ST MICROELECTRONICS STM32L431CBT6 Datasheet

STM32L431xx
UFBGA100 (7×7)
LQFP64 (10x10)
UFBGA64 (5x5)
LQFP48 (7x7)
LQFP100 (14x14)
WLCSP64
UFQFPN32 (5x5)
WLCSP49UFQFPN48 (7x7)
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
Datasheet - production data
Features
Ultra-low-power with FlexPowerControl – 1.71 V to 3.6 V power supply – -40 °C to 85/105/125 °C temperature range – 200 nA in V
32x32-bit backup registers – 8 nA Shutdown mode (5 wakeup pins) – 28 nA Standby mode (5 wakeup pins) – 280 nA Standby mode with RTC – 1.0 µA Stop 2 mode, 1.28 µA with RTC – 84 µA/MHz run mode – Batch acquisition mode (BAM) – 4 µs wakeup from Stop mode – Brown out reset (BOR) – Interconnect matrix
Core: Arm
®
Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait-state execution from Flash memory, frequency up to 80 MHz, MPU, 100DMIPS and DSP instructions
Performance benchmark – 1.25 DMIPS/MHz (Drystone 2.1) – 273.55 CoreMark
80 MHz)
Energy benchmark – 176.7 ULPBench
Clock Sources – 4 to 48 MHz crystal oscillator – 32 kHz crystal oscillator for RTC (LSE) – Internal 16 MHz factory-trimmed RC (±1%) – Internal low-power 32 kHz RC (±5%) – Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25 % accuracy) – Internal 48 MHz with clock recovery – 2 PLLs for system clock, audio, ADC
mode: supply for RTC and
BAT
32-bit Cortex®-M4 CPU with FPU,
®
(3.42 CoreMark/MHz @
®
score
Up to 83 fast I/Os, most 5 V-tolerant
RTC with HW calendar, alarms and calibration
Up to 21 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
11x timers: 1x 16-bit advanced motor-control, 1x 32-bit and 2x 16-bit general purpose, 2x 16­bit basic, 2x low-power 16-bit timers (available in Stop mode), 2x watchdogs, SysTick timer
Memories – Up to 256 KB single bank Flash,
proprietary code readout protection
– 64 KB of SRAM including 16 KB with
hardware parity check
– Quad SPI memory interface
Rich analog peripherals (independent supply) – 1x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x 12-bit DAC output channels, low-power
sample and hold – 1x operational amplifier with built-in PGA – 2x ultra-low-power comparators
16x communication interfaces – 1x SAI (serial audio interface) –3x I2C FM+(1 Mbit/s), SMBus/PMBus – 4x USARTs (ISO 7816, LIN, IrDA, modem) – 1x LPUART (Stop 2 wake-up) – 3x SPIs (and 1x Quad SPI) – CAN (2.0B Active) and SDMMC interface – SWPMI single wire protocol master I/F – IRTIM (Infrared interface)
14-channel DMA controller
True random number generator
CRC calculation unit, 96-bit unique ID
May 2018 DS11453 Rev 3 1/208
This is information on a product in full production.
www.st.com
STM32L431xx
Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™

