ST MICROELECTRONICS STM32L431CBT6 Datasheet

STM32L431xx
UFBGA100 (7×7)
LQFP64 (10x10)
UFBGA64 (5x5)
LQFP48 (7x7)
LQFP100 (14x14)
WLCSP64
UFQFPN32 (5x5)
WLCSP49UFQFPN48 (7x7)
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,
Datasheet - production data
Features
Ultra-low-power with FlexPowerControl – 1.71 V to 3.6 V power supply – -40 °C to 85/105/125 °C temperature range – 200 nA in V
32x32-bit backup registers – 8 nA Shutdown mode (5 wakeup pins) – 28 nA Standby mode (5 wakeup pins) – 280 nA Standby mode with RTC – 1.0 µA Stop 2 mode, 1.28 µA with RTC – 84 µA/MHz run mode – Batch acquisition mode (BAM) – 4 µs wakeup from Stop mode – Brown out reset (BOR) – Interconnect matrix
Core: Arm
®
Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait-state execution from Flash memory, frequency up to 80 MHz, MPU, 100DMIPS and DSP instructions
Performance benchmark – 1.25 DMIPS/MHz (Drystone 2.1) – 273.55 CoreMark
80 MHz)
Energy benchmark – 176.7 ULPBench
Clock Sources – 4 to 48 MHz crystal oscillator – 32 kHz crystal oscillator for RTC (LSE) – Internal 16 MHz factory-trimmed RC (±1%) – Internal low-power 32 kHz RC (±5%) – Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25 % accuracy) – Internal 48 MHz with clock recovery – 2 PLLs for system clock, audio, ADC
mode: supply for RTC and
BAT
32-bit Cortex®-M4 CPU with FPU,
®
(3.42 CoreMark/MHz @
®
score
Up to 83 fast I/Os, most 5 V-tolerant
RTC with HW calendar, alarms and calibration
Up to 21 capacitive sensing channels: support
touchkey, linear and rotary touch sensors
11x timers: 1x 16-bit advanced motor-control, 1x 32-bit and 2x 16-bit general purpose, 2x 16­bit basic, 2x low-power 16-bit timers (available in Stop mode), 2x watchdogs, SysTick timer
Memories – Up to 256 KB single bank Flash,
proprietary code readout protection
– 64 KB of SRAM including 16 KB with
hardware parity check
– Quad SPI memory interface
Rich analog peripherals (independent supply) – 1x 12-bit ADC 5 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
– 2x 12-bit DAC output channels, low-power
sample and hold – 1x operational amplifier with built-in PGA – 2x ultra-low-power comparators
16x communication interfaces – 1x SAI (serial audio interface) –3x I2C FM+(1 Mbit/s), SMBus/PMBus – 4x USARTs (ISO 7816, LIN, IrDA, modem) – 1x LPUART (Stop 2 wake-up) – 3x SPIs (and 1x Quad SPI) – CAN (2.0B Active) and SDMMC interface – SWPMI single wire protocol master I/F – IRTIM (Infrared interface)
14-channel DMA controller
True random number generator
CRC calculation unit, 96-bit unique ID
May 2018 DS11453 Rev 3 1/208
This is information on a product in full production.
www.st.com
STM32L431xx
Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™

Table 1. Device summary

Reference Part numbers
STM32L431xx
STM32L431CC, STM32L431KC, STM32L431RC, STM32L431VC, STM32L431CB, STM32L431KB, STM32L431RB
All packages are ECOPACK2® compliant
2/208 DS11453 Rev 3
STM32L431xx Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 17
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 20
3.9 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.9.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.10 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.13 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.14 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.14.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 37
3.14.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 37
3.15 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.15.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.15.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.15.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.16 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
DS11453 Rev 3 3/208
6
Contents STM32L431xx
3.17 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.18 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.19 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.20 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.21 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.22.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.22.2 General-purpose timers (TIM2, TIM15, TIM16) . . . . . . . . . . . . . . . . . . . 44
3.22.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.22.4 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 44
3.22.5 Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22.7 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.22.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.23 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 46
2
3.24 Inter-integrated circuit interface (I
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.25 Universal synchronous/asynchronous receiver transmitter (USART) . . . 48
3.26 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 49
3.27 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.28 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.29 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 51
3.30 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.31 Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 52
3.32 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.33 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.34 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.34.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.34.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4/208 DS11453 Rev 3
STM32L431xx Contents
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 89
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 89
6.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.6 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 137
6.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.18 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 138
6.3.19 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 151
6.3.20 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.22 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3.24 V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
BAT
6.3.25 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.3.26 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 164
DS11453 Rev 3 5/208
6
Contents STM32L431xx
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.4 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.5 WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.6 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.7 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.8 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.9 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.10 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.10.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.10.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 204
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6/208 DS11453 Rev 3
STM32L431xx List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32L431xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 18
Table 4. STM32L431xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 5. Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 6. STM32L431xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 7. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 8. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 9. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 10. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 11. I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 12. STM32L431xx USART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 13. SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 14. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 15. STM32L431xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 16. Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 17. Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 18. STM32L431xx memory map and peripheral register boundary addresses . . . . . . . . . . . . 81
Table 19. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 20. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 21. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 22. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 23. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 24. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 25. Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 26. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 94
Table 27. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 28. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 29. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 97
Table 30. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 31. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 32. Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . . 99
Table 33. Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . 100
Table 34. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 35. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 36. Current consumption in Stop 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 37. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 38. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 39. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 40. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 41. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 42. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
DS11453 Rev 3 7/208
9
List of tables STM32L431xx
Table 43. Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 44. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 45. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 46. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 47. LSE oscillator characteristics (f
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
LSE
Table 48. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 49.
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 50. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 51. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 52. PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 53. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 54. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 55. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 56. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 57. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 58. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 59. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 60. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 61. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 62. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 63. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 64. EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 65. Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 66. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 67. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 68. ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 69. ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 70. ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 71. ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 72. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 73. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 74. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 75. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 76. OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 77. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 78. V Table 79. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
BAT
Table 80. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 81. IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 82. WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 83. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 84. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 85. Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 86. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 87. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 88. SD / MMC dynamic characteristics, VDD=2.7 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 89. eMMC dynamic characteristics, VDD = 1.71 V to 1.9 V . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 90. SWPMI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 91. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 92. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid
array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8/208 DS11453 Rev 3
STM32L431xx List of tables
Table 93. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 181
Table 94. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 95. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 96. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . 186
Table 97. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 98. WLCSP64 recommended PCB design rules (0.35 mm pitch) . . . . . . . . . . . . . . . . . . . . . 189
Table 99. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 100. WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 193
Table 101. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 102. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 103. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Table 104. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 105. STM32L431xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Table 106. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
DS11453 Rev 3 9/208
9
List of figures STM32L431xx
List of figures
Figure 1. STM32L431xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3. Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 4. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 5. Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 6. STM32L431Vx LQFP100 pinout Figure 7. STM32L431Vx UFBGA100 ballout Figure 8. STM32L431Rx LQFP64 pinout Figure 9. STM32L431Rx UFBGA64 ballout Figure 10. STM32L431Rx WLCSP64 pinout Figure 11. STM32L431Cx WLCSP49 pinout Figure 12. STM32L431Cx LQFP48 pinout Figure 13. STM32L431Cx UFQFPN48 pinout Figure 14. STM32L431Kx UFQFPN32 pinout
Figure 15. STM32L431xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 16. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 17. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 18. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Figure 19. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 20. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 21. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 22. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 23. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 24. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 25. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 26. Typical current consumption versus MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 27. HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 28. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 29. I/O AC characteristics definition
Figure 30. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 31. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 32. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Figure 33. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 34. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 35. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 36. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 37. Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 38. Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 39. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 40. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 41. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Figure 42. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 43. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 177
Figure 44. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 45. LQFP100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 46. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10/208 DS11453 Rev 3
STM32L431xx List of figures
Figure 47. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid
array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 48. UFBGA100 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 183
Figure 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 51. LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 52. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 53. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 54. UFBGA64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 55. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 56. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 57. WLCSP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 58. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Figure 59. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 60. WLCSP49 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 61. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 194
Figure 62. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 63. LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Figure 64. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 65. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 66. UFQFPN48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 67. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 68. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Figure 69. UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Figure 70. LQFP64 P
max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
D
DS11453 Rev 3 11/208
11
Introduction STM32L431xx

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32L431xx microcontrollers.
This document should be read in conjunction with the STM32L43xxx/44xxx/45xxx/46xxx
reference manual (RM0394). The reference manual is available from the
STMicroelectronics website www.st.com.
For information on the Arm
Reference Manual, available from the www.arm.com website.
®(a)
Cortex®-M4 core, please refer to the Cortex®-M4 Technical
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
12/208 DS11453 Rev 3
STM32L431xx Description

2 Description

The STM32L431xx devices are the ultra-low-power microcontrollers based on the high-
performance Arm
The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all
®
Arm
single-precision data-processing instructions and data types. It also implements a full
®
Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz.
set of DSP instructions and a memory protection unit (MPU) which enhances application
security.
The STM32L431xx devices embed high-speed memories (Flash memory up to 256 Kbyte,
64
Kbyte of SRAM), a Quad SPI flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
The STM32L431xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.
The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier, two DAC channels, an internal voltage reference buffer, a low-power RTC, one general­purpose 32-bit timer, one 16-bit PWM timer dedicated to motor control, four general-purpose 16-bit timers, and two 16-bit low-power timers.
In addition, up to 21 capacitive sensing channels are available.
They also feature standard and advanced communication interfaces.
Three I2Cs
Three SPIs
Three USARTs and one Low-Power UART.
One SAI (Serial Audio Interfaces)
One SDMMC
One CAN
One SWPMI (Single Wire Protocol Master Interface)
The STM32L431xx operates in the -40 to +85 °C (+105 °C junction), -40 to +105 °C (+125
°C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to
3.6
V power supply. A comprehensive set of power-saving modes allows the design of low-
power applications.
Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMP and comparators. A VBAT input allows to backup the RTC and backup registers.
The STM32L431xx family offers nine packages from 32 to 100-pin packages.
Table 2. STM32L431xx family device features and peripheral counts
Peripheral STM32L431Vx STM32L431Rx STM32L431Cx STM32L431Kx
Flash memory 256KB 128KB 256KB 128KB 256KB 128KB 256KB
SRAM 64KB
Quad SPI Yes
DS11453 Rev 3 13/208
54
Description STM32L431xx
Table 2. STM32L431xx family device features and peripheral counts (continued)
Peripheral STM32L431Vx STM32L431Rx STM32L431Cx STM32L431Kx
Timers
Comm. interfaces
Advanced control
General purpose
1 (16-bit)
2 (16-bit) 1 (32-bit)
Basic 2 (16-bit)
Low ­power
SysTick timer
2 (16-bit)
1
Watchdog timers (indepen
2 dent, window)
SPI 3 2
2
C3 2
I
USART LPUART
3 1
2 1
SAI 1
CAN 1
SDMMC Yes No
SWPMI Yes
RTC Yes
Tamper pins 3 2 2 1
Random generator Yes
GPIOs Wakeup pins
Capacitive sensing Number of channels
12-bit ADC Number of channels
83
5
52
38 or 39
4
21 12 6 3
1
16
1
16
(1)
3
1
10
12-bit DAC channels 2
Internal voltage reference buffer
Yes
No
Analog comparator 2
Operational amplifiers
1
Max. CPU frequency 80 MHz
Operating voltage 1.71 to 3.6 V
26
2
1
10
14/208 DS11453 Rev 3
STM32L431xx Description
Table 2. STM32L431xx family device features and peripheral counts (continued)
Peripheral STM32L431Vx STM32L431Rx STM32L431Cx STM32L431Kx
Operating temperature
Packages
1. For WLCSP49 package.
Ambient operating temperature: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C
Junction temperature: -40 to 105 °C / -40 to 125 °C / -40 to 130 °C
LQFP100
UFBGA100
WLCSP64
LQFP64
UFBGA64
WLCSP49
LQFP48
UFQFPN48
UFQFPN32
DS11453 Rev 3 15/208
54
Description STM32L431xx
MSv39204V2
Flash
up to
256 KB
GPIO PORT A
AHB/APB2
EXT IT. WKUP
83 AF
PA[15:0]
TIM1 / PWM
3 compl. channels (TIM1_CH[1:3]N),
4 channels (TIM1_CH[1:4]),
ETR, BKIN, BKIN2 as AF
USART1
RX, TX, CK,CTS,
RTS as AF
SPI1
MOSI, MISO,
SCK, NSS as AF
APB260 M Hz
APB1 30MHz
OUT1
ITF
WWDG
RTC_TS
OSC32_IN
OSC32_OUT
smcard
IrDA
16b
SDIO / MMC
D[7:0]
CMD, CK as AF
VBAT = 1.55 to 3.6 V
JTAG & SW
ARM Cortex-M4
80 MHz
FPU
NVIC
ETM
MPU
DMA2
ART
ACCEL/
CACHE
RNG
FIFO
@ VDDA
BOR
Supply
supervision
PVD, PVM
Int
reset
XTAL 32 kHz
MAN AGT
RTC
FCLK
Standby
interface
IWDG
@VBAT
@ VDD
@VDD
AWU
Reset & clock
control
PCLKx
Voltage
regulator
3.3 to 1.2 V
VDD
Power management
@ VDD
RTC_TAMPx
Backup register
AHB bus-matrix
TIM15
2 channels,
1 compl. channel, BKIN as AF
DAC1
DAC2
TIM6
TIM7
TIM2
D-BUS
SRAM 48 KB
APB1 80 MHz (max)
SRAM 16 KB
I-BUS
S-BUS
DMA1
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
PH[1:0],
PH[3]
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
GPIO PORT H
16b
TIM16
16b
1 channel,
1 compl. channel, BKIN as AF
OUT2
16b
16b
32b
4 channels, ETR as AF
AHB/APB1
OSC_IN
OSC_OUT
HCLKx
XTAL OSC
4- 16MHz
16 external analog inputs
VREF+
USAR T 2M Bps
Temperature sensor
@ VDDA
SAI1
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK
MCLK_B, SD_B, FS_B, SCK_B as AF
Touch sensing controller
7 Groups of
3 channels max as AF
RC HSI
RC LSI
PLL 1&2
MSI
Quad SPI memory interface
D0[3:0], D1[3:0], CLK0, CLK1 CS
COMP1
INP, INM, OUT
COMP2
INP, INM, OUT
@ VDDA
RTC_OUT
AHB1 80 MHz
CRC
APB2 80MHz
AHB2 80 MHz
FIREWALL
VREF Buffer
@ VDDA
@ VDD
VDD = 1.71 to 3.6 V VSS
TRACECLK
TRACED[3:0]
NJTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
ITF
ADC1
HSI48
VDDA, VSSA
VDD, VSS, NRST
CRS
CRS_SYNC
USART2
RX, TX, CK, CTS, RTS as AF
smcard
IrDA
USART3
RX, TX, CK, CTS, RTS as AF
smcard
IrDA
MOSI, MISO, SCK, NSS as AF
SPI2
MOSI, MISO, SCK, NSS as AF
SPI3
I2C1/SMBUS
SCL, SDA, SMBA as AF
SCL, SDA, SMBA as AF
I2C2/SMBUS
SCL, SDA, SMBA as AF
I2C3/SMBUS
FIFO
TX, RX as AF
bxCAN1
VOUT, VINM, VINP
OpAmp1
@VDDA
LPUART1
RX, TX, CTS, RTS as AF
SWPMI1
IO RX, TX, SUSPEND as AF
LPTIM1
IN1, IN2, OUT, ETR as AF
LPTIM2
IN1, OUT, ETR as AF

Figure 1. STM32L431xx block diagram

Note: AF: alternate function on I/O pins.
16/208 DS11453 Rev 3
STM32L431xx Functional overview

3 Functional overview

3.1 Arm® Cortex®-M4 core with FPU

The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional code­efficiency, delivering the high-performance expected from an Arm usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.
With its embedded Arm® core, the STM32L431xx family is compatible with all Arm® tools and software.
Figure 1 shows the general block diagram of the STM32L431xx family devices.
®
core in the memory size

3.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry­standard Arm the Arm processor to wait for the Flash memory at higher frequencies.
To release the processor near 100 DMIPS performance at 80MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz.
®
®
Cortex®-M4 processors. It balances the inherent performance advantage of
Cortex®-M4 over Flash memory technologies, which normally requires the

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real­time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
DS11453 Rev 3 17/208
54
Functional overview STM32L431xx

3.4 Embedded Flash memory

STM32L431xx devices feature up to 256 Kbyte of embedded Flash memory available for storing programs and data in single bank architecture. The Flash memory contains 128 pages of 2 Kbyte.
Flexible protections can be configured thanks to option bytes:
Readout protection (RDP) to protect the whole memory. Three levels are available:
Level 0: no readout protection
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is selected
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This selection is irreversible.

