ST MICROELECTRONICS STM32L152RET6 Datasheet

Page 1
STM32L151xE STM32L152xE
LQFP144 (20 × 20 mm) LQFP100 (14 × 14 mm) LQFP64 (10 × 10 mm)
UFBGA132
(7 × 7 mm)
WLCSP104
(0.4 mm pitch)
Ultra-low-power 32-bit MCU Arm®-based Cortex®-M3 with 512KB
Flash, 80KB SRAM, 16KB EEPROM, LCD, USB, ADC, DAC
Features
Includes ST state-of-the-art patented technology
Ultra-low-power platform – 1.65 V to 3.6 V power supply – -40 °C to 105 °C temperature range – 290 nA Standby mode (3 wakeup pins) – 1.11 µA Standby mode + RTC – 560 nA Stop mode (16 wakeup lines) – 1.4 µA Stop mode + RTC – 11 µA Low-power run mode down to 4.6 µA
in Low-power sleep mode – 195 µA/MHz Run mode – 10 nA ultra-low I/O leakage – 8 µs wakeup time
Core: Arm
®
Cortex®-M3 32-bit CPU – From 32 kHz up to 32 MHz max – 1.25 DMIPS/MHz (Dhrystone 2.1) – Memory protection unit
Up to 34 capacitive sensing channels
CRC calculation unit, 96-bit unique ID
Reset and supply management
– Low-power, ultrasafe BOR (brownout reset)
with 5 selectable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD)
Clock sources – 1 to 24 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 16 MHz oscillator factory trimmed
RC(+/-1%) with PLL option – Internal low-power 37 kHz oscillator – Internal multispeed low-power 65 kHz to
4.2 MHz oscillator
– PLL for CPU clock and USB (48 MHz)
Pre-programmed bootloader
– USB and USART supported
Up to 116 fast I/Os (102 I/Os 5V tolerant), all mappable on 16 external interrupt vectors
Memories – 512 Kbytes of Flash memory with ECC
(with 2 banks of 256 Kbytes enabling RWW
capability) – 80 Kbytes of RAM – 16 Kbytes of true EEPROM with ECC – 128-byte backup register
LCD driver (except STM32L151xE devices) up to 8x40 segments, contrast adjustment, blinking mode, step-up converter
Rich analog peripherals (down to 1.8 V) – 2x operational amplifiers – 12-bit ADC 1 Msps up to 40 channels – 12-bit DAC 2 ch with output buffers – 2x ultra-low-power comparators
(window mode and wake up capability)
DMA controller 12x channels
11x peripheral communication interfaces
– 1x USB 2.0 (internal 48 MHz PLL) – 5x USARTs – Up to 8x SPIs (2x I2S, 3x 16 Mbit/s) – 2x I
2
Cs (SMBus/PMBus)
11x timers: 1x 32-bit, 6x 16-bit with up to 4 IC/OC/PWM channels, 2x 16-bit basic timers, 2x watchdog timers (independent and window)
Development support: serial wire debug, JTAG and trace
April 2021 DS10002 Rev 10 1/136
This is information on a product in full production.
www.st.com
Page 2
STM32L151xE STM32L152xE

Table 1. Device summary

Reference Part number
STM32L151xE STM32L151QE, STM32L151RE, STM32L151VE, STM32L151ZE
STM32L152xE STM32L152QE, STM32L152RE, STM32L152VE, STM32L152ZE
2/136 DS10002 Rev 10
Page 3
STM32L151xE STM32L152xE Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Common system strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
®
3.2 Arm
Cortex®-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 23
3.6 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9 LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10.2 Internal voltage reference (V
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
REFINT
3.11 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12 Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.13 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 27
3.14 System configuration controller and routing interface . . . . . . . . . . . . . . . 27
3.15 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DS10002 Rev 10 3/136
5
Page 4
Contents STM32L151xE STM32L152xE
3.16 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and
TIM11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.16.2 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.3 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17.1 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 29
3.17.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.17.4 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.17.5 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 30
3.19 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.19.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.19.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1.7 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.8 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 62
6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4/136 DS10002 Rev 10
Page 5
STM32L151xE STM32L152xE Contents
6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.19 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.21 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.22 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
7.2 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
7.3 WLCSP104 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.4 UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.5 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
DS10002 Rev 10 5/136
5
Page 6
List of tables STM32L151xE STM32L152xE
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. Ultra-low-power STM32L151xE and STM32L152xE device features and peripheral
counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 15
Table 4. CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16
Table 5. Functionalities depending on the working mode (from Run/active down to
standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 6. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 7. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 8. STM32L151xE and STM32L152xE pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 9. Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 10. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 11. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 12. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 13. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 14. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 15. Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 16. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 17. Current consumption in Run mode, code with data processing running from Flash. . . . . . 66
Table 18. Current consumption in Run mode, code with data processing running from RAM . . . . . . 67
Table 19. Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 20. Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 21. Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 22. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 23. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 73
Table 24. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 25. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 26. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 27. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 28. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 29. LSE oscillator characteristics (f
Table 30. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 31. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 32. MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 33. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 34. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 35. Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 36. Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 86
Table 37. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 38. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 39. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 40. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 41. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 42. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 43. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 44. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 45. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 46. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
LSE
6/136 DS10002 Rev 10
Page 7
STM32L151xE STM32L152xE List of tables
Table 47. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 48. SCL frequency (f
= 32 MHz, VDD = VDD_I2C = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . 96
PCLK1
Table 49. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 50. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 51. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 52. USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 53. I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 54. ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 55. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 56. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 57. Maximum source impedance R
max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
AIN
Table 58. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 59. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 60. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 61. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 62. Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 63. Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 64. LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 65. LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 66. LQPF100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 67. WLCSP104 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 68. WLCSP104 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 69. UFBGA132 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 70. LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 71. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 72. STM32L151xE and STM32L152xE Ordering information scheme. . . . . . . . . . . . . . . . . . 132
Table 73. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
DS10002 Rev 10 7/136
7
Page 8
List of figures STM32L151xE STM32L152xE
List of figures
Figure 1. Ultra-low-power STM32L151xE and STM32L152xE block diagram. . . . . . . . . . . . . . . . . . 13
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3. STM32L15xRE LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 4. STM32L15xVE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 5. STM32L15xVEY WLCSP104 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 6. STM32L15xQE UFBGA132 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 7. STM32L15xZE LQFP144 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 8. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 9. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 11. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 12. Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 13. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 15. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 16. HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 18. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 19. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 20. I
Figure 21. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 22. SPI timing diagram - slave mode and CPHA = 1 Figure 23. SPI timing diagram - master mode
Figure 24. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 25. I Figure 26. I
Figure 27. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 28. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 29. Maximum dynamic current consumption on V
Figure 30. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 31. LQFP64 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 32. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 33. LQFP64 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 34. LQFP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 35. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 36. LQFP100 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 37. WLCSP104 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 38. WLCSP104 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 39. WLCSP104 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 40. UFBGA132 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 41. UFBGA132 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 42. UFBGA132 top view example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 43. LQFP144 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 44. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 45. LQFP144 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 46. Thermal resistance suffix 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 47. Thermal resistance suffix 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2
C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2
S slave timing diagram (Philips protocol)
2
S master timing diagram (Philips protocol)
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
supply pin during ADC
REF+
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8/136 DS10002 Rev 10
Page 9
STM32L151xE STM32L152xE Introduction

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32L151xE and STM32L152xE ultra-low-power Arm
®
Cortex®-M3 based microcontroller product line. STM32L151xE and STM32L152xE devices are microcontrollers with a Flash memory density of 512
Kbytes.
The ultra-low-power STM32L151xE and STM32L152xE family includes devices in 5 different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.
These features make the ultra-low-power STM32L151xE and STM32L152xE microcontroller family suitable for a wide range of applications:
Medical and handheld equipment
Application control and user interface
PC peripherals, gaming, GPS and sport equipment
Alarm systems, wired and wireless sensors, video intercom
Utility metering
This STM32L151xE and STM32L152xE datasheet must be read in conjunction with the STM32L1xxxx reference manual (RM0038). The application note “Getting started with STM32L1xxxx hardware development” (AN3216) gives a hardware implementation overview. Both documents are available from the STMicroelectronics website www.st.com.
For information on the Arm
®(a)
Cortex®-M3 core, refer to the Arm® Cortex®-M3 technical reference manual, available from the www.arm.com website. Figure 1 shows the general block diagram of the device family.
For information on the device errata with respect to the datasheet and reference manual, refer to the STM32L15xE errata sheet (ES0235), available on the STMicroelectronics website www.st.com.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS10002 Rev 10 9/136
56
Page 10
Description STM32L151xE STM32L152xE

2 Description

The ultra-low-power STM32L151xE and STM32L152xE devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance Arm
®
Cortex protection unit (MPU), high-speed embedded memories (Flash memory up to 512 and RAM up to 80 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses.
The STM32L151xE and STM32L152xE devices offer two operational amplifiers, one 12-bit ADC, two DACs, two ultra-low-power comparators, one general-purpose 32-bit timer, six general-purpose 16-bit timers and two basic timers, which can be used as time bases.
Moreover, the STM32L151xE and STM32L152xE devices contain standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I2S, three USARTs, two UARTs and an USB. The STM32L151xE and STM32L152xE devices offer up to 34 sensing channels to simply add a touch sensing functionality to any application.
They also include a real-time clock and a set of backup registers that remain powered in Standby mode.
Finally, the integrated LCD controller (except STM32L151xE devices) has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with the contrast independent of the supply voltage.
The ultra-low-power STM32L151xE and STM32L152xE devices operate from a 1.8 to 3.6 V power supply (down to 1.65 supply without BOR option. They are available in the -40 to +85 °C and -40 to +105 °C temperature ranges. A comprehensive set of power-saving modes allows the design of low­power applications.
-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory
capacitive
V at power down) with BOR and from a 1.65 to 3.6 V power
®
Kbytes
10/136 DS10002 Rev 10
Page 11
STM32L151xE STM32L152xE Description

2.1 Device overview

Table 2. Ultra-low-power STM32L151xE and STM32L152xE device features and peripheral
Flash (Kbytes) 512
Data EEPROM (Kbytes) 16
RAM (Kbytes) 80
counts
Peripheral STM32L15xRE STM32L15xVE STM32L15xQE STM32L15xZE
32 bit 1
Timers
General-purpose 6
Basic 2
SPI 8(3)
(1)
I2S 2
Communication interfaces
2
I
C 2
USART 5
USB 1
GPIOs 51 83 109 115
Operational amplifiers 2
12-bit synchronized ADC Number of channels
12-bit DAC Number of channels
(2)
LCD COM x SEG
1
21
1
4x32 or 8x28
25
1
40
1
1
40
2 2
1
4x44 or 8x40
Comparators 2
Capacitive sensing channels 23 33 34
Max. CPU frequency 32 MHz
Operating voltage
Operating temperatures
Packages LQFP64
1. 5 SPIs are USART configured in synchronous mode emulating SPI master.
2. STM32L152xx devices only.
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option
1.65 V to 3.6 V without BOR option
Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C
Junction temperature: –40 to + 110 °C
LQFP100,
WLCSP104
UFBGA132 LQFP144
DS10002 Rev 10 11/136
56
Page 12
Description STM32L151xE STM32L152xE

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of cores and features. From proprietary 8­bit to up to Cortex-M3, including the Cortex-M0+, the STM32Lx series are the best choice to answer the user needs, in terms of ultra-low-power features. The STM32 ultra-low-power series are the best fit, for instance, for gas/water meter, keyboard/mouse or fitness and healthcare, wearable applications. Several built-in features like LCD drivers, dual-bank memory, Low-power run mode, op-amp, AES 128-bit, DAC, USB crystal-less and many others clearly allow very cost-optimized applications to be built by reducing BOM.
Note: STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible
the pin-to-pin compatibility between any STM8Lxxxxx and STM32Lxxxxx devices and between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented scalability, the old applications can be upgraded to respond to the latest market features and efficiency demand.

2.2.1 Performance

All the families incorporate highly energy-efficient cores with both Harvard architecture and pipelined execution: advanced STM8 core for STM8L families and Arm Cortex-M3 core for STM32L family. In addition specific care for the design architecture has been taken to optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.

2.2.2 Shared peripherals

STM8L15xxx, STM32L15xxx and STM32L162xx share identical peripherals which ensure a very easy migration from one family to another:
Analog peripherals: ADC, DAC and comparators
Digital peripherals: RTC and some communication interfaces

2.2.3 Common system strategy.

To offer flexibility and optimize performance, the STM8L15xxx, STM32L15xxx and STM32L162xx family uses a common architecture:
Same power supply range from 1.65 V to 3.6 V
Architecture optimized to reach ultra-low consumption both in low-power modes and
Run mode
Fast startup strategy from low-power modes
Flexible system clock
Ultrasafe reset: same reset strategy including power-on reset, power-down reset,
brownout reset and programmable voltage detector

2.2.4 Features

ST ultra-low-power continuum also lies in feature compatibility:
More than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
Memory density ranging from 2 to 512 Kbytes
12/136 DS10002 Rev 10
Page 13
STM32L151xE STM32L152xE Functional overview
MSv34186V1
POWER
VOLT. REG.
12bit ADC
EXT.IT WKUP
WinWATCHDOG
JTAG & SW
Fmax: 32 MHz
JTDI
NJTRST
NRST
USB2.0 FS device
SRAM 80K
2x(8x16b i t )
I2C2
TIMER2
TIMER3
XTAL OSC
1-24 MHz
XTAL 32 kHz
EEPROM 64 bit
Backup interface
TIMER4
RTC V2
AWU
RC HSI
obl
USB SRAM 512 B
Trace Controller ETM
USART1
USART2
SPI2/I2S
Backup
Reg 128
I2C1
USART3
RC MSI
Standby interface
WDG 32K
BOR / Bgap
SPI1
IF
@V DDA
PVD
GPIO PORT C
GPIO PORT D
GPIO PORT E
LCD 8x40
12bit DAC1
FIFIIF
12bit DAC2
DAC_OUT1 as AF
DAC_OUT2 as AF
MPU
GP Comp
PU / PD
PDR
PDR
TIMER6
TIMER7
General purpose
timers
LCD Booster
GPIO PORT H
RC LSI
TIMERS (32 bits)
2x(8x16b i t )
SPI3/I2S
TRACECK, TRACED0, TRACED1, TRACED2, TRACED4
System
Cap. sens
Supply monitoring
@VDDA
@VDDA
@VDDA
@VDDA
Supply monitoring
Cap. sensing
GPIO PORT B
GPIO PORT A
APB2: Fmax = 32 MHz
APB1: Fmax = 32 MHz
PLL & Clock Mgmt
VINP a VOUT
VINP VINM VOUT
RTC_OUT
AHB/APB2 AHB/APB1
JTCK / SWCLK JTMS / SWDAT
JTDO as AF
512 KB PROGRAM
16 KB DATA
8KB BOOT
DUAL BANK
@ VDD 33
VDD CORE
Vref
M3 CPU
GP DMA2 5 channels
GP DMA 7 channels
AHBPCLK APBPCLK
HCLK
FCLK
@ VDD33
VDD33=1.65V to 3.6V
Vss
OSC_IN
OSC_OUT
TAMPER
4 channels
4 channels
4 channels
4 channels
RX, TX, CTS, RTS,
SmartCard as AF
RX, TX, CTS, RTS,
SmartCard as AF
MOSI, MISO, SCK,NSS,WS, CK
MCK, SD as AF
MOSI, MISO, SCK,NSS,WS, CK
MCK, SD as AF
SCL, SDA
As AF
SCL, SDA, SMBus, PMBus As AF
USB_DP
USB_DM
Px
SEGx
COMx
OPAMP1
OPAMP2
COMPx_INx
VDDA /
VSSA
PA[15:0]
115 AF
PH[2:0]
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
TIMER9
TIMER10
TIMER11
2 channels
1 channel
1 channel
MOSI, MISO,
SCK, NSS as AF
RX, TX, CTS, RTS,
SmartCard as AF
40 AF
VDDREF_ADC*
VSSREF_ADC*
pbus
ibus
Dbus
BOR
Int
AHB: Fmax = 32 MHz
Bus Matrix 5M / 5S
VLCD = 2.5V to 3.6V
VLCD
@VDD33
Temp sensor
OSC32_IN
OSC32_OUT
NVIC
EEPROM
Interface
GPIO PORT F
GPIO PORT G
PF[15:0]
PG[15:0]
USART4
RX, TX as AF
USART5
RX, TX as AF

3 Functional overview

Figure 1. Ultra-low-power STM32L151xE and STM32L152xE block diagram

56
DS10002 Rev 10 13/136
Page 14
Functional overview STM32L151xE STM32L152xE

3.1 Low-power modes

The ultra-low-power STM32L151xE and STM32L152xE devices support dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the internal low­drop regulator that supplies the logic can be adjusted according to the system’s maximum operating frequency and the external voltage supply.
There are three power consumption ranges:
Range 1 (VDD range limited to 1.71 V - 3.6 V), with the CPU running at up to 32 MHz
Range 2 (full V
Range 3 (full V
only with the multispeed internal RC oscillator clock source)
Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.
Low-power run mode
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the MSI range 0 or MSI range 1 clock range (maximum 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In low-power run mode, the clock frequency and the number of enabled peripherals are both limited.
Low-power sleep mode
This mode is achieved by entering Sleep mode with the internal voltage regulator in Low-power mode to minimize the regulator’s operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.
When wakeup is triggered by an event or an interrupt, the system reverts to the run mode with the regulator on.
Stop mode with RTC
Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event or the RTC wakeup.
range), with a maximum CPU frequency of 16 MHz
DD
range), with a maximum CPU frequency limited to 4 MHz (generated
DD
domain are stopped, the
CORE
14/136 DS10002 Rev 10
Page 15
STM32L151xE STM32L152xE Functional overview
Stop mode without RTC
Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI line source can be one of the 16 external lines. It can be the PVD output, the Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB wakeup.
Standby mode with RTC
Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V
CORE
domain is powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.
Standby mode without RTC
Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V
domain is powered off. The PLL, MSI
CORE
RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc, RCC_CSR).
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode.

