ST MICROELECTRONICS STM32L053C8T6 Datasheet

STM32L053C6 STM32L053C8
LQFP64 10x10 mm
LQFP48 7x7 mm
TFBGA64 5x5 mm
UFQFPN48
(7x7 mm)
STM32L053R6 STM32L053R8
Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0+, up to 64KB
Datasheet - production data
Features
Ultra-low-power platform – 1.65 V to 3.6 V power supply –
-
40 to 125 °C temperature range – 0.27 µA Standby mode (2 wakeup pins) – 0.4 µA Stop mode (16 wakeup lines) – 0.8 µA Stop mode + RTC + 8-Kbyte RAM
retention – 88 µA/MHz in Run mode – 3.5 µs wakeup time (from RAM) – 5 µs wakeup time (from Flash memory)
Core: Arm® 32-bit Cortex®-M0+ with MPU – From 32 kHz up to 32 MHz max. – 0.95 DMIPS/MHz
Memories –
Up to
64-Kbyte Flash memory with ECC – 8-Kbyte RAM – 2 Kbytes of data EEPROM with ECC – 20-byte backup register – Sector protection against R/W operation
Up to 51 fast I/Os (45 I/Os 5V tolerant)
Reset and supply management – Ultra-safe, low-power BOR (brownout reset)
with 5 selectable thresholds – Ultra-low-power POR/PDR – Programmable voltage detector (PVD)
Clock sources – 1 to 25 MHz crystal oscillator
32 kHz oscillator for RTC with calibration – High speed internal 16 MHz factory-trimmed RC
(+/- 1%) – Internal low-power 37 kHz RC – Internal multispeed low-power 65 kHz to
4.2 MHz RC
PLL for CPU clock
Pre-programmed bootloader – USART, SPI supported
Development support – Serial wire debug supported
LCD driver for up to 8×28segments – Support contrast adjustment – Support blinking mode
Step-up converted on board
Rich Analog peripherals – 12-bit ADC 1.14 Msps up to 16 channels (down
to 1.65 V)
12-bit 1 channel DAC with output buffers (down
to 1.8 V)
2x ultra-low-power comparators (window mode
and wake up capability, down to 1.65 V)
Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensors
7-channel DMA controller, supporting ADC, SPI, I2C, USART, DAC, Timers
8x peripheral communication interfaces – 1x USB 2.0 crystal-less, battery charging
detection and LPM
2x USART (ISO 7816, IrDA), 1x UART (low
power) – Up to 4x SPI 16 Mbits/s – 2x I2C (SMBus/PMBus)
9x timers: 1x 16-bit with up to 4 channels, 2x 16-bit with up to 2 channels, 1x 16-bit ultra-low-power timer, 1x SysTick, 1x RTC, 1x 16-bit basic for DAC, and 2x watchdogs (independent/window)
CRC calculation unit, 96-bit unique ID
True RNG and firewall protection
All packages are ECOPACK2
FBGA
June 2019 DS10152 Rev 9 1/136
This is information on a product in full production.
www.st.com
Contents STM32L053x6 STM32L053x8
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Arm® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 25
3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.10 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 Liquid crystal display (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.12 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.13 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.13.1 Internal voltage reference (V
3.13.2 V
voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
LCD
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
REFINT
3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.15 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 29
3.16 System configuration controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.17 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.18.1 General-purpose timers (TIM2, TIM21 and TIM22) . . . . . . . . . . . . . . . . 31
3.18.2 Low-power Timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 Contents
3.18.3 Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.18.4 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.18.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.18.6 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.19 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.19.1 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.19.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 34
3.19.3 Low-power universal asynchronous receiver transmitter (LPUART) . . . 34
3.19.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S) . . . . . . . . 35
3.19.5 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.20 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.21 Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 36
3.22 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.7 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1.8 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 58
6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
DS10152 Rev 9 3/136
4
Contents STM32L053x6 STM32L053x8
6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.16 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.18 Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.19 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.20 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.21 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.1 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
7.2 TFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
7.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.4 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 List of tables
List of tables
Table 1. Ultra-low-power STM32L053x6/x8 device features and peripheral counts. . . . . . . . . . . . . 11
Table 2. Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 16
Table 3. CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. Functionalities depending on the working mode
(from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 5. STM32L0xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 7. Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 8. Capacitive sensing GPIOs available on STM32L053x6/8 devices . . . . . . . . . . . . . . . . . . . 30
Table 9. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 10. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 11. STM32L053x6/8 I
Table 12. USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 13. SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 14. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 15. STM32L053x6/8 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 16. Alternate function port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 17. Alternate function port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 18. Alternate function port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 19. Alternate function port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 20. Alternate function port H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 21. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 22. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 23. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 24. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 25. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 26. Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 27. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 28. Current consumption in Run mode, code with data processing running from Flash. . . . . . 61
Table 29. Current consumption in Run mode vs code type,
code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 30. Current consumption in Run mode, code with data processing running from RAM . . . . . . 63