Table 1. Device summary

Reference Part numbers
STM32L431xx
STM32L431CC, STM32L431KC, STM32L431RC, STM32L431VC, STM32L431CB, STM32L431KB, STM32L431RB
All packages are ECOPACK2® compliant
2/208 DS11453 Rev 3
STM32L431xx Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 17
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 20
3.9 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.10 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.13 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.14 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.14.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 37
3.14.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 37
3.15 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.15.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.15.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.15.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.16 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
DS11453 Rev 3 3/208
6
Contents STM32L431xx
3.17 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.18 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.19 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.20 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.21 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.22.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.22.2 General-purpose timers (TIM2, TIM15, TIM16) . . . . . . . . . . . . . . . . . . . 44
3.22.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.22.4 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 44
3.22.5 Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22.7 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.23 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 46
2
3.24 Inter-integrated circuit interface (I
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.25 Universal synchronous/asynchronous receiver transmitter (USART) . . . 48
3.26 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 49
3.27 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.28 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.29 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 51
3.30 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.31 Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 52
3.32 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.33 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.34 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.34.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.34.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4/208 DS11453 Rev 3
STM32L431xx Contents
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 89
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 89
6.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.6 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 137
6.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.18 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 138
6.3.19 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 151
6.3.20 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.22 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3.24 V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
BAT
6.3.25 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.26 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 164
DS11453 Rev 3 5/208
6
Contents STM32L431xx
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.4 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.5 WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.6 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.7 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.8 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.9 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.10 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.10.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.10.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 204
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6/208 DS11453 Rev 3
STM32L431xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32L431xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 18
Table 4. STM32L431xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 5. Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 6. STM32L431xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 7. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 8. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 9. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 10. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 11. I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 12. STM32L431xx USART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 13. SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 14. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 15. STM32L431xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 16. Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 17. Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 18. STM32L431xx memory map and peripheral register boundary addresses . . . . . . . . . . . . 81
Table 19. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 20. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 21. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 22. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 23. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 24. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 25. Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 26. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 94
Table 27. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 28. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 29. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 97
Table 30. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 31. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 32. Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . . 99
Table 33. Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . 100
Table 34. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 35. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 36. Current consumption in Stop 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 37. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 38. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 39. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 40. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 41. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 42. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
DS11453 Rev 3 7/208
9
List of tables STM32L431xx
Table 43. Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 44. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 45. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 46. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 47. LSE oscillator characteristics (f
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
LSE
Table 48. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 49.
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 50. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 51. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 52. PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 53. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 54. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 55. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 56. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 57. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 58. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 59. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 60. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 61. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 62. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 63. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 64. EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 65. Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 66. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 67. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 68. ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 69. ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 70. ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 71. ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 72. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 73. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 74. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 75. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 76. OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 77. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 78. V Table 79. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
BAT
Table 80. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 81. IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 82. WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 83. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 84. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 85. Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 86. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 87. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 88. SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 89. eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 90. SWPMI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 91. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 92. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid
array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8/208 DS11453 Rev 3
STM32L431xx List of tables
Table 93. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 181
Table 94. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 95. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 96. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . 186
Table 97. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 98. WLCSP64 recommended PCB design rules (0.35 mm pitch) . . . . . . . . . . . . . . . . . . . . . 189
Table 99. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 100. WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 193
Table 101. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 102. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 103. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Table 104. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 105. STM32L431xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Table 106. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
DS11453 Rev 3 9/208
9
List of figures STM32L431xx
List of figures
Figure 1. STM32L431xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3. Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 4. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 5. Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 6. STM32L431Vx LQFP100 pinout Figure 7. STM32L431Vx UFBGA100 ballout Figure 8. STM32L431Rx LQFP64 pinout Figure 9. STM32L431Rx UFBGA64 ballout Figure 10. STM32L431Rx WLCSP64 pinout Figure 11. STM32L431Cx WLCSP49 pinout Figure 12. STM32L431Cx LQFP48 pinout Figure 13. STM32L431Cx UFQFPN48 pinout Figure 14. STM32L431Kx UFQFPN32 pinout
Figure 15. STM32L431xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 16. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 17. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 18. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 19. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 20. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 21. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 22. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 23. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 24. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 25. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 26. Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 27. HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 28. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 29. I/O AC characteristics definition
Figure 30. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 31. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 32. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 33. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 34. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 35. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 36. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 37. Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 38. Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 39. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 40. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 41. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Figure 42. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 43. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 177
Figure 44. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 45. LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 46. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10/208 DS11453 Rev 3
STM32L431xx List of figures
Figure 47. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid
array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 48. UFBGA100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 183
Figure 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 51. LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 52. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 53. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 54. UFBGA64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 55. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 56. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 57. WLCSP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 58. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Figure 59. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 60. WLCSP49 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 61. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 194
Figure 62. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 63. LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 64. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 65. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 66. UFQFPN48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 67. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 68. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Figure 69. UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Figure 70. LQFP64 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
D
DS11453 Rev 3 11/208
11
Introduction STM32L431xx

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32L431xx microcontrollers.
This document should be read in conjunction with the STM32L43xxx/44xxx/45xxx/46xxx
reference manual (RM0394). The reference manual is available from the
STMicroelectronics website www.st.com.
For information on the Arm
Reference Manual, available from the www.arm.com website.
®(a)
Cortex®-M4 core, please refer to the Cortex®-M4 Technical
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
12/208 DS11453 Rev 3
STM32L431xx Description

