STMicroelectronics STM32L476G-EVAL User Manual

September 2015 DocID027351 Rev 3 1/100
1
UM1855
User manual
Evaluation board with STM32L476ZGT6 MCU
Introduction
The STM32L476G-EVAL evaluation board is designed as complete demonstration and development platform for STMicroelectronics ARM
®
Cortex®-M4-core-based STM32L476ZGT6 microcontroller with three I²C buses, three SPI and six USART ports, CAN port, SWPMI, two SAI ports, 12-bit ADC, 12-bit DAC, LCD driver, internal 128-Kbyte SRAM and 1-Mbyte Flash memory, Quad-SPI port, touch sensing capability, USB OTG FS port, LCD controller, flexible memory controller (FMC), JTAG debug port. STM32L476G-EVAL, shown in Figure 1
(1)
, can be used as reference design for user
application development, although it is not considered as final application.
A full range of hardware features on the board helps users evaluate all on-board peripherals such as USB, USART, digital microphones, ADC and DAC, dot-matrix TFT LCD, LCD glass module, IrDA, LDR, SRAM, NOR Flash memory device, Quad-SPI Flash memory device, microSD card, sigma-delta modulators, smartcard with SWP, CAN transceiver, EEPROM, RF-EEPROM. Extension headers allow connecting daughterboards or wrapping boards.
ST-LINK/V2-1 in-circuit debugger and flashing facility is integrated on the mainboard.
Figure 1. STM32L476G-EVAL evaluation board
1. Picture not contractual.
www.st.com
Contents UM1855
2/100 DocID027351 Rev 3
Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Demonstration software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Order code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Unpacking recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Hardware layout and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 ST-LINK/V2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 ST-LINK/V2-1 firmware upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 ETM Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Supplying the board through ST-LINK/V2-1 USB port . . . . . . . . . . . . . . 15
2.3.2 Using ST-LINK/2-1 along with powering through CN22 power jack . . . 16
2.4 Clock references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.1 Boot options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.2 Bootloader limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.1 Digital microphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7.2 Headphones outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7.3 Limitations in using audio features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 USB OTG FS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8.1 STM32L476G-EVAL used as USB device . . . . . . . . . . . . . . . . . . . . . . . 23
2.8.2 STM32L476G-EVAL used as USB host . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8.3 Configuration elements related with USB OTG FS port . . . . . . . . . . . . 24
2.8.4 Limitations in using USB OTG FS port . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8.5 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 RS-232 and IrDA ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9.1 RS-232 port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9.2 IrDA port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DocID027351 Rev 3 3/100
UM1855 Contents
5
2.9.4 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10 LPUART port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.11 microSD card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.11.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.11.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 Motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.12.1 Board modifications to enable motor control . . . . . . . . . . . . . . . . . . . . 29
2.12.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.13 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.13.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.13.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.14 Extension connectors CN6 and CN7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.15 LCD glass module daughterboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.15.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.16 TFT LCD panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.17 User LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.18 Physical input devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.18.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.19 Operational amplifier and comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.19.1 Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.19.2 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.20 Analog input, output, VREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.21 SRAM device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.21.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.21.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.22 NOR Flash memory device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.22.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.22.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.23 EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.23.1 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.24 RF-EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.25 Quad-SPI Flash memory device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.25.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.25.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.26 Touch-sensing button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Contents UM1855
4/100 DocID027351 Rev 3
2.26.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.27 Smartcard, SWP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.27.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.27.2 Operating voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.28 Near-field communication (NFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.29 Dual-channel sigma-delta modulators STPMS2L . . . . . . . . . . . . . . . . . . 51
2.29.1 STPMS2L presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.29.2 STPMS2L settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.29.3 STPMS2L power metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.29.4 STPMS2L for PT100 measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.29.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.30 STM32L476ZGT6 current consumption measurement . . . . . . . . . . . . . . 54
2.30.1 IDD measurement principle - analog part . . . . . . . . . . . . . . . . . . . . . . . 55
2.30.2 Low-power-mode IDD measurement principle - logic part . . . . . . . . . . . 56
2.30.3 IDD measurement in dynamic run mode . . . . . . . . . . . . . . . . . . . . . . . . 58
2.30.4 Calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3 Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1 RS-232 D-sub male connector CN9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Power connector CN22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 LCD daughterboard connectors CN11 and CN14 . . . . . . . . . . . . . . . . . . 61
3.4 Extension connectors CN6 and CN7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 ST-LINK/V2-1 programming connector CN16 . . . . . . . . . . . . . . . . . . . . . 65
3.6 ST-LINK/V2-1 Standard-B USB connector CN17 . . . . . . . . . . . . . . . . . . . 65
3.7 JTAG connector CN15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.8 ETM trace debugging connector CN12 . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.9 microSD card connector CN18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.10 ADC/DAC connector CN8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.11 RF-EEPROM daughterboard connector CN3 . . . . . . . . . . . . . . . . . . . . . 69
3.12 Motor control connector CN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.13 USB OTG FS Micro-AB connector CN1 . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.14 CAN D-sub male connector CN5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.15 NFC connector CN13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Appendix A Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
DocID027351 Rev 3 5/100
UM1855 Contents
5
Appendix B Federal Communications Commission (FCC)
and Industry Canada (IC) Compliance Statements . . . . . . . . . . . . 98
B.1 FCC Compliance Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.1.1 Part 15.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.1.2 Part 15.105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.1.3 Part 15.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.2 IC Compliance Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.2.1 Compliance Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.2.2 Déclaration de conformité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
List of tables UM1855
6/100 DocID027351 Rev 3
List of tables
Table 1. Setting of configuration elements for trace connector CN12 . . . . . . . . . . . . . . . . . . . . . . . 14
Table 2. Power-supply-related jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 3. X1-crystal-related solder bridge settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 4. X2-crystal-related solder bridge settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 5. Boot selection switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 6. Bootloader-related jumper setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 7. Digital microphone-related jumper settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 8. Configuration elements related with USB OTG FS port . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 9. Settings of configuration elements for RS-232 and IrDA ports . . . . . . . . . . . . . . . . . . . . . . 26
Table 10. Hardware settings for LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 11. Terminals of CN18 microSD slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 12. Motor control terminal and function assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 13. CAN related jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 14. LCD-daughterboard-related configuration elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 15. LCD glass element mapping - segments 0 to 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 16. LCD glass element mapping - segments 10 to 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 17. LCD glass element mapping - segments 20 to 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 18. LCD glass element mapping - segments 30 to 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 19. Access to TFT LCD resources with FMC address lines A0 and A1 . . . . . . . . . . . . . . . . . . 39
