDA,
LPUART1_RX,
EVENTOUT
-
-
Page 83
Table 16. STM32L476xx pin definitions (continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 83/270
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
37 37 F3 G2 F3 63 E12 E12 96 96 E10 PC6 I/O FT_l -
38 38 F1 F2 F1 64 E11 E11 97 97 F12 PC7 I/O FT_l -
39 39 F2 F3 F2 65 E10 E10 98 98 E12 PC8 I/O FT_l -
I/O structure
Pin functions
Alternate functions Additional functions
Notes
TIM3_CH1, TIM8_CH1,
DFSDM1_CKIN3,
TSC_G4_IO1,
LCD_SEG24,
SDMMC1_D6,
SAI2_MCLK_A,
EVENTOUT
TIM3_CH2, TIM8_CH2,
DFSDM1_DATIN3,
TSC_G4_IO2,
LCD_SEG25,
SDMMC1_D7,
SAI2_MCLK_B,
EVENTOUT
TIM3_CH3, TIM8_CH3,
TSC_G4_IO3,
LCD_SEG26,
SDMMC1_D0,
EVENTOUT
-
-
-
40 40 E1 E1 E1 66 D12 D12 99 99 E11 PC9 I/O FT_l -
TIM8_BKIN2, TIM3_CH4,
TIM8_CH4,
TSC_G4_IO4,
OTG_FS_NOE,
LCD_SEG27,
SDMMC1_D1,
SAI2_EXTCLK,
TIM8_BKIN2_COMP1,
EVENTOUT
-
Page 84
84/270 DS10198 Rev 8
Table 16. STM32L476xx pin definitions (continued)
Pinouts and pin description STM32L476xx
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
41 41 E2 E2 E2 67 D11 D11 100 100 D12 PA8 I/O FT_l -
42 42 E3 E3 E3 68 D10 D10 101 101 D11 PA9 I/O FT_lu -
43 43 D2 D2 D2 69 C12 C12 102 102 C12 PA10 I/O FT_lu -
44 44 D1 D1 D1 70 B12 B12 103 103 B12 PA11 I/O FT_u -
45 45 C1 C1 C1 71 A12 A12 104 104 B11 PA12 I/O FT_u -
I/O structure
Pin functions
Alternate functions Additional functions
Notes
MCO, TIM1_CH1,
USART1_CK,
OTG_FS_SOF,
LCD_COM0,
LPTIM2_OUT,
EVENTOUT
TIM1_CH2, USART1_TX,
LCD_COM1,
TIM15_BKIN, EVENTOUT
TIM1_CH3, USART1_RX,
OTG_FS_ID, LCD_COM2,
TIM17_BKIN, EVENTOUT
TIM1_CH4, TIM1_BKIN2,
USART1_CTS,
CAN1_RX, OTG_FS_DM,
TIM1_BKIN2_COMP1,
EVENTOUT
TIM1_ETR,
USART1_RTS_DE,
CAN1_TX, OTG_FS_DP,
EVENTOUT
OTG_FS_VBUS
-
-
-
-
PA13
46 46 C2 C2 C2 72 A11 A11 105 105 C11
47 47 B1 B1 B1 - - - - - E8 VSS S - - - -
(JTMS-
SWDIO)
I/O FT
JTMS-SWDIO, IR_OUT,
(4)
OTG_FS_NOE,
EVENTOUT
-
Page 85
Table 16. STM32L476xx pin definitions (continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 85/270
Pin Number
Pin functions
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
I/O structure
Alternate functions Additional functions
Notes
48 48 A1 A1 A1 73 C11 C11 106 106 E9 VDDUSB S - - - -
- - - - - 74 F11 F11 107 107 H8 VSS S - - - -
- - - - - 75 G11 G11 108 108 H7 VDD S - - - -
49 49 B2 B2 B2 76 A10 A10 109 109 C10
PA14
(JTCK-
SWCLK)
I/O FT
(4)
JTCK-SWCLK,
EVENTOUT
JTDI, TIM2_CH1,
TIM2_ETR, SPI1_NSS,
SPI3_NSS,
UART4_RTS_DE,
TSC_G3_IO1,
50 50 A2 C3 A2 77 A9 A9 110 110 D10
PA15
(JTDI)
I/O FT_l
(4)
LCD_SEG17,
SAI2_FS_B, EVENTOUT
SPI3_SCK, USART3_TX,
UART4_TX,
TSC_G3_IO2,
51 51 D3 A2 D3 78 B11 B11 111 111 B10 PC10 I/O FT_l -
LCD_COM4/LCD_SEG28
/LCD_SEG40, SDMMC1_D2, SAI2_SCK_B,
EVENTOUT
-
-
-
Page 86