2 Description

The STM32L431xx devices are the ultra-low-power microcontrollers based on the high-
performance Arm
The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all
®
Arm
single-precision data-processing instructions and data types. It also implements a full
®
Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz.
set of DSP instructions and a memory protection unit (MPU) which enhances application
security.
The STM32L431xx devices embed high-speed memories (Flash memory up to 256 Kbyte,
64
Kbyte of SRAM), a Quad SPI flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L431xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.
The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier, two DAC channels, an internal voltage reference buffer, a low-power RTC, one general­purpose 32-bit timer, one 16-bit PWM timer dedicated to motor control, four general-purpose 16-bit timers, and two 16-bit low-power timers.
In addition, up to 21 capacitive sensing channels are available.
They also feature standard and advanced communication interfaces.
Three I2Cs
Three SPIs
Three USARTs and one Low-Power UART.
One SAI (Serial Audio Interfaces)
One SDMMC
One CAN
One SWPMI (Single Wire Protocol Master Interface)
The STM32L431xx operates in the -40 to +85 °C (+105 °C junction), -40 to +105 °C (+125
°C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to
3.6
V power supply. A comprehensive set of power-saving modes allows the design of low-
power applications.
Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMP and comparators. A VBAT input allows to backup the RTC and backup registers.
The STM32L431xx family offers nine packages from 32 to 100-pin packages.
Table 2. STM32L431xx family device features and peripheral counts
Peripheral STM32L431Vx STM32L431Rx STM32L431Cx STM32L431Kx
Flash memory 256KB 128KB 256KB 128KB 256KB 128KB 256KB
SRAM 64KB
Quad SPI Yes
DS11453 Rev 3 13/208
54
Description STM32L431xx
Table 2. STM32L431xx family device features and peripheral counts (continued)
Peripheral STM32L431Vx STM32L431Rx STM32L431Cx STM32L431Kx
Timers
Comm. interfaces
Advanced control
General purpose
1 (16-bit)
2 (16-bit) 1 (32-bit)
Basic 2 (16-bit)
Low ­power
SysTick timer
2 (16-bit)
1
Watchdog timers (indepen
2 dent, window)
SPI 3 2
2
C3 2
I
USART LPUART
3 1
2 1
SAI 1
CAN 1
SDMMC Yes No
SWPMI Yes
RTC Yes
Tamper pins 3 2 2 1
Random generator Yes
GPIOs Wakeup pins
Capacitive sensing Number of channels
12-bit ADC Number of channels
83
5
52
38 or 39
4
21 12 6 3
1
16
1
16
(1)
3
1
10
12-bit DAC channels 2
Internal voltage reference buffer
Yes
No
Analog comparator 2
Operational amplifiers
1
Max. CPU frequency 80 MHz
Operating voltage 1.71 to 3.6 V
26
2
1
10
14/208 DS11453 Rev 3
STM32L431xx Description
Table 2. STM32L431xx family device features and peripheral counts (continued)
Peripheral STM32L431Vx STM32L431Rx STM32L431Cx STM32L431Kx
Operating temperature
Packages
1. For WLCSP49 package.
Ambient operating temperature: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C
LQFP100
UFBGA100
WLCSP64
LQFP64
UFBGA64
WLCSP49
LQFP48
UFQFPN48
UFQFPN32
DS11453 Rev 3 15/208
54
Description STM32L431xx
MSv39204V2
Flash
up to
256 KB
GPIO PORT A
AHB/APB2
EXT IT. WKUP
83 AF
PA[15:0]
TIM1 / PWM
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
USART1
RX, TX, CK,CTS,
RTS as AF
SPI1
MOSI, MISO,
SCK, NSS as AF
APB260 M Hz
APB1 30MHz
OUT1
ITF
WWDG
RTC_TS
OSC32_IN
OSC32_OUT
smcard
IrDA
16b
SDIO / MMC
D[7:0]
CMD, CK as AF
VBAT = 1.55 to 3.6 V
JTAG & SW
ARM Cortex-M4
80 MHz
FPU
NVIC
ETM
MPU
DMA2
ART
ACCEL/
CACHE
RNG
FIFO
@ VDDA
BOR
Supply
supervision
PVD, PVM
Int
reset
XTAL 32 kHz
MAN AGT
RTC
FCLK
Standby
interface
IWDG
@VBAT
@ VDD
@VDD
AWU
Reset & clock
control
PCLKx
Voltage
regulator
3.3 to 1.2 V
VDD
Power management
@ VDD
RTC_TAMPx
Backup register
AHB bus-matrix
TIM15
2 channels,
1 compl. channel, BKIN as AF
DAC1
DAC2
TIM6
TIM7
TIM2
D-BUS
SRAM 48 KB
APB1 80 MHz (max)
SRAM 16 KB
I-BUS
S-BUS
DMA1
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PH[1:0],
PH[3]
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
GPIO PORT H
16b
TIM16
16b
1 channel,
1 compl. channel, BKIN as AF
OUT2
16b
16b
32b
4 channels, ETR as AF
AHB/APB1
OSC_IN
OSC_OUT
HCLKx
XTAL OSC
4- 16MHz
16 external analog inputs
VREF+
USAR T 2M Bps
Temperature sensor
@ VDDA
SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
Touch sensing controller
7 Groups of
3 channels max as AF
RC HSI
RC LSI
PLL 1&2
MSI
Quad SPI memory interface
D0[3:0], D1[3:0], CLK0, CLK1 CS
COMP1
INP, INM, OUT
COMP2
INP, INM, OUT
@ VDDA
RTC_OUT
AHB1 80 MHz
CRC
APB2 80MHz
AHB2 80 MHz
FIREWALL
VREF Buffer
@ VDDA
@ VDD
VDD = 1.71 to 3.6 V VSS
TRACECLK
TRACED[3:0]
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
ITF
ADC1
HSI48
VDDA, VSSA
VDD, VSS, NRST
CRS
CRS_SYNC
USART2
RX, TX, CK, CTS, RTS as AF
smcard
IrDA
USART3
RX, TX, CK, CTS, RTS as AF
smcard
IrDA
MOSI, MISO, SCK, NSS as AF
SPI2
MOSI, MISO, SCK, NSS as AF
SPI3
I2C1/SMBUS
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
I2C2/SMBUS
SCL, SDA, SMBA as AF
I2C3/SMBUS
FIFO
TX, RX as AF
bxCAN1
VOUT, VINM, VINP
OpAmp1
@VDDA
LPUART1
RX, TX, CTS, RTS as AF
SWPMI1
IO RX, TX, SUSPEND as AF
LPTIM1
IN1, IN2, OUT, ETR as AF
LPTIM2
IN1, OUT, ETR as AF