Table 20. Assignment of CN19 connector terminals of TFT LCD panel. . . . . . . . . . . . . . . . . . . . . . . 39
Table 21. Port assignment for control of LED indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 22. Port assignment for control of physical input devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 23. Setting of jumpers related with potentiometer and LDR . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 24. SRAM chip select configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 25. NOR Flash memory-related configuration elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 26. Configuration elements related with Quad-SPI device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 27. Touch-sensing-related configuration elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 28. Assignment of ports for ST8024CDR control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 29. Configuration elements related with smartcard and SWP . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 30. CN13 NFC connector terminal assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 31. JP11 jumper settings during IDD measurement with calibration . . . . . . . . . . . . . . . . . . . . 59
Table 32. RS-232 D-sub (DE-9M) connector CN9 with HW flow control and ISP support . . . . . . . . . 60
Table 33. CN11 and CN14 daughterboard connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 34. Daughterboard extension connector CN6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 35. Daughterboard extension connector CN7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 36. USB Standard-B connector CN17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 37. JATG debugging connector CN15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 38. Trace debugging connector CN12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 39. microSD card connector CN18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 40. Analog input-output connector CN8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 41. RF-EEPROM daughterboard connector CN3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 42. Motor control connector CN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 43. USB OTG FS Micro-AB connector CN1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 44. CAN D-sub (DE-9M) 9-pins male connector CN5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 45. NFC CN13 terminal assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 46. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
DocID027351 Rev 3 7/100
UM1855 List of figures
8
List of figures
Figure 1. STM32L476G-EVAL evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. STM32L476G-EVAL hardware block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 3. STM32L476G-EVAL main component layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 4. USB Composite device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 5. CN22 power jack polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 6. CN20, CN21 top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 7. PCB top-side rework for motor control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 8. PCB underside rework for motor control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 9. LCD glass module daughterboard in display position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 10. LCD glass module daughterboard in I/O-bridge position . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 11. LCD glass display element mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 12. NFC board plugged into STM32L476G-EVAL board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 13. Routing of STPMS2L dual-channel sigma-delta modulators . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 14. Power measurement principle schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 15. STPMS2L power metering schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 16. Temperature measurement principle schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 17. Schematic diagram of the analog part of IDD measurement . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 18. Schematic diagram of logic part of low-power-mode IDD measurement . . . . . . . . . . . . . . 57
Figure 19. Low power mode IDD measurement timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 20. RS-232 D-sub (DE-9M) 9-pole connector (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 21. Power supply connector CN22 (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 22. USB type B connector CN17 (front view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 23. JTAG debugging connector CN15 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 24. Trace debugging connector CN12 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 25. microSD card connector CN18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 26. Analog input-output connector CN8 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 27. RF EEPROM daughterboard connector CN3 (front view) . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 28. Motor control connector CN2 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 29. USB OTG FS Micro-AB connector CN1 (front view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 30. CAN D-sub (DE-9M) 9-pole male connector CN5 (front view) . . . . . . . . . . . . . . . . . . . . . . 71
Figure 31. NFC female connector CN13 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 32. STM32L476G-EVAL top schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 33. MCU, LCD daughterboard and I/O expander interfaces - schematic diagram . . . . . . . . . 74
Figure 34. STM32L476G-EVAL MCU part 1 - schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 35. STM32L476G-EVAL MCU part 2 - schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 36. LCD glass module daughterboard connectors - schematic diagram . . . . . . . . . . . . . . . . . 77
Figure 37. I/O expander schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 38. Power supply schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 39. Smartcard, SWP and NFC - schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 40. USART and IrDA - schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 41. SRAM and NOR Flash memory devices - schematic diagram . . . . . . . . . . . . . . . . . . . . . . 82
Figure 42. TFT LCD schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 43. Extension connector schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 44. Quad-SPI Flash memory device schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 45. microSD card schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 46. Physical control peripherals - schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 47. CAN transceiver schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 48. Touch-sensing device schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
List of figures UM1855
8/100 DocID027351 Rev 3
Figure 49. USB_OTG_FS port schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 50. IDD measurement schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 51. Audio codec device schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 52. STPMS2L and PT100 schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 53. RF-EEPROM and EEPROM schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 54. Motor control connector schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 55. JTAG and trace debug connectors - schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 56. ST-LINK/V2-1 schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
DocID027351 Rev 3 9/100
UM1855 Overview
99
1 Overview
1.1 Features
STM32L476ZGT6 microcontroller with 1-Mbyte Flash memory and 128-Kbyte RAM
four power supply options: power jack, ST-LINK/V2-1 USB connector, USB OTG FS
connector, daughterboard
microcontroller supply voltage: 3.3 V or range from 1.71 V to 3.6 V
two MEMS digital microphones
two stereo audio headphones jack outputs with independent audio content
slot for microSD card supporting SD, SDHC, SDXC
4-Gbyte microSD card bundled
16-Mbit (1M x 16 bit) SRAM device
128-Mbit (8M x 16 bit) NOR Flash memory device
256-Mbit Quad-SPI Flash memory device with double transfer rate (DTR) support
RF-EEPROM with I²C bus
EEPROM supporting 1 MHz I²C-bus communication speed
RS-232 port configurable for communication or MCU flashing
IrDA transceiver
USB OTG FS Micro-AB port
CAN 2.0A/B-compliant port
joystick with four-way controller and selector
reset and wake-up / tamper buttons
touch-sensing button
light-dependent resistor (LDR)
potentiometer
coin battery cell for power backup
LCD glass module daughterboard (MB979) with 40x8-segment LCD driven directly by
STM32L476ZGT6
2.8-inch 320x240 dot-matrix color TFT LCD panel with resistive touchscreen
smartcard connector and SWP support
NFC transceiver connector
connector for ADC input and DAC output
power-metering demonstration with dual-channel sigma-delta modulator
PT100 thermal sensor with dual-channel sigma-delta modulator
MCU current consumption measurement circuit
access to comparator and operational amplifier of STM32L476ZGT6
extension connector for motor control module
JTAG/SWD, ETM trace debug support, user interface through USB virtual COM port,
embedded ST-LINK/V2-1 debug and flashing facility
extension connector for daughterboard
Overview UM1855
10/100 DocID027351 Rev 3
1.2 Demonstration software
Demonstration software is preloaded in the STM32L476ZGT6 Flash memory, for easy demonstration of the device peripherals in stand-alone mode. For more information and to download the latest available version, refer to the STM32L476G-EVAL demonstration software available on www.st.com.