86/270 DS10198 Rev 8
Table 16. STM32L476xx pin definitions (continued)
Pinouts and pin description STM32L476xx
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
52 52 C3 D3 C3 79 C10 C10 112 112 C9 PC11 I/O FT_l -
53 53 B3 B3 B3 80 B10 B10 113 113 B9 PC12 I/O FT_l -
I/O structure
Pin functions
Alternate functions Additional functions
Notes
SPI3_MISO,
USART3_RX,
UART4_RX,
TSC_G3_IO3,
LCD_COM5/LCD_SEG29
/LCD_SEG41, SDMMC1_D3,
SAI2_MCLK_B,
EVENTOUT
SPI3_MOSI,
USART3_CK,
UART5_TX,
TSC_G3_IO4,
LCD_COM6/LCD_SEG30
/LCD_SEG42,
SDMMC1_CK,
SAI2_SD_B, EVENTOUT
-
-
- - - - - 81 C9 C9 114 114 A11 PD0 I/O FT -
- - - - - 82 B9 B9 115 115 A10 PD1 I/O FT -
SPI2_NSS,
DFSDM1_DATIN7,
CAN1_RX, FMC_D2,
EVENTOUT
SPI2_SCK,
DFSDM1_CKIN7,
CAN1_TX, FMC_D3,
EVENTOUT
-
-
Page 87
Table 16. STM32L476xx pin definitions (continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 87/270
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
54 - A3A3A3 83 C8 C8 116116 D9 PD2 I/O FT_l -
- - - - - 84 B8 B8 117 117 D8 PD3 I/O FT -
- - - - E5 85 B7 B7 118 118 C8 PD4 I/O FT -
- - - - D4 86 A6 A6 119 119 B8 PD5 I/O FT -
I/O structure
Pin functions
Alternate functions Additional functions
Notes
TIM3_ETR,
USART3_RTS_DE,
UART5_RX, TSC_SYNC, LCD_COM7/LCD_SEG31
/LCD_SEG43,
SDMMC1_CMD,
EVENTOUT
SPI2_MISO, DFSDM1_DATIN0,
USART2_CTS,
FMC_CLK, EVENTOUT
SPI2_MOSI,
DFSDM1_CKIN0,
USART2_RTS_DE,
FMC_NOE, EVENTOUT
USART2_TX, FMC_NWE,
EVENTOUT
-
-
-
-
- - - - - - - - 120 120 A1 VSS S - - - -
- - - - E4 - - - 121 121 - VDD S - - - -
DFSDM1_DATIN1,
- - - - D5 87 B6 B6 122 122 A9 PD6 I/O FT -
- - - - D6 88 A5 A5 123 123 A8 PD7 I/O FT -
USART2_RX, FMC_NWAIT,
SAI1_SD_A, EVENTOUT
DFSDM1_CKIN1,
USART2_CK, FMC_NE1,
EVENTOUT
-
-
Page 88
88/270 DS10198 Rev 8
Table 16. STM32L476xx pin definitions (continued)
Pinouts and pin description STM32L476xx
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
- - A4 A4 A4 - D9 D9 124 124 C7 PG9 I/O FT_s -
- - B4 B4 B4 - D8 D8 125 125 D7 PG10 I/O FT_s -
- - C4 - C4 - G3 G3 126 126 B7 PG11 I/O FT_s -
- - C5 C4 C5 - D7 D7 127 127 A7 PG12 I/O FT_s -
I/O structure
Pin functions
Alternate functions Additional functions
Notes
SPI3_SCK, USART1_TX,
FMC_NCE/FMC_NE2,
SAI2_SCK_A, TIM15_CH1N,
EVENTOUT
LPTIM1_IN1,
SPI3_MISO,
USART1_RX, FMC_NE3, SAI2_FS_A, TIM15_CH1,
EVENTOUT
LPTIM1_IN2,
SPI3_MOSI,
USART1_CTS,
SAI2_MCLK_A,
TIM15_CH2, EVENTOUT
LPTIM1_ETR, SPI3_NSS,
USART1_RTS_DE,
FMC_NE4, SAI2_SD_A,
EVENTOUT
-
-
-
-
- - B5 B5 B5 - C7 C7 128 128 D6 PG13 I/O FT_fs -
- - A5 A5 A5 - C6 - 129 129 A6 PG14 I/O FT_fs -
- - - - - - F7 F7 130 130 A12 VSS S - - - -
- - B6 B6 B6 - G7 G7 131 131 E6 VDDIO2 S - - - -
I2C1_SDA, USART1_CK,
FMC_A24, EVENTOUT
I2C1_SCL, FMC_A25,
EVENTOUT