Table 3. Access status versus readout protection level and execution modes

Area
Main
memory
System
memory
Option
bytes
Backup
registers
SRAM2
1. Erased when RDP change from Level 1 to Level 0.
Protection
level
1 Yes Yes Yes No No No
2 Yes Yes Yes N/A N/A N/A
1 Yes No No Yes No No
2 Yes No No N/A N/A N/A
1 Yes Yes Yes Yes Yes Yes
2 Yes No No N/A N/A N/A
1YesYesN/A
2 Yes Yes N/A N/A N/A N/A
1 Yes Yes Yes
2 Yes Yes Yes N/A N/A N/A
User execution
Read Write Erase Read Write Erase
(1)
(1)
Debug, boot from RAM or boot
from system memory (loader)
No No N/A
No No No
Write protection (WRP): the protected area is protected against erasing and programming. Two areas can be selected, with 2-Kbyte granularity.
Proprietary code readout protection (PCROP): a part of the flash memory can be protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU, as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.
(1)
(1)
18/208 DS11453 Rev 3
STM32L431xx Functional overview
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction
double error detection.
The address of the ECC fail can be read in the ECC register

3.5 Embedded SRAM

STM32L431xx devices feature 64 Kbyte of embedded SRAM. This SRAM is split into two blocks:
48 Kbyte mapped at address 0x2000 0000 (SRAM1)
16 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).
This memory is also mapped at address 0x2000 C000, offering a contiguous address space with the SRAM1 (16 Kbyte aliased by bit band)
This block is accessed through the ICode/DCode buses for maximum performance. These 16 Kbyte SRAM can also be retained in Standby mode.
The SRAM2 can be write-protected with 1 Kbyte granularity.
The memory can be accessed in read/write at CPU clock speed with 0 wait states.

3.6 Firewall

The device embeds a Firewall which protects code sensitive and secure data from any access performed by a code executed outside of the protected areas.
Each illegal access generates a reset which kills immediately the detected intrusion.
The Firewall main features are the following:
Three segments can be protected and defined thanks to the Firewall registers: – Code segment (located in Flash or SRAM1 if defined as executable protected
area) – Non-volatile data segment (located in Flash) – Volatile data segment (located in SRAM1)
The start address and the length of each segments are configurable: – Code segment: up to 1024 Kbyte with granularity of 256 bytes – Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes – Volatile data segment: up to 48 Kbyte with a granularity of 64 bytes
Specific mechanism implemented to open the Firewall to get access to the protected areas (call gate entry sequence)
Volatile data segment can be shared or not with the non-protected code
Volatile data segment can be executed or not depending on the Firewall configuration
The Flash readout protection must be set to level 2 in order to reach the expected level of protection.
DS11453 Rev 3 19/208
54
Functional overview STM32L431xx

3.7 Boot modes

At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the value of a user option bit to free the GPIO pad if needed.
A Flash empty check mechanism is implemented to force the boot from system flash if the first flash memory location is not programmed and if the boot selection is configured to boot from main flash.
The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI or CAN.

3.8 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.

3.9 Power supply management

3.9.1 Power supply schemes

VDD = 1.71 to 3.6 V: external power supply for I/Os (V the system analog such as reset, power management and internal clocks. It is provided externally through VDD pins.
V
= 1.62 V (ADCs/COMPs) / 1.8 (DAC/OPAMP) to 3.6 V: external analog power
DDA
supply for ADCs, DAC, OPAMPs, Comparators and Voltage reference buffer. The V voltage level is independent from the V
V
= 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
BAT
backup registers (through power switch) when V
Note: When the functions supplied by V
to V
.
DD
are not used, this supply should preferably be shorted
DDA
voltage.
DD
is not present.
DD
Note: If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V
tolerant (refer to
Tabl e 19: Voltage characteristics).
), the internal regulator and
DDIO1
DDA
Note: V
V
20/208 DS11453 Rev 3
is the I/Os general purpose digital functions supply. V
DDIOx
= VDD.
DDIO1
represents V
DDIOx
DDIO1
, with
STM32L431xx Functional overview
MSv39205V2
Low voltage detector
V
DDA
V
DDA
domain
V
SS
V
DD
V
BAT
A/D converters Comparators D/A converters Operational amplifiers Voltage reference buffer
V
DD
domain
I/O ring
V
SSA
Reset block Temp. sensor PLL, HSI, MSI, HSI48
Standby circuitry (Wakeup logic, IWDG)
Voltage regulator
V
DDIO1
LSE crystal 32 K osc BKP registers RCC BDCR register RTC
Backup domain
Core Memories Digital peripherals
V
CORE
domain
V
CORE
Figure 2. Power supply overview
During power-up and power-down phases, the following power sequence requirements must be respected:
When VDD is below 1 V, other power supplies (V
) must remain below VDD +
DDA
300 mV.
When V
is above 1 V, all power supplies are independent.
DD
During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1
mJ; this allows external decoupling capacitors to be discharged with different time constants during the power- down transient phase.
DS11453 Rev 3 21/208
54
Functional overview STM32L431xx
MSv47490V1
0.3
1
V
BOR0
3.6
Operating modePower-on Power-down time
V
V
DDX
(1)
V
DD
Invalid supply area V
DDX
< V
DD
+ 300 mV
V
DDX
independent from V
DD
Figure 3. Power-up/down sequence
1. V
refers to V
DDX
DDA
.

3.9.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes.The device features an embedded programmable voltage detector (PVD) that monitors the V interrupt can be generated when V higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltage V peripheral is in its functional supply range.
power supply and compares it to the VPVD threshold. An
DD
DDA
is below a
DD
drops below the VPVD threshold and/or when VDD is
DD
with a fixed threshold in order to ensure that the
22/208 DS11453 Rev 3
STM32L431xx Functional overview

3.9.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the 16 Kbyte SRAM2 in Standby with SRAM2 retention.
Both regulators are in power-down in Standby and Shutdown modes: the regulator
output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The ultralow-power STM32L431xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (V
There are two power consumption ranges:
Range 1 with the CPU running at up to 80 MHz.
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
) can be adjusted according to the system’s maximum operating frequency.
CORE
limited to 26 MHz.
The V
can be supplied by the low-power regulator, the main regulator being switched
CORE
off. The system is then in Low-power run mode.
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by HSI16.

3.9.4 Low-power modes

The ultra-low-power STM32L431xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources.
DS11453 Rev 3 23/208
54
24/208 DS11453 Rev 3
Mode Regulator
(1)
Table 4. STM32L431xx modes overview
CPU Flash SRAM Clocks DMA & Peripherals
(2)
Wakeup source Consumption
(3)
Functional overview STM32L431xx
Wakeup time
Run
Yes O N
MR range2 All except RNG 84 µA/MHz
LPRun LPR Yes ON
MR range 1
MR range 1
Sleep
No ON
MR range2 All except RNG 26 µA/MHz
LPSleep LPR No ON
MR Range 1
Stop 0
No OFF ON
MR Range 2 108 µA
(4)
(4)
(4)
(4)
ON Any
ON
except
(5)
ON
(5)
ON
except
Any
PLL
Any
Any
PLL
LSE
LSI
All
97 µA/MHz
N/A
All except USB_FS, RNG N/A 94 µA/MHz
All
Any interrupt or
28 µA/MHz
event
All except USB_FS, RNG
Any interrupt or
event
29 µA/MHz 6 cycles
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1...3)
LPUART1
I2Cx (x=1...3)
(6)
(6)
(7)
LPTIMx (x=1,2)
***
All other peripherals are
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...3)
LPUART1
I2Cx (x=1...3)
(6)
(7)
LPTIMx (x=1,2)
SWPMI1
(8)
108 µA
(6)
frozen.
N/A
to Range 1: 4 µs
to Range 2: 64 µs
6 cycles
2.4 µs in SRAM
4.1 µs in Flash
DS11453 Rev 3 25/208
Table 4. STM32L431xx modes overview (continued)
Mode Regulator
Stop 1 LPR No Off ON
Stop 2 LPR No Off ON
(1)
CPU Flash SRAM Clocks DMA & Peripherals
LSE
LSI
LSE
LSI
(2)
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1,2)
DAC1
OPAMPx (x=1)
USARTx (x=1...3)
LPUART1
I2Cx (x=1...3)
(6)
(6)
(7)
LPTIMx (x=1,2)
***
All other peripherals are
frozen.
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
(7)
I2C3
LPUART1
(6)
LPTIM1
***
All other peripherals are
frozen.
Wakeup source Consumption
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
USARTx (x=1...3)
LPUART1
(6)
I2Cx (x=1...3)
4.34 µA w/o RTC
(6)
4.63 µA w RTC
(7)
LPTIMx (x=1,2)
SWPMI1
(8)
Reset pin, all I/Os
BOR, PVD, PVM
RTC, IWDG
COMPx (x=1..2)
(7)
I2C3
LPUART1
(6)
1.3 µA w/o RTC
1.4 µA w/RTC
LPTIM1
(3)
Wakeup time
6.3 µs in SRAM
7.8 µs in Flash
6.8 µs in SRAM
8.2 µs in Flash
STM32L431xx Functional overview
26/208 DS11453 Rev 3
Mode Regulator
(1)
Table 4. STM32L431xx modes overview (continued)
CPU Flash SRAM Clocks DMA & Peripherals
(2)
Wakeup source Consumption
(3)
Functional overview STM32L431xx
Wakeup time
Standby
LPR
OFF
Power ed Off
Off
SRAM
2 ON
Power
ed
Off
LSE
LSI
BOR, RTC, IWDG
***
All other peripherals are
powered off.
***
I/O configuration can be
Reset pin 5 I/Os (WKUPx) BOR, RTC, IWDG
0.20 µA w/o RTC
0.46 µA w/ RTC
(9)
0.03 µA w/o RTC
0.29 µA w/ RTC
floating, pull-up or pull-down
RTC
***
All other peripherals are
powered off.
***
Shutdown OFF
Power ed Off
Off
Power
ed
Off
LSE
I/O configuration can be
floating, pull-up or pull-
1. LPR means Main regulator is OFF and Low-power regulator is ON.
2. All peripherals can be active or clock gated to save power consumption.
3. Typical current at V LPRun/LPSleep.
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.
5. The SRAM1 and SRAM2 clocks can be gated on or off independently.
6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. SWPMI1 wakeup by resume from suspend.
9. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
10. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.
= 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in
DD
down
(10)
Reset pin
5 I/Os (WKUPx)
RTC
0.01 µA w/o RTC
(9)
0.20 µA w/ RTC
12.2 µs
262 µs
STM32L431xx Functional overview
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Low-power run mode
This mode is achieved with V
supplied by the low-power regulator to minimize the
CORE
regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the low­power run mode.
Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the V
domain are stopped, the PLL, the MSI
CORE
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the V
domain is put in a lower leakage mode.
CORE
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.
Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the V
domain is powered off. The PLL, the
CORE
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
DS11453 Rev 3 27/208
54
Functional overview STM32L431xx
Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the V
domain is powered off. The PLL, the HSI16,
CORE
the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
28/208 DS11453 Rev 3
STM32L431xx Functional overview
Table 5. Functionalities depending on the working mode
(1)
Stop 0/1 Stop 2 Standby Shutdown
Peripheral Run Sleep
Low-
power
run
Low-
power
sleep
VBAT
-
-
Wakeup capability
Wakeup capability
-
Wakeup capability
-
Wakeup capability
CPU Y - Y - - --------
Flash memory (up to 256 KB)
SRAM1 (48 KB) Y Y
SRAM2 (16 KB) Y Y
Quad SPI O O O O -
Backup Registers Y Y Y Y Y
Brown-out reset (BOR)
(2)
O
(2)
O
(3)
(3)
(2)
O
YY
YY
(2)
O
(3)
(3)
- --------
Y -Y------
Y -Y-O
(4)
----
--------
-Y-Y-Y-Y
YYYYYYYYYY- --
Programmable Voltage Detector
OOOOO
OOO- ----
(PVD)
Peripheral Voltage Monitor (PVMx;
OOOOO
OOO- ----
x=1,3,4)
DMA OOOO-
--------
High Speed Internal (HSI16)
OOOO
(5)
(5)
-
------
Oscillator RC48 O O - - - --------
High Speed External (HSE)
Low Speed Internal (LSI)
Low Speed External (LSE)
Multi-Speed Internal (MSI)
Clock Security System (CSS)
Clock Security System on LSE
OOOO-
OOOOO
OOOOO
OOOO-
OOOO-
OOOOO
--------
-O-O----
-O-O-O-O
--------
--------
OOOOO- --
RTC / Auto wakeup O O O O O OOOOOOOO
Number of RTC Tamper pins
USARTx (x=1,2,3) O O O O O
33333O3O3O3O3
(6)O(6)
- ------
DS11453 Rev 3 29/208
54
Functional overview STM32L431xx
Table 5. Functionalities depending on the working mode
Stop 0/1 Stop 2 Standby Shutdown
Low-
Peripheral Run Sleep
power
run
Low-power UART (LPUART)
OOOOO
I2Cx (x=1,2) O O O O O
I2C3 OOOOO
SPIx (x=1,2,3) O O O O -
CAN OOOO-
SDMMC1 O O O O -
SWPMI1 OOOO-
SAIx (x=1) O O O O -
ADCx (x=1) O O O O -
DAC1 O O O O O
Low-
power
sleep
-
(6)O(6)O(6)O(6)
(7)O(7)
(7)O(7)O(7)O(7)
--------
--------
--------
O- ------
--------
--------
--------
(1)
(continued)
-
Wakeup capability
Wakeup capability
-
Wakeup capability
-
Wakeup capability
- ----
- ------
- ----
VBAT
VREFBUF O O O O O
OPAMPx (x=1) O O O O O
COMPx (x=1,2) O O O O O
Temperature sensor O O O O -
Timers (TIMx) O O O O -
Low-power timer 1 (LPTIM1)
Low-power timer 2 (LPTIM2)
Independent watchdog (IWDG)
Window watchdog (WWDG)
OOOOO
OOOOO
OOOOO
OOOO-
--------
--------
OOO- ----
--------
--------
OOO- ----
O- ------
OOOOO- --
--------
SysTick timer O O O O - --------
Touch sensing controller (TSC)
Random number generator (RNG)
OOOO-
(8)
O
(8)
O
-----------
--------
CRC calculation unit O O O O - --------
GPIOs OOOOO
OOO
(9)
5
pins
(10)
(11)
5
pins
(10)
-
30/208 DS11453 Rev 3
STM32L431xx Functional overview
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.
3. The SRAM clock can be gated on or off.
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling Range 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

3.9.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is “analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.9.6 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from V
when no external battery and an external supercapacitor are
DD
present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti­tamper detection pins are available in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is present.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.