1.3 Order code
To order the evaluation board based on the STM32L476ZGT6 MCU, use the order code STM32L476G-EVAL.
1.4 Unpacking recommendations
Before the first use, make sure that, no damage occurred to the board during shipment and no socketed components are loosen in their sockets or fallen into the plastic bag.
In particular, pay attention to the following components:
1. quartz crystal (X2 position)
2. microSD card in its CN18 receptacle
3. RF-EEPROM board (ANT7-M24LR-A) in its CN3 connector
For product information related with STM32L476ZGT6 microcontroller, visit www.st.com.
DocID027351 Rev 3 11/100
UM1855 Hardware layout and configuration
99
2 Hardware layout and configuration
The STM32L476G-EVAL evaluation board is designed around STM32L476ZGT6 target microcontroller in LQFP 144-pin package. Figure 2 illustrates STM32L476ZGT6 connections with peripheral components. Figure 3 shows the location of main components on the evaluation board.
Figure 2. STM32L476G-EVAL hardware block diagram
06Y9
*3,2
,&
86$57
-7$*
3RWHQWLRPHWHU
-R\VWLFN
/('
.H\
EXWWRQ
5)((3520 FRQQHFWRU
56
WUDQVFHLYHU
,U'$
WUDQVFHLYHU
56
FRQQHFWRU
6$,
$XGLR
FRGHF
67/,1.9
6WDQGDUG%
86%
FRQQHFWRU
-7$*WUDFHDQG
6:'FRQQHFWRUV
([WHQVLRQ
FRQQHFWRUVIRU
*3,2V
WZRVWHUHR KHDGSKRQH RXWSXWV
670/=*7
&$1WUDQVFHLYHU
DQGFRQQHFWRU
&$1
0RWRUFRQWURO
FRQQHFWRU
&RPSDUDWRU
6',2
PLFUR6'
FDUG
)0&
57&
%DWWHU\
*3,2
,2
([SDQGHU
65$0
125)ODVK
PHPRU\
86%27*)6
86%0LFUR$%
FRQQHFWRU
86%SRZHU
VZLWFK
¶¶FRORU
7)7/&'
/&'
0LIDUH
FRQQHFWRU
6PDUWFDUG ZLWK6:3
6:3
*3,2
6PDUWFDUG
LQWHUIDFH
/'5
2S$PS
$'&
((3520
/&'J/DVV
PRGXOH
[
7)7/&' FRQWUROOHU
')6'0
WZRGLJLWDO0(06 PLFURSKRQHV
4XDG63,
)ODVKP(PRU\
GHYLFH
48$'63,
76&
7RXFKVHQVLQJEXWWRQ
6LJPDGHOWD
PRGXODWRU
37 VHQVRU
3RZHUPHWHU
0&8
VXSSO\FXUUHQW
PHDVXUHPHQW
9UHJXODWRU
WR9
DGMXVWDEOH
UHJXODWRU
6LJPDGHOWD
PRGXODWRU
7)7/&'
WRXFKVFUHHQ
*3,2
Hardware layout and configuration UM1855
12/100 DocID027351 Rev 3
Figure 3. STM32L476G-EVAL main component layout
06Y9
59 3RWHQWLRPHWHU
8ULJKW PLFURSKRQH
&1 +HDGSKRQHV MDFN
&1 +HDGSKRQHV MDFN
6WDQGDUG% 86%SRUWRI 67/,1.9
&1
-7$*
&17UDFH
&1 &1
/&'JODVVPRGXOH GDXJKWHUERDUG '%
&1 86$57
5 /'5
&1
5)((3520
&1 0RWRUFRQWURO
76
7RXFKVHQVLQJ
EXWWRQ
&1
86%27*SRUW
8
670/=*7
&1
6LJPDGHOWDLQ
&1
&$1
&1 &1
([WHQVLRQ
FRQQHFWRUV
8
,U'$
&1
1)&
&1
7)7/&'
&1
PLFUR6'FDUG
&1
3RZHUMDFN
8OHIW
PLFURSKRQH
)RXU/('V
59
9''VHWWLQJ
%
5HVHWEXWWRQ
% :DNHXSWDPSHU EXWWRQ
%
-R\VWLFN
DocID027351 Rev 3 13/100
UM1855 Hardware layout and configuration
99
2.1 ST-LINK/V2-1
ST-LINK/V2-1 facility for debug and flashing of STM32L476ZGT6, is integrated on the STM32L476G-EVAL evaluation board.
Compared to ST-LINK/V2 stand-alone tool available from STMicroelectronics, ST-LINK/V2­1 offers new features and drops some others.
New features:
USB software re-enumeration
Virtual COM port interface on USB
Mass storage interface on USB
USB power management request for more than 100mA power on USB
Features dropped:
SWIM interface
The USB connector CN17 can be used to power STM32L476G-EVAL regardless of ST-LINK/V2-1 facility use for debugging or for flashing STM32L476ZGT6. This holds also when ST-LINK/V2 stand-alone tool is connected to CN12 or CN15 connector and used for debugging or flashing STM32L476ZGT6. Section 2.3 provides more detail on powering STM32L476G-EVAL.
For full detail on both versions of the debug and flashing tool, the stand-alone ST-LINK/V2 and the embedded ST-LINK/V2-1, refer to www.st.com.
2.1.1 Drivers
Before connecting STM32L476G-EVAL to a Windows 7, Windows 8 or Windows XP PC via USB, a driver for ST-LINK/V2-1 must be installed. It can be downloaded from www.st.com.
In case the STM32L476G-EVAL evaluation board is connected to the PC before installing the driver, the Windows device manager may report some USB devices found on STM32L476G-EVAL as “Unknown”. To recover from this situation, after installing the dedicated driver downloaded from www.st.com, the association of “Unknown” USB devices found on STM32L476G-EVAL to this dedicated driver must be updated in the device manager manually. It is recommended to proceed using USB Composite Device line, as shown in Figure 4.
Figure 4. USB Composite device
Hardware layout and configuration UM1855
14/100 DocID027351 Rev 3
2.1.2 ST-LINK/V2-1 firmware upgrade
For its own operation, ST-LINK/V2-1 employs a dedicated MCU with Flash memory. Its firmware determines ST-LINK/V2-1 functionality and performance. The firmware may evolve during the life span of STM32L476G-EVAL to include new functionality, fix bugs or support new target microcontroller families. It is therefore recommended to keep ST-LINK/V2-1 firmware up to date. The latest version is available from www.st.com.