Table 31. Current consumption in Run mode vs code type,
code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 32. Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 33. Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 34. Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 35. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 36. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 68
Table 37. Average current consumption during Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 38. Peripheral current consumption in Run or Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 39. Peripheral current consumption in Stop and Standby mode . . . . . . . . . . . . . . . . . . . . . . . 71
Table 40. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 41. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 42. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 43. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 44. LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 45. 16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2
C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DS10152 Rev 9 5/136
6
List of tables STM32L053x6 STM32L053x8
Table 46. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 47. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 48. MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 49. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 50. RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 51. Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 52. Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 81
Table 53. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 54. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 55. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 56. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 57. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 58. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 59. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 60. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 61. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 62. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 63. R
max for f
AIN
= 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
ADC
Table 64. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 65. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 66. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 67. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 68. Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 69. Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 70. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 71. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 72. SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 73. SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 74. SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 75. I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 76. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 77. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 78. USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 79. LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 80. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 81. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 82. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . . . 119
Table 83. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 122
Table 84. UFQFPN48 - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 85. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 86. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 List of figures
List of figures
Figure 1. STM32L053x6/8 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 3. STM32L053x6/8 LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 4. STM32L053x6/8 TFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 5. STM32L053x6/8 LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 6. STM32L053x6/8 UFQFPN48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 7. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 8. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 9. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 10. Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 12. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSE, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 13. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from
Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 14. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Low-power run mode, code running
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 15. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled
and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 16. IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,
all clocks OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 17. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 18. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 19. HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 20. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 21. HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 22. VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 23. VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 24. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 25. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 26. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 27. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 28. Power supply and reference decoupling (V Figure 29. Power supply and reference decoupling (V
Figure 30. 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 31. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 32. SPI timing diagram - slave mode and CPHA = 1 Figure 33. SPI timing diagram - master mode Figure 34. I Figure 35. I
2
S slave timing diagram (Philips protocol)
2
S master timing diagram (Philips protocol)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 36. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 37. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 114
Figure 38. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 116
Figure 39. LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 40. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 41. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
,grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
not connected to V
REF+
connected to V
REF+
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
DDA
) . . . . . . . . . . . . . 95
DDA
). . . . . . . . . . . . . . . . . 96
DS10152 Rev 9 7/136
8
List of figures STM32L053x6 STM32L053x8
Figure 42. TFBGA64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 121
Figure 44. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 122
Figure 45. LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 46. UFQFPN48 - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 47. UFQFPN48 - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 48. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 49. Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 Introduction

