STMicroelectronics STM32H747AI, STM32H747BI, STM32H747II, STM32H747XI, STM32H747ZI User manual

...
STM32H747xI/G
UFBGA169
(7 × 7 mm)
TFBGA240+25
(14x14 mm)
LQFP176
(24x24 mm)
LQFP208
(28x28 mm)
WLCSP156
(4.96x4.64 mm)
Dual 32-bit Arm® Cortex®-M7 up to 480MHz and -M4 MCUs, up to
2MB Flash, 1MB RAM, 46 com. and analog interfaces, SMPS, DSI
Features
Dual core
32-bit Arm® Cortex®-M7 core with double- precision FPU and L1 cache: 16 Kbytes of data and 16 Kbytes of instruction cache; frequency up to 480 MHz, MPU, 1027 DMIPS/
2.14 DMIPS/MHz (Dhrystone 2.1), and DSP instructions
32-bit Arm Adaptive real-time accelerator (ART Accelerator™) for internal Flash memory and external memories, frequency up to 240 MHz, MPU, 300 DMIPS/1.25 DMIPS /MHz (Dhrystone 2.1), and DSP instructions
Memories
Up to 2 Mbytes of Flash memory with read­while-write support
1 Mbyte of RAM: 192 Kbytes of TCM RAM (inc. 64 Kbytes of ITCM RAM + 128 Kbytes of DTCM RAM for time critical routines), 864 Kbytes of user SRAM, and 4 Kbytes of SRAM in Backup domain
Dual mode Quad-SPI memory interface running up to 133 MHz
Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND Flash memory clocked up to 125 MHz in Synchronous mode
CRC calculation unit
®
32-bit Cortex®-M4 core with FPU,
FBGA
Reset and power management
3 separate power domains which can be independently clock-gated or switched off:
– D1: high-performance capabilities – D2: communication peripherals and timers – D3: reset/clock control/power management
1.62 to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
Dedicated USB power embedding a 3.3 V
internal regulator to supply the internal PHYs
Embedded regulator (LDO) to supply the digital circuitry
High power-efficiency SMPS step-down converter regulator to directly supply V and/or external circuitry
Voltage scaling in Run and Stop mode (6 configurable ranges)
Backup regulator (~0.9 V)
Voltage reference for analog peripheral/V
1.2 to 3.6 V V
BAT
supply
Low-power modes: Sleep, Stop, Standby and V
supporting battery charging
BAT
CORE
REF+
Security
ROP, PC-ROP, active tamper
Low-power consumption
V
battery operating mode with charging
BAT
capability
General-purpose input/outputs
Up to 168 I/O ports with interrupt capability
CPU and domain power state monitoring pins
2.95 µA in Standby mode (Backup SRAM OFF,
RTC/LSE ON)
May 2019 DS12930 Rev 1 1/242
This is information on a product in full production.
www.st.com
STM32H747xI/G
Clock management
Internal oscillators: 64 MHz HSI, 48 MHz HSI48, 4 MHz CSI, 32 kHz LSI
External oscillators: 4-48 MHz HSE,
32.768 kHz LSE
3× PLLs (1 for the system clock, 2 for kernel clocks) with Fractional mode
Interconnect matrix
3 bus matrices (1 AXI and 2 AHB)
Bridges (5× AHB2-APB, 2× AXI2-AHB)
4 DMA controllers to unload the CPU
1× high-speed master direct memory access controller (MDMA) with linked list support
2× dual-port DMAs with FIFO
1× basic DMA with request router capabilities
Up to 35 communication peripherals
4× I2Cs FM+ interfaces (SMBus/PMBus)
4× USARTs/4x UARTs (ISO7816 interface,
LIN, IrDA, up to 12.5 Mbit/s) and 1x LPUART
6× SPIs, 3 with muxed duplex I2S audio class accuracy via internal audio PLL or external clock, 1x I2S in LP domain (up to 150 MHz)
4x SAIs (serial audio interface)
SPDIFRX interface
SWPMI single-wire protocol master I/F
MDIO Slave interface
2× SD/SDIO/MMC interfaces (up to 125 MHz)
2× CAN controllers: 2 with CAN FD, 1 with
time-triggered CAN (TT-CAN)
2× USB OTG interfaces (1FS, 1HS/FS) crystal­less solution with LPM and BCD
Ethernet MAC interface with DMA controller
HDMI-CEC
8- to 14-bit camera interface (up to 80 MHz)
11 analog peripherals
2× operational amplifiers (7.3 MHz bandwidth)
1× digital filters for sigma delta modulator
(DFSDM) with 8 channels/4 filters
Graphics
LCD-TFT controller up to XGA resolution
MIPI DSI host including an MIPI D-PHY to
interface with low-pin count large displays
Chrom-ART graphical hardware Accelerator™ (DMA2D) to reduce CPU load
Hardware JPEG Codec
Up to 22 timers and watchdogs
1× high-resolution timer (2.1 ns max resolution)
2× 32-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input (up to 240 MHz)
2× 16-bit advanced motor control timers (up to 240 MHz)
10× 16-bit general-purpose timers (up to 240 MHz)
5× 16-bit low-power timers (up to 240 MHz)
4× watchdogs (independent and window)
2× SysTick timers
RTC with sub-second accuracy and hardware
calendar
Debug mode
SWD & JTAG interfaces
4-Kbyte Embedded Trace Buffer
True random number generators (3 oscillators each)
96-bit unique ID
All packages are ECOPACK
Table 1. Device summary
Reference Part number
®
2 compliant
3× ADCs with 16-bit max. resolution (up to 36 channels, up to 3.6 MSPS)
1× temperature sensor
2× 12-bit D/A converters (1 MHz)
2× ultra-low-power comparators
2/242 DS12930 Rev 1
STM32H747xISTM32H747AI, STM32H747BI,
STM32H747xGSTM32H747AG, STM32H747BG,
STM32H747II, STM32H747XI, STM32H747ZI
STM32H747IG, STM32H747XG