2.2 ETM Trace
The connector CN12 can output trace signals used for debug. By default, the evaluation board is configured such that, STM32L476ZGT6 signals PE2 through PE5 are not connected to trace outputs Trace_D0, Trace_D1, Trace_D2, Trace_D3 and Trace_CK of CN12. They are used for other functions.
Tabl e 1 shows the setting of configuration elements to shunt PE2, PE3, PE4 and PE5 MCU
ports to CN12 connector, to use them as debug trace signals.
Warning: Enabling the CN12 trace outputs through hardware modifications described in
Tabl e 1 results in reducing the memory address bus width to 19 address lines and so the
addressable space to 512 Kwords of 16 bits. As a consequence, the on-board SRAM and NOR Flash memory usable capacity is reduced to 8 Mbits.
Table 1. Setting of configuration elements for trace connector CN12
Element Setting Use of PE2, PE3, PE4, PE5 terminals of STM32L476ZGT6
R103 SB26
R103 in
SB26 open
Default setting. PE2 connected to LCDSEG38 and memory address line A23.
R103 out
SB26 closed
PE2 connected to TRACE_CK on CN12. A23 pulled down.
R104
R104 in
Default setting. PE3 connected to LCDSEG39 and memory address line A19.
R104 out PE3 connected to TRACE_D0 on CN12. A19 pulled down.
R84
SB40
R84 in
SB40 open
Default setting. PE4 connected to memory address line A20.
R84 out
SB40 closed
PE4 connected to TRACE_D1 on CN12. A20 pulled down.
R85
SB38
R85 in
SB38 open
Default setting. PE5 connected to memory address line A21.
R85 out
SB38 closed
PE5 connected to TRACE_D2 on CN12. A21 pulled down.
R86
SB39
R86 in
SB39 open
Default setting. PE6 is used for address bit A22.
R86 out
SB39 closed
PE6 connected to TRACE_D3 on CN12. A22 pulled down.
DocID027351 Rev 3 15/100
UM1855 Hardware layout and configuration
99
2.3 Power supply
STM32L476G-EVAL evaluation board is designed to be powered from 5 V DC power source. It incorporates a precise polymer Zener diode (Poly-Zen) protecting the board from damage due to wrong power supply. One of the following four 5V DC power inputs can be used, upon an appropriate board configuration:
Power jack CN22, marked PSU_E5V on the board. A jumper must be placed in PSU location of JP17. The positive pole is on the center pin as illustrated in Figure 5.
Standard-B USB receptacle CN17 of ST-LINK/V2-1, offering enumeration feature described in Section 2.3.1.
Micro-AB USB receptacle CN1 of USB OTG interface, marked OTG_FS on the board. Up to 500mA can be supplied to the board in this way.
Pin 28 of CN6 extension connector for custom daughterboards, marked D5V on the board.
No external power supply is provided with the board.
LD7 red LED turns on when the voltage on the power line marked as +5V is present. All supply lines required for the operation of the components on STM32L476G-EVAL are derived from that +5V line.
Tabl e 2 describes the settings of all jumpers related with powering STM32L476G-EVAL and
extension board. VDD_MCU is STM32L476ZGT6 digital supply voltage line. It can be connected to either fixed 3.3 V or to an adjustable voltage regulator controlled with RV1 potentiometer and producing a range of voltages between 1.71 V and 3.6 V.
2.3.1 Supplying the board through ST-LINK/V2-1 USB port
To power STM32L476G-EVAL in this way, the USB host (a PC) gets connected with the STM32L476G-EVAL board’s Standard-B USB receptacle, via a USB cable. This event starts the USB enumeration procedure. In its initial phase, the host’s USB port current supply capability is limited to 100 mA. It is enough because only ST-LINK/V2-1 part of STM32L476G-EVAL draws power at that time. If the jumper header JP18 is open, the U37 ST890 power switch is set to OFF position, which isolates the remainder of STM32L476G-EVAL from the power source. In the next phase of the enumeration procedure, the host PC informs the ST-LINK/V2-1 facility of its capability to supply up to 300 mA of current. If the answer is positive, the ST-LINK/V2-1 sets the U37 ST890 switch to ON position to supply power to the remainder of the STM32L476G-EVAL board. If the PC USB port is not capable of supplying up to 300 mA of current, the CN22 power jack can be used to supply the board.
The ST890 power switch protects the host’s USB port against current demand exceeding 600 mA, should a short-circuit occur on the board. In such an event, the LD9 LED lights on.
The STM32L476G-EVAL board can also be supplied from a USB power source not supporting enumeration, such as a USB charger. In this particular case, the JP18 header must be fitted with a jumper as shown in Tabl e 2. ST-LINK/V2-1 turns the ST890 power switch ON regardless of enumeration procedure result and passes the power unconditionally to the board.
The LD7 red LED turns on whenever the whole board is powered.
Hardware layout and configuration UM1855
16/100 DocID027351 Rev 3
2.3.2 Using ST-LINK/2-1 along with powering through CN22 power jack
It can happen that the board requires more than 300 mA of supply current. It cannot be supplied from host PC connected to ST-LINK/2-1 USB port for debugging or flashing STM32L476ZGT6. In such a case, the board can be supplied through CN22 (marked PSU _E5V on the board).
To do this, it is important to power the board before connecting it with the host PC, which requires the following sequence to be respected:
1. set the jumper in JP15 header in PSU position
2. connect the external 5 V power source to CN22
3. check the red LED LD7 is turned on
4. connect host PC to USB connector CN17
In case the board demands more than 300 mA and the host PC is connected via USB before the board is powered from CN22, there is a risk of the following events to occur, in the order of severity:
1. The host PC is capable of supplying 300 mA (the enumeration succeeds) but it does not incorporate any over-current protection on its USB port. It is damaged due to over­current.
2. The host PC is capable of supplying 300 mA (the enumeration succeeds) and it has a built-in over-current protection on its USB port, limiting or shutting down the power out of its USB port when the excessive current demand from STM32L476G-EVAL is detected. This causes an operating failure to STM32L476G-EVAL.
3. The host PC is not capable of supplying 300 mA (the enumeration fails) so ST-LINK/V2-1 does not supply the remainder of STM32L476G-EVAL from its USB port VBUS line.
Figure 5. CN22 power jack polarity
DocID027351 Rev 3 17/100
UM1855 Hardware layout and configuration
99
Table 2. Power-supply-related jumper settings
Jumper array Jumper setting Configuration
JP17
Power source
selector
JP17
STM32L476G-EVAL is supplied through CN22 power jack (marked PSU_E5V). CN6 extension connector does not pass the 5 V of STM32L476G-EVAL to daughterboard.