3.10 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run and sleep, Stop 0, Stop 1 and Stop 2 modes.
DS11453 Rev 3 31/208
54
Functional overview STM32L431xx

Table 6. STM32L431xx peripherals interconnect matrix

Interconnect source
Interconnect
destination
Interconnect action
Run
Sleep
Low-power run
Stop 0 / Stop 1
Low-power sleep
TIMx Timers synchronization or chaining Y Y Y Y - -
TIMx
ADCx DAC1
Conversion triggers Y Y Y Y - -
DMA Memory to memory transfer trigger Y Y Y Y - -
COMPx Comparator output blanking Y Y Y Y - -
TIM15/TIM16 IRTIM Infrared interface output generation Y Y Y Y - -
TIM1 TIM2
Timer input channel, trigger, break from analog signals comparison
YYYY - -
COMPx
LPTIMERx
Low-power timer triggered by analog signals comparison
YYYYY
ADCx TIM1 Timer triggered by analog watchdog Y Y Y Y - -
TIM16 Timer input channel from RTC events Y Y Y Y - -
RTC
LPTIMERx
Low-power timer triggered by RTC alarms or tampers
YYYYY
Stop 2
Y
(1)
Y
(1)
All clocks sources (internal and external)
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD
GPIO
1. LPTIM1 only.
TIM2 TIM15, 16
TIM1 TIM15,16
Clock source used as input channel for RC measurement and trimming
YYYY - -
Timer break Y Y Y Y - -
TIMx External trigger Y Y Y Y - -
LPTIMERx External trigger Y Y Y Y Y
ADCx DAC1
Conversion external trigger Y Y Y Y - -
(1)
Y
32/208 DS11453 Rev 3
STM32L431xx Functional overview

3.11 Clocks and startup

The clock controller (see Figure 4) distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply
a PLL. The HSE can also be configured in bypass mode for an external clock.
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be automatically trimmed by hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency
at 80 MHz.
RC48 with clock recovery system (HSI48): internal RC48 MHz clock source can be
used to drive the SDMMC or the RNG peripherals. This clock can be output on the MCO.
Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the real-time clock:
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5% accuracy.
Peripheral clock sources: Several peripherals (SDMMC, RNG, SAI, USARTs, I2Cs,
LPTimers, ADC, SWPMI) have their own independent clock whatever the system clock. Two PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, the SDMMC/RNG and the SAI.
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI16 and a software
DS11453 Rev 3 33/208
54
Functional overview STM32L431xx
interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt.
Clock-out capability:
MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSI, LSE) are available down to Stop 1 low power state.
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes
down to Standby mode. LSE can also be output on LSCO in Shutdown mode. LSCO is not available in VBAT mode.
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 80 MHz.
34/208 DS11453 Rev 3
STM32L431xx Functional overview
MSv39206V3
SYSCLK
MCO
LSCO
48 MHz clock to RNG, SDMMC
to ADC
to IWDG
to RTC
to PWR
HCLK
to AHB bus, core, memory and DMA
FCLK Cortex free running clock
to Cortex system timer
to APB1 peripherals
to APB2 peripherals
PCLK1
PCLK2
to SAI1
LSE
HSI16
SYSCLK
to USARTx
x=2..3
to LPUART1
to I2Cx x=1,2,3
to LPTIMx
x=1,2
SAI1_EXTCLK
to SWPMI
to TIMx x=2,6,7
OSC32_OUT
OSC32_IN
MSI
HSI16
HSE
HSI16
LSI
LSE
HSE
SYSCLK
HSE
MSI
HSI16
MSI
SYSCLK
LSE OSC
32.768 kHz
/32
AHB PRESC
/ 1,2,..512
/ 8
APB1 PRESC / 1,2,4,8,16
x1 or x2
HSI16
SYSCLK
LSI
LSE
HSI16
HSI16
APB2 PRESC / 1,2,4,8,16
to TIMx
x=1,15,16
x1 or x2
to USART1
LSE
HSI16
SYSCLK
/ M
MSI RC
100 kHz – 48 MHz
HSI RC
16 MHz
HSE OSC
4-48 MHz
Clock
detector
OSC_OUT
OSC_IN
/ 1→16
LSI RC 32 kHz
Clock source control
PLLSAI1CLK
PLL48M1CLK
PLLCLK
PLLSAI2CLK
PLL48M2CLK
PLLADC1CLK
HSI16
HSI16
HSI RC 48 MHz
HSI48
CRS
PLL
PLLSAI1
VCO
F
VCO
/ P
/ R
/ Q
/ P
/ Q
/ R
VCO
F
VCO
PLLCLK
MSI

Figure 4. Clock tree

DS11453 Rev 3 35/208
54
Functional overview STM32L431xx

3.12 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.13 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to Tab le 7: DMA implementation for the features implementation.
Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.
The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests.
The DMA supports:
14 independently configurable channels (requests)
Each channel is connected to dedicated hardware DMA requests, software trigger is
also supported on each channel. This configuration is done by software.
Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, etc.)
Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
Support for circular buffer management
3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel
Memory-to-memory transfer
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers
Access to Flash, SRAM, APB and AHB peripherals as source and destination
Programmable number of data to be transferred: up to 65536.
DMA features DMA1 DMA2

Table 7. DMA implementation

Number of regular channels 7 7
36/208 DS11453 Rev 3
STM32L431xx Functional overview

3.14 Interrupts and events

3.14.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 67 maskable interrupt channels plus the 16 interrupt lines of the Cortex M4.
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.14.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 37 edge detector lines used to generate interrupt/event requests and wake-up the system from Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 83 GPIOs can be connected to the 16 external interrupt lines.
®
-
DS11453 Rev 3 37/208
54
Functional overview STM32L431xx

3.15 Analog to digital converter (ADC)

The device embeds a successive approximation analog-to-digital converter with the following features:
12-bit native resolution, with built-in calibration
5.33 Msps maximum conversion rate with full resolution
Down to 18.75 ns sampling time
Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit
resolution)
Up to 16 external channels.
5 internal channels: internal reference voltage, temperature sensor, VBAT/3,
DAC1_OUT1 and DAC1_OUT2.
One external reference pin is available on some package, allowing the input voltage range to be independent from the power supply
Single-ended and differential mode inputs
Low-power design
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
ADC supports multiple trigger inputs for synchronization with on-chip timers and
external signals
Results stored into data register or in RAM with DMA controller support
Data pre-processing: left/right alignment and per channel offset compensation
Built-in oversampling unit for enhanced SNR
Channel-wise programmable sampling time
Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers
Hardware assistant to prepare the context of the injected channels to allow fast
context switching

3.15.1 Temperature sensor

The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 input channel which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.
38/208 DS11453 Rev 3
STM32L431xx Functional overview
Calibration value name Description Memory address
TS_CAL1
TS_CAL2
Table 8. Temperature sensor calibration values
TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), V
DDA
TS ADC raw data acquired at a temperature of 130 °C (± 5 °C), V
DDA
3.15.2 Internal voltage reference (V
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.
Calibration value name Description Memory address
Table 9. Internal voltage reference calibration values
Raw data acquired at a
VREFINT
temperature of 30 °C (± 5 °C), V
DDA
= V
REF+
= V
REF+
REFINT
= V
REF+
0x1FFF 75A8 - 0x1FFF 75A9
= 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
= 3.0 V (± 10 mV)
)
0x1FFF 75AA - 0x1FFF 75AB
= 3.0 V (± 10 mV)
3.15.3 V
battery voltage monitoring
BAT
This embedded hardware feature allows the application to measure the V using the internal ADC channel ADC1_IN18. As the V and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third the V

3.16 Digital to analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
battery voltage
voltage may be higher than V
BAT
BAT
BAT
DDA
voltage.
,
DS11453 Rev 3 39/208
54
Functional overview STM32L431xx
MSv40197V1
VREFBUF
Low frequency cut-off capacitor
DAC, ADC
Bandgap +
V
DDA
-
100 nF
VREF+
This digital interface supports the following features:
Up to two DAC output channels
8-bit or 12-bit output mode
Buffer offset calibration (factory and user trimming)
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability for each channel
External triggers for conversion
Sample and hold low-power mode, with internal or external capacitor
The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.17 Voltage reference buffer (VREFBUF)

The STM32L431xx devices embed an voltage reference buffer which can be used as voltage reference for ADCs, DAC and also as voltage reference for external components through the VREF+ pin.
The internal voltage reference buffer supports two voltages:
2.048 V
2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.
The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

Figure 5. Voltage reference buffer

40/208 DS11453 Rev 3
STM32L431xx Functional overview

3.18 Comparators (COMP)

The STM32L431xx devices embed two rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output channels
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.19 Operational amplifier (OPAMP)

The STM32L431xx embeds one operational amplifier with external or internal follower routing and PGA capability.
The operational amplifier features:
Low input bias current
Low offset voltage
Low-power mode
Rail-to-rail input

3.20 Touch sensing controller (TSC)

The touch sensing controller provides a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.
DS11453 Rev 3 41/208
54
Functional overview STM32L431xx
The main features of the touch sensing controller are the following:
Proven and robust surface charge transfer acquisition principle
Supports up to 21 capacitive sensing channels
Up to 3 capacitive sensing channels can be acquired in parallel offering a very good
response time
Spread spectrum feature to improve system robustness in noisy environments
Full hardware management of the charge transfer acquisition sequence
Programmable charge transfer frequency
Programmable sampling capacitor I/O pin
Programmable channel I/O pin
Programmable max count value to avoid long acquisition when a channel is faulty
Dedicated end of acquisition and max count error flags with interrupt capability
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system
components
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
Designed to operate with STMTouch touch sensing firmware library
Note: The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.

3.21 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.22 Timers and watchdogs

The STM32L431xx includes one advanced control timers, up to five general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.
Timer type Timer
Advanced
control
General-
purpose
General-
purpose
TIM1 16-bit
TIM2 32-bit
TIM15 16-bit Up
Table 10. Timer feature comparison
Counter
resolution
Counter
type
Up, down,
Up/down
Up, down,
Up/down
Prescaler
factor
Any integer
between 1
and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
DMA
request
generation
Yes 4 3
Yes 4 No
Yes 2 1
Capture/ compare
channels
Complementary
outputs
42/208 DS11453 Rev 3
STM32L431xx Functional overview
Table 10. Timer feature comparison (continued)
Timer type Timer
General-
purpose
Basic TIM6, TIM7 16-bit Up
TIM16 16-bit Up
Counter
resolution
Counter
type

3.22.1 Advanced-control timer (TIM1)

The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead­times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.
Prescaler
factor
Any integer
between 1 and 65536
Any integer
between 1 and 65536
DMA
request
generation
Yes 1 1
Yes 0 No
Capture/ compare
channels
Complementary
outputs
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.22.2) using the same architecture, so the advanced-control timer can work
together with the TIMx timers via the Timer Link feature for synchronization or event chaining.
DS11453 Rev 3 43/208
54
Functional overview STM32L431xx

3.22.2 General-purpose timers (TIM2, TIM15, TIM16)

There are up to three synchronizable general-purpose timers embedded in the STM32L431xx (see generate PWM outputs, or act as a simple time base.
TIM2
It is a full-featured general-purpose timer:
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.
This timer features 4 independent channels for input capture/output compare, PWM or one-pulse mode output. It can work with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.
The counter can be frozen in debug mode.
It has independent DMA request generation and support quadrature encoder.
TIM15 and 16
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
TIM15 has 2 channels and 1 complementary channel
TIM16 has 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode output.
The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
Tabl e 10 for differences). Each general-purpose timer can be used to

3.22.3 Basic timers (TIM6 and TIM7)

The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases.

3.22.4 Low-power timer (LPTIM1 and LPTIM2)

The devices embed two low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wakeup the system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 is active in Stop 0 and Stop 1 mode.
44/208 DS11453 Rev 3
STM32L431xx Functional overview
This low-power timer supports the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous/ one shot mode
Selectable software/hardware input trigger
Selectable clock source
Internal clock sources: LSE, LSI, HSI16 or APB clock
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
Programmable digital glitch filter
Encoder mode (LPTIM1 only)

3.22.5 Infrared interface (IRTIM)

The STM32L431xx includes one infrared interface (IRTIM). It can be used with an infrared LED to perform remote control functions. It uses TIM15 and TIM16 output channels to generate output signal waveforms on IR_OUT pin.

3.22.6 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.
kHz internal RC (LSI) and as it operates independently

3.22.7 System window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.22.8 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
DS11453 Rev 3 45/208
54
Functional overview STM32L431xx

3.23 Real-time clock (RTC) and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
Three anti-tamper detection pins with programmable filter.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode.
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.
The RTC and the 32 backup registers are supplied through a switch that takes power either from the V
supply when present or from the VBAT pin.
DD
The backup registers are 32-bit registers used to store 128 bytes of user application data when V
power is not present. They are not reset by a system or power reset, or when the
DD
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
A 32.768 kHz external crystal (LSE)
An external resonator or oscillator (LSE)
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.
46/208 DS11453 Rev 3
STM32L431xx Functional overview

3.24 Inter-integrated circuit interface (I2C)

The device embeds three I2C. Refer to Table 11: I2C implementation for the features implementation.
The I2C bus interface handles communications between the microcontroller and the serial
2
I
C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
I2C-bus specification and user manual rev. 5 compatibility:
Slave and master modes, multimaster capability
Standard-mode (Sm), with a bitrate up to 100 kbit/s
Fast-mode (Fm), with a bitrate up to 400 kbit/s
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
Programmable setup and hold times
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (Packet Error Checking) generation and verification with ACK
control
Address resolution protocol (ARP) support
SMBus alert
Power System Management Protocol (PMBus
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 4: Clock tree.
Wakeup from Stop mode on address match
Programmable analog and digital noise filters
1-byte buffer with DMA capability
I2C features

Table 11. I2C implementation

(1)
TM
) specification rev 1.1 compatibility
I2C1 I2C2 I2C3
Standard-mode (up to 100 kbit/s) X X X
Fast-mode (up to 400 kbit/s) X X X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X X
Programmable analog and digital noise filters X X X
SMBus/PMBus hardware support X X X
Independent clock X X X
Wakeup from Stop 0 / Stop 1 mode on address match X X X
Wakeup from Stop 2 mode on address match - - X
1. X: supported
DS11453 Rev 3 47/208
54
Functional overview STM32L431xx

3.25 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32L431xx devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. They provide hardware management of the CTS and RTS signals, and RS485 Driver Enable. They are able to communicate at speeds of up to 10Mbit/s.
USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and SPI-like communication capability.
All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2,3) to wake up the MCU from Stop mode using baudrates up to 204 up events from Stop mode are programmable and can be:
Start bit detection
Any received data frame
A specific programmed data frame
All USART interfaces can be served by the DMA controller.
USART modes/features

Table 12. STM32L431xx USART/LPUART features

(1)
USART1 USART2 USART3 LPUART1
Kbaud. The wake
Hardware flow control for modem X X X X
Continuous communication using DMA X X X X
Multiprocessor communication X X X X
Synchronous mode X X X -
Smartcard mode X X X -
Single-wire half-duplex communication X X X X
IrDA SIR ENDEC block X X X -
LIN mode X X X -
Dual clock domain X X X X
Wakeup from Stop 0 / Stop 1 modes X X X X
Wakeup from Stop 2 mode - - - X
Receiver timeout interrupt X X X -
Modbus communication X X X -
Auto baud rate detection X (4 modes) -
Driver Enable X X X X
LPUART/USART data length 7, 8 and 9 bits
1. X = supported.
48/208 DS11453 Rev 3
STM32L431xx Functional overview

3.26 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 mode are programmable and can be:
Start bit detection
Any received data frame
A specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.
LPUART interface can be served by the DMA controller.
Kbaud. The wake up events from Stop
DS11453 Rev 3 49/208
54
Functional overview STM32L431xx

3.27 Serial peripheral interface (SPI)

Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.
All SPI interfaces can be served by the DMA controller.

3.28 Serial audio interfaces (SAI)

The device embeds 1 SAI. Refer to Tab le 13: SAI implementation for the features implementation. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.
The SAI peripheral supports:
Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
8-word integrated FIFOs for each audio sub-block.
Synchronous or asynchronous mode between the audio sub-blocks.
Master or slave configuration independent for both audio sub-blocks.
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
Peripheral with large configurability and flexibility allowing to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF out.
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
Number of bits by frame may be configurable.
Frame synchronization active level configurable (offset, bit length, level).
First active bit position in the slot is configurable.
LSB first or MSB first for data transfer.
Mute mode.
Stereo/Mono audio frame capability.
Communication clock strobing edge configurable (SCK).
Error flags with associated interrupts if enabled respectively.
Overrun and underrun detection.
Anticipated frame synchronization signal detection in slave mode.
Late frame synchronization signal detection in slave mode.
Codec not ready for the AC’97 mode in reception.
Interruption sources when enabled:
–Errors.
FIFO requests.
DMA interface with 2 dedicated channels to handle access to the dedicated integrated
FIFO of each SAI audio sub-block.
50/208 DS11453 Rev 3
STM32L431xx Functional overview
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 X
Mute mode X
Stereo/Mono audio frame capability. X
16 slots X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X
FIFO Size X (8 Word)
SPDIF X
1. X: supported

Table 13. SAI implementation

SAI features Support

3.29 Single wire protocol master interface (SWPMI)

The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are:
full-duplex communication mode
automatic SWP bus state management (active, suspend, resume)
configurable bitrate up to 2 Mbit/s
automatic SOF, EOF and CRC handling
(1)
SWPMI can be served by the DMA controller.