1 Introduction

The ultra-low-power STM32L053x6/8 are offered in 4 different package types: from 48 pins
to 64 pins. Depending on the device chosen, different sets of peripherals are included, the
description below gives an overview of the complete range of peripherals proposed in this
family.
These features make the ultra-low-power STM32L053x6/8 microcontrollers suitable for a
wide range of applications:
Gas/water meters and industrial sensors
Healthcare and fitness equipment
Remote control and user interface
PC peripherals, gaming, GPS equipment
Alarm system, wired and wireless sensors, video intercom
This STM32L053x6/8 datasheet should be read in conjunction with the STM32L0x3xx
reference manual (RM0367).
For information on the Arm
Reference Manual, available from the www.arm.com website.
®(a)
Cortex®-M0+ core please refer to the Cortex®-M0+ Technical
Figure 1 shows the general block diagram of the device family.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS10152 Rev 9 9/136
36
Description STM32L053x6 STM32L053x8

2 Description

The ultra-low-power STM32L053x6/8 microcontrollers incorporate the connectivity power of
the universal serial bus (USB 2.0 crystal-less) with the high-performance Arm Cortex-M0+
32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-
speed embedded memories (up to
EEPROM and
The STM32L053x6/8 devices provide high power efficiency for a wide range of
performance. It is achieved with a large choice of internal and external clock sources, an
internal voltage adaptation and several low-power modes.
The STM32L053x6/8 devices offer several analog features, one 12-bit ADC with hardware
oversampling, one DAC, two ultra-low-power comparators, several timers, one low-power
timer (LPTIM), three general-purpose 16-bit timers and one basic timer, one RTC and one
SysTick which can be used as timebases. They also feature two watchdogs, one watchdog
with independent clock and window capability and one window watchdog based on bus
clock.
Moreover, the STM32L053x6/8 devices embed standard and advanced communication
interfaces: up to two I2C, two SPIs, one I2S, two USARTs, a low-power UART (LPUART),
and a crystal-less USB. The devices offer up to 24 capacitive sensing channels to simply
add touch sensing functionality to any application.
8
Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.
64
Kbytes of Flash program memory, 2 Kbytes of data
The STM32L053x6/8 also include a real-time clock and a set of backup registers that
remain powered in Standby mode.
Finally, their integrated LCD controller has a built-in LCD voltage generator that allows to
drive up to 8 multiplexed LCDs with contrast independent of the supply voltage.
The ultra-low-power STM32L053x6/8 devices operate from a 1.8 to 3.6 V power supply
(down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without
BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive
set of power-saving modes allows the design of low-power applications.
10/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 Description

2.1 Device overview

Table 1. Ultra-low-power STM32L053x6/x8 device features and peripheral counts
Peripheral STM32L053C6 STM32L053R6 STM32L053C8 STM32L053R8
Flash (Kbytes) 32 64
Data EEPROM (Kbytes) 22
RAM (Kbytes) 88
General-purpose 33
Timers
Basic 11
LPTIMER 11
RTC/SYSTICK/IWDG/WWDG 1/1/1/1 1/1/1/1
SPI/I2S 4(2)
(1)
/1 4(2)
(1)
/1
I2C 22
Communication interfaces
USART 22
LPUART 11
USB/(VDD_USB) 1/(1) 1/(1)
GPIOs 37 51
(2)
37 51
Clocks: HSE/LSE/HSI/MSI/LSI 1/1/1/1/1 1/1/1/1/1
12-bit synchronized ADC Number of channels
12-bit DAC Number of channels
LCD COM x SEG
1
10
1
4x18
1
16
1 1
1
4x32 or 8x28
(2)
(2)
1
10
1
4x18
1 1
4x32 or 8x28
16
(2)
1
(2)
1
(2)
Comparators 22
Capacitive sensing channels 17 24
(2)
17 24
(2)
Max. CPU frequency 32 MHz
Operating voltage
Operating temperatures
Packages
1. 2 SPI interfaces are USARTs operating in SPI master mode.
2. TFBGA64 has one GPIO, one LCD COM x SEG, one ADC input and one capacitive sensing channel less than LQFP64.
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option
1.65 V to 3.6 V without BOR option
Ambient temperature: –40 to +125 °C Junction temperature: –40 to +130 °C
LQFP48,
UFQFPN48
LQFP64,
TFBGA64
LQFP48,
UFQFPN48
LQFP64,
TFBGA64
DS10152 Rev 9 11/136
36
Description STM32L053x6 STM32L053x8
MSv33794V1
CORTEX M0+ CPU
Fmax:32MHz
SWD
MPU
NVIC
GPIO PORT A
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT H
Temp
sensor
RESET & CLK
FLASH
EEPROM
BOOT
RAM
DMA1
AHB: Fmax 32MHz
TSC
CRC
RNG
BRIDGE
A P B 2
FIREWALL
DBG
EXTI
ADC1
SPI1
USART1
TIM21
COMP1
LSE
TIM22
BRIDGE
A P B 1
CRS
TIM6
RAM 1K
DAC1
I2C1
I2C2
USART2
USB 2.0 FS
LPUART1
SPI2/I2S
TIM2
LCD1
IWDG
RTC
WWDG
LPTIM1
BCKP REG
HSE HSI 16M
PLL
MSI
LSI
HSI 48M
PMU
REGULATOR
VDD
VDDA
VREF_OUT
NRST
PVD_IN
OSC32_IN,
OSC32_OUT
OSC_IN,
OSC_OUT
WKUPx
PA[0:15]
PH[0:1]
PD[2]
PC[0:15]
PB[0:15]
AINx
MISO, MOSI, SCK, NSS
RX, TX, RTS, CTS, CK
2ch
2ch
INP, INM, OUT
IN1, IN2, ETR, OUT
DP, DM, OE, CRS_SYNC, VDD_USB
OUT1
SCL, SDA, SMBA
SCL, SDA, SMBA
RX, TX, RTS, CTS, CK
RX, TX, RTS, CTS
MISO/MCK, MOSI/SD, SCK/CK, NSS/ WS
4ch
COMx, SEGx, LCD_VLCD1
SWD
COMP2
INP, INM, OUT
Figure 1. STM32L053x6/8 block diagram
12/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 Description