JP17
STM32L476G-EVAL is supplied through CN1 Micro-AB USB connector. CN6 extension connector does not pass the 5 V of STM32L476G-EVAL to daughterboard.
JP17
Default setting. STM32L476G-EVAL is supplied through CN17 Standard-B USB connector. CN6 extension connector does not pass the 5 V of STM32L476G-EVAL to daughterboard. Check JP18 setting in Table 2.
JP17
STM32L476G-EVAL is supplied through pin 28 of CN6 extension connector.
JP17
STM32L476G-EVAL is supplied through CN22 power jack (marked PSU_E5V). CN6 extension connector passes the 5 V of STM32L476G-EVAL to daughterboard. Make sure to disconnect from the daughterboard any power supply that could generate conflict with the power supply on CN22 power jack.
JP12
V
bat
connection
JP12
V
bat
is connected to battery.
JP12
Default setting. V
bat
is connected to VDD.
3688967/.'9
3688967/.'9
3688967/.'9
3688967/.'9
3688967/.'9


Hardware layout and configuration UM1855
18/100 DocID027351 Rev 3
JP2
VDD_MCU connection
JP2
Default setting. VDD_MCU (VDD terminals of STM32L476ZGT6) is connected to fixed +3.3 V.
JP2
VDD_MCU is connected to voltage in the range from +1.71 V to +3.6 V, adjustable with potentiometer RV1.
JP10
VDDA
connection
JP10
Default setting. VDDA terminal of STM32L476ZGT6 is connected with VDD_MCU.
JP10
VDDA terminal of STM32L476ZGT6 is connected to +3.3 V.
JP1
VDD_USB
connection
JP1
Default setting. VDD_USB (VDDUSB terminal of STM32L476ZGT6) is connected with VDD_MCU.
JP1
VDD_USB is connected to +3.3V.
JP3
VDD_IO
connection
JP3
Default setting. VDD_IO
(VDDIO2 terminals of STM32L476ZGT6) is
connected with VDD_MCU
JP3
VDD_IO
is open.
JP18
Powering
through USB of
ST-LINK/V2-1
JP18
Default setting. Standard-B USB connector CN17 of ST-LINK/V2-1 can supply power to the STM32L476G-EVAL board remainder, depending on host PC USB port’s powering capability declared in the enumeration.
JP18
Standard-B USB connector CN17 of ST-LINK/V2-1 supplies power to the STM32L476G-EVAL board remainder. Setting for powering the board through CN17 using USB charger.
Table 2. Power-supply-related jumper settings (continued)
Jumper array Jumper setting Configuration










DocID027351 Rev 3 19/100
UM1855 Hardware layout and configuration
99
2.4 Clock references
Two clock references are available on STM32L476G-EVAL for the STM32L476ZGT6 target microcontroller:
32.768 kHz crystal X1, for embedded RTC
8 MHz crystal X2, for main clock generator
The main clock can also be generated using an internal RC oscillator. The X2 crystal is in a socket. It can be removed when the internal RC oscillator is used.
2.5 Reset sources
Reset signal of the STM32L476G-EVAL board is active low.
Table 3. X1-crystal-related solder bridge settings
Solder bridge
Setting Description
SB41
Open
Default setting. PC14-OSC32_IN terminal is not routed to extension connector CN7. X1 is used as clock reference.
Closed
PC14-OSC32_IN is routed to extension connector CN7. R87 must be removed, for X1 quartz circuit not to disturb clock reference or source on daughterboard.
SB33
Open
Default setting. PC15-OSC32_OUT terminal is not routed to extension connector CN7. X1 is used as clock reference.
Closed
PC15-OSC32_OUT is routed to extension connector CN7. R88 must be removed, for X1 quartz circuit not to disturb clock reference on daughterboard.
Table 4. X2-crystal-related solder bridge settings
Solder bridge
Setting Configuration
SB24
Open
Default setting. PH0-OSC_IN terminal is not routed to extension connector CN7. X2 is used as clock reference.
Closed
PH0-OSC_IN is routed to extension connector CN7. X2 and C54 must be removed, in order not to disturb clock reference or source on daughterboard.
SB23
Open
Default setting. PH1-OSC_OUT terminal is not routed to extension connector CN7. X2 is used as clock reference.
Closed
PH1-OSC_OUT is routed to extension connector CN7. R95 must be removed, in order not to disturb clock reference or source on daughterboard.
Hardware layout and configuration UM1855
20/100 DocID027351 Rev 3
Sources of reset are:
reset button B1
JTAG/SWD connector CN15 and ETM trace connector CN12 (reset from debug tools)
through extension connector CN7, pin 32 (reset from daughterboard)
ST-LINK/V2-1
RS-232 connector CN9, terminal 8 (CTS signal), if JP9 is closed (open by default)
2.6 Boot
2.6.1 Boot options
After reset, the STM32L476ZGT6 MCU can boot from the following embedded memory locations:
main (user, non-protected) Flash memory
system (protected) Flash memory
RAM, for debugging
The microcontroller is configured to one of the listed boot options by setting the STM32L476ZGT6 port BOOT0 level by the switch SW1 and by setting nBOOT1 bit of FLASH_OPTR option bytes register, as shown in Tab l e 5. Depending on JP8, BOOT0 level can be forced high and, SW1 action overruled, by DSR line of RS-232 connector CN9, as shown in Tab l e 6. This can be used to force the execution of bootloader and start user Flash memory flashing process (ISP) from RS-232 interface.
The option bytes of STM32L476ZGT6 and their modification procedure are described in the reference manual RM0351. The application note AN2606 details the bootloader mechanism and configurations.
Table 5. Boot selection switch
Switch Setting Description
SW1
Default setting. BOOT0 line is tied low. STM32L476ZGT6 boots from user Flash memory.
BOOT0 line is tied high. STM32L476ZGT6 boots from system Flash memory (nBOOT1 bit of FLASH_OPTR register is set high) or from RAM (nBOOT1 is set low).
Table 6. Bootloader-related jumper setting
Jumper Setting Description
JP8
JP8
Default setting. BOOT0 level only depends on SW1 switch position
JP8
BOOT0 can be forced high with terminal 6 of CN9 connector (RS-232 DSR line). This configuration is used to allow the device connected via RS-232 to initiate STM32L476ZGT6 flashing process.