3.30 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.
DS11453 Rev 3 51/208
54
Functional overview STM32L431xx
The CAN peripheral supports:
Supports CAN protocol version 2.0 A, B Active
Bit rates up to 1 Mbit/s
Transmission
Three transmit mailboxes
Configurable transmit priority
Reception
Two receive FIFOs with three stages
14 Scalable filter banks
Identifier list feature
Configurable FIFO overrun
Time-triggered communication option
Disable automatic retransmission mode
16-bit free running timer
Time Stamp sent in last two data bytes
Management
Maskable interrupts
Software-efficient mailbox mapping at a unique address space

3.31 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The card host interface (SDMMC) provides an interface between the APB peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.
The SDMMC features include the following:
Full compliance with MultiMediaCard System Specification Version 4.2. Card support
for three different databus modes: 1-bit (default), 4-bit and 8-bit
Full compatibility with previous versions of MultiMediaCards (forward compatibility)
Full compliance with SD Memory Card Specifications Version 2.0
Full compliance with SD I/O Card Specification Version 2.0: card support for two
different databus modes: 1-bit (default) and 4-bit
Data transfer up to 48 MHz for the 8 bit mode
Data write and read with DMA capability

3.32 Clock recovery system (CRS)

The STM32L431xx devices embed a special block which allows automatic trimming of the internal 48 operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.
MHz oscillator to guarantee its optimal accuracy over the whole device
52/208 DS11453 Rev 3
STM32L431xx Functional overview

3.33 Quad SPI memory interface (QUADSPI)

The Quad SPI is a specialized communication interface targeting single, dual or quad SPI flash memories. It can operate in any of the three following modes:
Indirect mode: all the operations are performed using the QUADSPI registers
Status polling mode: the external flash status register is periodically read and an
interrupt can be generated in case of flag setting
Memory-mapped mode: the external Flash is memory mapped and is seen by the
system as if it were an internal memory
Both throughput and capacity can be increased two-fold using dual-flash mode, where two Quad SPI flash memories are accessed simultaneously.
The Quad SPI interface supports:
Three functional modes: indirect, status-polling, and memory-mapped
Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two
flash memories in parallel.
SDR and DDR support
Fully programmable opcode for both indirect and memory mapped mode
Fully programmable frame format for both indirect and memory mapped mode
Each of the 5 following phases can be configured independently (enable, length,
single/dual/quad communication)
Instruction phase
Address phase
Alternate bytes phase
Dummy cycles phase
Data phase
Integrated FIFO for reception and transmission
8, 16, and 32-bit data accesses are allowed
DMA channel for indirect mode operations
Programmable masking for external flash flag management
Timeout management
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
DS11453 Rev 3 53/208
54
Functional overview STM32L431xx

3.34 Development support

3.34.1 Serial wire JTAG debug port (SWJ-DP)

The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.34.2 Embedded Trace Macrocell™

The Arm® Embedded Trace Macrocell™ provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32L431xx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell™ operates with third party debugger software tools.
54/208 DS11453 Rev 3
STM32L431xx Pinouts and pin description
MSv39214V2
LQFP100
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
9
11
4
6
8
1
2
3
5
7
VSS
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREF-
VREF+
VDDA
PA0
PA1
PA2
PC15-OSC32_OUT
VDD
PE5
VBAT
PC14-OSC32_IN
PE2
PE3
PE4
PE6
PC13
66
64
63
62
61
60
59
58
57
56
55
54
53
52
51
67
65
72
70
68
75
74
73
71
69
91
89888786858483828180797877
76
92
90
97
95
93
100
99
98
96
94
35
37383940414243444546474849
50
34
36
29
31
33
262728
30
32
PA3
VSS
PA5
PC4
PB2
VDD
PA4
PC5
PE8
PE11
PA6
PA7
PE9
PE12
PE15
PB0
PB1
PE13
PB10
VSS
PE7
PE10
PE14
PB11
VDD
PC9
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PA8
PC8
PA13
PA11
PA9
VDD
VSS
VDD
PA12
PA10
VDD
VSS
PB9
PB7
PB3
PE1
PE0
PB6
PD6
PD3
PB8
PH3/BOOT0
PD5
PD2
PC12
PB5
PB4
PD1
PC11
PA15
PD7
PD4
PD0
PC10
PA14

4 Pinouts and pin description

Figure 6. STM32L431Vx LQFP100 pinout
(1)
1. The above figure shows the package top view.
DS11453 Rev 3 55/208
83
Pinouts and pin description STM32L431xx
MSv39213V2
PE3 PE1 PB8 PH3/BOOT0 PD7 PD5 PB4 PB3 PA15 PA14 PA13 PA12
123456789101112
A
B
C
D
E
F
G
H
J
K
L
M
PE4 PE2 PB9 PB7 PB6 PD6 PD4 PD3 PD1 PC12 PC10 PA 11
PC13 PE5 PE0 VDD PB5 PD2 PD0 PC11 VDD PA10
PC14-
OSC32_IN
PE6 VSS PA9 PA 8 PC9
PC15-
OSC32_OUT
VBAT VSS PC8 PC7 PC6
PH0-OSC_IN VSS VSS VSS
PH1-
OSC_OUT
VDD VDD VDD
PC0 NRST VDD PD15 PD14 PD13
VSSA PC1 PC2 PD12 PD11 PD10
VREF- PC3 PA2 PA5 PC4 PD9 PD8 PB15 PB14 PB13
VREF+ PA0 PA 3 PA6 PC5 PB2 PE8 PE10 PE12 PB10 PB11 PB12
VDDA PA1 PA4 PA 7 PB0 PB1 PE7 PE9 PE11 PE13 PE14 PE15
UFBGA100
MSv39212V2
LQFP64
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
PC13
48
46
45
44
43
42
41
40
39
38
37
36
35
34
33
47
55
5352515049
56
54
61
59
57
646362
60
58
26
2829303132
25
27
20
22
24
171819
21
23
PA3
VSS
PA5
PC4
PB2
VDD
PA4
PC5
PB11
PA6
PA7
VSS
PB0
PB1
PB10
VDD
VDD
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
VSS
VDD
VSS
PH3/BOOT0
PB5
PC12
PB9
PB8
PB4
PC10
PB7
PB6
PA15
PB3
PD2
PC11
PA14
Figure 7. STM32L431Vx UFBGA100 ballout
1. The above figure shows the package top view.
Figure 8. STM32L431Rx LQFP64 pinout
(1)
(1)
56/208 DS11453 Rev 3
1. The above figure shows the package top view.
STM32L431xx Pinouts and pin description
MSv39211V2
PC14-
OSC32_IN
PC13 PB9 PB4 PB3 PA15 PA14 PA13
12345678
A
B
C
D
E
F
G
H
PC15-
OSC32_OUT
VBAT PB8 PH3/BOOT0 PD2 PC11 PC10 PA12
PH0-OSC_IN VSS PB7 PB5 PC12 PA11
PH1-
OSC_OUT
VDD PB6
NRST PC1 PC0
VSSA/VREF- PC2
PC3 PA 0
VDDA/VREF+ PA1 PA 4
PA3
PA2
PC4
PB1
PB0
VDD
VSS
PA7
PA6
PA5
VDD
VSS
PB11
PB10
PB15
PC7
PA8
PC5
PB2
PC6
VDD
VSS
PA10 PA9
PB12
PB13
PB14
PC8
PC9
MSv39210V2
VDD PA15 PC12 PD2 PB3 PB7 VSS VDD
12345678
A
B
C
D
E
F
G
H
VSS PA14 PC11 PB4 PB6 PB9 VBAT PC13
PA12 PA13 PC10 PB5 PH3/BOOT0
PC14-
OSC32_IN
PA9 PA10 PA 11
PC7 PC9 PA8
PC6 PB15
PB14 PB13
VDD VSS PB11
PB12
PC8
PB1
PA6
PA5
PA4
PC0
PB10
PB2
PB0
PC5
PC4
VDD
PA1
PA0
PC2
PH1-
OSC_OUT
PA7
PA3
PA2
PC3
NRST
PB8
PC15-
OSC32_OUT
VSS
VDDA/VREF+
VSSA/VREF-
PC1
PH0-OSC_IN
MSv39209V2
VDD PA14 PB3 PB4 PH3/BOOT0 VSS VDD
1234567
A
B
C
D
E
F
G
VSS PA13 PA15 PB5 PB8 VBAT PC13
PA11 PA10 PA12 PB6 PB9
PA8 PA 9 PB15
PB14 PB13 PB10
PB12 PB11
VDD VSS PB2
PA7
PB0
PA5
PA2
NRST
PB1
PA6
PA3
PB7
PA1
VDDA/VREF+
VSSA/VREF-
PH0-OSC_IN
PA4
PA0
PC3
PH1-
OSC_OUT
PC15-
OSC32_OUT
PC14-
OSC32_IN
Figure 9. STM32L431Rx UFBGA64 ballout
1. The above figure shows the package top view.
Figure 10. STM32L431Rx WLCSP64 pinout
(1)
(1)
1. The above figure shows the package top view.
Figure 11. STM32L431Cx WLCSP49 pinout
1. The above figure shows the package top view.
DS11453 Rev 3 57/208
(1)
83
Pinouts and pin description STM32L431xx
MSv39208V2
LQFP48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
36
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19
PA3
PA4
PA7
PB2
VDD
PA5
PA6
PB10
PB0
PB1
PB11
VSS
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PH3/BOOT0
PB5
PA14
PB9
PB8
PB4
PB7
PB6
PB3
PA15
MSv39207V2
UFQFPN48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA/VREF-
VDDA/VREF+
PA0
PA1
PA2
36
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19
PA3
PA4
PA7
PB2
VDD
PA5
PA6
PB10
PB0
PB1
PB11
VSS
VDD
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PH3/BOOT0
PB5
PA14
PB9
PB8
PB4
PB7
PB6
PB3
PA15
Figure 12. STM32L431Cx LQFP48 pinout
1. The above figure shows the package top view.
Figure 13. STM32L431Cx UFQFPN48 pinout
(1)
(1)
1. The above figure shows the package top view.
58/208 DS11453 Rev 3
STM32L431xx Pinouts and pin description
MSv37605V2
UFQFPN32
1
2
3
4
5
6
7
8
VDD
PC14-OSC32_IN
PC15-OSC32_OUT
NRST
VDDA/VREF+
PA0/CK_IN
PA1
PA2
24
23
22
21
20
19
18
17
29
27
25
323130
28
26
12
14
16
91011
13
15
PA3
PA4
PA7
VSS
PA5
PA6
PB0
PB1
PA14
PA13
PA12
PA11
PA10
PA9
PA8
VDD
VSS
PH3/BOOT0
PB5
PA15
PB7
PB6
PB4
PB3
Figure 14. STM32L431Kx UFQFPN32 pinout
1. The above figure shows the package top view.
Name Abbreviation Definition
Pin name
Pin type