Table 3. Functionalities depending on the operating power supply range

-
Operating power supply
range
= V
V
DD
V
DD=VDDA
V
DD=VDDA
= 1.65 to 1.71 V Not functional Not functional Range 2 or Range 3
DDA
= 1.71 to 1.8 V
= 1.8 to 2.0 V
(2)
(2)
Functionalities depending on the operating power supply
DAC and ADC
operation
Not functional Not functional
Conversion time up
to 500 Ksps
USB
Not functional
range
(1)
Dynamic voltage scaling
range
Range 1, Range 2 or
Range 3
Range 1, Range 2 or
Range 3
DS10002 Rev 10 15/136
56
Page 16
Functional overview STM32L151xE STM32L152xE
Table 3. Functionalities depending on the operating power supply range (continued)
-
Operating power supply
range
VDD=V
V
DD=VDDA
1. The GPIO speed also depends from VDD voltage and the user has to refer to Table 44: I/O AC
characteristics for more information about I/O speed.
2. CPU frequency changes from initial to final must respect “F due to current consumption peak when frequency increases. It must also respect 5 µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.
3. Must be USB compliant from I/O voltage standpoint, the minimum V
= 2.0 to 2.4 V
DDA
= 2.4 to 3.6 V

Table 4. CPU frequency range depending on dynamic voltage scaling

Functionalities depending on the operating power supply
DAC and ADC
operation
Conversion time up
to 500 Ksps
Conversion time up
to 1 Msps
USB
Functional
Functional
initial < 4*F
CPU
range
(3)
(3)
is 3.0 V.
DD
(1)
Dynamic voltage scaling
range
Range 1, Range 2 or
Range 3
Range 1, Range 2 or
Range 3
final” to limit V
CPU
CORE
CPU frequency range Dynamic voltage scaling range
drop
16 MHz to 32 MHz (1ws)
32 kHz to 16 MHz (0ws)
8 MHz to 16 MHz (1ws)
32 kHz to 8 MHz (0ws)
2.1MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)
Range 1
Range 2
Range 3
16/136 DS10002 Rev 10
Page 17
STM32L151xE STM32L152xE Functional overview
Table 5. Functionalities depending on the working mode (from Run/active down to
standby)
Stop Standby
Wakeup
-
capability
-
Wakeup
capability
Ips Run/Active Sleep
Low-
power
Run
Low-
power
Sleep
CPU Y -- Y -- -- -- -- --
Flash Y Y Y Y -- -- -- --
RAM Y Y Y Y Y -- -- --
Backup Registers Y Y Y Y Y -- Y --
EEPROM Y Y Y Y Y -- -- --
Brown-out rest (BOR)
YYYYYYY--
DMA Y Y Y Y -- -- -- --
Programmable Voltage Detector
YYYYYYY--
(PVD)
Power On Reset (POR)
Power Down Rest (PDR)
High Speed Internal (HSI)
High Speed External (HSE)
YYYYYYY--
YYYYY--Y--
Y Y -- -- -- -- -- --
Y Y -- -- -- -- -- --
Low Speed Internal (LSI)
Low Speed External (LSE)
Multi-Speed Internal (MSI)
Inter-Connect Controller
YYYYY--Y--
YYYYY--Y--
Y Y Y Y -- -- -- --
Y Y Y Y -- -- -- --
RTC Y Y Y Y Y Y Y --
RTC Tamper Y Y Y Y Y Y Y Y
Auto WakeUp (AWU)
YYYYYYYY
LCD Y Y Y Y Y -- -- --
USB Y Y -- -- -- Y -- --
USART Y Y Y Y Y
(1)
-- --
SPI Y Y Y Y -- -- -- --
I2C Y Y -- -- --
(1)
-- --
DS10002 Rev 10 17/136
56
Page 18
Functional overview STM32L151xE STM32L152xE
Table 5. Functionalities depending on the working mode (from Run/active down to
standby) (continued)
Low-
Ips Run/Active Sleep
ADC Y Y -- -- -- -- -- --
DAC Y Y Y Y Y -- -- --
Tempsensor Y Y Y Y Y -- -- --
OP amp Y Y Y Y Y -- -- --
Comparators Y Y Y Y Y Y -- --
16-bit and 32-bit Timers
IWDG Y Y Y Y Y Y Y Y
WWDG Y Y Y Y -- -- -- --
Touch sensing Y Y -- -- -- -- -- --
Systic Timer Y Y Y Y - -- -- --
GPIOs Y Y Y Y Y Y -- 3 pins
Wakeup time to Run mode
Consumption
=1.8 to 3.6 V
V
DD
(Typ)
1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before entering run mode.
Y Y Y Y -- -- -- --
0 µs 0.4 µs 3 µs 46 µs < 8 µs 58 µs
Down to 195
µA/MHz (from
Flash)
Down to 38
µA/MHz (from
Flash)
power
Run
Down to
11 µ A
Low-
power
Sleep
Down to
4.6 µA
Stop Standby
Wakeup
-
capability
0.53 µA
(no RTC)
=1.8V
V
DD
1.2 µA
(with RTC)
V
=1.8V
DD
0.56 µA
(no RTC)
V
=3.0V
DD
1.4 µA
(with RTC)
V
=3.0V
DD
-
Wakeup
capability
0.285 µA (no RTC)
VDD=1.8V
0.97 µA
(with RTC)
VDD=1.8V
0.29 µA
(no RTC)
VDD=3.0V
1.11 µA
(with RTC)
VDD=3.0V

3.2 Arm® Cortex®-M3 core with MPU

The Arm® Cortex®-M3 processor is the industry leading processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The Arm® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices.
18/136 DS10002 Rev 10
Page 19
STM32L151xE STM32L152xE Functional overview
The memory protection unit (MPU) improves system reliability by defining the memory attributes (such as read/write access permissions) for different memory regions. It provides up to eight different regions and an optional predefined background region.
Owing to its embedded Arm core, the STM32L151xE and STM32L152xE devices are compatible with all Arm tools and software.
Nested vectored interrupt controller (NVIC)
The ultra-low-power STM32L151xE and STM32L152xE devices embed a nested vectored interrupt controller able to handle up to 56 maskable interrupt channels (not including the 16 interrupt lines of Arm
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support for tail-chaining
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.
®
Cortex®-M3) and 16 priority levels.

3.3 Reset and supply management

3.3.1 Power supply schemes

VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V
V
SSA
, V
= 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs
DDA
and PLL (minimum voltage to be applied to V and V
must be connected to V
SSA

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.
The device exists in two versions:
The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
The other version without BOR operates between 1.65 V and 3.6 V.
After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the V
1.65 V (whatever the version, BOR active or not, at power-on).
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up must guarantee that 1.65 POR area.
DD
pins.
and VSS, respectively.
DD
V is reached on VDD at least 1 ms after it exits the
is 1.8 V when the ADC is used). V
DDA
min value becomes
DD
DDA
DS10002 Rev 10 19/136
56
Page 20
Functional overview STM32L151xE STM32L152xE
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V V
is below a specified threshold, V
DD
) in Stop mode. The device remains in reset mode when
REFINT
POR/PDR
or V
, without the need for any external
BOR
reset circuit.
Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the start-
up time at power-on can be decreased down to 1
ms typically for devices with BOR inactive
at power-up.
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
levels between 1.85 interrupt can be generated when V V
DD/VDDA
power supply and compares it to the V
V and 3.05 V, chosen by software, with a step around 200 mV. An
drops below the V
is higher than the V
DD/VDDA
threshold. The interrupt service routine can then generate
PVD
threshold. This PVD offers 7 different
PVD
threshold and/or when
PVD
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.
MR is used in Run mode (nominal regulation)
LPR is used in the Low-power run, Low-power sleep and Stop modes
Power down is used in Standby mode. The regulator output is high impedance, the
kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from Flash memory
Boot from System memory
Boot from embedded RAM
The boot from Flash usually boots at the beginning of the Flash (bank 1). An additional boot mechanism is available through user option byte, to allow booting from bank 2 when bank 2 contains valid code. This dual boot capability can be used to easily implement a secure field software update mechanism.
The boot loader is located in System memory. It is used to reprogram the Flash memory by using USART1, USART2 or USB. See Application note “STM32 microcontroller system memory boot mode” (AN2606) for details.
20/136 DS10002 Rev 10
Page 21
STM32L151xE STM32L152xE Functional overview

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
Safe clock switching: clock sources can be changed safely on the fly in run mode through a configuration register.
Clock management: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
System clock source: three different clock sources can be used to drive the master clock SYSCLK:
1-24 MHz high-speed external crystal (HSE), that can supply a PLL
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can
supply a PLL
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7
frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
Auxiliary clock source: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
32.768 kHz low-speed external crystal (LSE)
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
RTC and LCD clock sources: the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
USB clock source: the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
Startup clock: after reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application.
Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See
Figure 2 for details on the clock tree.
DS10002 Rev 10 21/136
56
Page 22
Functional overview STM32L151xE STM32L152xE
MS18583V1
LSI RC
LSE OSC
HSI RC
HSE OSC
@V33
@V
DDCORE
@V33
level shifters
level shifters
PLL
X 3,4,6,8,12
@V33
level shifters
LSE tempo
1 MHz clock
detector
@V33
LS
Watchdog
ck_pllin
source control
Clock
Wat ch dog
enable
RTC enable
ck_hsi ck_hse
HSE present or not
LSI tempo
ck_pll
AHB
prescaler
/ 1,2,..512
APB2
/ 1,2,4,8,16
APB1
/ 1,2,4,8,16
ck_usb = Vco / 2 (Vco must be at 96 MHz)
/ 8
CK_TIMSYS
CK_CPU
CK_FCLK
CK_PWR
CK_USB48
CK_TIMTGO
CK_APB1
CK_APB2
usben and (not deepsleep)
timer9en and (not deepsleep)
apb1 periphen and (not deepsleep)
apb2 periphen and (not deepsleep)
not (sleep or
deepsleep)
not (sleep or
deepsleep
not deepsleep
not deepsleep
Standby supplied voltage domain
System
clock
MCO
if (APB1 presc = 1)
x1
else
x2
16,24,32,48
ck_lse
CK_LCD
/ 2, 3, 4
1 MHz
@V
DDCORE
@V
DDCORE
@V
DDCORE
/ 1,2,4,8,16
LCD enable
MSI RC
@V33
@V
DDCORE
level shifters
ck_msi
ck_lsi
CK_ADC
ADC enable
LS LS LS LS
LS
LS
/ 2,4,8,16
prescaler prescaler
Radio Sleep Timer
RTC
Radio Sleep Timer enable

Figure 2. Clock tree

22/136 DS10002 Rev 10
Page 23
STM32L151xE STM32L152xE Functional overview

3.5 Low-power real-time clock and backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. The RTC provides two programmable alarms and programmable periodic interrupts with wakeup from Stop and Standby modes.
The programmable wakeup time ranges from 120 µs to 36 hours.
The RTC can be calibrated with an external 512 Hz output, and a digital compensation circuit helps reduce drift due to crystal deviation.
The RTC can also be automatically corrected with a 50/60Hz stable powerline.
The RTC calendar can be updated on the fly down to sub second precision, which enables network system synchronization.
A time stamp can record an external event occurrence, and generates an interrupt.
There are thirty-two 32-bit backup registers provided to store 128 bytes of user application data. They are cleared in case of tamper detection.
Three pins can be used to detect tamper events. A change on one of these pins can reset backup register and generate an interrupt. To prevent false tamper event, like ESD event, these three tamper inputs can be digitally filtered.

3.6 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated AFIO registers. All GPIOs are high current capable. The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to the AHB with a toggling speed of up to 16 MHz.
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 115 GPIOs can be connected to the 16 external interrupt lines. The 8 other lines are connected to RTC, PVD, USB, comparator events or capacitive sensing acquisition.
DS10002 Rev 10 23/136
56
Page 24
Functional overview STM32L151xE STM32L152xE

3.7 Memories

The STM32L151xE and STM32L152xE devices have the following features:
80 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
The non-volatile memory is divided into three arrays:
512 Kbytes of embedded Flash program memory
16 Kbytes of data EEPROM
Options bytes
Flash program and data EEPROM are divided into two banks, this enables writing in one bank while running code or reading data in the other bank.
The options bytes are used to write-protect or read-out protect the memory (with 4 Kbytes granularity) and/or readout-protect the whole memory with the following options:
Level 0: no readout protection
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
Level 2: chip readout protection, debug features (Arm Cortex-M3 JTAG and serial
wire) and boot in RAM selection disabled (JTAG fuse)
The whole non-volatile memory embeds the error correction code (ECC) feature.

3.8 DMA (direct memory access)

The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers, DAC and ADC.
24/136 DS10002 Rev 10
Page 25
STM32L151xE STM32L152xE Functional overview

3.9 LCD (liquid crystal display)

The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels.
Internal step-up converter to guarantee functionality and contrast control irrespective of V
. This converter can be deactivated, in which case the V
DD
the voltage to the LCD
Supports static, 1/2, 1/3, 1/4 and 1/8 duty
Supports static, 1/2, 1/3 and 1/4 bias
Phase inversion to reduce power consumption and EMI
Up to 8 pixels can be programmed to blink
Unneeded segments and common pins can be used as general I/O pins
LCD RAM can be updated at any time owing to a double-buffer
The LCD controller can operate in Stop mode
pin is used to provide
LCD

3.10 ADC (analog-to-digital converter)

A 12-bit analog-to-digital converters is embedded into STM32L151xE and STM32L152xE devices with up to 40 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs with up to 28 external channels in a group.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task.
The ADC includes a specific low-power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC’s runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage V temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
that varies linearly with
SENSE
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are
DS10002 Rev 10 25/136
56
Page 26
Functional overview STM32L151xE STM32L152xE
stored by ST in the system memory area, accessible in read-only mode. See Tab le 60:
Temperature sensor calibration values.
3.10.2 Internal voltage reference (V
The internal voltage reference (V ADC and Comparators. V enables accurate monitoring of the V available for ADC). The precise voltage of V ST during production test and stored in the system memory area. It is accessible in read­only mode. See
Tabl e 15: Embedded internal reference voltage calibration values.
REFINT
REFINT
is internally connected to the ADC_IN17 input channel. It
REFINT
DD
)
) provides a stable (bandgap) voltage output for the
value (when no external voltage, VREF+, is
REFINT

3.11 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.
This dual digital Interface supports the following features:
Two DAC converters: one for each output channel
8-bit or 12-bit monotonic output
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channels, independent or simultaneous conversions
DMA capability for each channel (including the underrun interrupt)
External triggers for conversion
Input reference voltage V
Eight DAC trigger inputs are used in the STM32L151xE and STM32L152xE devices. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.
REF+
is individually measured for each part by

3.12 Operational amplifier

The STM32L151xE and STM32L152xE devices embed two operational amplifiers with external or internal follower routing capability (or even amplifier and filter capability with external components). When one operational amplifier is selected, one external ADC channel is used to enable output measurement.
The operational amplifiers feature:
Low input bias current
Low offset voltage
Low-power mode
Rail-to-rail input
26/136 DS10002 Rev 10
Page 27
STM32L151xE STM32L152xE Functional overview

3.13 Ultra-low-power comparators and reference voltage

The STM32L151xE and STM32L152xE devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).
One comparator with fixed threshold
One comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of
the following:
DAC output
External I/O
Internal reference voltage (V
Both comparators can wake up from Stop mode, and be combined into a window comparator.
The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1
µA typical).
) or a sub-multiple (1/4, 1/2, 3/4)
REFINT

3.14 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports.
The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage V
REFINT
.

3.15 Touch sensing

The STM32L151xE and STM32L152xE devices provide a simple solution for adding capacitive sensing functionality to any application. Thesedevices offer up to 34 capacitive sensing channels distributed over 11 analog I/O groups. Both software and timer capacitive sensing acquisition modes are supported.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. The capacitive sensing acquisition only requires few external components to operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups (see
Section 3.14: System configuration controller and routing interface).
Reliable touch sensing functionality can be quickly and easily implemented using the free STM32L1xx STMTouch touch sensing firmware library.
DS10002 Rev 10 27/136
56
Page 28
Functional overview STM32L151xE STM32L152xE

3.16 Timers and watchdogs

The ultra-low-power STM32L151xE and STM32L152xE devices include seven general­purpose timers, two basic timers, and two watchdog timers.
Tabl e 6 compares the features of the general-purpose and basic timers.

Table 6. Timer feature comparison

Timer
TIM2, TIM3,
TIM4
TIM5 32-bit
TIM9 16-bit
TIM10,
TIM11
TIM6,
TIM7
Counter
resolution
16-bit
16-bit Up
16-bit Up
Counter type Prescaler factor
Up, down,
up/down
Up, down,
up/down
Up, down,
up/down
Any integer between
1 and 65536
Any integer between
1 and 65536
Any integer between
1 and 65536
Any integer between
1 and 65536
Any integer between
1 and 65536
DMA
request
generation
Yes 4 No
Yes 4 No
No 2 No
No 1 No
Yes 0 No
Capture/compare
channels
Complementary
outputs

3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11)

There are seven synchronizable general-purpose timers embedded in the STM32L151xE and STM32L152xE devices (see
TIM2, TIM3, TIM4, TIM5
Tabl e 6 for differences).
TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32­bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages.
TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.
TIM10, TIM11 and TIM9
TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.
28/136 DS10002 Rev 10
Page 29
STM32L151xE STM32L152xE Functional overview
They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

3.16.2 Basic timers (TIM6 and TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.16.3 SysTick timer

This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0.

3.16.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

3.16.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.17 Communication interfaces

3.17.1 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.
They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SM Bus 2.0/PM Bus.

3.17.2 Universal synchronous/asynchronous receiver transmitter (USART)

The three USART and two UART interfaces are able to communicate at speeds of up to 4 Mbit/s. They support IrDA SIR ENDEC and have LIN Master/Slave capability. The three USARTs provide hardware management of the CTS and RTS signals and are ISO 7816 compliant.
All USART/UART interfaces can be served by the DMA controller.
DS10002 Rev 10 29/136
56
Page 30
Functional overview STM32L151xE STM32L152xE

3.17.3 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.
The SPIs can be served by the DMA controller.

3.17.4 Inter-integrated sound (I2S)

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.
The I2Ss can be served by the DMA controller.

3.17.5 Universal serial bus (USB)

The STM32L151xE and STM32L152xE devices embed a USB device peripheral compatible with the USB full-speed 12 function interface. It has software-configurable endpoint setting and supports suspend/resume. The dedicated 48 clock source must use a HSE crystal oscillator).
Mbit/s. The USB interface implements a full-speed (12 Mbit/s)
MHz clock is generated from the internal main PLL (the

3.18 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.
30/136 DS10002 Rev 10
Page 31
STM32L151xE STM32L152xE Functional overview

3.19 Development support

3.19.1 Serial wire JTAG debug port (SWJ-DP)

The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.
The JTAG port can be permanently disabled with a JTAG fuse.