2.2 Ultra-low-power device continuum

The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary
core up to Arm
®
Cortex®-M4, including Arm® Cortex®-M3 and Arm® Cortex®-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 ultra-low-power series are the best solution for applications such as gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers, 128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements.
DS10152 Rev 9 13/136
36
Functional overview STM32L053x6 STM32L053x8

3 Functional overview

3.1 Low-power modes

The ultra-low-power STM32L053x6/8 support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system’s maximum operating frequency and the external voltage supply.
There are three power consumption ranges:
Range 1 (V
Range 2 (full V
Range 3 (full V
Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.
Low-power run mode
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the low­speed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Low­power run mode, the clock frequency and the number of enabled peripherals are both limited.
Low-power sleep mode
This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator’s operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.
When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on.
Stop mode with RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.
The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USB/USART/I2C/LPUART/LPTIMER wakeup events.
range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
DD
range), with a maximum CPU frequency of 16 MHz
DD
range), with a maximum CPU frequency limited to 4.2 MHz
DD
domain are stopped, the
CORE
14/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 Functional overview
Stop mode without RTC
The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled.
Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.
The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB/USART/I2C/LPUART/LPTIMER wakeup events.
Standby mode with RTC
The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V
CORE
domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.
Standby mode without RTC
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V
domain is powered off. The
CORE
PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode.The LCD is not stopped automatically by entering Stop mode.
DS10152 Rev 9 15/136
36
Functional overview STM32L053x6 STM32L053x8
Table 2. Functionalities depending on the operating power supply range
Functionalities depending on the operating power supply
range
Operating power supply
range
(1)
DAC and ADC
operation
Dynamic voltage
scaling range
USB
V
= 1.65 to 1.71 V
DD
= 1.71 to 1.8 V
V
DD
VDD = 1.8 to 2.0 V
(2)
(2)
VDD = 2.0 to 2.4 V
VDD = 2.4 to 3.6 V
1. GPIO speed depends on VDD voltage range. Refer to Table 60: I/O AC characteristics for more information about I/O speed.
2. CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.
3. To be USB compliant from the I/O voltage standpoint, the minimum V
Table 3. CPU frequency range depending on dynamic voltage scaling
ADC only, conversion
time up to 570 ksps
ADC only, conversion
time up to 1.14 Msps
Conversion time up to
1.14 Msps
Conversion time up to
1.14 Msps
Conversion time up to
1.14 Msps
Range 2 or
range 3
Range 1, range 2 or
range 3
Range1, range 2 or
range 3
Range 1, range 2 or
range 3
Range 1, range 2 or
range 3
is 3.0 V.
DD_USB
Not functional
Functional
Functional
Functional
Functional
(3)
(3)
(3)
(3)
CPU frequency range Dynamic voltage scaling range
16 MHz to 32 MHz (1ws)
32 kHz to 16 MHz (0ws)
8 MHz to 16 MHz (1ws)
32 kHz to 8 MHz (0ws)
Range 1
Range 2
32 kHz to 4.2 MHz (0ws) Range 3
16/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 Functional overview
IPs Run/Active Sleep
Table 4. Functionalities depending on the working mode
(from Run/active down to standby)
Low-
power
run
Low-
power
sleep
(1)
Stop Standby
Wakeup
capability
CPU Y -- Y -- -- --
Flash memory O O O O -- --
RAM Y Y Y Y Y --
Backup registers Y Y Y Y Y Y
EEPROM O O O O -- --
Brown-out reset (BOR)
OOOOOOOO
DMA O O O O -- --
Programmable Voltage Detector
OOOOOO-
(PVD)
Power-on/down reset (POR/PDR)
High Speed Internal (HSI)
High Speed External (HSE)
Low Speed Internal (LSI)
YYYYYYYY
OO----
(2)
OOOO-- --
OOOOO O
Wakeup
capability
--
Low Speed External (LSE)
Multi-Speed Internal (MSI)
Inter-Connect Controller
OOOOO O
OOYY-- --
YYYYY --
RTC O O O O O O O
RTC Tamper O O O O O O O O
Auto WakeUp (AWU)
OOOOOOOO
LCD O O O O O --
USB O O -- -- -- O --
USART O O O O O
LPUART O O O O O
(3)
(3)
O--
O--
SPI O O O O -- --
I2C O O -- -- O
(4)
O--
ADC O O -- -- -- --
DS10152 Rev 9 17/136
36
Functional overview STM32L053x6 STM32L053x8
Table 4. Functionalities depending on the working mode
(from Run/active down to standby) (continued)
IPs Run/Active Sleep
Low-
power
run
Low-
power
sleep
(1)
Stop Standby
Wakeup
capability
Wakeup
capability
DAC O O O O O --
Temperature sensor
OOOOO --
Comparators O O O O O O --
16-bit timers O O O O -- --
LPTIMER O O O O O O
IWDG O O O O O O O O
WWDG O O O O -- --
Touch sensing controller (TSC)
O O -- -- -- --
SysTick Timer O O O O --
GPIOs O O O O O O 2 pins
Wakeup time to Run mode
0 µs 0.36 µs 3 µs 32 µs 3.5 µs 50 µs
0.4 µA (No =1.8 V
DD
0.8 µA (with =1.8 V
DD
0.4 µA (No =3.0 V
DD
Consumption VDD=1.8 to 3.6 V (Typ)
Down to
140 µA/MHz
(from Flash
memory)
Down to 37 µA/MHz (from Flash
memory)
Down to
8 µA
Down to
4.5 µA
RTC) V
RTC) V
RTC) V
1 µA (with RTC)
V
=3.0 V
DD
1. Legend: “Y” = Yes (enable). “O” = Optional can be enabled/disabled by software) “-” = Not available
2. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore.
3. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running the HSI clock.
4. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up the HSI during reception.
0.28 µA (No
RTC) VDD=1.8 V
0.65 µA (with
RTC) VDD=1.8 V
0.29 µA (No
RTC) VDD=3.0 V
0.85 µA (with
RTC) VDD=3.0 V
18/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 Functional overview