Table 14. Legend/abbreviations used in the pinout table

Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name
S Supply pin
I Input only pin
(1)
I/O Input / output pin
FT 5 V tolerant I/O
TT 3.6 V tolerant I/O
RST Bidirectional reset pin with embedded weak pull-up resistor
I/O structure
Option for TT or FT I/Os
(1)
_f
_a
(2)
I/O, Fm+ capable
I/O, with Analog switch function supplied by V
Notes Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Alternate
Pin
functions
functions
Additional
functions
1. The related I/O structures in Table 15 are: FT_f, FT_fa.
2. The related I/O structures in Table 15 are: FT_a, FT_fa, TT_a.
Functions selected through GPIOx_AFR registers
Functions directly selected/enabled through peripheral registers
DS11453 Rev 3 59/208
DDA
83
Pinouts and pin description STM32L431xx
Pin Number
Table 15. STM32L431xx pin definitions
Pin functions
Pin name
(function
Additional
functions
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
after
reset)
Pin type
LQFP64
UFBGA64
LQFP100
UFBGA100
I/O structure
Alternate functions
Notes
TRACECK,
--- - - - - 1 B2 PE2 I/O FT -
TSC_G7_IO1,
SAI1_MCLK_A,
EVENTOUT
TRACED0,
--- - - - - 2 A1 PE3 I/O FT -
TSC_G7_IO2,
SAI1_SD_B, EVENTOUT
TRACED1,
--- - - - - 3 B1 PE4 I/O FT -
TSC_G7_IO3,
SAI1_FS_A, EVENTOUT
TRACED2,
--- - - - - 4 C2 PE5 I/O FT -
TSC_G7_IO4, SAI1_SCK_A,
EVENTOUT
--- - - - - 5 D2 PE6 I/O FT -
TRACED3, SAI1_SD_A,
EVENTOUT
RTC_TAMP3,
WKUP3
- 1 1 B6 B7 1 B2 6 E2 VBAT S - - - -
RTC_TAMP1,
RTC_TS,
RTC_OUT,
- 2 2B7B82A2 7 C1 PC13 I/O FT
(1)
(2)
EVENTOUT
WKUP2
-
-
-
-
2 3 3 C7 C8 3 A1 8 D1
PC14-
OSC32_I
I/O FT
(1)
(2)
EVENTOUT OSC32_IN
N (PC14)
3 4 4 C6 C7 4 B1 9 E1
PC15-
OSC32_
OUT
I/O FT
(1)
(2)
EVENTOUT OSC32_OUT
(PC15)
--- - - - - 10F2 VSS S - - - -
--- - - - - 11G2 VDD S - - - -
PH0-
- 5 5D7D85C112 F1
OSC_
I/O FT - EVENTOUT OSC_IN
IN (PH0)
PH1-
- 6 6D6D76D113 G1
OSC_
OUT
I/O FT - EVENTOUT OSC_OUT
(PH1)
4 7 7 D5 D6 7 E1 14 H2 NRST I/O RST - - -
60/208 DS11453 Rev 3
STM32L431xx Pinouts and pin description
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Notes
--- -D58E315H1 PC0 I/OFT_fa-
--- -E89E216J2 PC1 I/OFT_fa-
Alternate functions
LPTIM1_IN1, I2C3_SCL,
LPUART1_RX,
LPTIM2_IN1,
LPTIM1_OUT,
LPUART1_TX,
Pin functions
EVENTOUT
I2C3_SDA,
EVENTOUT
Additional
functions
ADC1_IN1
ADC1_IN2
--- -E710F217J3 PC2 I/OFT_a-
LPTIM1_IN2,
SPI2_MISO, EVENTOUT
ADC1_IN3
LPTIM1_ETR,
- - - E6 E6 11 G1 18 K2 PC3 I/O FT_a -
SPI2_MOSI, SAI1_SD_A,
LPTIM2_ETR,
ADC1_IN4
EVENTOUT
- - - - - - - 19 J1 VSSA S - - - -
- - - - - - - 20 K1 VREF- S - - - -
-88E7F812F1 - -
- - - - - - - 21 L1 VREF+ S - - -
VSSA/ VREF-
S-- - -
VREFBUF_
OUT
--- - - - - 22M1 VDDA S - - - -
599F7G813H1 - -
- 1010F6 F714G2 23 L2 PA0 I/O FT_a -
VDDA/
VREF+
S-- - -
TIM2_CH1,
USART2_CTS,
COMP1_OUT,
SAI1_EXTCLK,
TIM2_ETR, EVENTOUT
OPAMP1_
VINP,
COMP1_INM,
ADC1_IN5,
RTC_TAMP2,
WKUP1
OPAMP1_
6--- --- - -
PA0 /
CK_IN
I/O FT_a -
TIM2_CH1,
USART2_CTS,
COMP1_OUT,
SAI1_EXTCLK,
TIM2_ETR, EVENTOUT
VINP,
COMP1_INM,
ADC1_IN5,
RTC_TAMP2,
WKUP1,
CK_IN
71111G7G715H224 M2 PA1 I/O FT_a -
TIM2_CH2, I2C1_SMBA,
SPI1_SCK,
USART2_RTS_DE,
TIM15_CH1N,
EVENTOUT
OPAMP1_
VINM,
COMP1_INP,
ADC1_IN6
DS11453 Rev 3 61/208
83
Pinouts and pin description STM32L431xx
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
81212E5F616F3 25 K3 PA2 I/O FT_a -
I/O structure
Alternate functions
Notes
TIM2_CH3, USART2_TX,
LPUART1_TX,
QUADSPI_BK1_NCS,
COMP2_OUT,
TIM15_CH1, EVENTOUT
Pin functions
Additional
functions
COMP2_INM,
ADC1_IN7,
WKUP4,
LSCO
TIM2_CH4, USART2_RX,
LPUART1_RX,
91313E4G617G326 L3 PA3 I/O TT_a -
--- -H818C227E3 VSS S - - - -
--- -H719D228H3 VDD S - - - -
10 14 14 G6 E5 20 H3 29 M3 PA4 I/O TT_a -
11 15 15 F5 F5 21 F4 30 K4 PA5 I/O TT_a -
12 16 16 F4 G5 22 G4 31 L4 PA6 I/O FT_a -
13 17 17 F3 H6 23 H4 32 M4 PA7 I/O FT_fa -
--- -D424H533K5 PC4 I/OFT_a-
--- -E425H634L5 PC5 I/OFT_a-
QUADSPI_CLK,
SAI1_MCLK_A,
TIM15_CH2, EVENTOUT
SPI1_NSS, SPI3_NSS,
USART2_CK,
SAI1_FS_B,
LPTIM2_OUT,
EVENTOUT
TIM2_CH1, TIM2_ETR,
SPI1_SCK,
LPTIM2_ETR,
EVENTOUT
TIM1_BKIN, SPI1_MISO,
COMP1_OUT,
USART3_CTS,
LPUART1_CTS,
QUADSPI_BK1_IO3,
TIM1_BKIN_COMP2,
TIM16_CH1, EVENTOUT
TIM1_CH1N, I2C3_SCL,
SPI1_MOSI,
QUADSPI_BK1_IO2,
COMP2_OUT,
EVENTOUT
USART3_TX,
EVENTOUT
USART3_RX,
EVENTOUT
OPAMP1_
VOUT,
COMP2_INP,
ADC1_IN8
COMP1_INM, COMP2_INM,
ADC1_IN9,
DAC1_OUT1
COMP1_INM, COMP2_INM,
ADC1_IN10,
DAC1_OUT2
ADC1_IN11
ADC1_IN12
COMP1_INM,
ADC1_IN13
COMP1_INP,
ADC1_IN14,
WKUP5
62/208 DS11453 Rev 3
STM32L431xx Pinouts and pin description
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
I/O structure
14 18 18 G5 F4 26 F5 35 M5 PB0 I/O FT_a -
15 19 19 G4 H5 27 G5 36 M6 PB1 I/O FT_a -
- 2020G3G428G6 37 L6 PB2 I/O FT_a -
--- - - - - 38M7 PE7 I/O FT -
Alternate functions
Notes
TIM1_CH2N, SPI1_NSS,
USART3_CK,
QUADSPI_BK1_IO1,
COMP1_OUT,
SAI1_EXTCLK,
TIM1_CH3N,
USART3_RTS_DE,
LPUART1_RTS_DE,
QUADSPI_BK1_IO0,
LPTIM2_IN1,
RTC_OUT, LPTIM1_OUT, I2C3_SMBA, EVENTOUT
TIM1_ETR, SAI1_SD_B,
Pin functions
EVENTOUT
EVENTOUT
EVENTOUT
Additional
functions
ADC1_IN15
COMP1_INM,
ADC1_IN16
COMP1_INP
-
--- - - - - 39L7 PE8 I/O FT -
--- - - - - 40M8 PE9 I/O FT -
--- - - - - 41L8 PE10 I/O FT -
--- - - - - 42M9 PE11 I/O FT -
--- - - - - 43L9 PE12 I/O FT -
--- - - - - 44M10 PE13 I/O FT -
--- - - - - 45M11 PE14 I/O FT -
TIM1_CH1N,
SAI1_SCK_B,
EVENTOUT
TIM1_CH1, SAI1_FS_B,
EVENTOUT
TIM1_CH2N,
TSC_G5_IO1,
QUADSPI_CLK,
SAI1_MCLK_B,
EVENTOUT
TIM1_CH2,
TSC_G5_IO2,
QUADSPI_BK1_NCS,
EVENTOUT
TIM1_CH3N, SPI1_NSS,
TSC_G5_IO3,
QUADSPI_BK1_IO0,
EVENTOUT
TIM1_CH3, SPI1_SCK,
TSC_G5_IO4,
QUADSPI_BK1_IO1,
EVENTOUT
TIM1_CH4, TIM1_BKIN2,
TIM1_BKIN2_COMP2,
SPI1_MISO,
QUADSPI_BK1_IO2,
EVENTOUT
-
-
-
-
-
-
-
DS11453 Rev 3 63/208
83
Pinouts and pin description STM32L431xx
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
--- - - - - 46M12 PE15 I/O FT -
- 21 21 E3 H4 29 G7 47 L10 PB10 I/O FT_f -
-2222F2H330H748 L11 PB11 I/O FT_f -
Notes
Alternate functions
TIM1_BKIN_COMP1,
QUADSPI_BK1_IO3,
TIM2_CH3, I2C2_SCL,
SPI2_SCK, USART3_TX,
LPUART1_RX,
QUADSPI_CLK,
COMP1_OUT, SAI1_SCK_A,
TIM2_CH4, I2C2_SDA,
USART3_RX,
LPUART1_TX,
QUADSPI_BK1_NCS,
COMP2_OUT,
Pin functions
TIM1_BKIN,
SPI1_MOSI,
EVENTOUT
TSC_SYNC,
EVENTOUT
EVENTOUT
Additional
functions
-
-
-
16 23 23 G2 H2 31 D6 49 F12 VSS S - - - -
17 24 24 G1 H1 32 E6 50 G12 VDD S - - - -
TIM1_BKIN,
TIM1_BKIN_COMP2,
I2C2_SMBA, SPI2_NSS,
USART3_CK,
- 25 25 F1 G3 33 H8 51 L12 PB12 I/O FT -
- 26 26 E2 G2 34 G8 52 K12 PB13 I/O FT_f -
LPUART1_RTS_DE,
TSC_G1_IO1,
SWPMI1_IO,
SAI1_FS_A,
TIM15_BKIN,
EVENTOUT
TIM1_CH1N, I2C2_SCL,
SPI2_SCK,
USART3_CTS,
LPUART1_CTS,
TSC_G1_IO2,
SWPMI1_TX, SAI1_SCK_A, TIM15_CH1N,
EVENTOUT
-
-
64/208 DS11453 Rev 3
STM32L431xx Pinouts and pin description
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
I/O structure
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
Notes
- 27 27 E1 G1 35 F8 53 K11 PB14 I/O FT_f -
- 28 28 D3 F2 36 F7 54 K10 PB15 I/O FT -
--- - - - - 55K9 PD8 I/O FT -
Alternate functions
TIM1_CH2N, I2C2_SDA,
USART3_RTS_DE,
TSC_G1_IO3,
SWPMI1_RX,
SAI1_MCLK_A,
TIM15_CH1, EVENTOUT
RTC_REFIN, TIM1_CH3N,
TSC_G1_IO4,
SWPMI1_SUSPEND,
TIM15_CH2, EVENTOUT
USART3_TX,
Pin functions
SPI2_MISO,
SPI2_MOSI,
SAI1_SD_A,
EVENTOUT
Additional
functions
-
-
-
--- - - - - 56K8 PD9 I/O FT -
USART3_RX,
EVENTOUT
USART3_CK,
--- - - - - 57J12 PD10 I/O FT -
TSC_G6_IO1,
EVENTOUT
USART3_CTS,
--- - - - - 58J11 PD11 I/O FT -
TSC_G6_IO2, LPTIM2_ETR,
EVENTOUT
USART3_RTS_DE,
--- - - - - 59J10 PD12 I/O FT -
TSC_G6_IO3,
LPTIM2_IN1,
EVENTOUT
TSC_G6_IO4,
- - - - - - - 60 H12 PD13 I/O FT -
LPTIM2_OUT,
EVENTOUT
- - - - - - - 61 H11 PD14 I/O FT - EVENTOUT -
- - - - - - - 62 H10 PD15 I/O FT - EVENTOUT -
TSC_G4_IO1,
--- -F137F663E12 PC6 I/O FT -
SDMMC1_D6,
EVENTOUT
TSC_G4_IO2,
--- -E138E764E11 PC7 I/O FT -
SDMMC1_D7,
EVENTOUT
-
-
-
-
-
-
-
DS11453 Rev 3 65/208
83
Pinouts and pin description STM32L431xx
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
after
reset)
UFBGA100
Pin type
I/O structure
Alternate functions
Notes
TSC_G4_IO3,
--- -F339E865E10 PC8 I/O FT -
SDMMC1_D0,
TSC_G4_IO4,
--- -E240D866D12 PC9 I/O FT -
SDMMC1_D1,
MCO, TIM1_CH1,
USART1_CK,
18 29 29 D1 E3 41 D7 67 D11 PA8 I/O FT -
SWPMI1_IO, SAI1_SCK_A, LPTIM2_OUT,
TIM1_CH2, I2C1_SCL,
USART1_TX,
19 30 30 D2 D1 42 C7 68 D10 PA9 I/O FT_f -
TIM15_BKIN,
TIM1_CH3, I2C1_SDA,
20 31 31 C2 D2 43 C6 69 C12 PA10 I/O FT_f -
USART1_RX,
SAI1_SD_A, EVENTOUT
TIM1_CH4, TIM1_BKIN2,
COMP1_OUT,
21 32 32 C1 D3 44 C8 70 B12 PA11 I/O FT -
USART1_CTS,
TIM1_BKIN2_COMP1,
TIM1_ETR, SPI1_MOSI,
22 33 33 C3 C1 45 B8 71 A12 PA12 I/O FT -
USART1_RTS_DE,
CAN1_TX, EVENTOUT
23 34 34 B2 C2 46 A8 72 A11
PA13
(JTMS-
SWDIO)
I/O FT
JTMS-SWDIO, IR_OUT,
(3)
SWPMI1_TX,
SAI1_SD_B, EVENTOUT
- 35 35 B1 B1 47 D5 - - VSS S - - - -
Pin functions
EVENTOUT
EVENTOUT
EVENTOUT
SAI1_FS_A,
EVENTOUT
SPI1_MISO,
CAN1_RX,
EVENTOUT
Additional
functions
-
-
-
-
-
-
-
-
-3636A1A148E573C11 VDD S - - - -
--- - - - - 74F11 VSS S - - - -
--- - - - - 75G11 VDD S - - - -
JTCK-SWCLK,
LPTIM1_OUT,
I2C1_SMBA,
SWPMI1_RX,
24 37 37 A2 B2 49 A7 76 A10
PA14
(JTCK-
SWCLK)
I/O FT
(3)
SAI1_FS_B, EVENTOUT
66/208 DS11453 Rev 3
-
STM32L431xx Pinouts and pin description
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
25 38 38 B3 A2 50 A6 77 A9
UFBGA100
PA15
(JTDI)
I/O FT
I/O structure
(3)
--- -C351B778B11 PC10 I/O FT -
--- -B352B679C10 PC11 I/O FT -
Alternate functions
Notes
JTDI, TIM2_CH1,
TIM2_ETR, USART2_RX,
SPI1_NSS, SPI3_NSS,
USART3_RTS_DE,
TSC_G3_IO1,
SWPMI1_SUSPEND,
SPI3_SCK, USART3_TX,
TSC_G3_IO2, SDMMC1_D2,
USART3_RX, TSC_G3_IO3, SDMMC1_D3,
Pin functions
Additional
functions
-
EVENTOUT
-
EVENTOUT
SPI3_MISO,
-
EVENTOUT
- - - - A3 53 C5 80 B10 PC12 I/O FT -
--- - - - - 81C9 PD0 I/O FT -
--- - - - - 82B9 PD1 I/O FT -
--- -A454B583C8 PD2 I/O FT -
--- - - - - 84B8 PD3 I/O FT -
--- - - - - 85B7 PD4 I/O FT -
--- - - - - 86A6 PD5 I/O FT -
SPI3_MOSI,
USART3_CK, TSC_G3_IO4,
SDMMC1_CK,
EVENTOUT
SPI2_NSS, CAN1_RX,
EVENTOUT
SPI2_SCK, CAN1_TX,
EVENTOUT
USART3_RTS_DE,
TSC_SYNC,
SDMMC1_CMD,
EVENTOUT
SPI2_MISO,
USART2_CTS,
QUADSPI_BK2_NCS,
EVENTOUT
SPI2_MOSI,
USART2_RTS_DE,
QUADSPI_BK2_IO0,
EVENTOUT
USART2_TX,
QUADSPI_BK2_IO1,
EVENTOUT
-
-
-
-
-
-
-
--- - - - - 87B6 PD6 I/O FT -
DS11453 Rev 3 67/208
USART2_RX,
QUADSPI_BK2_IO2,
SAI1_SD_A, EVENTOUT
-
83
Pinouts and pin description STM32L431xx
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
after
reset)
Pin type
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
UFBGA100
I/O structure
--- - - - - 88A5 PD7 I/O FT -
PB3
26 39 39 A3 A5 55 A5 89 A8
(JTDO­TRACE
I/O FT_a
(3)
SWO)
27 40 40 A4 B4 56 A4 90 A7
PB4
(NJTRST)
I/O FT_fa
(3)
28 41 41 B4 C4 57 C4 91 C5 PB5 I/O FT -
29 42 42 C4 B5 58 D3 92 B5 PB6 I/O FT_fa -
30 43 43 D4 A6 59 C3 93 B4 PB7 I/O FT_fa -
Alternate functions
Notes
USART2_CK,
QUADSPI_BK2_IO3,
JTDO-TRACESWO,
TIM2_CH2, SPI1_SCK,
USART1_RTS_DE,
SAI1_SCK_B,
NJTRST, I2C3_SDA,
SPI1_MISO, SPI3_MISO,
USART1_CTS,
TSC_G2_IO1,
SAI1_MCLK_B,
LPTIM1_IN1, I2C1_SMBA,
SPI1_MOSI, SPI3_MOSI,
USART1_CK, TSC_G2_IO2, COMP2_OUT,
TIM16_BKIN,
LPTIM1_ETR, I2C1_SCL,
USART1_TX, TSC_G2_IO3,
TIM16_CH1N,
LPTIM1_IN2, I2C1_SDA,
USART1_RX, TSC_G2_IO4,