DocID027351 Rev 3 21/100
UM1855 Hardware layout and configuration
99
2.6.2 Bootloader limitations
Boot from system Flash memory results in executing bootloader code stored in the system Flash memory protected against write and erase. This allows in-system programming (ISP), that is, flashing the MCU user Flash memory. It also allows writing data into RAM. The data come in via one of communication interfaces such as USART, SPI, I²C bus, USB or CAN.
Bootloader version can be identified by reading Bootloader ID at the address 0x1FFF6FFE.
The STM32L476ZGT6 part soldered on the STM32L476G-EVAL main board is marked with a date code corresponding to its date of manufacture. STM32L476ZGT6 parts with the date code prior or equal to week 22 of 2015 are fitted with bootloader V 9.0 affected by the limitations to be worked around, as described hereunder. Parts with the date code starting week 23 of 2015 contain bootloader V9.2 in which the limitations no longer exist.
To locate the visual date code information on the STM32L476ZGT6 package, refer to its datasheet (DS10198) available on www.st.com, section Package Information. Date code related portion of the package marking takes Y WW format, where Y is the last digit of the year and WW is the week. For example, a part manufactured in week 23 of 2015 bares the date code 5 23.
Bootloader ID of the bootloader V 9.0 is 0x90.
The following limitations exist in the bootloader V 9.0:
1. RAM data get corrupted when written via USART/SPI/I2C/USB interface
Description:
Data write operation into RAM space via USART, SPI, I²C bus or USB results in wrong or no data written.
Workaround:
To correct the issue of wrong write into RAM, download STSW-STM32158 bootloader V 9.0 patch package from www.st.com and load "Bootloader V9.0 SRAM patch" to the MCU, following the information in readme.txt file available in the package.
2. User Flash memory data get corrupted when written via CAN interface
Description:
Data write operation into user Flash memory space via CAN interface results in wrong or no data written.
Workaround:
To correct the issue of wrong write into Flash memory, download STSW-STM32158 bootloader V 0.9 patch package from www.st.com and load "Bootloader V9.0 CAN patch" to the MCU, following the information in readme.txt file available in the package.
2.7 Audio
A codec connected to SAI interface of STM32L476ZGT6 supports TDM feature of the SAI port. TDM feature offers to STM32L476ZGT6 the capability to stream two independent stereo audio channels to two separate stereo analog audio outputs, simultaneously.
There are two digital microphones on board of STM32L476G-EVAL.
Hardware layout and configuration UM1855
22/100 DocID027351 Rev 3
2.7.1 Digital microphones
U35 and U36 on board of STM32L476G-EVAL are MP34DT01TR MEMS digital omni­directional microphones providing PDM (pulse density modulation) outputs. To share the same data line, their outputs are interlaced. The combined data output of the microphones is directly routed to STM32L476ZGT6 terminals, thanks to the integrated input digital filters. The microphones are supplied with programmable clock generated directly by STM32L476ZGT6.
As an option, the microphones can be connected to U29, Wolfson audio codec device, WM8994. In that configuration, U29 also supplies the PDM clock to the microphones.
Regardless of where the microphones are routed to, STM32L476ZGT6 or WM8994, they can be power-supplied from either VDD or MICBIAS1 output of the WM8994 codec device.
Tabl e 7 shows settings of all jumpers associated with the digital microphones on the board.
2.7.2 Headphones outputs
The STM32L476G-EVAL evaluation board can drive two sets of stereo headphones. Identical or different stereo audio content can be played back in each set of headphones. The STM32L476ZGT6 sends up to two independent stereo audio channels, via its SAI1 TDM port, to the WM8994 codec device. The codec device converts the digital audio stream to stereo analog signals. It then boosts them for direct drive of headphones connecting to
3.5 mm stereo jack receptacles on the board, CN20 for Audio-output1 and CN21 for
Audio_output2. Figure 6 shows a top view of the CN20 and CN21 headphones jack receptacles.
The CN21 jack takes its signal from the WM8994 codec device’s output intended for driving an amplifier for loudspeakers. A hardware adaptation is incorporated on the board to make it compatible with a direct headphone drive. The adaptation consists of coupling capacitors blocking the DC component of the signal, attenuator and anti-pop resistors. The WM8994 codec device’s loudspeaker output must be configured by software in linear mode called “class AB” and not in switching mode called “class D”.
The I²C-bus address of WM8994 is 0b0011010.
Table 7. Digital microphone-related jumper settings
Jumper Setting Configuration
JP14
JP14
Default setting. PDM clock for digital microphones comes from STM32L476ZGT6
JP14
PDM clock for digital microphones comes from WM8994 codec.
JP16
JP16
Default setting. Power supply of digital microphones is VDD.
JP16
Power supply of digital microphones is generated by WM8994 codec.




DocID027351 Rev 3 23/100
UM1855 Hardware layout and configuration
99
Figure 6. CN20, CN21 top view
2.7.3 Limitations in using audio features
Due to the share of some terminals of STM32L476ZGT6 by multiple peripherals, the following limitations apply in using the audio features:
If the SAI1_SDA is used as part of SAI1 port, it cannot be used as FMC_NWAIT signal for NOR Flash memory device. However, FMC_NWAIT is not necessary for operating the NOR Flash memory device. More details on FMC_NWAIT are available in
Section 2.22: NOR Flash memory device.
If the SAI1 port of STM32L476ZGT6 is used for streaming audio to the WM8994 codec IC, STM32L476ZGT6 cannot control the motor.
If the digital microphones are attached to STM32L476ZGT6, the LCD glass module cannot be driven.
2.8 USB OTG FS port
The STM32L476G-EVAL board supports USB OTG full-speed (FS) communication.The USB OTG connector CN1 is of Micro-AB type.
2.8.1 STM32L476G-EVAL used as USB device
When a “USB host” connection to the CN1 Micro-AB USB connector of STM32L476G-EVAL is detected, the STM32L476G-EVAL board starts behaving as “USB device”. Depending on the powering capability of the USB host, the board can take power from VBUS terminal of CN1. In the board schematic diagrams, the corresponding power voltage line is called U5V.
Section 2.3 provides information on how to set associated jumpers for this powering option.
The JP19 jumper must be left open to prevent STM32L476G-EVAL from sourcing 5 V to VBUS terminal, which would cause conflict with the 5 V sourced by the USB host. This may
06Y9
(YDOXDWLRQERDUG
5LJKW
FKDQQHO
/HIW
FKDQQHO
*1'
+HDGSKRQHVMDFN
+HDGSKRQHVMDFN
Hardware layout and configuration UM1855
24/100 DocID027351 Rev 3
happen if the PC6 GPIO is controlled by the software of STM32L476ZGT6 such that, it enables the output of U1 power switch.