3.2 Interconnect matrix

Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes.
Table 5. STM32L0xx peripherals interconnect matrix
Interconnect
source
COMPx
TIMx TIMx
RTC
All clock
source
USB CRS/HSI48
Interconnect
destination
TIM2,TIM21,
TIM22
LPTIM
TIM21
LPTIM
TIMx
Interconnect action Run Sleep
Timer input channel,
trigger from analog
signals comparison
Timer input channel,
trigger from analog
signals comparison
Timer triggered by other
timer
Timer triggered by Auto
wake-up
Timer triggered by RTC
event
Clock source used as
input channel for RC
measurement and
trimming
the clock recovery
system trims the HSI48
based on USB SOF
YY Y Y -
YY Y Y Y
YY Y Y -
YY Y Y -
YY Y Y Y
YY Y Y -
YY - - -
Low-
power
run
Low-
power
sleep
Stop
GPIO
TIMx
LPTIM
ADC,DAC Conversion trigger Y Y Y Y -
Timer input channel and
trigger
Timer input channel and
trigger
DS10152 Rev 9 19/136
YY Y Y -
YY Y Y Y
36
Functional overview STM32L053x6 STM32L053x8

3.3 Arm® Cortex®-M0+ core with MPU

The Cortex-M0+ processor is an entry-level 32-bit Arm Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:
a simple architecture that is easy to learn and program
ultra-low power, energy-efficient operation
excellent code density
deterministic, high-performance interrupt handling
upward compatibility with Cortex-M processor family
platform security robustness, with integrated Memory Protection Unit (MPU).
The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier.
The Cortex-M0+ processor provides the exceptional performance expected of a modern 32­bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.
Owing to its embedded Arm core, the STM32L053x6/8 are compatible with all Arm tools and software.