Pin functions
EVENTOUT
SPI3_SCK,
EVENTOUT
EVENTOUT
SAI1_SD_B,
EVENTOUT
SAI1_FS_B,
EVENTOUT
EVENTOUT
Additional
functions
-
COMP2_INM
COMP2_INP
-
COMP2_INP
COMP2_INM,
PVD_IN
31 44 44 A5 C5 60 B4 94 A4
PH3/
BOOT0
I/O FT - EVENTOUT BOOT0
- 45 45 B5 C6 61 B3 95 A3 PB8 I/O FT_f -
- 46 46 C5 B6 62 A3 96 B3 PB9 I/O FT_f -
68/208 DS11453 Rev 3
I2C1_SCL, CAN1_RX,
SDMMC1_D4,
SAI1_MCLK_A,
TIM16_CH1, EVENTOUT
IR_OUT, I2C1_SDA,
SPI2_NSS, CAN1_TX,
SDMMC1_D5,
SAI1_FS_A, EVENTOUT
-
-
STM32L431xx Pinouts and pin description
Table 15. STM32L431xx pin definitions (continued)
Pin Number
Pin name
(function
UFQFPN32
LQFP48
UFQFPN48
WLCSP49
WLCSP64
LQFP64
UFBGA64
LQFP100
after
reset)
UFBGA100
Pin type
I/O structure
Alternate functions
Notes
- - - - - - - 97 C3 PE0 I/O FT - TIM16_CH1, EVENTOUT -
- - - - - - - 98 A2 PE1 I/O FT - EVENTOUT -
32 47 47 A6 A7 63 D4 99 D3 VSS S - - - -
1 48 48 A7 A8 64 E4 100 C4 VDD S - - - -
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0394 reference manual.
3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.
Pin functions
Additional
functions
DS11453 Rev 3 69/208
83
70/208 DS11453 Rev 3
Table 16. Alternate function AF0 to AF7
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
(1)
Pinouts and pin description STM32L431xx
Port A
Port
SYS_AF
PA0-TIM2_CH1-----USART2_CTS
PA1 - TIM2_CH2 - - I2C1_SMBA SPI1_SCK -
PA2-TIM2_CH3-----USART2_TX
PA3-TIM2_CH4-----USART2_RX
PA4 - - - - - SPI1_NSS SPI3_NSS USART2_CK
PA5 - TIM2_CH1 TIM2_ETR - - SPI1_SCK - -
PA6 - TIM1_BKIN - - - SPI1_MISO COMP1_OUT USART3_CTS
PA7 - TIM1_CH1N - - I2C3_SCL SPI1_MOSI - -
PA8MCOTIM1_CH1-----USART1_CK
PA9 - TIM1_CH2 - - I2C1_SCL - - USART1_TX
PA10 - TIM1_CH3 - - I2C1_SDA - - USART1_RX
PA11 - TIM1_CH4 TIM1_BKIN2 - - SPI1_MISO COMP1_OUT USART1_CTS
PA12 - TIM1_ETR - - - SPI1_MOSI -
PA13JTMS-SWDIOIR_OUT------
TIM1/TIM2/
LPTIM1
TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3
USART1/ USART2/
USART3
USART2_RTS_
DE
USART1_RTS_
DE
PA14 JTCK-SWCLK LPTIM1_OUT - - I2C1_SMBA - - -
PA15 JTDI TIM2_CH1 TIM2_ETR USART2_RX - SPI1_NSS SPI3_NSS
USART3_RTS_
DE
Table 16. Alternate function AF0 to AF7
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
(1)
(continued)
STM32L431xx Pinouts and pin description
DS11453 Rev 3 71/208
Port B
Port B
Port
SYS_AF
PB0 - TIM1_CH2N - - - SPI1_NSS - USART3_CK
PB1-TIM1_CH3N-----
PB2 RTC_OUT LPTIM1_OUT - - I2C3_SMBA - - -
PB3
PB4 NJTRST - - - I2C3_SDA SPI1_MISO SPI3_MISO USART1_CTS
PB5 - LPTIM1_IN1 - - I2C1_SMBA SPI1_MOSI SPI3_MOSI USART1_CK
PB6 - LPTIM1_ETR - - I2C1_SCL - - USART1_TX
PB7 - LPTIM1_IN2 - - I2C1_SDA - - USART1_RX
PB8----I2C1_SCL---
PB9 - IR_OUT - - I2C1_SDA SPI2_NSS - -
PB10 - TIM2_CH3 - - I2C2_SCL SPI2_SCK - USART3_TX
PB11 - TIM2_CH4 - - I2C2_SDA - - USART3_RX
PB12 - TIM1_BKIN -
PB13 - TIM1_CH1N - - I2C2_SCL SPI2_SCK - USART3_CTS
JTDO-
TRACESWO
TIM1/TIM2/
LPTIM1
TIM2_CH2 - - - SPI1_SCK SPI3_SCK
TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3
TIM1_BKIN_
COMP2
I2C2_SMBA SPI2_NSS - USART3_CK
USART1/ USART2/
USART3
USART3_RTS_
DE
USART1_RTS_
DE
PB14 - TIM1_CH2N - - I2C2_SDA SPI2_MISO -
PB15 RTC_REFIN TIM1_CH3N - - - SPI2_MOSI - -
USART3_RTS_
DE
72/208 DS11453 Rev 3
Table 16. Alternate function AF0 to AF7
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
(1)
(continued)
Pinouts and pin description STM32L431xx
Port C
Port C
Port
SYS_AF
PC0 - LPTIM1_IN1 - - I2C3_SCL - - -
PC1 - LPTIM1_OUT - - I2C3_SDA - - -
PC2 - LPTIM1_IN2 - - - SPI2_MISO - -
PC3 - LPTIM1_ETR - - - SPI2_MOSI - -
PC4-------USART3_TX
PC5-------USART3_RX
PC6--------
PC7--------
PC8--------
PC9--------
PC10------SPI3_SCKUSART3_TX
PC11------SPI3_MISOUSART3_RX
PC12------SPI3_MOSIUSART3_CK
PC13--------
PC14--------
TIM1/TIM2/
LPTIM1
TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3
USART1/ USART2/
USART3
PC15--------
Table 16. Alternate function AF0 to AF7
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
(1)
(continued)
STM32L431xx Pinouts and pin description
DS11453 Rev 3 73/208
Port D
Port
SYS_AF
PD0 - - - - - SPI2_NSS - -
PD1 - - - - - SPI2_SCK - -
PD2-------
PD3 - - - - - SPI2_MISO - USART2_CTS
PD4 - - - - - SPI2_MOSI -
PD5-------USART2_TX
PD6-------USART2_RX
PD7-------USART2_CK
PD8-------USART3_TX
PD9-------USART3_RX
PD10-------USART3_CK
PD11-------USART3_CTS
PD12-------
PD13--------
TIM1/TIM2/
LPTIM1
TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3
USART1/ USART2/
USART3
USART3_RTS_
DE
USART2_RTS_
DE
USART3_RTS_
DE
PD14--------
PD15--------
Port EPE0--------
74/208 DS11453 Rev 3
Table 16. Alternate function AF0 to AF7
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
(1)
(continued)
Pinouts and pin description STM32L431xx
Port E
Port
SYS_AF
PE1--------
PE2TRACECK-------
PE3TRACED0-------
PE4TRACED1-------
PE5TRACED2-------
PE6TRACED3-------
PE7-TIM1_ETR------
PE8-TIM1_CH1N------
PE9-TIM1_CH1------
PE10-TIM1_CH2N------
PE11-TIM1_CH2------
PE12 - TIM1_CH3N - - - SPI1_NSS - -
PE13 - TIM1_CH3 - - - SPI1_SCK - -
PE14 - TIM1_CH4 TIM1_BKIN2
TIM1/TIM2/
LPTIM1
TIM1/TIM2 USART2 I2C1/I2C2/I2C3 SPI1/SPI2 SPI3
TIM1_BKIN2_
COMP2
- SPI1_MISO - -
USART1/ USART2/
USART3
PE15 - TIM1_BKIN -
PH0--------
Port H
1. Please refer to Table 17 for AF8 to AF15.
PH1--------
PH3--------
TIM1_BKIN_
COMP1
- SPI1_MOSI - -
Table 17. Alternate function AF8 to AF15
(1)
STM32L431xx Pinouts and pin description
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
DS11453 Rev 3 75/208
Port A
Port
LPUART1 CAN1/TSC QUADSPI
SDMMC1/
COMP1/ COMP2/
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
SWPMI1
PA0 - - - - COMP1_OUT SAI1_EXTCLK TIM2_ETR EVENTOUT
PA1 - - - - - TIM15_CH1N EVENTOUT
PA2 LPUART1_TX -
QUADSPI_
BK1_NCS
COMP2_OUT - TIM15_CH1 EVENTOUT
PA3 LPUART1_RX - QUADSPI_CLK - SAI1_MCLK_A TIM15_CH2 EVENTOUT
PA4-----SAI1_FS_BLPTIM2_OUTEVENTOUT
PA5------LPTIM2_ETREVENTOUT
PA6 LPUART1_CTS -
PA7 - -
QUADSPI_
BK1_IO3
QUADSPI_
BK1_IO2
TIM1_BKIN_
COMP2
- TIM16_CH1 EVENTOUT
COMP2_OUT - - EVENTOUT
PA8 - - - SWPMI1_IO SAI1_SCK_A LPTIM2_OUT EVENTOUT
PA9 - - - - SAI1_FS_A TIM15_BKIN EVENTOUT
PA10 - - - SAI1_SD_A - EVENTOUT
PA11 - CAN1_RX -
TIM1_BKIN2_
COMP1
- - EVENTOUT
PA12 - CAN1_TX - - - - EVENTOUT
PA13 - - - SWPMI1_TX SAI1_SD_B - EVENTOUT
PA14 - - - - SWPMI1_RX SAI1_FS_B - EVENTOUT
PA15 - TSC_G3_IO1 -
SWPMI1_
SUSPEND
- - EVENTOUT
76/208 DS11453 Rev 3
Table 17. Alternate function AF8 to AF15
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
(1)
(continued)
Pinouts and pin description STM32L431xx
Port B
Port
LPUART1 CAN1/TSC QUADSPI
PB0 - -
LPUART1_RTS
PB1
PB2 - - - - - - EVENTOUT
PB3 - - - - SAI1_SCK_B - EVENTOUT
PB4 - TSC_G2_IO1 - - SAI1_MCLK_B - EVENTOUT
PB5 - TSC_G2_IO2 - COMP2_OUT SAI1_SD_B TIM16_BKIN EVENTOUT
PB6 - TSC_G2_IO3 - - - SAI1_FS_B TIM16_CH1N EVENTOUT
PB7 - TSC_G2_IO4 - - - - EVENTOUT
PB8 - CAN1_RX - SDMMC1_D4 SAI1_MCLK_A TIM16_CH1 EVENTOUT
PB9 - CAN1_TX - SDMMC1_D5 SAI1_FS_A - EVENTOUT
PB10 LPUART1_RX TSC_SYNC QUADSPI_CLK COMP1_OUT SAI1_SCK_A - EVENTOUT
PB11 LPUART1_TX -
PB12
_DE
LPUART1_RTS
_DE
-
TSC_G1_IO1 - SWPMI1_IO SAI1_FS_A TIM15_BKIN EVENTOUT
QUADSPI_
BK1_IO1
QUADSPI_
BK1_IO0
QUADSPI_
BK1_NCS
SDMMC1/
COMP1/ COMP2/ SWPMI1
COMP1_OUT SAI1_EXTCLK - EVENTOUT
- - LPTIM2_IN1 EVENTOUT
COMP2_OUT - - EVENTOUT
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
PB13 LPUART1_CTS TSC_G1_IO2 - SWPMI1_TX SAI1_SCK_A TIM15_CH1N EVENTOUT
PB14 - TSC_G1_IO3 - SWPMI1_RX SAI1_MCLK_A TIM15_CH1 EVENTOUT
PB15 - TSC_G1_IO4 -
SWPMI1_
SUSPEND
SAI1_SD_A TIM15_CH2 EVENTOUT
Table 17. Alternate function AF8 to AF15
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
(1)
(continued)
STM32L431xx Pinouts and pin description
DS11453 Rev 3 77/208
Port C
Port C
Port
LPUART1 CAN1/TSC QUADSPI
PC0 LPUART1_RX - - - - LPTIM2_IN1 EVENTOUT
PC1 LPUART1_TX - - - - - EVENTOUT
PC2 - - - - - - EVENTOUT
PC3 - - - - SAI1_SD_A LPTIM2_ETR EVENTOUT
PC4 - - - - - - EVENTOUT
PC5 - - - - - - EVENTOUT
PC6 - TSC_G4_IO1 - SDMMC1_D6 - - EVENTOUT
PC7 - TSC_G4_IO2 - SDMMC1_D7 - - EVENTOUT
PC8 - TSC_G4_IO3 - SDMMC1_D0 - - EVENTOUT
PC9 - TSC_G4_IO4 SDMMC1_D1 - - EVENTOUT
PC10 - TSC_G3_IO2 - SDMMC1_D2 - - EVENTOUT
PC11 - TSC_G3_IO3 - SDMMC1_D3 - - EVENTOUT
PC12 - TSC_G3_IO4 - SDMMC1_CK - - EVENTOUT
PC13------ -EVENTOUT
SDMMC1/
COMP1/ COMP2/ SWPMI1
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
Port D
PC14------ -EVENTOUT
PC15------ -EVENTOUT
PD0 - CAN1_RX - - - - - EVENTOUT
PD1 - CAN1_TX - - - - - EVENTOUT
PD2 - TSC_SYNC -
SDMMC1_
CMD
- - EVENTOUT
78/208 DS11453 Rev 3
Table 17. Alternate function AF8 to AF15
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
(1)
(continued)
Pinouts and pin description STM32L431xx
Port D
Port
LPUART1 CAN1/TSC QUADSPI
PD3 - -
PD4 - -
PD5 - -
PD6 - -
PD7 - -
PD8 - - - - - - EVENTOUT
PD9 - - - - - - EVENTOUT
PD10 - TSC_G6_IO1 - - - - EVENTOUT
PD11 - TSC_G6_IO2 - - - LPTIM2_ETR EVENTOUT
PD12 - TSC_G6_IO3 - - - LPTIM2_IN1 EVENTOUT
PD13 - TSC_G6_IO4 - - - LPTIM2_OUT EVENTOUT
PD14 - - - - - - EVENTOUT
QUADSPI_BK2
_NCS
QUADSPI_BK2
_IO0
QUADSPI_BK2
_IO1
QUADSPI_BK2
_IO2
QUADSPI_BK2
_IO3
- - - - EVENTOUT
- - - - EVENTOUT
- - - - EVENTOUT
- - SAI1_SD_A - EVENTOUT
- - - - EVENTOUT
SDMMC1/
COMP1/ COMP2/ SWPMI1
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
Port E
PD15 - - - - - - EVENTOUT
PE0 - - - - - TIM16_CH1 EVENTOUT
PE1 - - - - - - EVENTOUT
PE2 - TSC_G7_IO1 - - SAI1_MCLK_A - EVENTOUT
PE3 - TSC_G7_IO2 - - SAI1_SD_B - EVENTOUT
PE4 - TSC_G7_IO3 - - - SAI1_FS_A - EVENTOUT
Table 17. Alternate function AF8 to AF15
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
(1)
(continued)
STM32L431xx Pinouts and pin description
DS11453 Rev 3 79/208
Port E
Port
LPUART1 CAN1/TSC QUADSPI
PE5 - TSC_G7_IO4 - - - SAI1_SCK_A - EVENTOUT
PE6-----SAI1_SD_A-EVENTOUT
PE7-----SAI1_SD_B-EVENTOUT
PE8-----SAI1_SCK_B-EVENTOUT
PE9-----SAI1_FS_B-EVENTOUT
PE10 - TSC_G5_IO1 QUADSPI_CLK - - SAI1_MCLK_B - EVENTOUT
PE11 - TSC_G5_IO2
PE12 - TSC_G5_IO3
PE13 - TSC_G5_IO4
PE14 - -
PE15 - -
PH0------ -EVENTOUT
QUADSPI_BK1
_NCS
QUADSPI_BK1
_IO0
QUADSPI_BK1
_IO1
QUADSPI_BK1
_IO2
QUADSPI_BK1
_IO3
- - - - EVENTOUT
- - - - EVENTOUT
- - - - EVENTOUT
- - - - EVENTOUT
- - - - EVENTOUT
SDMMC1/
COMP1/ COMP2/ SWPMI1
SAI1
TIM2/TIM15/
TIM16/LPTIM2
EVENTOUT
Port H
1. Please refer to Table 16 for AF0 to AF7.
PH1------ -EVENTOUT
PH3------ -EVENTOUT
Memory mapping STM32L431xx
MSv36892V2
0xFFFF FFFF
0xE000 0000
0xC000 0000
0xA000 1000
0x8000 0000
0x6000 0000
0x4000 0000
0x2000 0000
0x0000 0000
0
1
2
3
4
5
6
7
Cortex™-M4
with FPU
Internal
Peripherals
Peripherals
SRAM1
CODE
OTP area
System memory
Flash memory
Flash, system memory
or SRAM, depending on
BOOT configuration
AHB2
AHB1
APB2
APB1
0x5006 0C00
0x4800 0000
0x4002 4400
0x4002 0000
0x4001 5800
0x4001 0000
0x4000 9800
0x4000 0000
0x1FFF FFFF
0x1FFF 0000
0x0804 0000
0x0800 0000
0x0004 0000
0x0000 0000
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
0x1000 4000
0x1000 0000
SRAM2
QUADSPI
registers
Options Bytes
0x1FFF 7000
0x1FFF 7400
0x1FFF 7800
0x1FFF 7810
Reserved
QUADSPI registers
0xBFFF FFFF
0xA000 1400
0xA000 1000
Reserved
Reserved
Reserved
0x5FFF FFFF
0x9000 0000
QUADSPI Flash
bank
SRAM2
0x2000 C000
0xA000 0000