-
-
Page 89
Table 16. STM32L476xx pin definitions (continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 89/270
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
I/O structure
- - - - - - K1 K1 132 - B6 PG15 I/O FT_s -
PB3
55 54 A6 A6 A6 89 A8 A8 133 132 C6
(JTDO­TRACE
I/O FT_la
SWO)
56 55 C6 C5 C6 90 A7 A7 134 133 D5
PB4
(NJTRST)
I/O FT_la
Pin functions
Alternate functions Additional functions
Notes
LPTIM1_OUT,
I2C1_SMBA, EVENTOUT
JTDO-TRACESWO,
TIM2_CH2, SPI1_SCK,
(4)
SPI3_SCK,
USART1_RTS_DE,
COMP2_INM
LCD_SEG7,
SAI1_SCK_B,
EVENTOUT
NJTRST, TIM3_CH1,
SPI1_MISO, SPI3_MISO,
USART1_CTS,
(4)
UART5_RTS_DE,
TSC_G2_IO1,
COMP2_INP
LCD_SEG8,
SAI1_MCLK_B,
TIM17_BKIN, EVENTOUT
-
57 56 C7 E7 C7 91 C5 C5 135 134 C5 PB5 I/O FT_la -
LPTIM1_IN1, TIM3_CH2,
I2C1_SMBA, SPI1_MOSI,
SPI3_MOSI,
USART1_CK, UART5_CTS,
TSC_G2_IO2,
LCD_SEG9,
COMP2_OUT,
SAI1_SD_B,
TIM16_BKIN, EVENTOUT
-
Page 90
90/270 DS10198 Rev 8
Table 16. STM32L476xx pin definitions (continued)
Pinouts and pin description STM32L476xx
Pin Number
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
58 57 B7 E8 B7 92 B5 B5 136 135 B5 PB6 I/O FT_fa -
59 58 A7 B7 A7 93 B4 B4 137 136 A5 PB7 I/O FT_fla -
I/O structure
Pin functions
Alternate functions Additional functions
Notes
LPTIM1_ETR,
TIM4_CH1, TIM8_BKIN2,
I2C1_SCL,
DFSDM1_DATIN5,
USART1_TX,
TSC_G2_IO3,
TIM8_BKIN2_COMP2,
SAI1_FS_B,
TIM16_CH1N,
EVENTOUT
LPTIM1_IN2, TIM4_CH2,
TIM8_BKIN, I2C1_SDA,
DFSDM1_CKIN5,
USART1_RX, UART4_CTS,
TSC_G2_IO4,
LCD_SEG21, FMC_NL,
TIM8_BKIN_COMP1,
TIM17_CH1N,
EVENTOUT
COMP2_INP
COMP2_INM, PVD_IN
60 59 D7 A7 D7 94 A4 A4 138 137 A4 BOOT0 I - - - -
TIM4_CH3, I2C1_SCL,
DFSDM1_DATIN6,
61 60 E7 C6 E7 95 A3 A3 139 138 A3 PB8 I/O FT_fl -
CAN1_RX, LCD_SEG16,
SDMMC1_D4,
SAI1_MCLK_A,
TIM16_CH1, EVENTOUT
-
Page 91
Table 16. STM32L476xx pin definitions (continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 91/270
Pin Number
Pin functions
Pin name
(function
after
reset)
Pin type
LQFP64
LQFP64_SMPS
WLCSP72
WLCSP72_SMPS
WLCSP81
LQFP100
UFBGA132
UFBGA132_SMPS
LQFP144
LQFP144_SMPS
UFBGA144
I/O structure
Alternate functions Additional functions
Notes
IR_OUT, TIM4_CH4,
I2C1_SDA, SPI2_NSS,
DFSDM1_CKIN6,
62 61 E8 D7 E8 96 B3 B3 140 139 C4 PB9 I/O FT_fl -
CAN1_TX, LCD_COM3,
SDMMC1_D5,
SAI1_FS_A, TIM17_CH1,
EVENTOUT
TIM4_ETR, LCD_SEG36,
- - - - - 97 C3 C3 141 140 A2 PE0 I/O FT_l -
FMC_NBL0, TIM16_CH1,
EVENTOUT
LCD_SEG37,
- - - - - 98 A2 A2 142 141 B4 PE1 I/O FT_l -
FMC_NBL1, TIM17_CH1,
EVENTOUT
- 62 - J1 - - - C6 - 142 - VDD12 S - - - -
63 63 A8 A8 A8 99 D3 D3 143 143 M1 VSS S - - - -
64 64 A9 A9 A9 100 C4 C4 144 144 - VDD S - - - -
-
-
-
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0351 reference manual.