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L053x6/8 embed a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels and 4 priority levels.
The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:
includes a Non-Maskable Interrupt (NMI)
provides zero jitter interrupt option
provides four interrupt priority levels
The tight integration of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart load­multiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another.
To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode.
This hardware block provides flexible interrupt management features with minimal interrupt latency.
20/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 Functional overview

3.4 Reset and supply management

3.4.1 Power supply schemes

VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V
V
SSA
, V
= 1.65 to 3.6 V: external analog power supplies for ADC, DAC, reset
DDA
blocks, RCs and PLL (minimum voltage to be applied to V
V
used). V
DD_USB
and V
DDA
= 1.65 to 3.6V: external power supply for USB transceiver, USB_DM (PA11) and USB_DP (PA12). To guarantee a correct voltage level for USB communication V
DD_USB
must be above 3.0V. If USB is not used this pin must be tied to VDD or VSS. On packages without VDD_USB pin, V voltage.

3.4.2 Power supply supervisor

The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.
Two versions are available:
The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
The other version without BOR operates between 1.65 V and 3.6 V.
pins.
DD
is 1.8 V when the DAC is
must be connected to VDD and VSS, respectively.
SSA
DD_USB
voltage is internally connected to VDD
DDA
After the V
threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or
DD
not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes
1.65 V (whatever the version, BOR active or not, at power-on).
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V
at least 1 ms after it exits
DD
the POR area.
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V V
is below a specified threshold, V
DD
) in Stop mode. The device remains in reset mode when
REFINT
POR/PDR
or V
, without the need for any external
BOR
reset circuit.
Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the start-
up time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.
The devices feature an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
power supply and compares it to the V
threshold. This PVD offers 7 different
PVD
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V V
DD/VDDA
is higher than the V
PVD
DD/VDDA
threshold. The interrupt service routine can then generate
drops below the V
threshold and/or when
PVD
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
DS10152 Rev 9 21/136
36
Functional overview STM32L053x6 STM32L053x8

3.4.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.
MR is used in Run mode (nominal regulation)
LPR is used in the Low-power run, Low-power sleep and Stop modes
Power down is used in Standby mode. The regulator output is high impedance, the
kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR).

3.5 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:
Clock prescaler
To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
Safe clock switching
Clock sources can be changed safely on the fly in Run mode through a configuration register.
Clock management
To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
System clock source
Three different clock sources can be used to drive the master clock SYSCLK:
1-25 MHz high-speed external crystal (HSE), that can supply a PLL
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can
supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
Auxiliary clock source
Two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
32.768 kHz low-speed external crystal (LSE)
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
RTC and LCD clock sources
The LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
USB clock source
A 48 MHz clock trimmed through the USB SOF supplies the USB interface.
22/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 Functional overview
Startup clock
After reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
Clock security system (CSS)
This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled.
Clock-out capability (MCO: microcontroller clock output)
It outputs one of the internal clocks for external use by the application.
Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See
Figure 2 for details on the clock tree.
DS10152 Rev 9 23/136
36
Functional overview STM32L053x6 STM32L053x8
MS32912V2
Legend: HSE = High-speed external clock signal HSI = High-speed internal clock signal LSI = Low-speed internal clock signal LSE = Low-speed external clock signal MSI = Multispeed internal clock signal
Watchdog LS
LSI RC
LSE OSC
RTC
LSI tempo
@V33
/ 1,2,4,8,16
HSI16 RC
Level shifters
HSE OSC
Level shifters
RC 48MHz
Level shifters
LSU
1 MHz Clock
Detector
LSD
Clock
Recovery
System
/ 8
LSE tempo
MSI RC
Level shifters
/ 2,4,8,16
/ 2,3,4
Level shifters
PLL
X
3,4,6,8,12,16,
24,32,48
APB1
PRESC
/ 1,2,4,8,16
AHB
PRESC
/ 1,2,…, 512
Clock Source Control
usb_en
@V33
@V33
@V33
@V33
@V33
@V18
@V18
@V18
@V18
@V18
rng_en
48MHz
USBCLK
48MHz RNG
I2C1CLK
LPUART/
UARTCLK
LPTIMCLK
LSE
HSI16
SYSCLK
PCLK
LSI
Peripheral
clock enable
PCLK1 to APB1
peripherals
not (sleep or
deepsleep)
not (sleep or
deepsleep)
not deepsleep
not deepsleep
HCLK
SysTick
Timer
CK_PWR
FCLK
PLLCLK
HSE
HSI16
MSI
LSE
LSI
Dedicated 48MHz PLL output
HSE present or not
@V33
@V
DDCORE
ck_rchs
/ 1,4
HSI16
HSI48
MSI
1 MHz
ck_pllin
Enable Watchdog
RTC2 enable
LCD enable
ADC enable
ADCCLK
LCDCLK
LSU LSD LSD
MCO
MCOSEL
PLLSRC
HSI48MSEL
RTCSEL
System
Clock
32 MHz
max.
If (APB1 presc=1) x1
else x2)
to TIMx
Peripheral
clock enable
Peripheral
clock enable
Peripheral
clock enable
APB2
PRESC
/ 1,2,4,8,16
Peripheral
clock enable
PCLK2 to APB2
peripherals
32 MHz
max.
If (APB2 presc=1) x1
else x2)
to TIMx
Peripheral
clock enable
LSD
Figure 2. Clock tree
24/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 Functional overview