3.19.2 Embedded Trace Macrocell™

The Arm flow inside the CPU core by streaming compressed data at a very high rate from the STM32L151xE and STM32L152xE device through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.
®
Embedded Trace Macrocell provides a greater visibility of the instruction and data
DS10002 Rev 10 31/136
56
Page 32
Pin descriptions STM32L151xE STM32L152xE
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47 46 45 44 43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
V
LCD
PC13-WKUP2
PC14-OSC32_IN
PC15-OSC32_OUT
PH0 -OSC_IN
PH1- OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VDDA
PA0-WKUP 1
PA1 PA2
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
VDD_2 VSS_
2
PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PA3
VSS_4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
LQFP64
ai15693c

4 Pin descriptions

Figure 3. STM32L15xRE LQFP64 pinout

32/136 DS10002 Rev 10
1. This figure shows the package top view.
Page 33
STM32L151xE STM32L152xE Pin descriptions

Figure 4. STM32L15xVE LQFP100 pinout

VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
PE2 PE3 PE4 PE5
PE6-WKUP3
V
PC13-WKUP2
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA0-WKU P1
LCD
PA1 PA2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26272829303132333435363738394041424344454647484950
PA3
PA4
VSS_4
VDD_4
1. This figure shows the package top view.
100999897969594939291908988878685848382818079787776
75
VDD_2
74
VSS_2
73
PH2
72
PA1 3
71
PA1 2
70
PA11
69
PA1 0
68
PA9
67
PA8
66
PC9
65
PC8
64
LQFP100
PA5
PA6
PA7
PB0
PB1
PB2
PE7
PE8
PC4
PC5
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
63 62 61 60 59 58 57 56 55 54 53 52 51
VDD_1
PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
ai15692c
DS10002 Rev 10 33/136
56
Page 34
Pin descriptions STM32L151xE STM32L152xE
MSv41009V1
A
B
E
D
C
F
G
H
765438
J
K
L
M
9
12
PD4
PD5
PD2
PA13
PA8
PD15
PD12
PD7
PD6
PA14
PD11
PD8
PB4
PB3
PB6
PB5
PB7
BOOT0
PE0
PE1
VDD_3
PB9
VDDA
PA6
PE3
VLCD
VSS_3
VREF+
PA3
PE4
PH0 OSCIN
VREF-
NRST
PE2
PE6 WKUP3
PC0
PC14 OSC32IN
VSS_5
PC3
PD3
PC9
PC10
PD1
PB8
PB13
VDD_1
PB11
PE12
PB12
PE15
PE14
PE9
PE10
PE13
PE11
PE8
PB0
PB1
PE7
PB2
PA4
PA7
PC4
PC5
PA2
VSS_4
VDD_4
PA5
PE5
PC13 WKUP2
PC15 OSC32OUT
PC2
PC1
VSSA
PA0 WKUP1
PA1
VDD_4
VDD_3
VDD_5
PH1 OSCOUT
VSS_2
PA11
PH2
PA15
PC6
VDD_2
PA9
PC7
PD14
PD10
PB14
VSS_1
PD0
PC11
PC12
VSS_2
PA12
PA10
PC8
PD13
PD9
PB15
VSS_1
PB10

Figure 5. STM32L15xVEY WLCSP104 ballout

1. This figure shows the package top view.
34/136 DS10002 Rev 10
Page 35
STM32L151xE STM32L152xE Pin descriptions
MS33002V1
A
B
E
D
C
F
G
H
PE3
PC15­OSC32 _OUT
PC14­OSC32 _IN
PE4
PC0
PE1
PE5
PE2
PE6-
WKUP3
VLCD
VSS_5
VDD_5
NRST
PB8
PB9
PE0
VSS_6
PF4
PF6
VDD_6
BOOT0
PB7
VSS_3
PD7
PB6
PB5
PD5
PD6
PB4
PD4
PG14
PG12
PG13
PF0
7654321
PC13­WKUP2
PH0 OSC_IN
PH1 OSC_ OUT
VDD_3
VDD_9
PF2
PF1
VSS_9
J
VSSA
PC1 PC2 PA 4 PA7 PF9 PF12
PB3
PD3
PD2
VSS_10
VDD_10
PA15
PD1
PG10
PG1
PG0
PA14
PC12
PC11
PD15
PA13
PC10
PA12
PA11
PH2
VDD_2
PD14
PC9
PC6
PA10
VDD_1
PD13
VSS_1
PA8
PC7
VSS_2
PD0
PG2
PG3
PG5
PG9
PA9
PC8
PG4
PF14 PF15 PD12 PD11 PD10
VREF+
PC3
PA0-
WKUP1
PA2
PA3
PA5
PA6
PC5
PF11
PB2
PF13
PE8
NC
PC4
VDDA
PA1
OPAMP1
_VINM
OPAMP2
_VINM
PB0 PB1 PE7
PD9
PE10
PD8
PE12
PB10
PB14
PB11
PB13
PB12
PB15
PE9 PE11 PE13 PE14 PE15
K
L
M
PF3
PF5
PF7
PF8
12111098

Figure 6. STM32L15xQE UFBGA132 ballout

1. This figure shows the package top view.
DS10002 Rev 10 35/136
56
Page 36
Pin descriptions STM32L151xE STM32L152xE
MS18581V2
V
DD_3VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
V
DD_11VSS_11
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
V
DD_10VSS_10
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA 15
PA 14
PE2
V
DD_2
PE3
V
SS_2
PE4 PE5
PA 13
PE6-WKUP3
PA 12 PA 11
PC13-WKUP2
PA 10
PC14-OSC32_IN
PA 9
PC15-OSC32_OUT
PA 8
PF0
PC9
PF1
PC8
PF2
PC7
PF3
PC6
PF4
V
DD_9
PF5
V
SS_9
V
SS_5
PG8
V
DD_5
PG7
PF6
PG6
PF7
PG5
PF8
PG4
PF9
PG3
PF10
PG2
OSC_IN
PD15
OSC_OUT
PD14
NRST
V
DD_8
PC0
V
SS_8
PC1
PD13
PC2
PD12
PC3
PD11
V
SSA
PD10
V
REF-
PD9
V
REF+
PD8
V
DDA
PB15
PA 0 -W KUP 1
PB14
PA 1
PB13
PA 2
PB12
PA 3
V
SS_4
V
DD_4
PA 4
PA 5
PA 6
PA 7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
VSS_6
V
DD_6
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
V
SS_7
V
DD_7
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
V
SS_1
V
DD_1
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
109 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
108
107
106
105
104
103
102
101
100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84
3738394041424344454647484950515253545556575859
60
72
LQFP144
120
119
118
117
116
115
114
113
112
111
110
6162636465666768697071
26 27 28 29 30 31 32 33 34 35 36
83 82 81 80 79 78 77 76 75 74 73
V
LCD
PH2

Figure 7. STM32L15xZE LQFP144 pinout

1. This figure shows the package top view.
36/136 DS10002 Rev 10
Page 37
STM32L151xE STM32L152xE Pin descriptions
I/O structure
Pin
functions

Table 7. Legend/abbreviations used in the pinout table

Name Abbreviation Definition
Pin name
Pin type
Notes
Alternate functions
Additional
functions
Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name
S Supply pin
I Input only pin
I/O Input / output pin
FT 5 V tolerant I/O
TC Standard 3.3 V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Functions selected through GPIOx_AFR registers
Functions directly selected/enabled through peripheral registers
Pins
LQFP144
UFBGA132
LQFP100
1 B2 1 - D6 PE2 I/O FT PE2
2 A1 2 - D7 PE3 I/O FT PE3

Table 8. STM32L151xE and STM32L152xE pin definitions

LQFP64
(1)
Pin name
Pin Type
WLCSP104
function
I / O structure
Main
(after
reset)
(2)
Alternate functions
TIM3_ETR/LCD_SEG38/
TRACECLK
TIM3_CH1/LCD_SEG39/
TRACED0
Pin functions
Additional
functions
3 B1 3 - C8 PE4 I/O FT PE4 TIM3_CH2/TRACED1 -
4 C2 4 - B9 PE5 I/O FT PE5 TIM9_CH1/TRACED2 -
5D25-E6
6E261E7 V
PE6-
WKUP3
LCD
(3)
I/O FT PE6 TIM9_CH2/TRACED3
S- V
LCD
--
WKUP3/
RTC_TAMP3
WKUP2/RTC_TA
7 C1 7 2 C9 PC13-WKUP2 I/O FT PC13 -
MP1/RTC_TS/
RTC_OUT
-
-
DS10002 Rev 10 37/136
56
Page 38
Pin descriptions STM32L151xE STM32L152xE
Table 8. STM32L151xE and STM32L152xE pin definitions (continued)
Pins
LQFP144
UFBGA132
LQFP64
LQFP100
WLCSP104
8D183D8
9E194D9
Pin name
PC14-
OSC32_IN
(4)
PC15-
OSC32_OUT
(1)
Pin Type
function
I / O structure
Main
(after
reset)
(2)
Alternate functions
I/O TC PC14 - OSC32_IN
I/O TC PC15 - OSC32_OUT
Pin functions
Additional
functions
10 D6 - - - PF0 I/O FT PF0 - -
11 D5 - - - PF1 I/O FT PF1 - -
12 D4 - - - PF2 I/O FT PF2 - -
13 E4 - - - PF3 I/O FT PF3 - -
14 F3 - - - PF4 I/O FT PF4 - -
15 F4 - - - PF5 I/O FT PF5 - -
16 F2 10 - E8 V
17 G2 11 - E9 V
SS_5
DD_5
S- V
S- V
SS_5
DD_5
--
--
18 G3 - - - PF6 I/O FT PF6 TIM5_CH1/TIM5_ETR ADC_IN27
19 G4 - - - PF7 I/O FT PF7 TIM5_CH2
ADC_IN28/
COMP1_INP
20 H4 - - - PF8 I/O FT PF8 TIM5_CH3
21 J6 - - - PF9 I/O FT PF9 TIM5_CH4
22 - - - - PF10 I/O FT PF10 -
(5)
23 F1 12 5 F8 PH0-OSC_IN
24 G1 13 6 F9
PH1-
OSC_OUT
I/O TC PH0 - OSC_IN
I/O TC PH1 - OSC_OUT
(5)
ADC_IN29/
COMP1_INP
ADC_IN30/
COMP1_INP
ADC_IN31/
COMP1_INP
25 H2 14 7 F7 NRST I/O RST NRST - -
26 H1 15 8 F6 PC0 I/O FT PC0 LCD_SEG18
27 J2 16 9 H9 PC1 I/O FT PC1 LCD_SEG19
28 - 17 10 G9 PC2 I/O FT PC2 LCD_SEG20
ADC_IN10/
COMP1_INP
ADC_IN11/
COMP1_INP
ADC_IN12/
COMP1_INP
38/136 DS10002 Rev 10
Page 39
STM32L151xE STM32L152xE Pin descriptions
Table 8. STM32L151xE and STM32L152xE pin definitions (continued)
Pins
(1)
Pin name
LQFP144
UFBGA132
LQFP64
LQFP100
WLCSP104
Pin Type
function
I / O structure
Main
(after
reset)
(2)
Alternate functions
- J3 - - - PC2 I/O FT PC2 LCD_SEG20
Pin functions
Additional
functions
ADC_IN12/
COMP1_INP
- K1 - - - NC I - NC - -
29 K2 18 11 G8 PC3 I/O TC PC3 LCD_SEG21
30 J1 19 12 J9 V
31 - 20 - H8 V
32 L1 21 - G7 V
33 M1 22 13 G6 V
SSA
REF-
REF+
DDA
S- V
S- V
S- V
S- V
SSA
REF-
REF+
DDA
--
--
--
--
TIM2_CH1_ETR/
34 L2 23 14 K9 PA0-WKUP1 I/O FT PA0
TIM5_CH1/
USART2_CTS
ADC_IN13/
COMP1_INP
WKUP1/RTC_TA
MP2/ADC_IN0/
COMP1_INP
35 M2 24 15 L9 PA1 I/O FT PA1
36 - 25 16 J8 PA2 I/O FT PA2
- K3 - - - PA 2 I/O FT PA2
- M3 - - - OPAMP1_VINM I TC
OPAMP1_
VINM
37 L3 26 17 H7 PA3 I/O TC PA3
38 - 27 18 K8 V
39 - 28 19
L8, M9
V
SS_4
DD_4
S- V
S- V
SS_4
DD_4
40 J4 29 20 J7 PA4 I/O TC PA4
TIM2_CH2/TIM5_CH2/
USART2_RTS/
LCD_SEG0
TIM2_CH3/TIM5_CH3/
TIM9_CH1/
USART2_TX/LCD_SEG1
TIM2_CH3/TIM5_CH3/
TIM9_CH1/
USART2_TX/LCD_SEG1
--
TIM2_CH4/TIM5_CH4/
TIM9_CH2/
USART2_RX/LCD_SEG2
--
--
SPI1_NSS/SPI3_NSS/
I2S3_WS/
USART2_CK
ADC_IN1/
COMP1_INP/
OPAMP1_VINP
ADC_IN2/
COMP1_INP/
OPAMP1_VINM
ADC_IN2/
COMP1_INP
ADC_IN3/
COMP1_INP/
OPAMP1_VOUT
ADC_IN4/
DAC_OUT1/
COMP1_INP
DS10002 Rev 10 39/136
56
Page 40
Pin descriptions STM32L151xE STM32L152xE
Table 8. STM32L151xE and STM32L152xE pin definitions (continued)
Pins
(1)
Pin name
LQFP144
UFBGA132
LQFP64
LQFP100
WLCSP104
Pin Type
Main
function
(after
reset)
I / O structure
41 K4 30 21 M8 PA5 I/O TC PA5
(2)
Alternate functions
TIM2_CH1_ETR/
SPI1_SCK
Pin functions
TIM3_CH1/TIM10_CH1/S
42 L4 31 22 H6 PA6 I/O FT PA6
PI1_MISO/
LCD_SEG3
TIM3_CH2/TIM11_CH1/
43 - 32 23 K7 PA7 I/O FT PA7
SPI1_MOSI/
LCD_SEG4
TIM3_CH2/TIM11_CH1/
- J5 - - - PA7 I/O FT PA7
SPI1_MOSI/
LCD_SEG4
- M4 - - - OPAMP2_VINM I TC
OPAMP2_
VINM
--
44 K5 33 24 L7 PC4 I/O FT PC4 LCD_SEG22
45 L5 34 25 M7 PC5 I/O FT PC5 LCD_SEG23
Additional
functions
ADC_IN5/
DAC_OUT2/
COMP1_INP
ADC_IN6/
COMP1_INP/
OPAMP2_VINP
ADC_IN7/
COMP1_INP/
OPAMP2_VINM
ADC_IN7/
COMP1_INP
ADC_IN14/
COMP1_INP
ADC_IN15/
COMP1_INP
ADC_IN8/
46 M5 35 26 J6 PB0 I/O TC PB0 TIM3_CH3/LCD_SEG5
COMP1_INP/
OPAMP2_VOUT/
VREF_OUT
ADC_IN9/
47 M6 36 27 K6 PB1 I/O FT PB1 TIM3_CH4/LCD_SEG6
COMP1_INP/
VREF_OUT
48 L6 37 28 M6 PB2 I/O FT
PB2/
BOOT1
BOOT1 ADC_IN0b
49 K6 - - - PF11 I/O FT PF11 - ADC_IN1b
50 J7 - - - PF12 I/O FT PF12 - ADC_IN2b
51 E3 - - - V
52 H3 - - - V
SS_6
DD_6
S- V
S- V
SS_6
DD_6
--
--
53 K7 - - - PF13 I/O FT PF13 - ADC_IN3b
54 J8 - - - PF14 I/O FT PF14 - ADC_IN6b
55 J9 - - - PF15 I/O FT PF15 - ADC_IN7b
40/136 DS10002 Rev 10
Page 41
STM32L151xE STM32L152xE Pin descriptions
Table 8. STM32L151xE and STM32L152xE pin definitions (continued)
Pins
(1)
Pin name
LQFP144
UFBGA132
LQFP64
LQFP100
WLCSP104
Pin Type
function
I / O structure
Main
(after
reset)
(2)
Alternate functions
Pin functions
Additional
functions
56 H9 - - - PG0 I/O FT PG0 - ADC_IN8b
57 G9 - - - PG1 I/O FT PG1 - ADC_IN9b
58 M7 38 - L6 PE7 I/O TC PE7 -
59 L7 39 - M5 PE8 I/O TC PE8 -
60 M8 40 - M4 PE9 I/O TC PE9 TIM2_CH1_ETR
61 - - - - V
62 - - - - V
SS_7
DD_7
S- V
S- V
SS_7
DD_7
--
--
63 L8 41 - J5 PE10 I/O TC PE10 TIM2_CH2
ADC_IN22/
COMP1_INP
ADC_IN23/
COMP1_INP
ADC_IN24/
COMP1_INP
ADC_IN25/
COMP1_INP
64 M9 42 - L5 PE11 I/O FT PE11 TIM2_CH3 -
65 L9 43 - M3 PE12 I/O FT PE12 TIM2_CH4/SPI1_NSS -
66 M10 44 - K5 PE13 I/O FT PE13 SPI1_SCK -
67 M11 45 - L4 PE14 I/O FT PE14 SPI1_MISO -
68 M12 46 - K4 PE15 I/O FT PE15 SPI1_MOSI -
TIM2_CH3/I2C2_SCL/
69 L10 47 29 M2 PB10 I/O FT PB10
USART3_TX/
LCD_SEG10
TIM2_CH4/I2C2_SDA/
70 L11 48 30 L3 PB11 I/O FT PB11
USART3_RX/
LCD_SEG11
71 F12 49 31
72 G12 50 32 K3 V
L2, M1
V
SS_1
DD_1
S- V
S- V
SS_1
DD_1
--
--
TIM10_CH1/I2C2_SMBA/
73 L12 51 33 J4 PB12 I/O FT PB12
SPI2_NSS/I2S2_WS/
USART3_CK/
ADC_IN18/
COMP1_INP
LCD_SEG12
-
-
DS10002 Rev 10 41/136
56
Page 42
Pin descriptions STM32L151xE STM32L152xE
Table 8. STM32L151xE and STM32L152xE pin definitions (continued)
Pins
(1)
Pin name
LQFP144
UFBGA132
LQFP64
LQFP100
WLCSP104
Pin Type
Main
function
(after
reset)
I / O structure
74 K12 52 34 J3 PB13 I/O FT PB13
75 K11 53 35 L1 PB14 I/O FT PB14
76 K10 54 36 K2 PB15 I/O FT PB15
77 K9 55 - H4 PD8 I/O FT PD8
78 K8 56 - J2 PD9 I/O FT PD9
79 J12 57 - K1 PD10 I/O FT PD10
80 J11 58 - G4 PD11 I/O FT PD11
(2)
Alternate functions
TIM9_CH1/SPI2_SCK/
I2S2_CK/
USART3_CTS/
LCD_SEG13
TIM9_CH2/SPI2_MISO/
USART3_RTS/
LCD_SEG14
TIM11_CH1/SPI2_MOSI/
I2S2_SD/
LCD_SEG15
USART3_TX/
LCD_SEG28
USART3_RX/
LCD_SEG29
USART3_CK/
LCD_SEG30
USART3_CTS/
LCD_SEG31
Pin functions
Additional
functions
ADC_IN19/
COMP1_INP
ADC_IN20/
COMP1_INP
ADC_IN21/
COMP1_INP/
RTC_REFIN
-
-
-
-
TIM4_CH1/
81 J10 59 - H3 PD12 I/O FT PD12
USART3_RTS/
-
LCD_SEG32
82 H12 60 - H2 PD13 I/O FT PD13 TIM4_CH2/LCD_SEG33 -
83 - - - - V
84 - - - - V
SS_8
DD_8
S- V
S- V
SS_8
DD_8
--
--
85 H11 61 - J1 PD14 I/O FT PD14 TIM4_CH3/LCD_SEG34 -
86 H10 62 - G3 PD15 I/O FT PD15 TIM4_CH4/LCD_SEG35 -
87 G10 - - - PG2 I/O FT PG2 - ADC_IN10b
88 F9 - - - PG3 I/O FT PG3 - ADC_IN11b
89 F10 - - - PG4 I/O FT PG4 - ADC_IN12b
90 E9 - - - PG5 I/O FT PG5 - -
91 - - - - PG6 I/O FT PG6 - -
92 - - - - PG7 I/O FT PG7 - -
93 - - - - PG8 I/O FT PG8 - -
42/136 DS10002 Rev 10
Page 43
STM32L151xE STM32L152xE Pin descriptions
Table 8. STM32L151xE and STM32L152xE pin definitions (continued)
Pins
Pin name
LQFP144
UFBGA132
LQFP64
LQFP100
WLCSP104
94 F6 - - - V
95 G6 - - - V
SS_9
DD_9
(1)
Pin Type
S- V
S- V
Main
function
(after
reset)
I / O structure
SS_9
DD_9
96 E12 63 37 H1 PC6 I/O FT PC6
97 E11 64 38 G1 PC7 I/O FT PC7
(2)
Alternate functions
TIM3_CH1/I2S2_MCK/
LCD_SEG24
TIM3_CH2/I2S3_MCK/
LCD_SEG25
Pin functions
Additional
functions
--
--
98 E10 65 39 G2 PC8 I/O FT PC8 TIM3_CH3/LCD_SEG26 -
99 D12 66 40 F4 PC9 I/O FT PC9 TIM3_CH4/LCD_SEG27 -
100 D11 67 41 F3 PA8 I/O FT PA8
101 D10 68 42 F1 PA9 I/O FT PA9
USART1_CK/MCO/
LCD_COM0
USART1_TX /
LCD_COM1
-
-
-
-
102 C12 69 43 F2 PA10 I/O FT PA10
103 B12 70 44 E1 PA11 I/O FT PA11
104 A12 71 45 E2 PA12 I/O FT PA12
105 A11 72 46 E3 PA13 I/O FT
JTMS-
SWDIO
USART1_RX /
LCD_COM2
USART1_CTS/
SPI1_MISO
USART1_RTS/
SPI1_MOSI
USB_DM
USB_DP
JTMS-SWDIO -
106 C11 73 - D1 PH2 I/O FT PH2 - -
107 F11 74 47
108 G11 75 48 C1 V
D2,
A1
V
SS_2
DD_2
109 A10 76 49 D3 PA14 I/O FT
S- V
S- V
SS_2
DD_2
JTCK-
SWCLK
--
--
JTCK-SWCLK -
TIM2_CH1_ETR/
110 A 9 77 5 0 B1 PA 15 I/O FT JTDI
SPI1_NSS/SPI3_NSS/
I2S3_WS/LCD_SEG17/
JTDI
SPI3_SCK/I2S3_CK/
111 B11 78 51 E4 PC10 I/O FT PC10
USART3_TX/ UART4_TX/
LCD_SEG28/
LCD_SEG40/LCD_COM4
-
-
-
DS10002 Rev 10 43/136
56
Page 44
Pin descriptions STM32L151xE STM32L152xE
Table 8. STM32L151xE and STM32L152xE pin definitions (continued)
Pins
(1)
Pin name
LQFP144
UFBGA132
LQFP64
LQFP100
WLCSP104
Pin Type
function
I / O structure
Main
(after
reset)
(2)
Alternate functions
Pin functions
Additional
functions
SPI3_MISO/USART3_RX/
112 C10 79 52 C2 PC11 I/O FT PC11
UART4_RX/
LCD_SEG29/
LCD_SEG41/LCD_COM5
SPI3_MOSI/I2S3_SD/
USART3_CK/
113 B10 80 53 B2 PC12 I/O FT PC12
UART5_TX/LCD_SEG30/
LCD_SEG42/
LCD_COM6
114 C9 81 - A2 PD0 I/O FT PD0
TIM9_CH1/SPI2_NSS/
I2S2_WS
115 B9 82 - D4 PD1 I/O FT PD1 SPI2_SCK/I2S2_CK -
TIM3_ETR/UART5_RX/
116 C8 83 54 C3 PD2 I/O FT PD2
LCD_SEG31/
LCD_SEG43/LCD_COM7
-
-
-
-
117 B8 84 - C4 PD3 I/O FT PD3
118 B7 85 - A3 PD4 I/O FT PD4
SPI2_MISO/
USART2_CTS
SPI2_MOSI/I2S2_SD/
USART2_RTS
119 A6 86 - B3 PD5 I/O FT PD5 USART2_TX -
120 F7 - - - V
121 G7 - - - V
SS_10
DD_10
S- V
S- V
SS_10
DD_10
--
--
122 B6 87 - B4 PD6 I/O FT PD6 USART2_RX -
123 A5 88 - A4 PD7 I/O FT PD7 TIM9_CH2/USART2_CK -
124 D9 - - - PG9 I/O FT PG9 - -
125 D8 - - - PG10 I/O FT PG10 - -
126 - - - - PG11 I/O FT PG11 - -
127 D7 - - - PG12 I/O FT PG12 - -
128 C7 - - - PG13 I/O FT PG13 - -
129 C6 - - - PG14 I/O FT PG14 - -
130 - - - - V
131 - - - - V
SS_11
DD_11
S- V
S- V
SS_11
DD_11
--
--
-
-
44/136 DS10002 Rev 10
Page 45
STM32L151xE STM32L152xE Pin descriptions
Table 8. STM32L151xE and STM32L152xE pin definitions (continued)
Pins
(1)
Pin name
LQFP144
UFBGA132
LQFP64
LQFP100
WLCSP104
Pin Type
function
I / O structure
Main
(after
reset)
(2)
Alternate functions
Pin functions
Additional
functions
132 - - - - PG15 I/O FT PG15 - -
TIM2_CH2/SPI1_SCK/
133 A8 89 55 B5 PB3 I/O FT JTDO
SPI3_SCK/ I2S3_CK/
COMP2_INM
LCD_SEG7/JTDO
TIM3_CH1/SPI1_MISO/
134 A7 90 56 A5 PB4 I/O FT NJTRST
SPI3_MISO/
COMP2_INP
LCD_SEG8/NJTRST
TIM3_CH2/I2C1_SMBA/
135 C5 91 57 A6 PB5 I/O FT PB5
SPI1_MOSI/
SPI3_MOSI/I2S3_SD/
COMP2_INP
LCD_SEG9
136 B5 92 58 C5 PB6 I/O FT PB6
TIM4_CH1/I2C1_SCL/
USART1_TX
COMP2_INP
137 B4 93 59 B6 PB7 I/O FT PB7
TIM4_CH2/I2C1_SDA/
USART1_RX
COMP2_INP/
PVD_IN
138 A4 94 60 A7 BOOT0 I B BOOT0 - -
TIM4_CH3/TIM10_CH1/
139 A3 95 61 D5 PB8 I/O FT PB8
I2C1_SCL/
-
LCD_SEG16
TIM4_CH4/
140 B3 96 62 C6 PB9 I/O FT PB9
TIM11_CH1/I2C1_SDA/
-
LCD_COM3
141 C3 97 - B7 PE0 I/O FT PE0
TIM4_ETR/TIM10_CH1/
LCD_SEG36
-
142 A2 98 - A8 PE1 I/O FT PE1 TIM11_CH1/LCD_SEG37 -
143 D3 99 63 C7 V
144 C4 100 64
1. I = input, O = output, S = supply.
2. Function availability depends on the chosen device.
3. Applicable to STM32L152xE devices only. In STM32L151xE devices, this pin should be connected to V
4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is ON (by setting the LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins section in the STM32L151xx, STM32L152xx and STM32L162xx reference manual (RM0038).
B8,
A9
V
SS_3
DD_3
S- V
S- V
SS_3
DD_3
--
--
.
DD
DS10002 Rev 10 45/136
56
Page 46
Pin descriptions STM32L151xE STM32L152xE
5. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is ON (by setting the HSEON bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is off ( after reset, the HSE oscillator is off). The HSE has priority over the GPIO function.
46/136 DS10002 Rev 10
Page 47
Alternate functions
STM32L151xE STM32L152xE Pin descriptions