3. OPAMPx_VINM pins are not available as additional functions on pins PA1 and PA7 on UFBGA packages. On UFBGA packages, use the OPAMPx_VINM dedicated pins.
4. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.
Page 92
92/270 DS10198 Rev 8

Table 17. Alternate function AF0 to AF7

(1)
Pinouts and pin description STM32L476xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
Port A
Port
SYS_AF
TIM1/TIM2/ TIM5/TIM8/
LPTIM1
TIM1/TIM2/ TIM3/TIM4/
TIM5
TIM8 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3/DFSDM
USART1/ USART2/
USART3
PA0 - TIM2_CH1 TIM5_CH1 TIM8_ETR - - - USART2_CTS
PA1 - TIM2_CH2 TIM5_CH2 - - - -
USART2_RTS_
DE
PA2 - TIM2_CH3 TIM5_CH3 - - - - USART2_TX
PA3 - TIM2_CH4 TIM5_CH4 - - - - USART2_RX
PA4-----SPI1_NSSSPI3_NSSUSART2_CK
PA5 - TIM2_CH1 TIM2_ETR TIM8_CH1N - SPI1_SCK - -
PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN - SPI1_MISO - USART3_CTS
PA7 - TIM1_CH1N TIM3_CH2 TIM8_CH1N - SPI1_MOSI - -
PA8MCOTIM1_CH1---- -USART1_CK
PA9-TIM1_CH2---- -USART1_TX
PA10-TIM1_CH3---- -USART1_RX
PA11 - TIM1_CH4 TIM1_BKIN2 - - - - USART1_CTS
PA12-TIM1_ETR---- -
USART1_RTS_
DE
PA13 JTMS-SWDIO IR_OUT - - - - - -
PA14JTCK-SWCLK----- - -
PA15 JTDI TIM2_CH1 TIM2_ETR - - SPI1_NSS SPI3_NSS -
Page 93
Table 17. Alternate function AF0 to AF7
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
(1)
(continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 93/270
Port B
Port
SYS_AF
PB0 - TIM1_CH2N TIM3_CH3 TIM8_CH2N - - - USART3_CK
PB1 - TIM1_CH3N TIM3_CH4 TIM8_CH3N - -
PB2 RTC_OUT LPTIM1_OUT - - I2C3_SMBA - DFSDM1_CKIN0 -
PB3
PB4 NJTRST - TIM3_CH1 - - SPI1_MISO SPI3_MISO USART1_CTS
PB5 - LPTIM1_IN1 TIM3_CH2 - I2C1_SMBA SPI1_MOSI SPI3_MOSI USART1_CK
PB6 - LPTIM1_ETR TIM4_CH1 TIM8_BKIN2 I2C1_SCL -
PB7 - LPTIM1_IN2 TIM4_CH2 TIM8_BKIN I2C1_SDA - DFSDM1_CKIN5 USART1_RX
PB8 - - TIM4_CH3 - I2C1_SCL -
PB9 - IR_OUT TIM4_CH4 - I2C1_SDA SPI2_NSS DFSDM1_CKIN6 -
PB10 - TIM2_CH3 - - I2C2_SCL SPI2_SCK
JTDO-
TRACESWO
TIM1/TIM2/ TIM5/TIM8/
LPTIM1
TIM2_CH2 - - - SPI1_SCK SPI3_SCK
TIM1/TIM2/ TIM3/TIM4/
TIM5
TIM8 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3/DFSDM
DFSDM1_
DATIN0
DFSDM1_
DATIN5
DFSDM1_
DATIN6
DFSDM1_
DATIN7
USART1/ USART2/
USART3
USART3_RTS_
USART1_RTS_
USART1_TX
USART3_TX
DE
DE
-
PB11 - TIM2_CH4 - - I2C2_SDA - DFSDM1_CKIN7 USART3_RX
PB12 - TIM1_BKIN -
PB13 - TIM1_CH1N - - I2C2_SCL SPI2_SCK DFSDM1_CKIN1 USART3_CTS
PB14 - TIM1_CH2N - TIM8_CH2N I2C2_SDA SPI2_MISO
PB15 RTC_REFIN TIM1_CH3N - TIM8_CH3N - SPI2_MOSI DFSDM1_CKIN2 -
TIM1_BKIN_
COMP2
I2C2_SMBA SPI2_NSS
DFSDM1_
DATIN1
DFSDM1_
DATIN2
USART3_CK
USART3_RTS_
DE
Page 94
94/270 DS10198 Rev 8
Table 17. Alternate function AF0 to AF7
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
(1)
(continued)
Pinouts and pin description STM32L476xx
Port C
Port
SYS_AF
PC0 - LPTIM1_IN1 - - I2C3_SCL -
PC1 - LPTIM1_OUT - - I2C3_SDA - DFSDM1_CKIN4 -
PC2 - LPTIM1_IN2 - - - SPI2_MISO
PC3 - LPTIM1_ETR - - - SPI2_MOSI - -
PC4------ -USART3_TX
PC5------ -USART3_RX
PC6 - - TIM3_CH1 TIM8_CH1 - - DFSDM1_CKIN3 -