Figure 1. STM32L431xx block diagram

Note: AF: alternate function on I/O pins.
16/208 DS11453 Rev 3
STM32L431xx Functional overview

3 Functional overview

3.1 Arm® Cortex®-M4 core with FPU

The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional code­efficiency, delivering the high-performance expected from an Arm usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L431xx family is compatible with all Arm® tools and software.
Figure 1 shows the general block diagram of the STM32L431xx family devices.
®
core in the memory size

3.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry­standard Arm the Arm processor to wait for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz.
®
®
Cortex®-M4 processors. It balances the inherent performance advantage of
Cortex®-M4 over Flash memory technologies, which normally requires the

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real­time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
DS11453 Rev 3 17/208
54
Functional overview STM32L431xx

3.4 Embedded Flash memory

STM32L431xx devices feature up to 256 Kbyte of embedded Flash memory available for storing programs and data in single bank architecture. The Flash memory contains 128 pages of 2 Kbyte.
Flexible protections can be configured thanks to option bytes:
Readout protection (RDP) to protect the whole memory. Three levels are available:
Level 0: no readout protection
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is selected
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

Table 3. Access status versus readout protection level and execution modes

Area
Main
memory
System
memory
Option
bytes
Backup
registers
SRAM2
1. Erased when RDP change from Level 1 to Level 0.
Protection
level
1 Yes Yes Yes No No No
2 Yes Yes Yes N/A N/A N/A
1 Yes No No Yes No No
2 Yes No No N/A N/A N/A
1 Yes Yes Yes Yes Yes Yes
2 Yes No No N/A N/A N/A
1YesYesN/A
2 Yes Yes N/A N/A N/A N/A
1 Yes Yes Yes
2 Yes Yes Yes N/A N/A N/A
User execution
Read Write Erase Read Write Erase
(1)
(1)
Debug, boot from RAM or boot
from system memory (loader)
No No N/A
No No No
Write protection (WRP): the protected area is protected against erasing and programming. Two areas can be selected, with 2-Kbyte granularity.
Proprietary code readout protection (PCROP): a part of the flash memory can be protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU, as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.
(1)
(1)
18/208 DS11453 Rev 3
STM32L431xx Functional overview
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction
double error detection.
The address of the ECC fail can be read in the ECC register