Table 9. Alternate function input/output

Digital alternate function number
DS10002 Rev 10 47/136
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8
.
AFIO11
.
.
AFIO14 AFIO15
.
Port name
Alternate function
SYSTEM TIM2
BOOT0 BOOT0 - - - - - - - - - - - -
NRST NRST - - - - - - - - - - - - -
PA0 -WK UP 1 -
PA1 - TIM2_CH2 TIM5_CH2 - - - - USART2_RTS - - SEG0 - TIMx_IC2
PA2 - TIM2_CH3 TIM5_CH3 TIM9_CH1 - - - USART2_TX - - SEG1 - TIMx_IC3
PA3 - TIM2_CH4 TIM5_CH4 TIM9_CH2 - - - USART2_RX - - SEG2 - TIMx_IC4
PA4 - - - - - SPI1_NSS
PA5 -
PA6 - - TIM3_CH1 TIM10_CH1 - SPI1_MISO - - - - SEG3 - TIMx_IC3
PA7 - - TIM3_CH2 TIM11_CH1 - SPI1_MOSI - - - - SEG4 - TIMx_IC4
PA8 MCO - - - - - - USART1_CK - - COM0 - TIMx_IC1
PA9 - - - - - - - USART1_TX - - COM1 - TIMx_IC2
PA10 - - - - - - - USART1_RX - - COM2 - TIMx_IC3
TIM2_CH1_ ETR
TIM2_CH1_ ETR
TIM3/4/5TIM9/
10/11
TIM5_CH1 - - - - USART2_CTS - - - - TIMx_IC1
- - - SPI1_SCK - - - - - - TIMx_IC2
I2C1/2 SPI1/2 SPI3
SPI3_NSS I2S3_WS
USART1/2/3UART4/
USART2_CK - - - - TIMx_IC1
- LCD - CPRI SYSTEM
5
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
Page 48
48/136 DS10002 Rev 10
Table 9. Alternate function input/output (continued)
Digital alternate function number
Pin descriptions STM32L151xE STM32L152xE
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8
.
AFIO11
.
.
AFIO14 AFIO15
.
Port name
Alternate function
SYSTEM TIM2
PA11 - - - - - SPI1_MISO - USART1_CTS - - - - TIMx_IC4
PA12 - - - - - SPI1_MOSI - USART1_RTS - - - - TIMx_IC1
PA1 3
PA1 4
PA15 JTDI
PB0 - - TIM3_CH3 - - - - - - - SEG5 - -
PB1 - - TIM3_CH4 - - - - - - - SEG6 - -
PB2 BOOT1 - - - - - - - - - - - -
PB3 JTDO TIM2_CH2 - - - SPI1_SCK
PB4 NJTRST - TIM3_CH1 - - SPI1_MISO SPI3_MISO - - - SEG8 - -
PB5 - - TIM3_CH2 -
PB6 - - TIM4_CH1 - I2C1_SCL - - USART1_TX - - - - -
PB7 - - TIM4_CH2 - I2C1_SDA - - USART1_RX - - - -
PB8 - - TIM4_CH3 TIM10_CH1 I2C1_SCL - - - - - SEG16 - -
JTMS­SWDIO
JTCK­SWCLK
TIM2_CH1_ ETR
TIM3/4/5TIM9/
10/11
- - - - - - - - - - - TIMx_IC2
- - - - - - - - - - - TIMx_IC3
- - - SPI1_NSS
I2C1/2 SPI1/2 SPI3
SPI3_NSS I2S3_WS
SPI3_SCK I2S3_CK
I2C1_ SMBA
SPI1_MOSI
SPI3_MOSI I2S3_SD
USART1/2/3UART4/
- - - SEG17 - TIMx_IC4
---SEG7 --
---SEG9 --
- LCD - CPRI SYSTEM
5
EVENT OUT
EVENT OUT
EVENT OUT
EVEN TOUT
EVEN TOUT
EVEN TOUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
Page 49
Table 9. Alternate function input/output (continued)
Digital alternate function number
STM32L151xE STM32L152xE Pin descriptions
DS10002 Rev 10 49/136
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8
.
AFIO11
.
.
AFIO14 AFIO15
.
Port name
Alternate function
SYSTEM TIM2
PB9 - - TIM4_CH4 TIM11_CH1 I2C1_SDA - - - - - COM3 - -
PB10 - TIM2_CH3 - - I2C2_SCL - - USART3_TX - - SEG10 - -
PB11 - TIM2_CH4 - - I2C2_SDA - - USART3_RX - - SEG11 - -
PB12 - - - TIM10_CH1
PB13 - - - TIM9_CH1 -
PB14 - - - TIM9_CH2 - SPI2_MISO - USART3_RTS - - SEG14 - -
PB15 - - - TIM11_CH1 -
PC0 - - - - - - - - - - SEG18 - TIMx_IC1
PC1 - - - - - - - - - - SEG19 - TIMx_IC2
PC2 - - - - - - - - - - SEG20 - TIMx_IC3
PC3 - - - - - - - - - - SEG21 - TIMx_IC4
PC4 - - - - - - - - - - SEG22 - TIMx_IC1
PC5 - - - - - - - - - - SEG23 - TIMx_IC2
PC6 - - TIM3_CH1 - - I2S2_MCK - - - - SEG24 - TIMx_IC3
TIM3/4/5TIM9/
10/11
I2C1/2 SPI1/2 SPI3
I2C2_SM BA
SPI2_NSS I2S2_WS
SPI2_SCK I2S2_CK
SPI2_MOSI I2S2_SD
USART1/2/3UART4/
- USART3_CK - - SEG12 - -
- USART3_CTS - - SEG13 - -
----SEG15 --
- LCD - CPRI SYSTEM
5
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
Page 50
50/136 DS10002 Rev 10
Table 9. Alternate function input/output (continued)
Digital alternate function number
Pin descriptions STM32L151xE STM32L152xE
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8
.
AFIO11
.
.
AFIO14 AFIO15
.
Port name
Alternate function
SYSTEM TIM2
PC7 - - TIM3_CH2 - - - I2S3_MCK - - - SEG25 - TIMx_IC4
PC8 - - TIM3_CH3 - - - - - - - SEG26 - TIMx_IC1
PC9 - - TIM3_CH4 - - - - - - - SEG27 - TIMx_IC2
PC10 - - - - - -
PC11 - - - - - - SPI3_MISO USART3_RX UART4_RX -
PC12 - - - - - -
PC13-WKUP2 - - - - - - - - - - - - TIMx_IC2
PC14 OSC32_IN
PC15 OSC32_OUT
PD0 - - - TIM9_CH1 -
PD1 - - - - -
PD2 - - TIM3_ETR - - - - - UART5_RX -
PD3 - - - - - SPI2_MISO - USART2_CTS - - - - TIMx_IC4
------- - ----TIMx_IC3
------- - ----TIMx_IC4
TIM3/4/5TIM9/
10/11
I2C1/2 SPI1/2 SPI3
SPI3_SCK I2S3_CK
SPI3_MOSI I2S3_SD
SPI2_NSS I2S2_WS
SPI2 SCK I2S2_CK
USART1/2/3UART4/
USART3_TX UART4_TX -
USART3_CK UART5_TX -
------TIMx_IC1
------TIMx_IC2
- LCD - CPRI SYSTEM
5
COM4/ SEG28/ SEG40
COM5/ SEG29 /SEG41
COM6/ SEG30/ SEG42
COM7/ SEG31/ SEG43
- TIMx_IC3
- TIMx_IC4
- TIMx_IC1
- TIMx_IC3
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
Page 51
Table 9. Alternate function input/output (continued)
Digital alternate function number
STM32L151xE STM32L152xE Pin descriptions
DS10002 Rev 10 51/136
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8
.
AFIO11
.
.
AFIO14 AFIO15
.
Port name
Alternate function
SYSTEM TIM2
PD4 - - - - -
PD5 - - - - - - - USART2_TX - - - - TIMx_IC2
PD6 - - - - - - - USART2_RX - - - - TIMx_IC3
PD7 - - - TIM9_CH2 - - - USART2_CK - - - - TIMx_IC4
PD8 - - - - - - - USART3_TX - - SEG28 - TIMx_IC1
PD9 - - - - - - - USART3_RX - - SEG29 - TIMx_IC2
PD10 - - - - - - - USART3_CK - - SEG30 - TIMx_IC3
PD11 - - - - - - - USART3_CTS - - SEG31 - TIMx_IC4
PD12 - - TIM4_CH1 - - - - USART3_RTS - - SEG32 - TIMx_IC1
PD13 - - TIM4_CH2 - - - - - - - SEG33 - TIMx_IC2
PD14 - - TIM4_CH3 - - - - - - - SEG34 - TIMx_IC3
PD15 - - TIM4_CH4 - - - - - - - SEG35 - TIMx_IC4
PE0 - - TIM4_ETR TIM10_CH1 - - - - - - SEG36 - TIMx_IC1
PE1 - - - TIM11_CH1 - - - - - - SEG37 - TIMx_IC2
TIM3/4/5TIM9/
10/11
I2C1/2 SPI1/2 SPI3
SPI2_MOSI I2S2_SD
USART1/2/3UART4/
- USART2_RTS - - - - TIMx_IC1
- LCD - CPRI SYSTEM
5
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
Page 52
52/136 DS10002 Rev 10
Table 9. Alternate function input/output (continued)
Digital alternate function number
Pin descriptions STM32L151xE STM32L152xE
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8
.
AFIO11
.
.
AFIO14 AFIO15
.
Port name
Alternate function
SYSTEM TIM2
PE2 TRACECK - TIM3_ETR - - - - - - - SEG 38 - TIMx_IC3
PE3 TRACED0 - TIM3_CH1 - - - - - - - SEG 39 - TIMx_IC4
PE4 TRACED1 - TIM3_CH2 - - - - - - - - - TIMx_IC1
PE5 TRACED2 - - TIM9_CH1 - - - - - - - - TIMx_IC2
PE6­WKUP3
PE7 - - - - - - - - - - - - TIMx_IC4
PE8 - - - - - - - - - - - - TIMx_IC1
PE9 -
PE10 - TIM2_CH2 - - - - - - - - - - TIMx_IC3
PE11 - TIM2_CH3 - - - - - - - - - - TIMx_IC4
PE12 - TIM2_CH4 - - - SPI1_NSS - - - - - - TIMx_IC1
PE13 - - - - - SPI1_SCK - - - - - - TIMx_IC2
PE14 - - - - - SPI1_MISO - - - - - - TIMx_IC3
PE15 - - - - - SPI1_MOSI - - - - - - TIMx_IC4
TRACED3 - - TIM9_CH2 - - - - - - - - TIMx_IC3
TIM2_CH1_ ETR
TIM3/4/5TIM9/
10/11
----- - ----TIMx_IC2
I2C1/2 SPI1/2 SPI3
USART1/2/3UART4/
5
- LCD - CPRI SYSTEM
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
Page 53
Table 9. Alternate function input/output (continued)
Digital alternate function number
STM32L151xE STM32L152xE Pin descriptions
DS10002 Rev 10 53/136
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8
.
AFIO11
.
.
AFIO14 AFIO15
.
Port name
Alternate function
SYSTEM TIM2
PF0 - - - - - - - - - - - - -
PF1 - - - - - - - - - - - - -
PF2 - - - - - - - - - - - - -
PF3 - - - - - - - - - - - - -
PF4 - - - - - - - - - - - - -
PF5 - - - - - - - - - - - - -
PF6 - - TIM5_ETR - - - - - - - - - -
PF7 - - TIM5_CH2 - - - - - - - - - -
PF8 - - TIM5_CH3 - - - - - - - - - -
PF9 - - TIM5_CH4 - - - - - - - - - -
PF10 - - - - - - - - - - - - -
PF11 - - - - - - - - - - - - -
PF12 - - - - - - - - - - - - -
PF13 - - - - - - - - - - - - -
TIM3/4/5TIM9/
10/11
I2C1/2 SPI1/2 SPI3
USART1/2/3UART4/
5
- LCD - CPRI SYSTEM
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
Page 54
54/136 DS10002 Rev 10
Table 9. Alternate function input/output (continued)
Digital alternate function number
Pin descriptions STM32L151xE STM32L152xE
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8
.
AFIO11
.
.
AFIO14 AFIO15
.
Port name
Alternate function
SYSTEM TIM2
PF14 - - - - - - - - - - - - -
PF15 - - - - - - - - - - - - -
PG0 - - - - - - - - - - - - -
PG1 - - - - - - - - - - - - -
PG2 - - - - - - - - - - - - -
PG3 - - - - - - - - - - - - -
PG4 - - - - - - - - - - - - -
PG5 - - - - - - - - - - - - -
PG6 - - - - - - - - - - - - -
PG7 - - - - - - - - - - - - -
PG8 - - - - - - - - - - - - -
PG9 - - - - - - - - - - - - -
PG10 - - - - - - - - - - - - -
PG11 - - - - - - - - - - - - -
TIM3/4/5TIM9/
10/11
I2C1/2 SPI1/2 SPI3
USART1/2/3UART4/
5
- LCD - CPRI SYSTEM
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
Page 55
Table 9. Alternate function input/output (continued)
Digital alternate function number
STM32L151xE STM32L152xE Pin descriptions
DS10002 Rev 10 55/136
AFIO0 AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFIO6 AFIO7 AFIO8
.
AFIO11
.
.
AFIO14 AFIO15
.
Port name
Alternate function
SYSTEM TIM2
PG12 - - - - - - - - - - - - -
PG13 - - - - - - - - - - - - -
PG14 - - - - - - - - - - - - -
PG15 - - - - - - - - - - - - -
PH0OSC_IN - - - - - - - - - - - - - -
PH1OSC_OUT - - - - - - - - - - - - - -
PH2 - - - - - - - - - - - - - -
TIM3/4/5TIM9/
10/11
I2C1/2 SPI1/2 SPI3
USART1/2/3UART4/
5
- LCD - CPRI SYSTEM
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
Page 56
Memory mapping STM32L151xE STM32L152xE
MS33003V4
reserved
reserved
APB memory space
CRC
Reserved
RTC
WWDG
IWDG
SPI2
USART2
USART3
SYSCFG
TIM9
TIM11
reserved
ADC
USART1
reserved
SPI3
SPI1
I2C1
PWR
TIM10
I2C2
EXTI
RCC
DMA2
USB Registers
DMA1
0
1
2
3
4
5
6
7
0x6000 0000
Peripherals
SRAM
Cortex-M3 Internal
Peripherals
512 byte USB
TIM6
TIM7
LCD
0x4000 1000
0x4000 1400
0x4000 2400
0x4000 1C00
DAC1 & 2
Port A
Port B
Port C
Port D
Port E
Port H
Port F
0x4002 1C00
0x4002 1800 0x4002 1400
0x4002 1000
0x4002 0C00
0x4002 0800 0x4002 0400
COMP + RI
Flash memory
reserved
System memory
Aliased to Flash or system memory depending on BOOT pins
0x0000 0000
EEPROM
reserved
UART5
UART4
Port G
Non-
volatile
memory
Bank 1
Flash memory
Bank 2
Data EEPROM
Bank 2
Bank 1
System memory
Bank 2
Bytes
reserved
Bytes
0xFFFF FFFF
0xE010 0000
0xE000 0000
0xC000 0000
0xA000 0000
0x8000 0000
0x1FF0 2000
0x4000 0000
0x2000 0000
0x0000 0000
0x1FF8 009F 0x1FF8 0080
0x1FF8 0020
0x1FF8 0000
0x1FF0 0000
0x1FF0 1000
0x0808 4000
0x0808 2000
0x0808 0000
0x0804 0000
0x0800 0000
0x4002 6000
0x4002 67FF
0x4002 6400
0x4002 3800
0x4002 4000
0x4002 3C00
0x4002 3400
0x4002 0000
0x4002 3000
0x4002 2000
0x4001 3C00
0x4001 3000
0x4001 3800
0x4001 3400
0x4001 0400
0x4001 2C00
0x4001 2800
0x4001 2400
0x4001 1400
0x4001 1000
0x4001 0C00
0x4001 0800
0x4001 0000
0x4000 8000
0x4001 7C00
0x4000 7800 0x4000 7400
0x4000 7000
0x4000 6400 0x4000 6000
0x4000 5C00
0x4000 5800
0x4000 5400
0x4000 5000
0x4000 4C00
0x4000 4800
0x4000 4400
0x4000 4000
0x4000 3C00
0x4000 3800 0x4000 3400
0x4000 3000
0x4000 2C00
0x4000 2800
0x4000 0C00
0x4000 0800
0x4000 0000
0x4000 0400
reserved
reserved
reserved
Data
Bank 1
reserved
reserved
reserved
reserved
reserved
reserved
Flash Interface
Option
Bank 2
Option
Bank 1
reserved
TIM2
TIM3
TIM4
TIM5