PC7 - - TIM3_CH2 TIM8_CH2 - -
PC8 - - TIM3_CH3 TIM8_CH3 - - - -
PC9 - TIM8_BKIN2 TIM3_CH4 TIM8_CH4 - - - -
PC10------SPI3_SCKUSART3_TX
TIM1/TIM2/ TIM5/TIM8/
LPTIM1
TIM1/TIM2/ TIM3/TIM4/
TIM5
TIM8 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3/DFSDM
DFSDM1_
DATIN4
DFSDM1_
CKOUT
DFSDM1_
DATIN3
USART1/ USART2/
USART3
-
-
-
PC11------SPI3_MISOUSART3_RX
PC12------SPI3_MOSIUSART3_CK
PC13------ - -
PC14------ - -
PC15------ - -
Page 95
Table 17. Alternate function AF0 to AF7
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
(1)
(continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 95/270
Port D
Port
SYS_AF
PD0-----SPI2_NSS
PD1-----SPI2_SCKDFSDM1_CKIN7-
PD2 - - TIM3_ETR - - - -
PD3-----SPI2_MISO
PD4-----SPI2_MOSIDFSDM1_CKIN0
PD5------ -USART2_TX
PD6------
PD7------DFSDM1_CKIN1USART2_CK
PD8------ -USART3_TX
PD9------ -USART3_RX
TIM1/TIM2/ TIM5/TIM8/
LPTIM1
TIM1/TIM2/ TIM3/TIM4/
TIM5
TIM8 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3/DFSDM
DFSDM1_
DATIN7
DFSDM1_
DATIN0
DFSDM1_
DATIN1
USART1/ USART2/
USART3
-
USART3_RTS_
DE
USART2_CTS
USART2_RTS_
DE
USART2_RX
PD10------ -USART3_CK
PD11------ -USART3_CTS
PD12 - - TIM4_CH1 - - - -
PD13 - - TIM4_CH2 - - - - -
PD14 - - TIM4_CH3 - - - - -
PD15 - - TIM4_CH4 - - - - -
USART3_RTS_
DE
Page 96
96/270 DS10198 Rev 8
Table 17. Alternate function AF0 to AF7
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
(1)
(continued)
Pinouts and pin description STM32L476xx
Port E
Port
SYS_AF
PE0--TIM4_ETR--- - -
PE1------ - -
PE2 TRACECK - TIM3_ETR - - - - -
PE3 TRACED0 - TIM3_CH1 - - - - -
PE4 TRACED1 - TIM3_CH2 - - -
PE5 TRACED2 - TIM3_CH3 - - - DFSDM1_CKIN3 -
PE6 TRACED3 - TIM3_CH4 - - - - -
PE7-TIM1_ETR----
PE8-TIM1_CH1N----DFSDM1_CKIN2-
PE9-TIM1_CH1----
PE10-TIM1_CH2N----
PE11-TIM1_CH2----
PE12 - TIM1_CH3N - - - SPI1_NSS
TIM1/TIM2/ TIM5/TIM8/
LPTIM1
TIM1/TIM2/ TIM3/TIM4/
TIM5
TIM8 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3/DFSDM
DFSDM1_
DATIN3
DFSDM1_
DATIN2
DFSDM1_
CKOUT
DFSDM1_
DATIN4
DFSDM1_
CKIN4
DFSDM1_
DATIN5
USART1/ USART2/
USART3
-
-
-
-
-
-
PE13 - TIM1_CH3 - - - SPI1_SCK DFSDM1_CKIN5 -
PE14 - TIM1_CH4 TIM1_BKIN2
PE15 - TIM1_BKIN -
TIM1_BKIN2_
COMP2
TIM1_BKIN_
COMP1
- SPI1_MISO - -
- SPI1_MOSI - -
Page 97
Table 17. Alternate function AF0 to AF7
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
(1)
(continued)
STM32L476xx Pinouts and pin description
DS10198 Rev 8 97/270
Port F
Port
SYS_AF
PF0----I2C2_SDA- - -
PF1----I2C2_SCL- - -
PF2----I2C2_SMBA- - -
PF3------ - -
PF4------ - -
PF5------ - -
PF6 - TIM5_ETR TIM5_CH1 - - - - -
PF7 - - TIM5_CH2 - - - - -
PF8 - - TIM5_CH3 - - - - -
PF9 - - TIM5_CH4 - - - - -
PF10------ - -
PF11------ - -
PF12------ - -
PF13------
TIM1/TIM2/ TIM5/TIM8/
LPTIM1
TIM1/TIM2/ TIM3/TIM4/
TIM5
TIM8 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3/DFSDM
DFSDM1_
DATIN6
USART1/ USART2/
USART3
-
PF14------DFSDM1_CKIN6-
PF15------ - -
Page 98
98/270 DS10198 Rev 8
Table 17. Alternate function AF0 to AF7
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
(1)
(continued)