3.5 Embedded SRAM

STM32L431xx devices feature 64 Kbyte of embedded SRAM. This SRAM is split into two blocks:
48 Kbyte mapped at address 0x2000 0000 (SRAM1)
16 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2000 C000, offering a contiguous address space with the SRAM1 (16 Kbyte aliased by bit band)
This block is accessed through the ICode/DCode buses for maximum performance. These 16 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.

3.6 Firewall

The device embeds a Firewall which protects code sensitive and secure data from any access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
Three segments can be protected and defined thanks to the Firewall registers: – Code segment (located in Flash or SRAM1 if defined as executable protected
area) – Non-volatile data segment (located in Flash) – Volatile data segment (located in SRAM1)
The start address and the length of each segments are configurable: – Code segment: up to 1024 Kbyte with granularity of 256 bytes – Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes – Volatile data segment: up to 48 Kbyte with a granularity of 64 bytes
Specific mechanism implemented to open the Firewall to get access to the protected areas (call gate entry sequence)
Volatile data segment can be shared or not with the non-protected code
Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of protection.
DS11453 Rev 3 19/208
54
Functional overview STM32L431xx

3.7 Boot modes

At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed.
A Flash empty check mechanism is implemented to force the boot from system flash if the first flash memory location is not programmed and if the boot selection is configured to boot from main flash.
The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI or CAN.

3.8 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.

3.9 Power supply management

3.9.1 Power supply schemes

VDD = 1.71 to 3.6 V: external power supply for I/Os (V the system analog such as reset, power management and internal clocks. It is provided externally through VDD pins.
V
= 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMP) to 3.6 V: external analog power
DDA
supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The V voltage level is independent from the V
V
= 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
BAT
backup registers (through power switch) when V
Note: When the functions supplied by V
to V
.
DD
are not used, this supply should preferably be shorted
DDA
voltage.
DD
is not present.
DD
Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant (refer to
Tabl e 19: Voltage characteristics).
), the internal regulator and
DDIO1
DDA
Note: V
V
20/208 DS11453 Rev 3
is the I/Os general purpose digital functions supply. V
DDIOx
= VDD.
DDIO1
represents V
DDIOx
DDIO1
, with
STM32L431xx Functional overview
MSv39205V2
Low voltage detector
V
DDA
V
DDA
domain
V
SS
V
DD
V
BAT
A/D converters Comparators D/A converters Operational amplifiers Voltage reference buffer
V
DD
domain
I/O ring
V
SSA
Reset block Temp. sensor PLL, HSI, MSI, HSI48
Standby circuitry (Wakeup logic, IWDG)
Voltage regulator
V
DDIO1
LSE crystal 32 K osc BKP registers RCC BDCR register RTC
Backup domain
Core Memories Digital peripherals
V
CORE
domain
V
CORE
Figure 2. Power supply overview
During power-up and power-down phases, the following power sequence requirements must be respected:
When VDD is below 1 V, other power supplies (V
) must remain below VDD +
DDA
300 mV.
When V
is above 1 V, all power supplies are independent.
DD
During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1
mJ; this allows external decoupling capacitors to be discharged with different time constants during the power- down transient phase.
DS11453 Rev 3 21/208
54
Functional overview STM32L431xx
MSv47490V1
0.3
1
V
BOR0
3.6
Operating modePower-on Power-down time
V
V
DDX
(1)
V
DD
Invalid supply area V
DDX
< V
DD
+ 300 mV
V
DDX
independent from V
DD
Figure 3. Power-up/down sequence
1. V
refers to V
DDX
DDA
.