5 Memory mapping

56/136 DS10002 Rev 10

Figure 8. Memory map

Page 57
STM32L151xE STM32L152xE Electrical characteristics
ai17851c
C = 50 pF
MCU pin
ai17852d
MCU pin
V
IN

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean

6.1.2 Typical values

Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the
1.65
V V
tested.
3.6 V voltage range). They are given only as design guidelines and are not
DD
±3σ).
= 25 °C and TA = TAmax (given by
A
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 9.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.
Figure 9. Pin loading conditions Figure 10. Pin input voltage
(mean ±2σ).
DS10002 Rev 10 57/136
114
Page 58
Electrical characteristics STM32L151xE STM32L152xE
MS32461V3
Analog:
OSC,PLL,COMP,
….
V
DD
GP I/Os
OUT
IN
Kernel logic
(CPU,
Digital &
Memories)
Standby-power circuitry
(LSE,RTC,Wake-up
logic, RTC backup
registers)
N × 100 nF + 1 × 4.7 μF
Regulator
V
SS
V
DDA
V
REF+
V
REF-
V
SSA
ADC/ DAC
Level shifter
IO
Logic
V
DD
100 nF + 1 μF
V
REF
100 nF + 1 μF
V
DDA
N – number of
V
DD
/V
SS
pairs

6.1.6 Power supply scheme

Figure 11. Power supply scheme
58/136 DS10002 Rev 10
Page 59
STM32L151xE STM32L152xE Electrical characteristics
MS32462V2
V
DD1/2/.../N
N x 100 nF + 1 x 10 μF
Step-up Converter
V
SS1/2/.../N
V
DD
100 nF
V
LCD
V
LCD
C
EXT
LCD
VSEL
Option 1
Option 2
N x 100 nF
+1 x 10 μF
N x V
SS
N x V
DD
V
SSA
100 nF
+1 μF
A
+
-
V
REF+
V
REF-
V
DDA
V
LCD
MS33028V1

6.1.7 Optional LCD power supply scheme

Figure 12. Optional LCD power supply scheme
1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.
2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an external capacitance is needed for correct behavior of this converter.

6.1.8 Current consumption measurement

Figure 13. Current consumption measurement scheme
DS10002 Rev 10 59/136
114
Page 60
Electrical characteristics STM32L151xE STM32L152xE

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Tab le 10: Voltage characteristics,
Tabl e 11: Current characteristics, and Table 12: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Symbol Ratings Min Max Unit

Table 10. Voltage characteristics

VDD–V
(2)
V
IN
|ΔV
DDx
VSS| Variations between all different ground pins
|V
SSX
V
REF+ –VDDA
V
ESD(HBM)
1. All main power (VDD, V permitted range.
maximum must always be respected. Refer to Table 11 for maximum allowed injected current values.
2. V
IN
3. Include V
External main supply voltage
SS
(including V
DDA
and VDD)
(1)
Input voltage on five-volt tolerant pin V
Input voltage on any other pin V
| Variations between different V
Allowed voltage difference for V
power pins - 50
DD
(3)
> V
REF+
DDA
Electrostatic discharge voltage (human body model)
REF-
pin.
) and ground (VSS, V
DDA

Table 11. Current characteristics

) pins must always be connected to the external power supply, in the
SSA
–0.3 4.0
0.3 VDD+4.0
SS
0.3 4.0
SS
-50
-0.4V
see Section 6.3.11 -
Symbol Ratings Max. Unit
(1)
(1)
(1)
(1)
100
100
70
-70
I
VDD(Σ)
I
VSS(Σ)
I
VDD(PIN)
I
VSS(PIN)
(2)
Total current into sum of all V
Total current out of sum of all V
Maximum current into each V
power lines (source)
DD_x
ground lines (sink)
SS_x
power pin (source)
DD_x
Maximum current out of each VSS_x ground pin (sink)
Output current sunk by any I/O and control pin 25
I
IO
ΣI
IO(PIN)
INJ(PIN)
ΣI
INJ(PIN)
(3)
I
1. All main power (VDD, V permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.
Output current sourced by any I/O and control pin - 25
(6)
(2)
(2)
60
-60
± 5
± 25
Total output current sunk by sum of all IOs and control pins
Total output current sourced by sum of all IOs and control pins
(5)
(4)
, RST and B pins -5/+0
Injected current on five-volt tolerant I/O
Injected current on any other pin
Total injected current (sum of all I/O and control pins)
) and ground (VSS, V
DDA
) pins must always be connected to the external power supply, in the
SSA
mA
V
mV
60/136 DS10002 Rev 10
Page 61
STM32L151xE STM32L152xE Electrical characteristics
4. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. I exceeded. Refer to Table 10 for maximum allowed input voltage values.
5. A positive injection is induced by V exceeded. Refer to Table 10: Voltage characteristics for the maximum allowed input voltage values.
6. When several inputs are submitted to a current injection, the maximum ΣI negative injected currents (instantaneous values).
> VDD while a negative injection is induced by V
IN
INJ(PIN)
< VSS. I
IN
is the absolute sum of the positive and
INJ(PIN)
must never be
INJ(PIN)
must never be

Table 12. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature 150 °C

6.3 Operating conditions

6.3.1 General operating conditions

Symbol Parameter Conditions Min Max Unit
f
HCLK
PCLK1
f
PCLK2
V
Internal AHB clock frequency - 0 32
Internal APB1 clock frequency - 0 32
Internal APB2 clock frequency - 0 32
Standard operating voltage
DD
Analog operating voltage (ADC and DAC not used)
(1)
V
DDA
Analog operating voltage (ADC or DAC used)
V
I/O input voltage
IN
Table 13. General operating conditions
BOR detector disabled 1.65 3.6
BOR detector enabled, at power on
BOR detector disabled, after power on
Must be the same voltage as
(2)
V
DD
FT pins; 2.0 V ≤ V
FT pins; V
< 2.0 V -0.3 5.25
DD
BOOT0 pin 0 5.5
-0.3 5.5
DD
MHzf
1.8 3.6
1.65 3.6
1.65 3.6
1.8 3.6
(3)
(3)
V
V
V
Any other pin -0.3 V
UFBGA132 package - 333
LQFP144 package - 500
Power dissipation at TA = 85 °C for
P
D
suffix 6 or TA = 105 °C for suffix 7
(4)
LQFP100 package - 465
LQFP64 package - 435
WLCSP104 package - 435
Ambient temperature for 6 suffix version Maximum power dissipation
(5)
–40 85
TA
Ambient temperature for 7 suffix version Maximum power dissipation –40 105
DS10002 Rev 10 61/136
DD
+0.3
mW
°C
114
Page 62
Electrical characteristics STM32L151xE STM32L152xE
Table 13. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
TJ Junction temperature range
6 suffix version –40 105
7 suffix version –40 110
1. When the ADC is used, refer to Table 55: ADC characteristics.
2. It is recommended to power V V
can be tolerated during power-up .
DDA
3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.
is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 71: Thermal characteristics
4. If T
A
on page 130).
5. In low-power dissipation state, T max (see Table 71: Thermal characteristics on page 130).
and V
DD
can be extended to -40°C to 105°C temperature range as long as TJ does not exceed T
A
from the same source. A maximum difference of 300 mV between VDD and
DDA

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the conditions summarized in
Table 14. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDD rise time rate
(1)
t
VDD
V
fall time rate
DD
T
RSTTEMPO
V
POR/PDR
(1)
Reset temporization
Power on/power down reset threshold
Tabl e 13.
BOR detector enabled 0 -
BOR detector disabled 0 - 1000
BOR detector enabled 20 -
BOR detector disabled 0 - 1000
V
rising, BOR enabled - 2 3.3
DD
rising, BOR disabled
V
DD
(2)
0.4 0.7 1.6
Falling edge 1 1.5 1.65
Rising edge 1.3 1.5 1.65
°C
J
µs/V
ms
V
BOR0
Brown-out reset threshold 0
Rising edge 1.69 1.76 1.8
Falling edge 1.87 1.93 1.97
Falling edge 1.67 1.7 1.74
V
BOR1
Brown-out reset threshold 1
Rising edge 1.96 2.03 2.07
Falling edge 2.22 2.30 2.35
V
BOR2
Brown-out reset threshold 2
Rising edge 2.31 2.41 2.44
62/136 DS10002 Rev 10
V
Page 63
STM32L151xE STM32L152xE Electrical characteristics
Table 14. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
V
V
V
V
V
V
V
V
V
BOR3
BOR4
PVD0
PVD1
PVD2
PVD3
PVD4
PVD5
PVD6
Brown-out reset threshold 3
Brown-out reset threshold 4
Programmable voltage detector threshold 0
PVD threshold 1
PVD threshold 2
PVD threshold 3
PVD threshold 4
PVD threshold 5
PVD threshold 6
Falling edge 2.45 2.55 2.6
Rising edge 2.54 2.66 2.7
Falling edge 2.68 2.8 2.85
Rising edge 2.78 2.9 2.95
Falling edge 1.8 1.85 1.88
Rising edge 1.88 1.94 1.99
Falling edge 1.98 2.04 2.09
Rising edge 2.08 2.14 2.18
Falling edge 2.20 2.24 2.28
V
Rising edge 2.28 2.34 2.38
Falling edge 2.39 2.44 2.48
Rising edge 2.47 2.54 2.58
Falling edge 2.57 2.64 2.69
Rising edge 2.68 2.74 2.79
Falling edge 2.77 2.83 2.88
Rising edge 2.87 2.94 2.99
Falling edge 2.97 3.05 3.09
Rising edge 3.08 3.15 3.20
BOR0 threshold - 40 -
V
hyst
1. Guaranteed by characterization results.
2. Valid for device version without BOR at power up. See option “D” in Ordering information scheme for more details.
Hysteresis voltage
All BOR and PVD thresholds excepting BOR0
- 100 -
mV
DS10002 Rev 10 63/136
114
Page 64
Electrical characteristics STM32L151xE STM32L152xE