Pinouts and pin description STM32L476xx
Port G
Port
SYS_AF
PG0------ - -
PG1------ - -
PG2-----SPI1_SCK- -
PG3-----SPI1_MISO- -
PG4-----SPI1_MOSI- -
PG5-----SPI1_NSS- -
PG6----I2C3_SMBA- - -
PG7----I2C3_SCL- - -
PG8----I2C3_SDA- - -
PG9------SPI3_SCKUSART1_TX
PG10-LPTIM1_IN1----SPI3_MISOUSART1_RX
PG11-LPTIM1_IN2----SPI3_MOSIUSART1_CTS
PG12-LPTIM1_ETR----SPI3_NSS
TIM1/TIM2/ TIM5/TIM8/
LPTIM1
TIM1/TIM2/ TIM3/TIM4/
TIM5
TIM8 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3/DFSDM
USART1/ USART2/
USART3
USART1_RTS_
DE
PG13----I2C1_SDA- -USART1_CK
PG14----I2C1_SCL- - -
PG15 - LPTIM1_OUT - - I2C1_SMBA - - -
Port H
1. Please refer to Table 18 for AF8 to AF15.
PH0------ - -
PH1------ - -
Page 99

Table 18. Alternate function AF8 to AF15

(1)
STM32L476xx Pinouts and pin description
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
DS10198 Rev 8 99/270
Port A
Port
UART4, UART5,
LPUART1
CAN1, TSC OTG_FS, QUADSPI LCD
SDMMC1, COMP1,
COMP2, FMC,
SWPMI1
SAI1, SAI2
TIM2, TIM15,
TIM16, TIM17,
LPTIM2
EVENTOUT
PA0 UART4_TX - - - - SAI1_EXTCLK TIM2_ETR EVENTOUT
PA1 UART4_RX - - LCD_SEG0 - - TIM15_CH1N EVENTOUT
PA2 - - - LCD_SEG1 - SAI2_EXTCLK TIM15_CH1 EVENTOUT
PA3 - - - LCD_SEG2 - - TIM15_CH2 EVENTOUT
PA4 - - - - - SAI1_FS_B LPTIM2_OUT EVENTOUT
PA5 - - - - - - LPTIM2_ETR EVENTOUT
PA6 - - QUADSPI_BK1_IO3 LCD_SEG3
TIM1_BKIN_
COMP2
TIM8_BKIN_
COMP2
TIM16_CH1 EVENTOUT
PA7 - - QUADSPI_BK1_IO2 LCD_SEG4 - - TIM17_CH1 EVENTOUT
PA8 - - OTG_FS_SOF LCD_COM0 - - LPTIM2_OUT EVENTOUT
PA9 - - - LCD_COM1 - - TIM15_BKIN EVENTOUT
PA10 - - OTG_FS_ID LCD_COM2 - - TIM17_BKIN EVENTOUT
PA11 - CAN1_RX OTG_FS_DM -