2.8.2 STM32L476G-EVAL used as USB host
When a “USB device” connection to the CN1 Micro-AB USB connector is detected, the STM32L476G-EVAL board starts behaving as “USB host”. It sources 5 V on the VBUS terminal of CN1 Micro-AB USB connector to power the USB device. For this to happen, the STM32L476ZGT6 MCU sets the U1 power switch STMPS2151STR to ON state. The LD5 green LED marked VBUS indicates that the peripheral is supplied from the board. The LD6 red LED marked FAULT lights up if over-current is detected. The JP19 jumper must be closed to allow the PC6 GPIO to control the U1 power switch. In any other STM32L476G-EVAL powering option, the JP19 jumper should be open, to avoid accidental damage caused to an external USB host.
2.8.3 Configuration elements related with USB OTG FS port
The following STM32L476ZGT6 terminals related with USB OTG FS port control are shared by other resources of the STM32L476G-EVAL board:
PB12, used as USB over-current input (USBOTG_OVRCR signal); it is shared with SWP, touch sensing, LCD glass module and motor control resources
PB13, used as USB power ready input (USBOTG_PRDY signal); it is shared with NFC, touch sensing and LCD glass module resources
PC6, used as USB power switch control (USBOTG_PPWR signal); it is shared with touch sensing, LCD glass module and motor control
Configuration elements related with the USB OTG FS port, such as jumpers, solder bridges and zero-ohm resistors, shunt the shared ports toward different resources or determine the operating mode of the USB OTG FS port. By default, they are set such as to enable the USB OTG FS port operation where STM32L476G-EVAL plays USB device role and can be connected to a USB host. Tab l e 8 gives an overview of all configuration elements related with the USB OTG FS port. The LCD glass module daughterboard should be connected in I/O position.
USBOTG_OVRCR and USBOTG_PRDY signals, requiring the PB12 and PB13 ports of STM32L476ZGT6, are only exploited when STM32L476G-EVAL acts as USB host. That is why, the USB host function of STM32L476G-EVAL is exclusive with alternate functions also requiring PB12 and PB13 ports of STM32L476ZGT6 - NFC, touch sensing, motor control, SWP.
The PB12 and PB13 ports of STM32L476ZGT6 are not required for the USB OTG FS port operating as USB device.
Table 8. Configuration elements related with USB OTG FS port
Element Setting Description
JP19
Open
USB OTG FS port can be connected with a USB host and get power from it. If connected with USB device, STM32L476G-EVAL cannot supply power to it.
Closed
Default setting.
USB OTG FS port can be connected with a USB device and supply power to it. It must not be connected with USB host.
DocID027351 Rev 3 25/100
UM1855 Hardware layout and configuration
99
2.8.4 Limitations in using USB OTG FS port
The USB OTG FS port operation as USB host is exclusive with NFC, SWP, LCD glass module, touch sensing, motor control
The USB OTG FS port operation as USB device is exclusive with LCD glass module, touch sensing, motor control
2.8.5 Operating voltage
The USB-related operating supply voltage of STM32L476ZGT6 (VDD_USB line) must be within the range from 3.0 V to 3.6 V.
2.9 RS-232 and IrDA ports
The STM32L476G-EVAL board offers one RS-232 communication port and one IrDA port.
2.9.1 RS-232 port
The RS-232 communication port uses the DE-9M 9-pole connector CN9. RX, TX, RTS and CTS signals of USART1 port of STM32L476ZGT6 are routed to CN9. Bootloader_RESET_3V3 and Bootloader_BOOT0_3V3 signals can also be routed to CN9, for ISP (in-system programming) support. To route Bootloader_RESET_3V3 to CN9, the R93 resistor must be removed and the JP9 jumper closed (open by default). To route Bootloader_BOOT0_3V3 to CN9, the JP8 jumper must be closed.
R36
In
Default setting
PC6 is shunted to control the U1 power switch, transiting through the LCD glass module daughterboard connector. LCD glass module daughterboard should be in I/O position, with SB2 and SB27 open.
Out
PC6 is disconnected from the LCD glass module daughterboard connector. It can be shunted to one of alternate resources, either touch sensing (SB2 closed) or motor control (SB27 closed).
R39
In
Default setting. PB12 receives USBOTG_OVRCR signal from U1 power switch, transiting through the LCD glass module daughterboard connector. SB3 should be open, R109 in, no smartcard in CN23 slot.
Out
PB12 is disconnected from the LCD glass module daughterboard connector. It can be shunted to one of alternate resources, either touch sensing or motor control (SB3 closed).
R38
In
Default setting. PB13 receives USBOTG_PRDY signal from CN1 connector, transiting through the LCD glass module daughterboard connector. SB6 should be open and no daughterboard inserted in CN13 NFC connector.
Out
PB13 s disconnected from the LCD glass module daughterboard connector. It can be shunted to touch sensing (SB6 closed).
Table 8. Configuration elements related with USB OTG FS port (continued)
Element Setting Description
Hardware layout and configuration UM1855
26/100 DocID027351 Rev 3
For configuration elements related with the RS-232 port operation, refer to Tab l e 6 and
Tabl e 9.
Section 2.10 brings information on using the LPUART port of STM32L476ZGT6 for RS-232,
instead of its USART1 port.
2.9.2 IrDA port
The IrDA communication port uses an IrDA transceiver (U11). Ta bl e 9 shows the configuration elements related with the IrDA port operation
.
2.9.3 Limitations
The operation of RS-232 and IrDA ports is mutually exclusive. The operation of either port is also mutually exclusive with the NFC peripheral operation.
2.9.4 Operating voltage
The RS-232- and IrDA-related operating supply voltage of STM32L476ZGT6 (VDD line) must be within the range from 1.71 V to 3.6 V.
2.10 LPUART port
On top of USART1 port for serial communication, the STM32L476ZGT6 offers LPUART, a low-power UART port.
Table 9. Settings of configuration elements for RS-232 and IrDA ports
Element Setting Description
JP15
JP15
Default setting.
RS-232 selected: PB7 port of STM32L476ZGT6 receives signal originating from RXD terminal of CN9.
JP15
IrDA selected: PB7 port of STM32L476ZGT6 is connected with RxD terminal of the IrDA transceiver U11.
JP15
NFC selected: PB7 port of STM32L476ZGT6 receives NFC_IRQOUT signal from NFC peripheral. Section 2.28 provides more detail on the NFC peripheral.