6.3.3 Embedded internal reference voltage

The parameters given in Tab le 16 are based on characterization results, unless otherwise specified.
VREFINT_CAL
Table 15. Embedded internal reference voltage calibration values
Calibration value name Description Memory address
Raw data acquired at temperature of 30 °C ±5 °C V
= 3 V ±10 mV
DDA
0x1FF8 00F8 - 0x1FF8 00F9
Table 16. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
Coeff
Coeff
(3)
(3)
(3)
(1)
Internal reference voltage – 40 °C < TJ < +110 °C 1.202 1.224 1.242 V
Internal reference current consumption
--1.42.3µA
Internal reference startup time - - 2 3 ms
V
and V
DDA
V
Accuracy of factory-measured V value
factory measure
REFINT
(2)
voltage during
REF+
Including uncertainties
REF
due to ADC and V
DDA/VREF+
- 2.99 3 3.01 V
-- ±5mV
values
Temperature coefficient –40 °C < TJ < +110 °C - 25 100 ppm/°C
Long-term stability 1000 hours, T= 25 °C - - 1000 ppm
(3)
Voltage coefficient 3.0 V < V
ADC sampling time when reading
(3)
the internal reference voltage
Startup time of reference voltage
(3)
buffer for ADC
Consumption of reference voltage
(3)
buffer for ADC
(3)
VREF_OUT output current
(3)
VREF_OUT output load - - - 50 pF
(4)
Consumption of reference voltage buffer for VREF_OUT and COMP
(3)
1/4 reference voltage - 24 25 26
(3)
1/2 reference voltage - 49 50 51
(3)
3/4 reference voltage - 74 75 76
value is individually measured in production and stored in dedicated EEPROM bytes.
REF
< 3.6 V - - 2000 ppm/V
DDA
-4--µs
---10µs
- - 13.5 25 µA
---1µA
- - 730 1200 nA
V
REFINT out
I
REFINT
T
VREFINT
V
VREF_MEAS
A
VREF_MEAS
T
A
V
DDCoeff
T
S_vrefint
T
ADC_BUF
I
BUF_ADC
I
VREF_OUT
C
VREF_OUT
I
LPBUF
V
REFINT_DIV1
V
REFINT_DIV2
V
REFINT_DIV3
1. Guaranteed by test in production.
2. The internal V
3. Guaranteed by characterization results.
4. To guarantee less than 1% VREF_OUT deviation.
V
REFINT
%
64/136 DS10002 Rev 10
Page 65
STM32L151xE STM32L152xE Electrical characteristics

6.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to the Dhrystone 2.1 code, unless otherwise specified. The current consumption values are derived from tests performed under ambient temperature T
= 25 °C and VDD supply voltage conditions summarized in
A
Tabl e 13: General operating conditions, unless otherwise specified.
The MCU is placed under the following conditions:
All I/O pins are configured in analog input mode
All peripherals are disabled except when explicitly mentioned.
The Flash memory access time, 64-bit access and prefetch is adjusted depending on
f
frequency and voltage range to provide the best CPU performance.
HCLK
When the peripherals are enabled f
APB1
= f
When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used).
The HSE user clock applied to OSCI_IN input follows the characteristic specified in
Table 26: High-speed external user clock characteristics.
For maximum current consumption V
For typical current consumption V
DD
DD
= V
= V
DDA
specified otherwise.
Figure 13: Current consumption
= f
APB2
= 3.6 V is applied to all supply pins.
DDA
AHB
.
= 3.0 V is applied to all supply pins if not
DS10002 Rev 10 65/136
114
Page 66
Electrical characteristics STM32L151xE STM32L152xE
Table 17. Current consumption in Run mode, code with data processing running from
Flash
Symbol Parameter Conditions f
Range 3, V
CORE
=1.2
V VOS[1:0] = 11
f
I
DD
(Run from Flash)
Supply current in Run mode, code executed from Flash
= f
HSE
16 MHz included,
= f
f
HSE
above 16 MHz (PLL
(2)
ON)
HSI clock source (16 MHz)
HCLK
HCLK
up to
/2
Range 2, V
CORE
V VOS[1:0] = 10
Range 1, V
CORE
V VOS[1:0] = 01
Range 2, V
CORE
V VOS[1:0] = 10
Range 1, V
CORE
=1.5
=1.8
=1.5
=1.8
V VOS[1:0] = 01
MSI clock, 65 kHz
Range 3, V
CORE
=1.2
V VOS[1:0] = 11
MSI clock, 4.2 MHz 4.2 MHz 820 1200
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
HCLK
Typ Max
1 MHz 225 500
4 MHz 780 1200
4 MHz 0.98 1.6
8 MHz 1.85 2.9
16 MHz 3.6 5.2
8 MHz 2.2 3.5
16 MHz 4.4 6.5
32 MHz 8.6 12
16 MHz 3.6 5.2
32 MHz 8.7 12.3
65 kHz 42 145
(1)
Unit
µA2 MHz 420 750
mA
µAMSI clock, 524 kHz 524 kHz 135 250
66/136 DS10002 Rev 10
Page 67
STM32L151xE STM32L152xE Electrical characteristics
Table 18. Current consumption in Run mode, code with data processing running from
RAM
Symbol Parameter Conditions f
Range 3,
=1.2 V
V
CORE
VOS[1:0] = 11
IDD (Run from RAM)
Supply current in Run mode, code executed from RAM, Flash switched off
= f
f
HSE
16 MHz included,
= f
f
HSE
above 16 MHz (PLL ON)
HSI clock source (16 MHz)
HCLK
HCLK
(2)
up to
/2
Range 2,
=1.5 V
V
CORE
VOS[1:0] = 10
Range 1,
=1.8 V
V
CORE
VOS[1:0] = 01
Range 2,
=1.5 V
V
CORE
VOS[1:0] = 10
Range 1, V
=1.8 V
CORE
VOS[1:0] = 01
HCLK
Typ M ax
1 MHz 200 470
4 MHz 685 1200
4 MHz 0.80 1.5
8 MHz 1.6 3
16 MHz 3.1 5
8 MHz 1.9 3.5
16 MHz 3.7 5.55
32 MHz 7.55 10.9
16 MHz 3.15 4.8
32 MHz 7.75 11.7
(1)
Unit
µA2 MHz 360 780
mA
MSI clock, 65 kHz
MSI clock, 4.2 MHz 4.2 MHz 715 1100
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Range 3, V
=1.2 V
CORE
VOS[1:0] = 11
65 kHz 40 130
µAMSI clock, 524 kHz 524 kHz 115 215
DS10002 Rev 10 67/136
114
Page 68
Electrical characteristics STM32L151xE STM32L152xE
Table 19. Current consumption in Sleep mode
Symbol Parameter Conditions f
Range 3, V
=1.2 V
CORE
VOS[1:0] = 11
f
Supply current in Sleep
= f
HSE
16 MHz included,
= f
f
HSE
above 16 MHz (PLL
(2)
ON)
HCLK
HCLK
up to
/2
Range 2,
=1.5 V
V
CORE
VOS[1:0] = 10
Range 1,
=1.8 V
V
CORE
VOS[1:0] = 01
mode, Flash OFF
HSI clock source (16 MHz)
Range 2, V
=1.5 V
CORE
VOS[1:0] = 10
Range 1, V
=1.8 V
CORE
VOS[1:0] = 01
MSI clock, 65 kHz
MSI clock, 524 kHz 524 kHz 33 110
MSI clock, 4.2 MHz 4.2 MHz 150 273
Range 3, V
=1.2 V
CORE
VOS[1:0] = 11
IDD (Sleep)
Range 3, V
=1.2 V
CORE
VOS[1:0] = 11
Supply current in Sleep mode, Flash ON
= f
f
HSE
16 MHz included, f
= f
HSE
above 16 MHz (PLL
(2)
ON)
HCLK
HCLK
up to
/2
Range 2,
=1.5 V
V
CORE
VOS[1:0] = 10
Range 1,
=1.8 V
V
CORE
VOS[1:0] = 01
Range 2,
=1.5 V
V
CORE
HSI clock source (16 MHz)
VOS[1:0] = 10
Range 1, V
=1.8 V
CORE
VOS[1:0] = 01
Supply current in Sleep mode, Flash ON
1. Guaranteed by characterization results, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)
MSI clock, 65 kHz
MSI clock, 524 kHz 524 kHz 45 125
MSI clock, 4.2 MHz 4.2 MHz 160 290
Range 3,
=1.2V
V
CORE
VOS[1:0] = 11
HCLK
Typ Ma x
1 MHz 51 220
2 MHz 81 300
4 MHz 140 380
4 MHz 175 500
8 MHz 330 700
16 MHz 625 1100
8 MHz 395 800
16 MHz 760 1250
32 MHz 1700 2700
16 MHz 670 1100
32 MHz 1750 2700
65 kHz 19 92
1 MHz 63 250
2 MHz 93 300
4 MHz 155 380
4 MHz 190 500
8 MHz 340 700
16 MHz 640 1120
8 MHz 410 800
16 MHz 770 1300
32 MHz 1750 2700
16 MHz 690 1160
32 MHz 1750 2800
65 kHz 31 105
(1)
Unit
µA
68/136 DS10002 Rev 10
Page 69
STM32L151xE STM32L152xE Electrical characteristics
Table 20. Current consumption in Low-power run mode
Symbol Parameter Conditions Typ Max
TA = -40 °C to 25 °C 11 16
MSI clock, 65 kHz
= 32 kHz
f
All
HCLK
peripherals OFF, code executed from RAM, Flash
MSI clock, 65 kHz
= 65 kHz
f
HCLK
switched OFF, V from 1.65 V to 3.6 V
DD
MSI clock, 131 kHz f
HCLK
= 131 kHz
Supply
I
DD (LP
Run)
current in Low-power run mode
MSI clock, 65 kHz
= 32 kHz
f
HCLK
All peripherals OFF, code executed from Flash,
MSI clock, 65 kHz
= 65 kHz
f
HCLK
VDD from
1.65 V to
3.6 V
Max allowed
I
max
DD
(LP Run)
current in Low-power run mode
1. Guaranteed by characterization results, unless otherwise specified.
from
V
DD
1.65 V to
3.6 V
MSI clock, 131 kHz f
= 131 kHz
HCLK
- - - 200
= 85 °C 36.2 40
T
A
= 105 °C 65.4 102
T
A
TA =-40 °C to 25 °C 16.5 23
= 85 °C 41.9 48
T
A
= 105 °C 72.1 108
T
A
TA = -40 °C to 25 °C 30 45
= 55 °C 36.1 48
T
A
= 85 °C 55.7 66
T
A
T
= 105 °C 86.6 125
A
TA = -40 °C to 25 °C 26 40.5
T
= 85 °C 53.2 67
A
= 105 °C 92.1 120
T
A
TA = -40 °C to 25 °C 33 49
T
= 85 °C 60.2 75
A
= 105 °C 95.6 130
T
A
T
= -40 °C to 25 °C 48.5 71
A
T
= 55 °C 54.7 75
A
= 85 °C 76.1 95
T
A
= 105 °C 112 140
T
A
(1)
Unit
µA
DS10002 Rev 10 69/136
114
Page 70
Electrical characteristics STM32L151xE STM32L152xE
Table 21. Current consumption in Low-power sleep mode
Symbol Parameter Conditions Typ Max
MSI clock, 65 kHz f
HCLK
= 32 kHz
TA = -40 °C to 25 °C 5.5 -
Flash OFF
T
= -40 °C to 25 °C 18.5 21
A
= 85 °C 26.8 29
T
A
= 105 °C 37 47
T
A
T
= -40 °C to 25 °C 18.5 21
A
= 85 °C 27.2 29
T
A
= 105 °C 37.3 47
T
A
= -40 °C to 25 °C 21.5 25
T
A
= 55 °C 23.7 26
T
A
T
= 85 °C 29.8 32
A
= 105 °C 39.7 50
T
A
I
DD
(LP Sleep)
Supply current in Low-power sleep mode
All peripherals
DD
from
OFF, V
1.65 V to 3.6 V
MSI clock, 65 kHz f
= 32 kHz
HCLK
Flash ON
MSI clock, 65 kHz f
= 65 kHz,
HCLK
Flash ON
MSI clock, 131 kHz
= 131 kHz,
f
HCLK
Flash ON
TA = -40 °C to 25 °C 18.5 21
TIM9 and USART1 enabled, Flash
DD
from
ON, V
1.65 V to 3.6 V
MSI clock, 65 kHz f
= 32 kHz
HCLK
MSI clock, 65 kHz
= 65 kHz
f
HCLK
MSI clock, 131 kHz f
= 131 kHz
HCLK
T
= 85 °C 26.8 29
A
= 105 °C 38.3 47
T
A
TA = -40 °C to 25 °C 18.5 21
T
= 85 °C 27.2 29
A
= 105 °C 38.5 47
T
A
T
= -40 °C to 25 °C 21.5 25
A
T
= 55 °C 23.7 26
A
= 85 °C 29.8 32
T
A
= 105 °C 41.2 50
T
A
Max
max
I
DD
(LP Sleep)
allowed current in Low-power
from 1.65 V
V
DD
to 3.6 V
---200
sleep mode
1. Guaranteed by characterization results, unless otherwise specified.
(1)
Unit
µA
70/136 DS10002 Rev 10
Page 71
STM32L151xE STM32L152xE Electrical characteristics
Table 22. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions Typ Max
= -40°C to 25°C
T
RTC clocked by LSI or LSE external clock (32.768kHz), regulator in LP mode, HSI and HSE OFF (no independent watchdog)
LCD OFF
LCD
ON
(static
duty)
A
= 1.8 V
V
DD
= -40°C to 25°C 1.4 4
T
A
= 55°C 3.02 6
T
A
T
= 85°C 7.44 11
A
= 105°C 15.5 27
T
A
TA = -40°C to 25°C 1.5 6
T
= 55°C 4.65 7
A
= 85°C 9.07 13
T
A
(2)
= 105°C 15.6 31
T
A
1.18 -
TA = -40°C to 25°C 3.9 10
(Stop
I
DD
with RTC)
Supply current in Stop mode with RTC enabled
LCD
ON (1/8
duty)
LCD OFF
= 55°C 5.19 11
T
A
(3)
T
= 85°C 9.8 17
A
= 105°C 18.4 48
T
A
T
= -40°C to 25°C 1.65 -
A
T
= 55°C 3.32 -
A
= 85°C 7.83 -
T
A
= 105°C 16 -
T
A
TA = -40°C to 25°C 1.75 -
RTC clocked by LSE external quartz (32.768kHz), regulator in LP mode, HSI and HSE OFF (no independent watchdog
(4)
LCD
ON
(static
duty)
LCD
ON (1/8
duty)
LCD OFF
= 55°C 4.9 -
T
A
= 85°C 9.41 -
T
A
(2)
T
= 105°C 15.8 -
A
TA = -40°C to 25°C 4.1 -
= 55°C 5.53 -
T
A
(3)
T
= 85°C 10 -
A
= 105°C 18.5 -
T
A
= -40°C to 25°C
T
A
= 1.8V
V
DD
= -40°C to 25°C
T
A
VDD = 3.0V
1.33 -
1.62 -
(1)
Unit
µA
T
= -40°C to 25°C
A
VDD = 3.6V
1.87 -
DS10002 Rev 10 71/136
114
Page 72
Electrical characteristics STM32L151xE STM32L152xE
Table 22. Typical and maximum current consumptions in Stop mode (continued)
Symbol Parameter Conditions Typ Max
Regulator in LP mode, HSI and HSE OFF, independent
= -40°C to 25°C 1.8 2.2
T
A
watchdog and LSI enabled
Supply current in
I
DD
(Stop)
Stop mode (RTC disabled)
Regulator in LP mode, LSI, HSI and HSE OFF (no independent watchdog)
I
DD
(WU from
Stop)
1. Guaranteed by characterization results, unless otherwise specified.
2. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.
3. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
5. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining part of the wakeup period, the current corresponds the Run mode current.
Supply current during wakeup from Stop mode
MSI = 4.2 MHz
MSI = 65 kHz
(5)
= -40°C to 25°C 0.560 1.5
T
A
T
= 55°C 2.18 4
A
= 85°C 6.6 12
T
A
= 105°C 14.9 26
T
A
2-
TA = -40°C to 25°C
1.45 -
(1)
Unit
µA
mAMSI = 1.05 MHz 1.45 -
72/136 DS10002 Rev 10
Page 73
STM32L151xE STM32L152xE Electrical characteristics
Table 23. Typical and maximum current consumptions in Standby mode
(2)
(2)
(1)
Unit
µA
Symbol Parameter Conditions Typ Max
T
= -40 °C to 25 °C
I
DD
(Standby
with RTC)
I
DD
(Standby)
IDD
(WU from
Standby)
Supply current in Standby mode with RTC enabled
Supply current in Standby mode (RTC disabled)
Supply current during wakeup time from Standby mode
RTC clocked by LSI (no independent watchdog)
RTC clocked by LSE external quartz (no independent watchdog)
(3)
Independent watchdog and LSI enabled
Independent watchdog and LSI OFF
-T
A
= 1.8 V
V
DD
= -40 °C to 25 °C 1.11 1.9
T
A
= 55 °C 1.72 2.2
T
A
T
= 85 °C 2.12 4
A
= 105 °C 2.54 8.3
T
A
TA = -40 °C to 25 °C
= 1.8 V
V
DD
= -40 °C to 25 °C 1.28 -
T
A
= 55 °C 2.01 -
T
A
T
= 85 °C 2.5 -
A
= 105 °C 2.98 -
T
A
= -40 °C to 25 °C 1 1.7
T
A
TA = -40 °C to 25 °C 0.29 1
T
= 55 °C 0.96 1.3
A
= 85 °C 1.38 3
T
A
= 105 °C 1.98 7
T
A
= -40 °C to 25 °C 1 - mA
A
0.865 -
0.97 -
1. Guaranteed by characterization results, unless otherwise specified.
2. Guaranteed by test in production.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:
all I/O pins are in input mode with a static value at VDD or VSS (no load)
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
DS10002 Rev 10 73/136
114
Page 74
Electrical characteristics STM32L151xE STM32L152xE
APB1
Table 24. Peripheral current consumption
Typical consumption, VDD = 3.0 V, TA = 25 °C
Peripheral
Range 1,
V
=
CORE
1.8 V
VOS[1:0] = 01
TIM2 12.0 10.0 8.0 10.0
TIM3 10.5 8.8 7.0 8.8
TIM4 10.4 8.8 7.0 8.8
TIM5 13.8 11.5 9.1 11.5
TIM6 3.9 3.0 2.5 3.0
TIM7 3.8 3.3 2.6 3.3
LCD 4.2 3.6 2.8 3.6
WWDG 2.9 2.5 2.1 2.5
SPI2 5.4 4.4 3.5 4.4
SPI3 5.5 4.6 3.7 4.6
USART2 7.6 6.2 4.9 6.2
USART3 7.6 6.2 5.0 6.2
Range 2,
V
=
CORE
1.5 V
VOS[1:0] = 10
Range 3,
V
=
CORE
1.2 V
VOS[1:0] = 11
(1)
Low-power
sleep and run
Unit
µA/MHz
(f
HCLK
)
USART4 7.3 6.1 4.8 6.1
USART5 7.6 6.3 5.0 6.3
I2C1 7.3 6.1 4.8 6.1
I2C2 7.2 5.9 4.7 5.9
USB 13.0 11.2 8.9 11.2
PWR 2.6 2.3 1.9 2.3
DAC 5.9 5.0 4.0 5.0
COMP 3.9 3.3 2.6 3.3
74/136 DS10002 Rev 10
Page 75
STM32L151xE STM32L152xE Electrical characteristics
APB2
AHB
Table 24. Peripheral current consumption
(1)
(continued)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Peripheral
Range 1,
V
=
CORE
1.8 V
VOS[1:0] = 01
Range 2,
V
=
CORE
1.5 V
VOS[1:0] = 10
Range 3,
V
=
CORE
1.2 V
VOS[1:0] = 11
SYSCFG & RI 2.9 2.4 2.0 2.4
TIM9 8.2 6.9 5.5 6.9
TIM10 6.2 5.1 4.1 5.1
TIM11 6.2 5.1 4.1 5.1
(2)
ADC
9.5 7.9 6.2 7.9
SPI1 4.8 3.9 3.2 3.9
USART1 8.2 6.9 5.4 6.9
GPIOA 6.3 5.3 4.1 5.3
GPIOB 6.3 5.3 4.1 5.3
GPIOC 6.3 5.2 4.1 5.2
GPIOD 8.1 6.8 5.4 6.8
GPIOE 6.7 5.7 4.5 5.7
GPIOF 5.9 4.9 3.9 4.9
GPIOG 7.2 6.1 4.9 6.1
GPIOH 1.7 1.4 1.1 1.4
Low-power
sleep and run
Unit
µA/MHz
(f
HCLK
)
CRC 0.8 0.7 0.5 0.7
FLASH 21.6 18.1 16.0 -
(3)
DMA1 16.8 14.5 11.5 14.5
DMA2 15.7 13.6 10.8 13.6
All enabled 222 184 160 165.9
I
DD (RTC)
I
DD (LCD)
I
DD (ADC)
I
DD (DAC)
I
DD (COMP1)
(4)
(5)
0.4
3.1
1450
340
0.16
µA
Slow mode 2
I
DD (COMP2)
I
DD (PVD / BOR)
I
DD (IWDG)
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f power run/sleep), f both cases. No I/O pins toggling.
2. HSI oscillator is OFF for this measure.
Fast mode 5
(6)
= 32 MHz (range 1), f
HCLK
= f
HCLK
, f
APB1
APB2
= f
HCLK
= 16 MHz (range 2), f
HCLK
, default prescaler value for each peripheral. The CPU is in Sleep mode in
2.6
0.25
= 4 MHz (range 3), f
HCLK
= 64kHz (Low-
HCLK
DS10002 Rev 10 75/136
114
Page 76
Electrical characteristics STM32L151xE STM32L152xE
3. In Low-power sleep and run mode, the Flash memory must always be in power-down mode.
4. Data based on a differential I consumption not included).
5. Data based on a differential I VDD/2. DAC is in buffered mode, output is left floating.
6. Including supply current of internal reference voltage.
DD measurement between ADC in reset configuration and continuous ADC conversion (HSI
DD measurement between DAC in reset configuration and continuous DAC conversion of