3.6 Low-power real-time clock and backup registers

The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode.
The RTC is an independent BCD timer/counter. Its main features are the following:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
Two programmable alarms with wake up from Stop and Standby mode capability
Periodic wakeup from Stop and Standby with programmable resolution and period
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.
The RTC clock sources can be:
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 37 kHz)
The high-speed external clock

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz.

Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 28 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 51 GPIOs can be connected to the 16 configurable interrupt/event lines. The 12 other lines are connected to PVD, RTC, USB, USARTs, LPUART, LPTIMER or comparator events.
DS10152 Rev 9 25/136
36
Functional overview STM32L053x6 STM32L053x8

3.8 Memories

The STM32L053x6/8 devices have the following features:
8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
The non-volatile memory is divided into three arrays:
32 or 64 Kbytes of embedded Flash program memory
2 Kbytes of data EEPROM
Information block containing 32 user and factory options bytes plus 4 Kbytes of
system memory
The user options bytes are used to write-protect or read-out protect the memory (with 4 Kbyte granularity) and/or readout-protect the whole memory with the following options:
Level 0: no protection
Level 1: memory readout protected.
The Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in RAM selection disabled (debugline fuse)
The firewall protects parts of code/data from access by the rest of the code that is executed outside of the protected area. The granularity of the protected code segment or the non­volatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the volatile data segment (RAM).
The whole non-volatile memory embeds the error correction code (ECC) feature.

3.9 Boot modes

At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:
Boot from Flash memory
Boot from System memory
Boot from embedded RAM
The boot loader is located in System memory. It is used to reprogram the Flash memory by using SPI1(PA4, PA5, PA6, PA7) or SPI2 (PB12, PB13, PB14, PB15), USART1(PA9, PA10) or USART2(PA2, PA3). See STM32™ microcontroller system memory boot mode AN2606 for details.
26/136 DS10152 Rev 9
STM32L053x6 STM32L053x8 Functional overview

3.10 Direct memory access (DMA)

The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I
2
C, USART, LPUART,
general-purpose timers, DAC, and ADC.

3.11 Liquid crystal display (LCD)

The LCD drives up to 8 common terminals and 32 segment terminals to drive up to 224 pixels.
Internal step-up converter to guarantee functionality and contrast control irrespective of V
. This converter can be deactivated, in which case the V
DD
the voltage to the LCD
Supports static, 1/2, 1/3, 1/4 and 1/8 duty
Supports static, 1/2, 1/3 and 1/4 bias
Phase inversion to reduce power consumption and EMI
Up to 8 pixels can be programmed to blink
Unneeded segments and common pins can be used as general I/O pins
LCD RAM can be updated at any time owing to a double-buffer
The LCD controller can operate in Stop mode
V
rails decoupling capability
LCD
pin is used to provide
LCD

3.12 Analog-to-digital converter (ADC)

A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L053x6/8 device. It has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference, V Three channels, PA0, PA4 and PA5, are fast channels, while the others are standard channels.
The ADC performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 µA at 10 kSPS, ~200 µA at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase.
The ADC can be served by the DMA controller. It can operate from a supply voltage down to
1.65 V.
The ADC features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see AN2668).
DS10152 Rev 9 27/136
voltage measurement).
LCD
36
Functional overview STM32L053x6 STM32L053x8
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers.