R93, R118,
R116
In Required for IrDA operation
R158, R119 Out Required for IrDA operation
3
1
5
4 6
2
3
1
5
4
6
2
3
1
5
4
6
2
DocID027351 Rev 3 27/100
UM1855 Hardware layout and configuration
99
In the default configuration of STM32L476G-EVAL, the RX and TX terminals of the LPUART port are routed to the USB virtual COM port of ST-LINK/V2-1 and, the RX and TX terminals of USART1 port to the RS-232 connector CN9.
For specific purposes, the TX and RX of the LPUART port of STM32L476ZGT6 can be routed to the RS-232 connector CN9 instead. As RTS and CTS terminals of CN9 keep routed to USART1 port, they may block the LPUART communication flow. To avoid this, set the USART1 hardware flow control off.
The default settings of LPUART are: 115200b/s, 8bits, no parity, 1 stop bit, no flow control.
2.11 microSD card
The CN18 slot for microSD card is routed to STM32L476ZGT6’s SDIO port, accepting SD (up to 2 Gbytes), SDHC (up to 32 Gbytes) and SDXC (up to 2 Tbytes) cards. One 4-Gbyte microSD card is delivered as part of STM32L476G-EVAL. The card insertion switch is routed to the PA8 GPIO port.
For microSD card operation, the LCD glass module daughterboard must be plugged into CN11 and CN14 in I/O-bridge position, as explained in Section 2.15.
2.11.1 Limitations
Due to the share of SDIO port and PA8 terminals, the following limitations apply:
The microSD card cannot be operated simultaneously with LCD glass module or with motor control.
The microSD card insertion cannot be detected when the PA8 is used as microcontroller clock output (MCO), one of alternate functions of PA8.
2.11.2 Operating voltage
The supply voltage for STM32L476G-EVAL microSD card operation must be within the range from 2.7 V to 3.6 V.
Table 10. Hardware settings for LPUART
LPUART port use R188 R189 R158 R119 R118 JP15 1-2
Default setting
USB virtual COM port of ST-LINK/V2-1
In In Out Out
don’t
care
don’t
care
RS-232 (RX and TX) Out Out In In Out Closed
Table 11. Terminals of CN18 microSD slot
Terminal Terminal name (MCU port) Terminal Terminal name (MCU port)
1 SDIO_D2 (PC10) 6 Vss/GND
2 SDIO_D3 (PC11) 7 SDIO_D0 (PC8)
3 SDIO_CMD (PD2) 8 SDIO_D1 (PC9)
4 VDD 9 GND
5 SDIO_CLK (PC12) 10 MicroSDcard_detect (PA8)
Hardware layout and configuration UM1855
28/100 DocID027351 Rev 3
2.12 Motor control
The CN2 connector is designed to receive a motor control (MC) module. Table 12 shows the assignment of CN2 and STM32L476ZGT6 terminals.
Table 12 also lists the modifications to be made on the board versus its by-default
configuration. See Section 2.12.1 for further details.
Table 12. Motor control terminal and function assignment
Motor control
connector CN2
STM32L476ZGT6 microcontroller
Terminal
Ter minal
name
Port name Function
Alternate
function
Board modifications for
enabling motor control
1
Emergency
Stop
PC9 TIM8_BKIN2 -
Close SB29
Remove MB979 daughterboard
2GND - GND - -
3 PWM_1H PC6 TIM8_CH1 -
Close SB27
Open SB2
Remove MB979 daughterboard
4GND - GND - -
5 PWM_1L PA7 TIM8_CH1N -
Close SB19 Open SB18
Remove R66
6GND - GND - -
7 PWM_2H PC7 TIM8_CH2 -
Close SB30
Open SB4
Remove R33
8GND - GND - -
9 PWM_2L PB0 TIM8_CH2N -
Close SB15 Open SB14
Remove R62
10 GND - GND - -
11 PWM_3H PC8 TIM8_CH3 -
Close SB28
Remove MB979 daughterboard
12 GND - GND - -
13 PWM_3L PB1 TIM8_CH3N -
Close SB13 Open SB12
14 Bus Voltage PC5 ADC12_IN -
Close SB16
Remove MB979 daughterboard
15
PhaseA
current+
PC0 ADC123_IN -
Close SB34
Remove MB979 daughterboard
16
PhaseA current-
-GND - -
17
PhaseB
current+
PC1 ADC123_IN - Close SB36
DocID027351 Rev 3 29/100
UM1855 Hardware layout and configuration
99
2.12.1 Board modifications to enable motor control
Figure 7 (top side) and Figure 8 (bottom side) illustrate the board modifications listed in Table 12, required for the operation of motor control. Red color denotes a component to
remove. Green color denotes a component to be fitted.
18
PhaseB current-
-GND - -
19
PhaseC current+
PC2 ADC123_IN -
Close SB42
Remove MB979 daughterboard
20
PhaseC
current-
-GND - -
21 ICL Shutout PG6 GPIO -
Close SB5
Remove R35
22 GND - GND - -
23
Dissipative
Brake
PB2 GPIO -
Close SB11
Remove R54
24
PFC ind.
curr.
PC4 ADC12_IN -
Close SB17
Remove MB979 daughterboard
25 +5V - +5V - -
26
Heatsink
Te mp .
PA3 ADC12_IN -
Close SB22
Remove MB979 daughterboard
27 PFC Sync PF9 TIM15_CH1 -
Close SB25
Remove R90
28 +3.3V - +3.3V - -
29 PFC PWM PF10 TIM15_CH2 -
Close SB37
Remove R91
30
PFC
Shutdown
PB12 TIM15_BKIN -
Close SB3
Remove MB979 daughterboard
31 Encoder A PA0 TIM2_CH1 ADC12_IN
Close SB35
Remove R83
32 PFC Vac PA6 ADC12_IN -
Close SB20 Open SB21
Remove MB979 daughterboard
33 Encoder B PA1 TIM2_CH2 ADC12_IN
Close SB32
Remove MB979 daughterboard
34
Encoder
Index
PA2 TIM2_CH3 ADC12_IN
Close SB31
Remove MB979 daughterboard
Table 12. Motor control terminal and function assignment (continued)
Motor control
connector CN2
STM32L476ZGT6 microcontroller
Terminal
Ter minal
name
Port name Function
Alternate
function
Board modifications for
enabling motor control
Hardware layout and configuration UM1855
30/100 DocID027351 Rev 3
Figure 7. PCB top-side rework for motor control
Loading...
+ 70 hidden pages