3.9.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes.The device features an embedded programmable voltage detector (PVD) that monitors the V interrupt can be generated when V higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltage V peripheral is in its functional supply range.
power supply and compares it to the VPVD threshold. An
DD
DDA
is below a
DD
drops below the VPVD threshold and/or when VDD is
DD
with a fixed threshold in order to ensure that the
22/208 DS11453 Rev 3
STM32L431xx Functional overview

3.9.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 16 Kbyte SRAM2 in Standby with SRAM2 retention.
Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The ultralow-power STM32L431xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (V
There are two power consumption ranges:
Range 1 with the CPU running at up to 80 MHz.
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
) can be adjusted according to the system’s maximum operating frequency.
CORE
limited to 26 MHz.
The V
can be supplied by the low-power regulator, the main regulator being switched
CORE
off. The system is then in Low-power run mode.
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.

3.9.4 Low-power modes

The ultra-low-power STM32L431xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.
DS11453 Rev 3 23/208
54
24/208 DS11453 Rev 3
Mode Regulator
(1)
Table 4. STM32L431xx modes overview
CPU Flash SRAM Clocks DMA & Peripherals
(2)
Wakeup source Consumption
(3)
Functional overview STM32L431xx
Wakeup time
Run
Yes O N
MR range2 All except RNG 84 µA/MHz
LPRun LPR Yes ON
MR range 1
MR range 1
Sleep
No ON
MR range2 All except RNG 26 µA/MHz
LPSleep LPR No ON
MR Range 1
Stop 0
No OFF ON
MR Range 2 108 µA
(4)
(4)
(4)
(4)
ON Any
ON
except
(5)
ON
(5)
ON
except
Any
PLL
Any
Any
PLL
LSE
LSI
All
97 µA/MHz
N/A
All except USB_FS, RNG N/A 94 µA/MHz
All
Any interrupt or
28 µA/MHz
event
All except USB_FS, RNG
Any interrupt or
event
29 µA/MHz 6 cycles
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1...3)
LPUART1
I2Cx (x=1...3)
(6)
(6)
(7)
LPTIMx (x=1,2)
***
All other peripherals are
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...3)
LPUART1
I2Cx (x=1...3)
(6)
(7)
LPTIMx (x=1,2)
SWPMI1
(8)
108 µA
(6)
frozen.
N/A
to Range 1: 4 µs
to Range 2: 64 µs
6 cycles
2.4 µs in SRAM
4.1 µs in Flash
DS11453 Rev 3 25/208
Table 4. STM32L431xx modes overview (continued)
Mode Regulator
Stop 1 LPR No Off ON
Stop 2 LPR No Off ON
(1)
CPU Flash SRAM Clocks DMA & Peripherals
LSE
LSI
LSE
LSI
(2)
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1...3)
LPUART1
I2Cx (x=1...3)
(6)
(6)
(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
(7)
I2C3
LPUART1
(6)
LPTIM1
***
All other peripherals are
frozen.
Wakeup source Consumption
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...3)
LPUART1
(6)
I2Cx (x=1...3)
4.34 µA w/o RTC
(6)
4.63 µA w RTC
(7)
LPTIMx (x=1,2)
SWPMI1
(8)
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
(7)
I2C3
LPUART1
(6)
1.3 µA w/o RTC
1.4 µA w/RTC
LPTIM1
(3)
Wakeup time
6.3 µs in SRAM
7.8 µs in Flash
6.8 µs in SRAM
8.2 µs in Flash
STM32L431xx Functional overview
26/208 DS11453 Rev 3
Mode Regulator
(1)
Table 4. STM32L431xx modes overview (continued)
CPU Flash SRAM Clocks DMA & Peripherals
(2)
Wakeup source Consumption
(3)
Functional overview STM32L431xx
Wakeup time
Standby
LPR
OFF
Power ed Off
Off
SRAM
2 ON
Power
ed
Off
LSE
LSI
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
Reset pin 5 I/Os (WKUPx) BOR, RTC, IWDG
0.20 µA w/o RTC
0.46 µA w/ RTC
(9)
0.03 µA w/o RTC
0.29 µA w/ RTC
floating, pull-up or pull-down
RTC
***
All other peripherals are
powered off.
***
Shutdown OFF
Power ed Off
Off
Power
ed
Off
LSE
I/O configuration can be
floating, pull-up or pull-