3.13 Temperature sensor

The temperature sensor (T
) generates a voltage V
SENSE
that varies linearly with
SENSE
temperature.
The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.
Calibration value name Description Memory address
TSENSE_CAL1
TSENSE_CAL2
Table 6. Temperature sensor calibration values
TS ADC raw data acquired at temperature of 30 °C, V
= 3 V
DDA
TS ADC raw data acquired at temperature of 130 °C V
= 3 V
DDA
0x1FF8 007A - 0x1FF8 007B
0x1FF8 007E - 0x1FF8 007F
3.13.1 Internal voltage reference (V
The internal voltage reference (V ADC and Comparators. V
REFINT
enables accurate monitoring of the V for ADC). The precise voltage of V
REFINT
is internally connected to the ADC_IN17 input channel. It
REFINT
REFINT
DD
)
) provides a stable (bandgap) voltage output for the
value (when no external voltage, V
is individually measured for each part by ST during
production test and stored in the system memory area. It is accessible in read-only mode.
Calibration value name Description Memory address
VREFINT_CAL
28/136 DS10152 Rev 9
Table 7. Internal voltage reference measured values
Raw data acquired at temperature of 25 °C
= 3 V
V
DDA
, is available
REF+
0x1FF8 0078 - 0x1FF8 0079
STM32L053x6 STM32L053x8 Functional overview
3.13.2 V
voltage monitoring
LCD
This embedded hardware feature allows the application to measure the V using the internal ADC channel ADC_IN16. As the V and thus outside the ADC input range, the ADC input is connected to LCD_VLCD1 (which provides 1/3V
when the LCD is configured 1/3Bias and 1/4V
LCD
configured 1/4Bias or 1/2Bias).

3.14 Digital-to-analog converter (DAC)

One 12-bit buffered DAC can be used to convert digital signal into analog voltage signal output. An optional amplifier can be used to reduce the output signal impedance.
This digital Interface supports the following features:
One data holding register
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
DMA capability (including the underrun interrupt)
External triggers for conversion
Input reference voltage V
Four DAC trigger inputs are used in the STM32L053x6/8. The DAC channel is triggered through the timer update outputs that are also connected to different DMA channels.
REF+
supply voltage
voltage may be higher than V
LCD
LCD
LCD
when the LCD is
DDA
,

3.15 Ultra-low-power comparators and reference voltage

The STM32L053x6/8 embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).
One comparator with ultra low consumption
One comparator with rail-to-rail inputs, fast or slow mode.
The threshold can be one of the following:
DAC output
External I/O pins
Internal reference voltage (V
submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail
comparator.
Both comparators can wake up the devices from Stop mode, and be combined into a window comparator.
The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical).
REFINT
)
DS10152 Rev 9 29/136
36
Functional overview STM32L053x6 STM32L053x8

3.16 System configuration controller

The system configuration controller provides the capability to remap some alternate functions on different I/O ports.
The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM21, TIM22 and LPTIM timer input captures. It also controls the routing of internal analog signals to the USB internal oscillator, ADC, COMP1 and COMP2 and the internal reference voltage V
REFINT
.

3.17 Touch sensing controller (TSC)

The STM32L053x6/8 provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.
Table 8. Capacitive sensing GPIOs available on STM32L053x6/8 devices
Group
1
2
3
Capacitive sensing
signal name
TSC_G1_IO1 PA0
TSC_G1_IO2 PA1 TSC_G5_IO2 PB4
TSC_G1_IO3 PA2 TSC_G5_IO3 PB6
TSC_G1_IO4 PA3 TSC_G5_IO4 PB7
TSC_G2_IO1 PA4
TSC_G2_IO2 PA5 TSC_G6_IO2 PB12
TSC_G2_IO3 PA6 TSC_G6_IO3 PB13
TSC_G2_IO4 PA7 TSC_G6_IO4 PB14
TSC_G3_IO1 PC5
TSC_G3_IO2 PB0 TSC_G7_IO2 PC1
TSC_G3_IO3 PB1 TSC_G7_IO3 PC2
TSC_G3_IO4 PB2 TSC_G7_IO4 PC3
Pin
name
(1)
Group
5
6
7
Capacitive sensing
signal name
TSC_G5_IO1 PB3
TSC_G6_IO1 PB11
TSC_G7_IO1 PC0
Pin
name
30/136 DS10152 Rev 9
Loading...
+ 106 hidden pages