TIM1_BKIN2_
COMP1
- - EVENTOUT
PA12 - CAN1_TX OTG_FS_DP - - - - EVENTOUT
PA13 - - OTG_FS_NOE - - - - EVENTOUT
PA14 - - - - - - - EVENTOUT
PA1 5
UART4_RTS
_DE
TSC_G3_IO1 - LCD_SEG17 - SAI2_FS_B - EVENTOUT
Page 100
100/270 DS10198 Rev 8
Table 18. Alternate function AF8 to AF15
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
(1)
(continued)
Pinouts and pin description STM32L476xx
Port B
Port
PB0 - - QUADSPI_BK1_IO1 LCD_SEG5 COMP1_OUT - - EVENTOUT
PB1 - - QUADSPI_BK1_IO0 LCD_SEG6 - - LPTIM2_IN1 EVENTOUT
PB2 - - - - - - - EVENTOUT
PB3 - - - LCD_SEG7 - SAI1_SCK_B - EVENTOUT
PB4
PB5 UART5_CTS TSC_G2_IO2 - LCD_SEG9 COMP2_OUT SAI1_SD_B TIM16_BKIN EVENTOUT
PB6 - TSC_G2_IO3 - -
PB7 UART4_CTS TSC_G2_IO4 - LCD_SEG21 FMC_NL
PB8 - CAN1_RX - LCD_SEG16 SDMMC1_D4
PB9 - CAN1_TX - LCD_COM3 SDMMC1_D5 SAI1_FS_A TIM17_CH1 EVENTOUT
PB10
PB11 LPUART1_TX - QUADSPI_NCS LCD_SEG11 COMP2_OUT - - EVENTOUT
UART4, UART5,
LPUART1
UART5_RTS
_DE
LPUART1_
RX
CAN1, TSC OTG_FS, QUADSPI LCD
TSC_G2_IO1 - LCD_SEG8 -
- QUADSPI_CLK LCD_SEG10 COMP1_OUT SAI1_SCK_A - EVENTOUT
SDMMC1, COMP1,
COMP2, FMC,
SWPMI1
TIM8_BKIN2_
COMP2
TIM2, TIM15,
SAI1, SAI2
SAI1_MCLK_
B
SAI1_FS_B TIM16_CH1N EVENTOUT
TIM8_BKIN_
COMP1
SAI1_MCLK_
A
TIM16, TIM17,
LPTIM2
TIM17_BKIN EVENTOUT
TIM17_CH1N EVENTOUT
TIM16_CH1 EVENTOUT
EVENTOUT
PB12
PB13
PB14 - TSC_G1_IO3 - LCD_SEG14 SWPMI1_RX
PB15 - TSC_G1_IO4 - LCD_SEG15 SWPMI1_SUSPEND SAI2_SD_A TIM15_CH2 EVENTOUT
LPUART1_
RTS_DE
LPUART1_
CTS
TSC_G1_IO1 - LCD_SEG12 SWPMI1_IO SAI2_FS_A TIM15_BKIN EVENTOUT
TSC_G1_IO2 - LCD_SEG13 SWPMI1_TX SAI2_SCK_A TIM15_CH1N EVENTOUT
SAI2_MCLK_
A
TIM15_CH1 EVENTOUT
Loading...