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at V LPRun/LPSleep.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. The SRAM1 and SRAM2 clocks can be gated on or off independently.
6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. SWPMI1 wakeup by resume from suspend.
9. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
10. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
= 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
DD
down
(10)
Reset pin
5 I/Os (WKUPx)
RTC
0.01 µA w/o RTC
(9)
0.20 µA w/ RTC
12.2 µs
262 µs
STM32L431xx Functional overview
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Low-power run mode
This mode is achieved with V
supplied by the low-power regulator to minimize the
CORE
regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the low­power run mode.
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the V
domain are stopped, the PLL, the MSI
CORE
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the V
domain is put in a lower leakage mode.
CORE
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the V
domain is powered off. The PLL, the
CORE
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
DS11453 Rev 3 27/208
54
Functional overview STM32L431xx
Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the V
domain is powered off. The PLL, the HSI16,
CORE
the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
28/208 DS11453 Rev 3
STM32L431xx Functional overview
Table 5. Functionalities depending on the working mode
(1)
Stop 0/1 Stop 2 Standby Shutdown
Peripheral Run Sleep
Low-
power
run
Low-
power
sleep
VBAT
-
-
Wakeup capability
Wakeup capability
-
Wakeup capability
-
Wakeup capability
CPU Y - Y - - --------
Flash memory (up to 256 KB)
SRAM1 (48 KB) Y Y
SRAM2 (16 KB) Y Y
Quad SPI O O O O -
Backup Registers Y Y Y Y Y
Brown-out reset (BOR)
(2)
O
(2)
O
(3)
(3)
(2)
O
YY
YY
(2)
O
(3)
(3)
- --------
Y -Y------
Y -Y-O
(4)
----
--------
-Y-Y-Y-Y
YYYYYYYYYY- --
Programmable Voltage Detector
OOOOO
OOO- ----
(PVD)
Peripheral Voltage Monitor (PVMx;
OOOOO
OOO- ----
x=1,3,4)
DMA OOOO-
--------
High Speed Internal (HSI16)
OOOO
(5)
(5)
-
------
Oscillator RC48 O O - - - --------
High Speed External (HSE)
Low Speed Internal (LSI)
Low Speed External (LSE)
Multi-Speed Internal (MSI)
Clock Security System (CSS)
Clock Security System on LSE
OOOO-
OOOOO
OOOOO
OOOO-
OOOO-
OOOOO
--------
-O-O----
-O-O-O-O
--------
--------
OOOOO- --
RTC / Auto wakeup O O O O O OOOOOOOO
Number of RTC Tamper pins
USARTx (x=1,2,3) O O O O O
33333O3O3O3O3
(6)O(6)
- ------
DS11453 Rev 3 29/208
54
Functional overview STM32L431xx
Table 5. Functionalities depending on the working mode
Stop 0/1 Stop 2 Standby Shutdown
Low-
Peripheral Run Sleep
power
run
Low-power UART (LPUART)
OOOOO
I2Cx (x=1,2) O O O O O
I2C3 OOOOO
SPIx (x=1,2,3) O O O O -
CAN OOOO-
SDMMC1 O O O O -
SWPMI1 OOOO-
SAIx (x=1) O O O O -
ADCx (x=1) O O O O -
DAC1 O O O O O
Low-
power
sleep
-
(6)O(6)O(6)O(6)
(7)O(7)
(7)O(7)O(7)O(7)
--------
--------
--------
O- ------
--------
--------
--------
(1)
(continued)
-
Wakeup capability
Wakeup capability
-
Wakeup capability
-
Wakeup capability
- ----
- ------
- ----
VBAT
VREFBUF O O O O O
OPAMPx (x=1) O O O O O
COMPx (x=1,2) O O O O O
Temperature sensor O O O O -
Timers (TIMx) O O O O -
Low-power timer 1 (LPTIM1)
Low-power timer 2 (LPTIM2)
Independent watchdog (IWDG)
Window watchdog (WWDG)
OOOOO
OOOOO
OOOOO
OOOO-
--------
--------
OOO- ----
--------
--------
OOO- ----
O- ------
OOOOO- --
--------
SysTick timer O O O O - --------
Touch sensing controller (TSC)
Random number generator (RNG)
OOOO-
(8)
O
(8)
O
-----------
--------
CRC calculation unit O O O O - --------
GPIOs OOOOO
OOO
(9)
5
pins
(10)
(11)
5
pins
(10)
-
30/208 DS11453 Rev 3
Loading...
+ 178 hidden pages