6.3.5 Wakeup time from low-power mode

The wakeup times given in the following table are measured with the MSI RC oscillator. The clock source used to wake up the device depends on the current operating mode:
Sleep mode: the clock source is the clock that was set before entering Sleep mode
Stop mode: the clock source is the MSI oscillator in the range configured before
entering Stop mode
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz
All timings are derived from tests performed under the conditions summarized in Tab le 13.
Symbol Parameter Conditions Typ Max
Table 25. Low-power mode wakeup timings
(1)
Unit
t
WUSLEEP
t
WUSLEEP_LP
t
WUSTOP
t
WUSTDBY
Wakeup from Sleep mode f
Wakeup from Low-power sleep mode, f
HCLK
= 262 kHz
Wakeup from Stop mode, regulator in Run mode
ULP bit = 1 and FWU bit = 1
Wakeup from Stop mode, regulator in low-power mode
ULP bit = 1 and FWU bit = 1
Wakeup from Standby mode ULP bit = 1 and FWU bit = 1
Wakeup from Standby mode FWU bit = 0
= 32 MHz 0.4 -
HCLK
f
= 262 kHz
HCLK
Flash enabled
f
= 262 kHz
HCLK
Flash switched OFF
= f
f
HCLK
f
HCLK
= 4.2 MHz 8.2 -
MSI
= f
= 4.2 MHz
MSI
Voltage range 1 and 2
f
= f
HCLK
= 4.2 MHz
MSI
Voltage range 3
= f
f
HCLK
f
HCLK
f
HCLK
f
HCLK
f
HCLK
f
HCLK
f
HCLK
f
HCLK
= 2.1 MHz 10.2 13.4
MSI
= f
= 1.05 MHz 16 20
MSI
= f
= 524 kHz 31 37
MSI
= f
= 262 kHz 57 66
MSI
= f
= 131 kHz 112 123
MSI
= MSI = 65 kHz 221 236
= MSI = 2.1 MHz 58 104
= MSI = 2.1 MHz 2.6 3.25 ms
46 -
46 -
7.7 8.9
8.2 13.1
µs
1. Guaranteed by characterization, unless otherwise specified
76/136 DS10002 Rev 10
Page 77
STM32L151xE STM32L152xE Electrical characteristics
MS19214V2
V
HSEH
t
f(HSE)
90%
10%
T
HSE
t
t
r(HSE)
V
HSEL
t
w(HSEH)
t
w(HSEL)

6.3.6 External clock source characteristics

High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in recommended clock input waveform is shown in Figure 14.
Symbol Parameter Conditions Min Typ Max Unit
Table 26. High-speed external user clock characteristics
Section 6.3.12. However, the
(1)
f
HSE_ext
V
HSEH
V
HSEL
t
w(HSEH)
t
w(HSEL)
t
r(HSE)
t
f(HSE)
C
in(HSE)
1. Guaranteed by design.
User external clock source frequency
OSC_IN input pin high level voltage
OSC_IN input pin low level voltage V
OSC_IN high or low time 12 - -
OSC_IN rise or fall time - - 20
OSC_IN input capacitance - 2.6 - pF
Figure 14. High-speed external clock source AC timing diagram
CSS is on or
PLL is used
CSS is off, PLL
not used
-
1832MHz
0832MHz
0.7V
SS
DD
-V
-0.3V
DD
DD
V
ns
DS10002 Rev 10 77/136
114
Page 78
Electrical characteristics STM32L151xE STM32L152xE
MS19215V2
V
LSEH
t
f(LSE)
90%
10%
T
LSE
t
t
r(LSE)
V
LSEL
t
w(LSEH)
t
w(LSEL)
Low-speed external user clock generated from an external source
The characteristics given in the following table result from tests performed using a low­speed external clock source, and under the conditions summarized in
Symbol Parameter Conditions Min Typ Max Unit
Table 27. Low-speed external user clock characteristics
Table 13.
(1)
f
LSE_ext
V
LSEH
V
LSEL
t
w(LSEH)
t
w(LSEL)
t
r(LSE)
t
f(LSE)
C
IN(LSE)
1. Guaranteed by design.
User external clock source frequency
OSC32_IN input pin high level voltage
OSC32_IN input pin low level voltage
OSC32_IN high or low time 465 - -
OSC32_IN rise or fall time - - 10
OSC32_IN input capacitance - - 0.6 - pF
Figure 15. Low-speed external clock source AC timing diagram
1 32.768 1000 kHz
0.7V
DD
-V
DD
V
-
V
SS
-0.3V
DD
ns
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
78/136 DS10002 Rev 10
Table 28. In
Page 79
STM32L151xE STM32L152xE Electrical characteristics
Table 28. HSE oscillator characteristics
(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
f
OSC_IN
R
F
Oscillator frequency - 1 - 24 MHz
Feedback resistor - - 200 - kΩ
Recommended load capacitance versus
C
equivalent serial resistance of the crystal
(3)
(RS)
RS = 30 Ω -20 - pF
VDD= 3.3 V,
I
HSE
HSE driving current
V
= V
IN
with 30 pF
SS
-- 3 mA
load
C = 20 pF
f
= 16 MHz
I
DD(HSE)
g
m
t
SU(HSE)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by characterization results.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
4. t
SU(HSE)
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
HSE oscillator power consumption
Oscillator transconductance
(4)
Startup time VDD is stabilized - 1 - ms
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is
OSC
C = 10 pF
= 16 MHz
f
OSC
Startup 3.5 - - mA /V
--
--
2.5 (startup)
0.7 (stabilized)
2.5 (startup)
0.46 (stabilized)
mA
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5
pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see
Figure 16). CL1 and C
are usually the
L2
same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C
and CL2. PCB and MCU pin capacitance must be included (10 pF
L1
can be used as a rough estimate of the combined pin and board capacitance) when sizing C
and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
L1
microcontrollers” available from the ST website www.st.com.
DS10002 Rev 10 79/136
114
Page 80
Electrical characteristics STM32L151xE STM32L152xE
OSC_OUT
OSC_IN
f
HSE
to core
C
L1
C
L2
R
F
STM32
Resonator
Consumption
control
g
m
R
m
C
m
L
m
C
O
Resonator
ai18235b
Figure 16. HSE oscillator circuit diagram
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Symbol Parameter Conditions Min Typ Max Unit
Table 29. LSE oscillator characteristics (f
= 32.768 kHz)
LSE
Table 29. In
(1)
f
C
I
LSE
R
(2)
LSE
Low speed external oscillator frequency
Feedback resistor - - 1.2 - MΩ
F
Recommended load capacitance versus equivalent serial resistance of the crystal (R
LSE driving current V
(3)
)
S
DD
- - 32.768 - kHz
RS = 30 kΩ -8 -pF
= 3.3 V, V
IN
= V
--1.1µA
SS
VDD = 1.8 V - 450 -
I
DD (LSE)
g
t
SU(LSE)
LSE oscillator current consumption
Oscillator transconductance - 3 - - µA/V
m
(4)
Startup time VDD is stabilized - 1 - s
= 3.0 V - 600 -
DD
= 3.6V - 750 -
V
DD
1. Guaranteed by characterization results.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”.
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small R
4. t
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
80/136 DS10002 Rev 10
value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.
S
is the startup time measured from the moment it is enabled (by software) to a stabilized
SU(LSE)
nAV
Page 81
STM32L151xE STM32L152xE Electrical characteristics
ai17853b
OSC3 2_ OU T
OSC32_IN
f
LSE
CL1
R
F
STM32L1xx
32.768 kHz resonator
CL2
Resonator with integrated capacitors
Bias
controlled
gain
Note: For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to
15
pF range selected to match the requirements of the crystal or resonator (see Figure 17). CL1 and C capacitance which is the series combination of C Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + C C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
stray
are usually the same size. The crystal manufacturer typically specifies a load
L2,
and CL2.
L1
stray
where
between 2 pF and 7 pF.
Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance C
7 pF. Never use a resonator with a load
L
capacitance of 12.5 pF. Example: if the user chooses a resonator with a load capacitance of C C
= 2 pF, then CL1 = CL2 = 8 pF.
stray
= 6 pF and
L
Figure 17. Typical application with a 32.768 kHz crystal
DS10002 Rev 10 81/136
114
Page 82
Electrical characteristics STM32L151xE STM32L152xE

6.3.7 Internal clock source characteristics

The parameters given in Tab le 30 are derived from tests performed under the conditions summarized in Table 13.
High-speed internal (HSI) RC oscillator
Symbol Parameter Conditions Min Typ Max Unit
Table 30. HSI oscillator characteristics
f
HSI
TRIM
ACC
t
SU(HSI)
I
DD(HSI)
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).
2. Guaranteed by characterization results.
3. Guaranteed by test in production.
Frequency VDD = 3.0 V - 16 - MHz
HSI user-trimmed
(1)(2)
resolution
Accuracy of the
(2)
factory-calibrated
HSI
HSI oscillator
HSI oscillator
(2)
startup time
HSI oscillator
(2)
power consumption
Trimming code is not a multiple of 16 - ± 0.4 0.7 %
Trimming code is a multiple of 16 - - ± 1.5 %
= 3.0 V, TA = 25 °C -1
V
DDA
= 3.0 V, TA = 0 to 55 °C -1.5 - 1.5 %
V
DDA
= 3.0 V, TA = -10 to 70 °C -2 - 2 %
V
DDA
V
= 3.0 V, TA = -10 to 85 °C -2.5 - 2 %
DDA
= 3.0 V, TA = -10 to 105 °C -4 - 2 %
V
DDA
V
= 1.65 V to 3.6 V
DDA
TA = -40 to 105 °C
(3)
-1
-4 - 3 %
- - 3.7 6 µs
- - 100 140 µA
(3)
Low-speed internal (LSI) RC oscillator
%
Table 31. LSI oscillator characteristics
Symbol Parameter Min Typ Max Unit
(1)
f
LSI
D
LSI
t
su(LSI)
I
DD(LSI)
1. Guaranteed by test in production.
2. This is a deviation for an individual part, once the initial frequency has been measured.
3. Guaranteed by design.
LSI frequency 26 38 56 kHz
LSI oscillator frequency drift
(2)
0°C TA 105°C
(3)
LSI oscillator startup time - - 200 µs
(3)
LSI oscillator power consumption - 400 510 nA
82/136 DS10002 Rev 10
-10 - 4 %
Page 83
STM32L151xE STM32L152xE Electrical characteristics
Multi-speed internal (MSI) RC oscillator
Symbol Parameter Condition Typ Max Unit
f
MSI
ACC
D
TEMP(MSI)
D
VOLT(MSI)
Frequency after factory calibration, done at
= 3.3 V and TA = 25 °C
V
DD
Frequency error after factory calibration - ±0.5 - %
MSI
MSI oscillator frequency drift
(1)
0 °C ≤ TA 105 °C
MSI oscillator frequency drift
(1)
1.65 V ≤ VDD 3.6 V, TA = 25 °C
Table 32. MSI oscillator characteristics
MSI range 0 65.5 -
MSI range 1 131 -
kHz
MSI range 2 262 -
MSI range 3 524 -
MSI range 4 1.05 -
MHzMSI range 5 2.1 -
MSI range 6 4.2 -
- ±3-%
--2.5%/V
MSI range 0 0.75 -
I
DD(MSI)
t
SU(MSI)
(2)
MSI oscillator power consumption
MSI oscillator startup time
MSI range 1 1 -
MSI range 2 1.5 -
MSI range 3 2.5 -
MSI range 4 4.5 -
MSI range 5 8 -
MSI range 6 15 -
MSI range 0 30 -
MSI range 1 20 -
MSI range 2 15 -
MSI range 3 10 -
MSI range 4 6 -
MSI range 5 5 -
MSI range 6, Voltage range 1
3.5 -
and 2
MSI range 6, Voltage range 3
5-
µA
µs
DS10002 Rev 10 83/136
114
Page 84
Electrical characteristics STM32L151xE STM32L152xE
Table 32. MSI oscillator characteristics (continued)
Symbol Parameter Condition Typ Max Unit
MSI range 0 - 40
MSI range 1 - 20
MSI range 2 - 10
MSI range 3 - 4
t
STAB(MSI)
(2)
MSI oscillator stabilization time
MSI range 4 - 2.5
MSI range 5 - 2
MSI range 6, Voltage range 1 and 2
MSI range 3, Voltage range 3
Any range to range 5
f
OVER(MSI)
MSI oscillator frequency overshoot
Any range to range 6
1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Guaranteed by characterization results.
µs
-2
-3
-4
MHz
-6
84/136 DS10002 Rev 10
Page 85
STM32L151xE STM32L152xE Electrical characteristics

6.3.8 PLL characteristics

The parameters given in Tab le 33 are derived from tests performed under the conditions summarized in Table 13.
Symbol Parameter
PLL input clock
f
PLL_IN
f
PLL_OUT
PLL input clock duty cycle 45 - 55 %
PLL output clock 2 - 32 MHz
PLL lock time
t
LOCK
PLL input = 16 MHz PLL VCO = 96 MHz
Jitter Cycle-to-cycle jitter - - ±
I
(PLL) Current consumption on V
DDA
(PLL) Current consumption on V
I
DD
1. Guaranteed by characterization results.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by f
PLL_OUT
Table 33. PLL characteristics
Min Typ Max
(2)
DDA
DD
.
2- 24MHz
-115 160 µs
-220 450
-120 150
Val ue
(1)
600 ps
Unit
µA

6.3.9 Memory characteristics

The characteristics are given at TA = -40 to 105 °C unless otherwise specified.
RAM memory
Symbol Parameter Conditions Min Typ Max Unit
VRM Data retention mode
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).
Table 34. RAM and hardware registers
(1)
STOP mode (or RESET) 1.65 - - V
DS10002 Rev 10 85/136
114
Page 86
Electrical characteristics STM32L151xE STM32L152xE
Flash memory and data EEPROM
Symbol Parameter Conditions Min Typ Max
Table 35. Flash memory and data EEPROM characteristics
(1)
Unit
V
t
Operating voltage
DD
Read / Write / Erase
Programming/ erasing time for byte / word /
prog
double word / half-page
-1.65-3.6V
Erasing - 3.28 3.94
Programming - 3.28 3.94
Average current during the whole programming / erase operation
I
DD
Maximum current (peak)
TA = 25 °C, VDD = 3.6 V
during the whole programming / erase operation
1. Guaranteed by design.
Table 36. Flash memory and data EEPROM endurance and retention
Symbol Parameter Conditions
Cycling (erase / write)
N
CYC
Program memory
(2)
Cycling (erase / write)
T
= -40°C to
A
105 °C
EEPROM data memory
Data retention (program memory) after 10 kcycles at T
Data retention (EEPROM data memory) after 300 kcycles at T
(2)
t
RET
Data retention (program memory) after 10 kcycles at T
Data retention (EEPROM data memory) after 300 kcycles at T
1. Guaranteed by characterization results.
2. Characterization is done according to JEDEC JESD22-A117.
= 85 °C
A
= 105 °C
A
= 85 °C
A
= 105 °C
A
T
T
RET
RET
= +85 °C
= +105 °C
ms
- 600 - µA
-1.52.5mA
Val ue
Unit
Min
10
(1)
Typ M ax
--
kcycles
300
--
30 - -
30 - -
years
10 - -
10 - -
86/136 DS10002 Rev 10
Page 87
STM32L151xE STM32L152xE Electrical characteristics

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is
SS
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Tab le 37. They are based on the EMS levels and classes defined in application note AN1709.
Table 37. EMS characteristics
DD
and
Symbol Parameter Conditions
= 3.3 V, LQFP144, TA = +25 °C,
V
V
V
FESD
EFTB
Voltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be applied through 100 pF on VDD and V pins to induce a functional disturbance
SS
DD
f
= 32 MHz
HCLK
conforms to IEC 61000-4-2
V
= 3.3 V, LQFP144, TA = +25 °C,
DD
f
= 32 MHz
HCLK
conforms to IEC 61000-4-4
Level/ Class
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It must be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
4B
4A
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.
DS10002 Rev 10 87/136
114
Page 88
Electrical characteristics STM32L151xE STM32L152xE
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC
61967-2 standard which specifies the test board and the pin loading.
Table 38. EMI characteristics
Max vs. frequency range
Symbol Parameter Conditions
= 3.6 V,
V
DD
Monitored
frequency band
0.1 to 30 MHz -14 -6 -4
TA = 25 °C,
S
EMI
Peak level
LQFP144 package compliant with IEC 61967-2
130 MHz to 1GHz -7 -1 9
SAE EMI Level 1 2 2.5 -