5 Memory mapping

Figure 15. STM32L431xx memory map

80/208 DS11453 Rev 3
STM32L431xx Memory mapping
Table 18. STM32L431xx memory map and peripheral register boundary addresses
Bus Boundary address Size(bytes) Peripheral
0x5006 0800 - 0x5006 0BFF 1 KB RNG
0x5004 0400 - 0x5006 07FF 158 KB Reserved
0x5004 0000 - 0x5004 03FF 1 KB ADC
0x5000 0000 - 0x5003 FFFF 16 KB Reserved
0x4800 2000 - 0x4FFF FFFF ~127 MB Reserved
AHB2
-
0x4800 1C00 - 0x4800 1FFF 1 KB GPIOH
0x4800 1400 - 0x4800 1BFF 2 KB Reserved
0x4800 1000 - 0x4800 13FF 1 KB GPIOE
0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD
0x4800 0800 - 0x4800 0BFF 1 KB GPIOC
0x4800 0400 - 0x4800 07FF 1 KB GPIOB
0x4800 0000 - 0x4800 03FF 1 KB GPIOA
0x4002 4400 - 0x47FF FFFF ~127 MB Reserved
0x4002 4000 - 0x4002 43FF 1 KB TSC
(1)
AHB1
APB2
0x4002 3400 - 0x4002 3FFF 1 KB Reserved
0x4002 3000 - 0x4002 33FF 1 KB CRC
0x4002 2400 - 0x4002 2FFF 3 KB Reserved
0x4002 2000 - 0x4002 23FF 1 KB FLASH registers
0x4002 1400 - 0x4002 1FFF 3 KB Reserved
0x4002 1000 - 0x4002 13FF 1 KB RCC
0x4002 0800 - 0x4002 0FFF 2 KB Reserved
0x4002 0400 - 0x4002 07FF 1 KB DMA2
0x4002 0000 - 0x4002 03FF 1 KB DMA1
0x4001 5800 - 0x4001 FFFF 42 KB Reserved
0x4001 5400 - 0x4000 57FF 1 KB SAI1
0x4001 4800 - 0x4000 53FF 3 KB Reserved
0x4001 4400 - 0x4001 47FF 1 KB TIM16
0x4001 4000 - 0x4001 43FF 1 KB TIM15
0x4001 3C00 - 0x4001 3FFF 1 KB Reserved
0x4001 3800 - 0x4001 3BFF 1 KB USART1
0x4001 3400 - 0x4001 37FF 1 KB Reserved
DS11453 Rev 3 81/208
83
Memory mapping STM32L431xx
Table 18. STM32L431xx memory map and peripheral register boundary addresses
(continued)
Bus Boundary address Size(bytes) Peripheral
0x4001 3000 - 0x4001 33FF 1 KB SPI1
0x4001 2C00 - 0x4001 2FFF 1 KB TIM1
0x4001 2800 - 0x4001 2BFF 1 KB SDMMC1
0x4001 2000 - 0x4001 27FF 2 KB Reserved
APB2
0x4001 1C00 - 0x4001 1FFF 1 KB FIREWALL
0x4001 0800- 0x4001 1BFF 5 KB Reserved
0x4001 0400 - 0x4001 07FF 1 KB EXTI
0x4001 0200 - 0x4001 03FF
0x4001 0030 - 0x4001 01FF VREFBUF
0x4001 0000 - 0x4001 002F SYSCFG
0x4000 9800 - 0x4000 FFFF 26 KB Reserved
0x4000 9400 - 0x4000 97FF 1 KB LPTIM2
0x4000 8C00 - 0x4000 93FF 2 KB Reserved
0x4000 8800 - 0x4000 8BFF 1 KB SWPMI1
0x4000 8400 - 0x4000 87FF 1 KB Reserved
1 KB
COMP
(1)
APB1
0x4000 8000 - 0x4000 83FF 1 KB LPUART1
0x4000 7C00 - 0x4000 7FFF 1 KB LPTIM1
0x4000 7800 - 0x4000 7BFF 1 KB OPAMP
0x4000 7400 - 0x4000 77FF 1 KB DAC1
0x4000 7000 - 0x4000 73FF 1 KB PWR
0x4000 6800 - 0x4000 6FFF 2 KB Reserved
0x4000 6400 - 0x4000 67FF 1 KB CAN1
0x4000 6000 - 0x4000 63FF 1 KB CRS
0x4000 5C00- 0x4000 5FFF 1 KB I2C3
0x4000 5800 - 0x4000 5BFF 1 KB I2C2
0x4000 5400 - 0x4000 57FF 1 KB I2C1
0x4000 4C00 - 0x4000 53FF 2 KB Reserved
0x4000 4800 - 0x4000 4BFF 1 KB USART3
0x4000 4400 - 0x4000 47FF 1 KB USART2
0x4000 4000 - 0x4000 43FF 1 KB Reserved
0x4000 3C00 - 0x4000 3FFF 1 KB SPI3
0x4000 3800 - 0x4000 3BFF 1 KB SPI2
0x4000 3400 - 0x4000 37FF 1 KB Reserved
0x4000 3000 - 0x4000 33FF 1 KB IWDG
82/208 DS11453 Rev 3
STM32L431xx Memory mapping
Table 18. STM32L431xx memory map and peripheral register boundary addresses
(continued)
Bus Boundary address Size(bytes) Peripheral
0x4000 2C00 - 0x4000 2FFF 1 KB WWDG
0x4000 2800 - 0x4000 2BFF 1 KB RTC
0x4000 1800 - 0x4000 27FF 4 KB Reserved
APB1
1. The gray color is used for reserved boundary addresses.
0x4000 1400 - 0x4000 17FF 1 KB TIM7
0x4000 1000 - 0x4000 13FF 1 KB TIM6
0x4000 0400- 0x4000 0FFF 3 KB Reserved
0x4000 0000 - 0x4000 03FF 1 KB TIM2
(1)
DS11453 Rev 3 83/208
83
Electrical characteristics STM32L431xx
MS19210V1
MCU pin
C = 50 pF
MS19211V1
MCU pin
V
IN

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3).

6.1.2 Typical values

= 25 °C and TA = TAmax (given by
A
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = V are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 16.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 17.
Figure 16. Pin loading conditions Figure 17. Pin input voltage
(mean ±2).
= 3 V. They
DDA
84/208 DS11453 Rev 3
STM32L431xx Electrical characteristics
MSv41628V1
V
DD
Level shifter
IO
logic
Kernel logic
(CPU, Digital
& Memories)
Backup circuitry
(LSE, RTC,
Backup registers)
IN
OUT
Regulator
GPIOs
1.55 – 3.6 V
n x 100 nF
+1 x 4.7 μF
n x VSS
n x VDD
VBAT
V
CORE
Power switch
V
DDIO1
ADCs/ DACs/ OPAMPs/ COMPs/ VREFBUF
VREF+
VREF-
V
DDA
10 nF
+1 μF
VDDA
VSSA
V
REF
100 nF
+1 μF

6.1.6 Power supply scheme

Figure 18. Power supply scheme
Caution: Each power supply pair (V
capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.
DD/VSS
, V
DDA/VSSA
etc.) must be decoupled with filtering ceramic
DS11453 Rev 3 85/208
176
Electrical characteristics STM32L431xx
MSv41629V1
V
BAT
V
DD
V
DDA
I
DD
I
DDA
I
DD_VBAT

6.1.7 Current consumption measurement

Figure 19. Current consumption measurement scheme
The I
DD_ALL
including the current supplying VDD, V
parameters given in Table 26 to Ta b le 38 represent the total MCU consumption
DDA
and V
BAT
.

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Tab le 19: Voltage characteristics,
Tabl e 20: Current characteristics and Table 21: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand.

Table 19. Voltage characteristics

Symbol Ratings Min Max Unit
V
DDX
V
|V
IN
- V
(2)
DDx
External main supply voltage (including
SS
, V
, V
V
DD
DDA
BAT
)
Input voltage on FT_xxx pins
Input voltage on any other pins V
Variations between different V
|
pins of the same domain
DDX
power
-0.3 4.0 V
V
-0.3 min (VDD, V
SS
-0.3 4.0
SS
-50mV
(1)
(3)(4)
) +
4.0
DDA
VInput voltage on TT_xx pins VSS-0.3 4.0
|V
SSx-VSS
1. All main power (VDD, V the permitted range.
maximum must always be respected. Refer to Table 20: Current characteristics for the maximum allowed injected
2. V
IN
current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
Variations between all the different ground
|
pins
(5)
DDA
, V
) and ground (VSS, V
BAT
-50mV
) pins must always be connected to the external power supply, in
SSA
86/208 DS11453 Rev 3
STM32L431xx Electrical characteristics
5. Include VREF- pin.

Table 20. Current characteristics

Symbol Ratings Max Unit
(1)
(1)
(1)
(1)
140
140
100
100
IV
IV
IV
DD(PIN)
IV
SS(PIN)
DD
SS
Total current into sum of all V
DD
Total current out of sum of all V
Maximum current into each V
DD
Maximum current out of each V
power lines (source)
ground lines (sink)
SS
power pin (source)
ground pin (sink)
SS
Output current sunk by any I/O and control pin except FT_f 20
I
IO(PIN)
I
IO(PIN)
I
INJ(PIN)
(3)
Output current sunk by any FT_f pin 20
Output current sourced by any I/O and control pin 20
Total output current sunk by sum of all I/Os and control pins
Total output current sourced by sum of all I/Os and control pins
Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5
(2)
(2)
100
100
-5/+0
mA
(4)
Injected current on PA4, PA5 -5/0
|I
1. All main power (VDD, V in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. Positive injection (when V specified maximum value.
4. A negative injection is induced by V
characteristics for the maximum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum |I injected currents (instantaneous values).
INJ(PIN)
|
Total injected current (sum of all I/Os and control pins)
, V
DDA
) and ground (VSS, V
BAT
IN
> V
) is not possible on these I/Os and does not occur for input voltages lower than the
DDIOx
IN
< VSS. I
INJ(PIN)
) pins must always be connected to the external power supplies,
SSA
must never be exceeded. Refer also to Table 19: Voltage
(5)
|
is the absolute sum of the negative
INJ(PIN)
25

Table 21. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature 150 °C
DS11453 Rev 3 87/208
176
Electrical characteristics STM32L431xx

6.3 Operating conditions

6.3.1 General operating conditions

Table 22. General operating conditions
Symbol Parameter Conditions Min Max Unit
f
HCLK
PCLK1
f
PCLK2
V
Internal AHB clock frequency - 0 80
Internal APB1 clock frequency - 0 80
Internal APB2 clock frequency - 0 80
Standard operating voltage -
DD
1.71
(1)
MHzf
3.6 V
ADC or COMP used 1.62
DAC or OPAMP used 1.8
V
V
Analog supply voltage
DDA
Backup operating voltage - 1.55 3.6 V
BAT
VREFBUF used 2.4
ADC, DAC, OPAMP, COMP, VREFBUF not used
0
TT_xx I/O -0.3 V
V
I/O input voltage
IN
All I/O except TT_xx -0.3
3.6 V
+0.3
DDIOx
Min(Min(V V
DDA
5.5 V)
DD
)+3.6 V,
(2)(3)
,
V
LQFP100 - 476
LQFP64 - 444
Power dissipation at
= 85 °C for suffix 6
T
P
A
D
or
= 105 °C for suffix 7
T
A
Ambient temperature for the suffix 6 version
Ambient temperature for the
TA
suffix 7 version
Ambient temperature for the suffix 3 version
T
Junction temperature range
J
(4)
LQFP48 - 350
UFBGA100 - 350
UFBGA64 - 307
UFQFPN48 - 606
UFQFPN32 - 523
WLCSP64 - 434
WLCSP49 - 416
Maximum power dissipation –40 85
Low-power dissipation
(5)
–40 105
Maximum power dissipation –40 105
Low-power dissipation
(5)
–40 125
Maximum power dissipation –40 125
Low-power dissipation
(5)
–40 130
Suffix 6 version –40 105
Suffix 3 version –40 130
mW
°C
°CSuffix 7 version –40 125
88/208 DS11453 Rev 3
STM32L431xx Electrical characteristics
1. When RESET is released functionality is guaranteed down to V
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between Min(V
, V
3. For operation with voltage higher than Min (V disabled.
is lower, higher PD values are allowed as long as TJ does not exceed T
4. If T
A
characteristics).
5. In low-power dissipation state, T
Thermal characteristics).
can be extended to this range as long as TJ does not exceed T
A
DD
) +0.3 V, the internal Pull-up and Pull-Down resistors must be
DDA
BOR0
DD
Min.
, V
)+3.6 V and 5.5V.
DDA
(see Section 7.10: Thermal
Jmax
(see Section 7.10:
Jmax

6.3.2 Operating conditions at power-up / power-down

The parameters given in Tab le 23 are derived from tests performed under the ambient temperature condition summarized in Tab le 22.
Symbol Parameter Conditions Min Max Unit
t
VDD
t
VDDA
Table 23. Operating conditions at power-up / power-down
VDD rise time rate
-
fall time rate 10
V
DD
V
rise time rate
DDA
fall time rate 10
V
DDA
-
0
0
µs/V
The requirements for power-up/down sequence specified in Section 3.9.1: Power supply
schemes must be respected.

6.3.3 Embedded reset and power control block characteristics

The parameters given in Tab le 24 are derived from tests performed under the ambient temperature conditions summarized in Table 22: General operating conditions.
t
RSTTEMPO
Table 24. Embedded reset and power control block characteristics
Symbol Parameter Conditions
Reset temporization after
V
BOR0
(2)
BOR0 is detected
(2)
Brown-out reset threshold 0
V
DD
Rising edge 1.62 1.66 1.7
Falling edge 1.6 1.64 1.69
Rising edge 2.06 2.1 2.14
V
BOR1
Brown-out reset threshold 1
Falling edge 1.96 2 2.04
Rising edge 2.26 2.31 2.35
V
BOR2
Brown-out reset threshold 2
Falling edge 2.16 2.20 2.24
Rising edge 2.56 2.61 2.66
V
BOR3
Brown-out reset threshold 3
Falling edge 2.47 2.52 2.57
Rising edge 2.85 2.90 2.95
V
BOR4
Brown-out reset threshold 4
Falling edge 2.76 2.81 2.86
(1)
Min Typ Max Unit
rising - 250 400 s
V
V
V
V
V
DS11453 Rev 3 89/208
176
Electrical characteristics STM32L431xx
Table 24. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions
(1)
Min Typ Max Unit
V
PVD0
V
PVD1
V
PVD2
V
PVD3
V
PVD4
V
PVD5
V
PVD6
V
hyst_BORH0
V
hyst_BOR_PVD
I
DD
(BOR_PVD)
V
PVM3
V
PVM4
Programmable voltage detector threshold 0
PVD threshold 1
PVD threshold 2
PVD threshold 3
PVD threshold 4
PVD threshold 5
PVD threshold 6
Hysteresis voltage of BORH0
Hysteresis voltage of BORH (except BORH0) and PVD
(3)
BOR
(2)
(except BOR0) and
PVD consumption from V
V
peripheral voltage
DDA
monitoring
V
peripheral voltage
DDA
monitoring
Rising edge 2.1 2.15 2.19
Falling edge 2 2.05 2.1
Rising edge 2.26 2.31 2.36
Falling edge 2.15 2.20 2.25
Rising edge 2.41 2.46 2.51
Falling edge 2.31 2.36 2.41
Rising edge 2.56 2.61 2.66
Falling edge 2.47 2.52 2.57
Rising edge 2.69 2.74 2.79
Falling edge 2.59 2.64 2.69
Rising edge 2.85 2.91 2.96
Falling edge 2.75 2.81 2.86
Rising edge 2.92 2.98 3.04
Falling edge 2.84 2.90 2.96
Hysteresis in continuous
-20-
mode
Hysteresis in other mode
-30-
--100-mV
DD
--1.11.6µA
Rising edge 1.61 1.65 1.69
Falling edge 1.6 1.64 1.68
Rising edge 1.78 1.82 1.86
Falling edge 1.77 1.81 1.85
V
V
V
V
V
V
V
mV
V
V
V
hyst_PVM3
V
hyst_PVM4
(PVM1)
I
DD
(2)
IDD
(PVM3/PVM4)
(2)
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.
PVM3 hysteresis - - 10 - mV
PVM4 hysteresis - - 10 - mV
PVM1 consumption from V
DD
PVM3 and PVM4 consumption from V
DD
90/208 DS11453 Rev 3
--0.2-µA
--2-µA
STM32L431xx Electrical characteristics

6.3.4 Embedded voltage reference

The parameters given in Tab le 25 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 22: General operating
conditions.
Symbol Parameter Conditions Min Typ Max Unit
Table 25. Embedded internal voltage reference
V
REFINT
t
S_vrefint
Internal reference voltage –40 °C < TA < +130 °C 1.182 1.212 1.232 V
ADC sampling time when
(1)
reading the internal reference
-4
voltage
t
start_vrefint
I
DD(VREFINTBUF
Start time of reference voltage buffer when ADC is enable
buffer consumption
REFINT
when converted by
DD
)
V from V ADC
--812
- - 12.5 20
Internal reference voltage
V
REFINT
spread over the temperature
VDD = 3 V - 5 7.5
range
T
Coeff
A
Coeff
V
DDCoeff
V
REFINT_DIV1
V
REFINT_DIV2
V
REFINT_DIV3
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Temperature coefficient –40°C < TA < +130°C - 30 50
Long term stability 1000 hours, T = 25°C - 300 1000
Voltage coefficient 3.0 V < VDD < 3.6 V - 250 1200
1/4 reference voltage
1/2 reference voltage 49 50 51
-
3/4 reference voltage 74 75 76
(2)
--µs
24 25 26
(2)
(2)
(2)
(2)
(2)
(2)
µs
µA
mV
ppm/°C
ppm
ppm/V
%
V
REFINT
DS11453 Rev 3 91/208
176
Electrical characteristics STM32L431xx
MSv40169V1
1.185
1.19
1.195
1.2
1.205
1.21
1.215
1.22
1.225
1.23
1.235
-40 -20 0 20 40 60 80 100 120
V
°C
Mean Min Max
Figure 20. V
versus temperature
REFINT
92/208 DS11453 Rev 3
STM32L431xx Electrical characteristics