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1. standard.
Symbol Ratings Conditions Class
Table 39. ESD absolute maximum ratings
4 MHz
voltage range 3
16 MHz
voltage
range 2
32 MHz voltage range 1
Maximum
(1)
value
Unit
dBµV30 to 130 MHz -11 0 9
Unit
Electrostatic
V
ESD(HBM)
discharge voltage (human body model)
Electrostatic
V
ESD(CDM)
discharge voltage (charge device model)
1. Guaranteed by characterization results.
= +25 °C, conforming
T
A
to JESD22-A114
= +25 °C, conforming
T
A
to ANSI/ESD STM5.3.1.
88/136 DS10002 Rev 10
LQFP144
and
WLCSP104
packages
packages
except
LQFP144
and
WLCSP104
2 2000 V
C3 250
V
C4 500
Page 89
STM32L151xE STM32L152xE Electrical characteristics
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Symbol Parameter Conditions Class
Table 40. Electrical sensitivities
LU Static latch-up class T
= +105 °C conforming to JESD78A II level A
A

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below VSS or above V in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator frequency deviation, LCD levels).
The test results are given in the Tab le 41.
Symbol Description
I
INJ
1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.
2. Injection is not possible.
(for standard pins) must be avoided during normal product operation. However,
DD
Table 41. I/O current injection susceptibility
Injected current on all 5 V tolerant (FT) pins -5
Injected current on any other pin -5
Functional susceptibility
Negative
injection
(1)
(1)
Positive
injection
(2)
NA
(2)
+5
Unit
mAInjected current on BOOT0 -0 NA
DS10002 Rev 10 89/136
114
Page 90
Electrical characteristics STM32L151xE STM32L152xE

6.3.13 I/O port characteristics

General input/output characteristics
Unless otherwise specified, the parameters given in Tab le 48 are derived from tests performed under the conditions summarized in Table 13. All I/Os are CMOS and TTL compliant.
Symbol Parameter Conditions Min Typ
V
V
V
I
Input low level voltage
IL
Input high level voltage
IH
I/O Schmitt trigger voltage
hys
hysteresis
Input leakage current
lkg
(2)
Table 42. I/O static characteristics
TC and FT I/O - - 0.3 V
BOOT0 - - 0.14 V
(4)
TC I/O 0.45 V
FT I/O 0.39 V
BOOT0 0.15 V
TC and FT I/O - 10% V
BOOT0 - 0.01 -
V
V
IN
V
DD
SS
I/Os with LCD
V
V
SS
IN
V
DD
I/Os with analog
switches
V
V
IN
V
DD
SS
I/Os with analog
switches and LCD
V
V
IN
V
DD
SS
I/Os with USB
DD
DD
DD
+0.38
+0.59
+0.56
(2)
(2)
(2)
--
--
--
(3)
DD
Max Unit
(1)(2)
DD
(2)
DD
V
-
--±50
--±50
--±50
nA
--±250
V
V
FT I/O
V
V
IN
V
IN
IN
= V
= V
IN
V
5V
SS
DD
DD
--±50
--±10µA
25 45 65 kΩ
25 45 65 kΩ
SS
TC and FT I/Os
V
DD
R
R
C
1. Guaranteed by test in production.
2. Guaranteed by design.
3. With a minimum of 200 mV.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).
Weak pull-up equivalent
PU
PD
IO
(5)(1)
resistor
Weak pull-down equivalent
(5)
resistor
I/O pin capacitance - - 5 - pF
90/136 DS10002 Rev 10
Page 91
STM32L151xE STM32L152xE Electrical characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20
mA with the non-standard VOL/V
specifications given in Tab le 43.
OH
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in
The sum of the currents sourced by all the I/Os on V consumption of the MCU sourced on V I
(see Tab l e 11 ).
VDD(Σ)
The sum of the currents sunk by all the I/Os on V consumption of the MCU sunk on V I
(see Table 11).
VSS(Σ)
SS
Section 6.2:
plus the maximum Run
cannot exceed the absolute maximum rating
DD,
DD,
plus the maximum Run
SS
cannot exceed the absolute maximum rating
Output voltage levels
Unless otherwise specified, the parameters given in Tab le 43 are derived from tests performed under the conditions summarized in Table 13. All I/Os are CMOS and TTL compliant.
Symbol Parameter Conditions Min Max Unit
(1)(2)
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 11
and the sum of IIO (I/O ports and control pins) must not exceed I
2. Guaranteed by test in production.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 11 and the sum of IIO (I/O ports and control pins) must not exceed I
4. Guaranteed by characterization results.
Output low level voltage for an I/O pin
(2)(3)
Output high level voltage for an I/O pin VDD-0.4 -
(3)(4)
Output low level voltage for an I/O pin
(3)(4)
Output high level voltage for an I/O pin VDD-0.45 -
(1)(4)
Output low level voltage for an I/O pin
(3)(4)
Output high level voltage for an I/O pin VDD-1.3 -
Table 43. Output voltage characteristics
I
= 8 mA
IO
2.7 V < VDD < 3.6 V
I
= 4 mA
IO
1.65 V < VDD < 3.6 V
I
= 20 mA
IO
VSS
< 3.6 V
DD
.
VDD
.
2.7 V < V
-0.4
-0.45 V
-1.3
DS10002 Rev 10 91/136
114
Page 92
Electrical characteristics STM32L151xE STM32L152xE
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 18 and
Tabl e 44, respectively.
Unless otherwise specified, the parameters given in Tab le 44 are derived from tests performed under the conditions summarized in Table 13.
Table 44. I/O AC characteristics
(1)
OSPEEDRx
[1:0] bit
(1)
value
00
01
10
11
Symbol Parameter Conditions Min Max
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
F
max(IO)out
t
f(IO)out
t
r(IO)out
F
max(IO)out
t
f(IO)out
t
r(IO)out
Maximum frequency
(3)
Output rise and fall time
Maximum frequency
(3)
Output rise and fall time
Maximum frequency
(3)
Output rise and fall time
Maximum frequency
(3)
Output rise and fall time
CL = 50 pF, V
= 50 pF, V
C
L
C
= 50 pF, V
L
= 50 pF, V
C
L
CL = 50 pF, V
= 50 pF, V
C
L
CL = 50 pF, V
= 50 pF, V
C
L
CL = 50 pF, V
= 50 pF, V
C
L
C
= 50 pF, V
L
= 50 pF, V
C
L
CL = 30 pF, V
= 50 pF, V
C
L
C
= 30 pF, V
L
C
= 50 pF, V
L
= 2.7 V to 3.6 V - 400
DD
= 1.65 V to 2.7 V - 400
DD
= 2.7 V to 3.6 V - 625
DD
= 1.65 V to 2.7 V - 625
DD
= 2.7 V to 3.6 V - 2
DD
= 1.65 V to 2.7 V - 1
DD
= 2.7 V to 3.6 V - 125
DD
= 1.65 V to 2.7 V - 250
DD
= 2.7 V to 3.6 V - 10
DD
= 1.65 V to 2.7 V - 2
DD
= 2.7 V to 3.6 V - 25
DD
= 1.65 V to 2.7 V - 125
DD
= 2.7 V to 3.6 V - 50
DD
= 1.65 V to 2.7 V - 8
DD
= 2.7 V to 3.6 V - 5
DD
= 1.65 V to 2.7 V - 30
DD
(2)
MHz
MHz
MHz
Pulse width of external
-t
EXTIpw
signals detected by the
-8-
EXTI controller
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151xx, STM32L152xx and STM32L162xx reference manual for a description of GPIO Port configuration register.
2. Guaranteed by design.
3. The maximum frequency is defined in Figure 18.
Unit
kHz
ns
ns
ns
ns
92/136 DS10002 Rev 10
Page 93
STM32L151xE STM32L152xE Electrical characteristics
ai14131c
10%
90%
50%
t
r(IO)out
OUTPUT
EXTERNAL
ON 50pF
Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%)
10%
50%
90%
when loaded by 50pF
T
t
f(IO)out
Figure 18. I/O AC characteristics definition

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R
Unless otherwise specified, the parameters given in Tab le 45 are derived from tests performed under the conditions summarized in Table 13.
(see Tab le 45)
PU
Table 45. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
NRST input low level
V
IL(NRST)
V
IH(NRST)
V
OL(NRST)
V
hys(NRST)
V
F(NRST)
V
NF(NRST)
1. Guaranteed by design.
2. With a minimum of 200 mV.
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.
(1)
voltage
NRST input high
(1)
level voltage
NRST output low
(1)
2.7 V < V
level voltage
1.65 V < V
NRST Schmitt trigger
(1)
voltage hysteresis
R
PU
Weak pull-up equivalent resistor
NRST input filtered
(1)
(3)
pulse
NRST input not
(3)
filtered pulse
---0.3 V
- 0.39V
IOL = 2 mA
< 3.6 V
DD
= 1.5 mA
I
OL
< 2.7 V
DD
--10%V
V
= V
IN
SS
+0.59 - -
DD
--
--
(2)
DD
25 45 65 kΩ
DD
0.4
-mV
---50ns
- 350 - - ns
V
DS10002 Rev 10 93/136
114
Page 94
Electrical characteristics STM32L151xE STM32L152xE
ai17854b
STM32L1xx
R
PU
NRST
(2)
V
DD
Filter
Internal reset
0.1 μF
External reset circuit(1)
Figure 19. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as possible to the chip.
2. The user must ensure that the level on the NRST pin can go below the V
Table 45. Otherwise the reset is not taken into account by the device.
max level specified in
IL(NRST)

6.3.15 TIM timer characteristics

The parameters given in the Table 46 are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output ction characteristics (output compare, input capture, external clock, PWM output).
Table 46. TIMx
(1)
characteristics
Symbol Parameter Conditions Min Max Unit
-1-t
t
res(TIM)
f
EXT
Res
t
COUNTER
Timer resolution time
f
Timer external clock frequency on CH1 to CH4
Timer resolution - - 16 bit
TIM
f
TIMxCLK
16-bit counter clock
= 32 MHz 31.25 - ns
TIMxCLK
-0f
TIMxCLK
= 32 MHz 0 16 MHz
- 1 65536 t period when internal clock is selected (timer’s prescaler disabled)
f
TIMxCLK
= 32 MHz 0.0312 2048 µs
/2 MHz
- - 65536 × 65536 t
t
MAX_COUNT
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.
Maximum possible count
f
TIMxCLK
= 32 MHz - 134.2 s
TIMxCLK
TIMxCLK
TIMxCLK
94/136 DS10002 Rev 10
Page 95
STM32L151xE STM32L152xE Electrical characteristics

6.3.16 Communications interfaces

I2C interface characteristics
2
The device protocol with the following restrictions: SDA and SCL are not “true” open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and V disabled, but is still present.
The I2C characteristics are described in Tab le 47. Refer also to Section 6.3.13: I/O port
characteristics
I
C interface meets the requirements of the standard I2C communication
for more details on the input/output ction characteristics (SDA and SCL)
Table 47. I2C characteristics
DD
is
.
Symbol Parameter
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
t
h(STA)
t
su(STA)
t
su(STO)
t
w(STO:STA)
C
SCL clock low time 4.7 - 1.3 -
SCL clock high time 4.0 - 0.6 -
SDA setup time 250 - 100 -
SDA data hold time - 3450
SDA and SCL rise time - 1000 - 300
SDA and SCL fall time - 300 - 300
Start condition hold time 4.0 - 0.6 -
Repeated Start condition setup time
Stop condition setup time 4.0 - 0.6 - μs
Stop to Start condition time (bus free)
Capacitive load for each bus
b
line
Standard mode
I2C
(1)(2)
Fast mode I2C
(1)(2)
Unit
Min Max Min Max
(3)
-900
(3)
4.7 - 0.6 -
4.7 - 1.3 - μs
- 400 - 400 pF
µs
ns
µs
Pulse width of spikes that
t
SP
are suppressed by the
050
(4)
050
(4)
analog filter
Guaranteed by design.
1.
2. f
3.
4. The minimum width of the spikes filtered by the analog filter is above t
must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to
PCLK1
achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.
The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.
.
SP(max)
DS10002 Rev 10 95/136
ns
114
Page 96
Electrical characteristics STM32L151xE STM32L152xE
ai17855c
START
SDA
R
S
R
P
I
2
C bus
R
P
R
S
V
DD_I2C
V
DD_I2C
STM32L1xx
SDA
SCL
t
f(SDA)
t
r(SDA)
SCL
t
h(STA)
t
w(SCKH)
t
w(SCKL)
t
su(SDA)
t
r(SCK)
t
f(SCK)
t
h(SDA)
START REPEATED
START
t
su(STA)
t
su(STO)
STOP
t
su(STA:STO)
Figure 20. I2C bus AC waveforms and measurement circuit
1. RS = series protection resistor.
= external pull-up resistor.
2. R
P
3. V
4.
is the I2C bus power supply.
DD_I2C
Measurement points are done at CMOS levels: 0.3V
Table 48. SCL frequency (f
PCLK1
and 0.7V
DD
DD.
= 32 MHz, VDD = V
DD_I2C
= 3.3 V)
(1)(2)
I2C_CCR value
f
(kHz)
SCL
R
= 4.7 kΩ
P
400 0x801B
300 0x8024
200 0x8035
100 0x00A0
50 0x0140
20 0x0320
1. RP = External pull-up resistance, f
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the application.
SCL
= I2C speed.
96/136 DS10002 Rev 10
Page 97
STM32L151xE STM32L152xE Electrical characteristics
SPI characteristics
Unless otherwise specified, the parameters given in the following table are derived from tests performed under the conditions summarized in
Refer to Section 6.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Symbol Parameter Conditions Min Max
f
1/t
t
r(SCK)
t
f(SCK)
SCK
c(SCK)
SPI clock frequency
(2)
SPI clock rise and fall time Capacitive load: C = 30 pF - 6 ns
(2)
DuCy(SCK) SPI slave input clock duty cycle Slave mode 30 70 %
Table 49. SPI characteristics
Master mode - 16
Slave mode - 16
Slave transmitter - 12
Table 13.
(1)
(3)
(2)
Unit
MHz
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
(2)
t
h(MI)
(2)
t
h(SI)
t
a(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
1. The characteristics above are given for voltage range 1.
2. Guaranteed by characterization results.
3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.
4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
NSS setup time Slave mode 4t
NSS hold time Slave mode 2t
(2)
SCK high and low time Master mode t
(2)
(2)
Data input setup time
(2)
Master mode 5 -
Slave mode 6 -
SCK
Master mode 5 -
Data input hold time
Slave mode 5 -
(4)
Data output access time Slave mode 0 3t
(2)
Data output valid time Slave mode - 33
(2)
Data output valid time Master mode - 6.5
(2)
Data output hold time
(2)
Slave mode 17 -
Master mode 0.5 -
HCLK
HCLK
/2 5t
SCK
-
-
/2 +3
HCLK
ns
DS10002 Rev 10 97/136
114
Page 98
Electrical characteristics STM32L151xE STM32L152xE
SCK input
(SI)
MSB IN
BIT1 IN
LSB IN
BIT6 OUT
MSB OUT
LSB OUT
NSS input
MOSI
INPUT
MISO
OUTPUT
(SI)
ai14135b
NSS input
t
SU(NSS)
tc(SCK)
th(NSS)
SCK input
CPHA=1 CPOL=0
CPHA=1 CPOL=1
t
w(SCKH)
tw(SCKL)
ta(SO)
tv(SO)
th(SO)
tr(SCK) tf(SCK)
tdis(SO)
MISO
OUTPUT
MOSI
INPUT
t
su(SI)
th(SI)
MSB OUT
MSB IN
BIT6 OUT
LSB OUT
LSB IN
BIT 1 IN
Figure 21. SPI timing diagram - slave mode and CPHA = 0
Figure 22. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
(1)
DD.
98/136 DS10002 Rev 10
Page 99
STM32L151xE STM32L152xE Electrical characteristics
ai14136c
SCK Output
CPHA=0
MOSI
OUTPUT
MISO
INP UT
CPHA=0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
t
c(SCK)
t
w(SCKH)
t
w(SCKL)
t
r(SCK)
t
f(SCK)
t
h(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
t
su(MI)
t
v(MO)
t
h(MO)
MSB IN
BIT6 IN
MSB OUT
Figure 23. SPI timing diagram - master mode
(1)
1. Measurement points are done at CMOS levels: 0.3V
and 0.7V
DD
DD.
DS10002 Rev 10 99/136
114
Page 100
Electrical characteristics STM32L151xE STM32L152xE
ai14137b
Cross over
points
Differential
data lines
V
CRS
VSS
tf tr
USB characteristics
The USB interface is USB-IF certified (full speed).
Symbol Parameter Max Unit
t
STARTUP
1. Guaranteed by design.
(1)
USB transceiver startup time 1 µs
Table 50. USB startup time
Table 51. USB DC electrical characteristics
Symbol Parameter Conditions Min.
Input levels
V
V
DI
CM
V
SE
USB operating voltage - 3.0 3.6 V
DD
(2)
Differential input sensitivity I(USB_DP, USB_DM) 0.2 -
(2)
Differential common mode range Includes V
(2)
Single ended receiver threshold - 1.3 2.0
range 0.8 2.5
DI
Output levels
(3)
V
OL
V
OH
1. All the voltages are measured from the local ground potential.
2. Guaranteed by characterization results.
3. Guaranteed by test in production.
R
4.
Static output level low RL of 1.5 kΩ to 3.6 V
(3)
Static output level high RL of 15 kΩ to V
is the load connected on the USB drivers.
L
SS
(4)
(4)
Figure 24. USB timings: definition of data signal rise and fall time
(1)
Max.
(1)
-0.3
2.8 3.6
Unit
VV
V
Table 52. USB: full speed electrical characteristics
Driver characteristics
Symbol Parameter Conditions Min Max Unit
t
t
t
rfm
V
CRS
100/136 DS10002 Rev 10
Rise time
r
Fall Time
f
Rise/ fall time matching tr/t
Output signal crossover voltage - 1.3 2.0 V
(2)
(2)
(1)
CL = 50 pF
420ns
CL = 50 pF 4 20 ns
f
90 110 %
Loading...