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 19: Current consumption
measurement scheme.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted with the minimum wait states number,
depending on the f to CPU clock (HCLK) frequency” available in the RM0394 reference manual).
When the peripherals are enabled f
The parameters given in Tab le 26 to Ta bl e 39 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Tab le 22: General
operating conditions.
frequency (refer to the table “Number of wait states according
HCLK
= f
PCLK
HCLK
DS11453 Rev 3 93/208
176
94/208 DS11453 Rev 3
Symbol Parameter
I
DD_ALL
(Run)
Supply
current in
Run mode
Table 26. Current consumption in Run and Low-power run modes, code with data processing
Conditions TYP MAX
-
= f
f
HCLK
HSE
up to 48MHz included, bypass mode PLL ON above 48 MHz all peripherals disable
running from Flash, ART enable (Cache ON Prefetch OFF)
Voltage scaling
f
HCLK
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
26 MHz 2.37 2.38 2.44 2.52 2.66 2.7 2.7 2.8 2.9 3.2
16 MHz 1.5 1.52 1.57 1.64 1.79 1.7 1.7 1.8 2.0 2.3
8 MHz 0.81 0.82 0.87 0.94 1.08 0.9 0.9 1.0 1.2 1.5
Range 2
4 MHz 0.46 0.47 0.52 0.59 0.73 0.5 0.6 0.6 0.8 1.1
2 MHz 0.29 0.3 0.34 0.41 0.55 0.3 0.4 0.4 0.6 0.9
1 MHz 0.2 0.21 0.25 0.32 0.46 0.2 0.3 0.3 0.5 0.8
100 kHz 0.12 0.13 0.17 0.24 0.38 0.1 0.2 0.2 0.4 0.7
80 MHz 8.53 8.56 8.64 8.74 8.92 9.5 9.6 9.7 9.9 10.3
72 MHz 7.7 7.73 7.8 7.9 8.08 8.6 8.6 8.7 8.9 9.3
64 MHz 6.86 6.9 6.97 7.06 7.23 7.7 7.7 7.8 8.0 8.3
Electrical characteristics STM32L431xx
(1)
Unit
mA
Range 1
48 MHz 5.13 5.16 5.23 5.32 5.49 5.8 5.8 6.0 6.1 6.5
32 MHz 3.46 3.48 3.55 3.64 3.8 3.9 4.0 4.1 4.2 4.6
24 MHz 2.63 2.64 2.71 2.79 2.96 3.0 3.0 3.1 3.3 3.6
16 MHz 1.8 1.81 1.87 1.96 2.12 2.0 2.1 2.2 2.3 2.7
2 MHz 211 230 280 355 506 273.8 301.1 360.4 502.7 815.9
I
DD_ALL
(LPRun)
Supply
current in
Low-power
run mode
f
= f
HCLK
MSI
all peripherals disable
1 MHz 117 134 179 254 404 154.7 184.6 249.6 398.4 712.4
400 kHz 58.5 70.4 116 189 338 80.2 111.5 179.7 330.8 643.4
100 kHz 30 41.1 85.2 159 308 46.5 76.6 147.1 299.1 611.2
1. Guaranteed by characterization results, unless otherwise specified.
µA
DS11453 Rev 3 95/208
Symbol Parameter
I
DD_ALL
(Run)
Supply
current in
Run mode
Supply
I
DD_ALL
(LPRun)
current in
Low-power
run
Table 27. Current consumption in Run and Low-power run modes, code with data processing
Conditions TYP MAX
-
= f
f
HCLK
HSE
up to 48MHz included, bypass mode PLL ON above 48 MHz all peripherals disable
f
= f
HCLK
MSI
all peripherals disable
Voltage
scaling
Range 2
Range 1
running from Flash, ART disable
f
HCLK
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
26 MHz 2.66 2.68 2.73 2.81 2.96 3.0 3.1 3.2 3.3 3.6
16 MHz 1.88 1.9 1.94 2.02 2.17 2.1 2.2 2.3 2.4 2.7
8 MHz 1.05 1.06 1.11 1.18 1.33 1.2 1.2 1.3 1.4 1.7
4 MHz 0.6 0.62 0.66 0.73 0.87 0.7 0.7 0.8 0.9 1.2
2 MHz 0.36 0.37 0.34 0.48 0.62 0.4 0.4 0.5 0.6 0.9
1 MHz 0.23 0.25 0.25 0.36 0.5 0.3 0.3 0.4 0.5 0.8
100 kHz 0.12 0.14 0.17 0.25 0.39 0.1 0.2 0.2 0.4 0.7
80 MHz 8.56 8.61 8.69 8.79 8.97 9.6 9.7 9.8 10.0 10.3
72 MHz 7.74 7.79 7.86 7.96 8.14 8.7 8.7 8.8 9.0 9.4
64 MHz 7.63 7.68 7.75 7.85 8.04 8.6 8.6 8.7 8.9 9.3
48 MHz 6.36 6.4 6.48 6.58 6.76 7.2 7.3 7.4 7.6 7.9
32 MHz 4.56 4.6 4.66 4.76 4.93 5.2 5.2 5.3 5.5 5.8
24 MHz 3.45 3.48 3.54 3.64 3.8 3.9 4.0 4.1 4.2 4.6
16 MHz 2.48 2.51 2.56 2.65 2.82 2.8 2.9 3.0 3.1 3.5
2 MHz 310 317 364 440 593 375.3 400.9 456.7 595.3 909.6
1 MHz 157 173 226 296 448 204.8 234.2 298.2 445.8 758.9
400 kHz 72.6 89 130 206 356 99.7 131.2 199.7 349.3 663.7
100 kHz 32.3 46 89.7 164 314 52.4 82.1 153.3 301.2 616.9
STM32L431xx Electrical characteristics
(1)
Unit
mA
µA
1. Guaranteed by characterization results, unless otherwise specified.
96/208 DS11453 Rev 3
Table 28. Current consumption in Run and Low-power run modes, code with data processing
Conditions TYP MAX
Symbol Parameter
-
= f
HSE
up to
I
DD_ALL
(Run)
Supply
current in
Run mode
f
HCLK
48MHz included, bypass mode PLL ON above 48 MHz all peripherals disable
Supply
I
DD_ALL
(LPRun)
current in
low-power
run mode
1. Guaranteed by characterization results, unless otherwise specified.
= f
f
HCLK
MSI
all peripherals disable FLASH in power-down
Voltage scaling
Range 2
Range 1
running from SRAM1
(1)
f
HCLK
25 °C 55 °C 85 °C
105 °C125
°C
25 °C 55 °C 85 °C
26 MHz 2.42 2.43 2.49 2.56 2.71 2.7 2.7 2.8 3.0 3.3
16 MHz 1.54 1.55 1.6 1.67 1.82 1.7 1.7 1.8 2.0 2.3
8 MHz 0.82 0.84 0.88 0.95 1.1 0.9 1.0 1.0 1.2 1.5
4 MHz 0.47 0.48 0.52 0.59 0.73 0.5 0.6 0.6 0.8 1.1
2 MHz 0.29 0.3 0.34 0.41 0.55 0.3 0.4 0.4 0.6 0.9
1 MHz 0.2 0.21 0.25 0.32 0.46 0.2 0.3 0.3 0.5 0.8
100 kHz 0.12 0.13 0.17 0.24 0.38 0.1 0.2 0.2 0.4 0.7
80 MHz 8.63 8.68 8.74 8.84 9.01 9.5 9.6 9.7 9.9 10.2
72 MHz 7.79 7.83 7.9 7.99 8.17 8.6 8.6 8.8 8.9 9.3
64 MHz 6.95 6.99 7.05 7.15 7.32 7.7 7.7 7.9 8.0 8.4
48 MHz 5.19 5.22 5.29 5.38 5.55 5.8 5.8 5.9 6.1 6.5
32 MHz 3.51 3.53 3.6 3.68 3.85 3.9 4.0 4.1 4.2 4.6
24 MHz 2.66 2.68 2.74 2.83 2.99 3.0 3.0 3.1 3.3 3.6
16 MHz 1.82 1.84 1.89 1.98 2.14 2.0 2.1 2.2 2.3 2.7
2 MHz 205 228 275 352 501 276.5 302.3 358.4 502.5 816.4
1 MHz 111 126 175 248 397 151.3 180.9 245.3 390.7 703.4
400 kHz 49.2 62.7 108 181 330 73.3 104.0 170.8 321.0 632.4
100 kHz 21.5 33.3 76.6 151 299 36.4 67.7 137.2 287.8 600.8
105 °C125
°C
Electrical characteristics STM32L431xx
Unit
mA
µA
STM32L431xx Electrical characteristics
Table 29. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF)
Symbol Parameter
I
DD_ALL
(Run)
Supply
current in
Run mode
Supply
I
DD_ALL
(LPRun)
current in
Low-power
run
Conditions TYP
Volt age scaling
up
f
HCLK
= f
-
HSE
to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable
f
= f
HCLK
MSI
= 2 MHz
all peripherals disable
Code 25 °C 25 °C
Reduced code
(1)
2.37
Coremark 2.69 103
Dhrystone 2.1 2.74 105
= 26 MHz
Range 2
Fibonacci 2.58 99
HCLK
f
While(1) 2.30 88
Reduced code
(1)
8.53
Coremark 9.68 121
Dhrystone 2.1 9.76 122
= 80 MHz
Range 1
Fibonacci 9.27 116
HCLK
f
While(1) 8.20 103
Reduced code
(1)
211
Coremark 251 126
Dhrystone 2.1 269 135
Fibonacci 230 115
Unit
mA
mA
µA
TYP
Unit
91
µA/MHz
107
µA/MHz
106
µA/MHz
While(1) 286 143
1. Reduced code used for characterization results provided in Table 26, Table 27, Table 28.
DS11453 Rev 3 97/208
176
Electrical characteristics STM32L431xx
Table 30. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART disable
Conditions TYP
Symbol Parameter
-
Voltage
scaling
Code 25 °C 25 °C
Reduced code
(1)
2.66
Coremark 2.44 94
Dhrystone 2.1 2.46 95
= 26 MHz
Range 2
Fibonacci 2.27 87
HCLK
f
While(1) 2.20 84.6
Reduced code
(1)
Coremark 8.00 100
Dhrystone 2.1 7.98 100
= 80 MHz
Range 1
Fibonacci 7.41 93
HCLK
f
While(1) 7.83 98
Reduced code
(1)
Coremark 342 171
Dhrystone 2.1 324 162
Fibonacci 324 162
I
DD_ALL
(Run)
I
DD_ALL
(LPRun)
Supply
current in
Run mode
Supply
current in
Low-power
run
= f
f
HCLK
HSE
up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable
f
= f
HCLK
MSI
= 2 MHz
all peripherals disable
While(1) 384 192
1. Reduced code used for characterization results provided in Table 26, Table 27, Table 28.
8.56
310
Unit
mA
mA
µA
TYP
Unit
102
µA/MHz
107
µA/MHz
155
µA/MHz
Table 31. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1
Conditions TYP
Symbol Parameter
-
Voltage
scaling
Code 25 °C 25 °C
Reduced code
(1)
2.42
Coremark 2.18 84
Dhrystone 2.1 2.40 92
= 26 MHz
Range 2
Fibonacci 2.40 92
HCLK
f
While(1) 2.29 88
Reduced code
(1)
Coremark 7.76 97
Dhrystone 2.1 8.55 107
= 80 MHz
Range 1
Fibonacci 8.56 107
HCLK
f
While(1) 8.12 102
Reduced code
(1)
Coremark 188 94
Dhrystone 2.1 222 111
Fibonacci 204 102
I
DD_ALL
(Run)
I
DD_ALL
(LPRun)
Supply
current in
Run mode
Supply
current in
Low-power
run
= f
f
HCLK
HSE
up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable
f
= f
HCLK
MSI
= 2 MHz
all peripherals disable
While(1) 211 106
1. Reduced code used for characterization results provided in Table 26, Table 27, Table 28.
Unit
mA
8.63
mA
205
µA
TYP
Unit
93
µA/MHz
108
µA/MHz
103
µA/MHz
98/208 DS11453 Rev 3
Table 32. Current consumption in Sleep and Low-power sleep modes, Flash ON
Conditions TYP MAX
Symbol Parameter
-
f
= f
= f
HSE
MSI
up
HCLK
to 48 MHz
DS11453 Rev 3 99/208
I
DD_ALL
(Sleep)
Supply
current in
sleep
mode,
included, bypass mode pll ON above 48 MHz all peripherals disable
Supply
I
DD_ALL
(LPSleep)
current in
low-power
sleep
f
HCLK
all peripherals disable
mode
1. Guaranteed by characterization results, unless otherwise specified.
Voltage scaling
Range 2
Range 1
(1)
f
HCLK
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
26 MHz 0.68 0.69 0.74 0.81 0.95 0.8 0.8 0.9 1.0 1.3
16 MHz 0.46 0.48 0.52 0.59 0.73 0.5 0.6 0.6 0.8 1.1
8 MHz 0.29 0.30 0.34 0.41 0.55 0.3 0.4 0.4 0.6 0.9
4 MHz 0.20 0.21 0.25 0.32 0.46 0.2 0.3 0.3 0.5 0.8
2 MHz 0.16 0.17 0.21 0.28 0.42 0.2 0.2 0.3 0.4 0.7
1 MHz 0.13 0.15 0.19 0.26 0.40 0.1 0.2 0.3 0.4 0.7
100 kHz 0.11 0.13 0.17 0.24 0.38 0.1 0.2 0.2 0.4 0.7
80 MHz 2.23 2.25 2.30 2.38 2.54 2.5 2.5 2.6 2.8 3.1
72 MHz 2.02 2.04 2.10 2.18 2.34 2.2 2.3 2.4 2.5 2.9
64 MHz 1.82 1.84 1.89 1.98 2.14 2.0 2.1 2.1 2.3 2.6
48 MHz 1.34 1.36 1.42 1.50 1.66 1.5 1.6 1.7 1.8 2.2
32 MHz 0.93 0.95 1.01 1.09 1.25 1.1 1.1 1.2 1.4 1.7
24 MHz 0.73 0.75 0.80 0.88 1.04 0.8 0.9 1.0 1.1 1.4
16 MHz 0.53 0.55 0.60 0.68 0.84 0.6 0.6 0.7 0.9 1.2
2 MHz 71.8 80.7 125 200 350 91.1 122.7 191.3 341.5 653.5
1 MHz 45.0 57.3 101 176 325 63.2 95.4 165.4 316.5 628.7
400 kHz 27.0 40.7 84.6 158 308 43.9 75.8 147.2 297.6 609.2
100 kHz 22.8 30.9 63.3 113.2 207.7 35.2 67.9 140.9 290.8 602.4
STM32L431xx Electrical characteristics
Unit
mA
µA
100/208 DS11453 Rev 3
Symbol Parameter
Table 33. Current consumption in Low-power sleep modes, Flash in power-down
Conditions TYP MAX
-
Voltage
scaling
f
HCLK
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
Electrical characteristics STM32L431xx
(1)
Unit
2 MHz 58.7 70.7 103.2 153.7 248.5 80 113 180 330 641
I
DD_ALL
(LPSleep)
Supply current
in low-power
sleep mode
= f
f
HCLK
MSI
all peripherals disable
1 MHz 39.4 47.2 79.3 129.6 224.8 53 86 154 304 616
400 kHz 20.8 30.8 62.1 112.5 207.8 35 67 137 286 597
100 kHz 14.3 23.1 55.1 105.7 201.5 27 58 130 279 590
1. Guaranteed by characterization results, unless otherwise specified.
Table 34. Current consumption in Stop 2 mode
Conditions TYP MAX
Symbol Parameter
-V
1.8 V 1 2.54 8.74 19.8 43.4 2.0 5.6 21.1 50.8 116.0
I
DD_ALL
(Stop 2)
Supply current in Stop 2 mode, RTC disabled
-
2.4 V 1.02 2.59 8.89 20.2 44.3 2.1 5.8 21.6 52.3 119.6
3.6 V 1.23 2.88 9.56 21.6 47.3 2.3 6.1 23.0 55.8 127.9
1.8 V 1.3 2.82 9.02 20.1 43.6 2.5 6.2 21.6 51.3 116.3
RTC clocked by LSI
2.4 V 1.39 2.95 9.24 20.5 44.6 2.8 6.4 22.3 52.8 120.0
3.6 V 1.76 3.42 10.1 22.1 47.8 3.3 7.2 24.1 56.7 128.7
1.8 V 1.36 2.9 9.1 20.1 43.7 - - - - -
I
DD_ALL
(Stop 2 with
RTC)
Supply current in Stop 2 mode, RTC enabled
RTC clocked by LSE bypassed at 32768 Hz
2.4 V 1.48 3.09 9.44 20.8 45 - - - - -
3.6 V 3.58 6.17 13.9 26.6 53 - - - - -
1.8 V 1.28 2.81 9.13 20.8 - - - - - -
RTC clocked by LSE
(2)
quartz
2.4 V 1.39 2.93 9.34 21.3 - - - - - -
in low drive mode
3.6 V 1.86 3.45 10.2 22.8 - - - - - -
(1)
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C
DD
3 V 1.06 2.67 9.11 20.7 45.5 2.1 5.9 22.2 53.7 123.2
3 V 1.5 3.11 9.55 21.1 45.8 3.0 6.8 23.0 54.5 123.8
3 V 1.83 3.67 10.4 22.3 47.3 - - - - -
3 V 1.59 3.1 9.64 21.8 - - - - - -
µA
Unit
µA
µA
Loading...