STM32H747xI/G Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Dual Arm® Cortex® cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.1.1 Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Arm
3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 ART™ accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
®
Cortex®-M4 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.3 Voltage regulator (SMPS step-down converter and LDO) . . . . . . . . . . . 18
3.5.4 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Low-power strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7.1 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7.2 System reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9 Bus-interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10 DMA controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 24
3.13 Extended interrupt and event controller (EXTI) . . . . . . . . . . . . . . . . . . . . 24
3.14 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 24
3.15 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.16 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 25
DS12930 Rev 1 1/242
4
Contents STM32H747xI/G
3.17 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.18 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.19 V
operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
BAT
3.20 Digital-to-analog converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.21 Ultra-low-power comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.22 Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.23 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 28
3.24 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.25 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.26 DSI Host (DSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.27 JPEG Codec (JPEG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.28 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.29 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.29.1 High-resolution timer (HRTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.29.2 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.29.3 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.29.4 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.29.5 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) . . . . 36
3.29.6 Independent watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.29.7 Window watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.29.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.30 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 37
3.31 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.32 Universal synchronous/asynchronous receiver transmitter (USART) . . . 38
3.33 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 39
3.34 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 40
3.35 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.36 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.37 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 41
3.38 Management Data Input/Output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . 42
3.39 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . . . 42
3.40 Controller area network (FDCAN1, FDCAN2) . . . . . . . . . . . . . . . . . . . . . 42
3.41 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 43
3.42 Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 43
2/242 DS12930 Rev 1
STM32H747xI/G Contents
3.43 High-definition multimedia interface (HDMI)
- consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.44 Debug infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.2 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.3 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.4 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 105
6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . 106
6.3.6 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.3.12 MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.3.13 MIPI D-PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3.14 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.15 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3.16 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 144
6.3.17 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.18 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
DS12930 Rev 1 3/242
4
Contents STM32H747xI/G
6.3.19 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.20 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.21 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.3.22 Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.3.23 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3.24 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.3.25 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 190
6.3.26 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.3.27 Temperature and V
6.3.28 Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.3.29 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.3.30 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.3.31 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 196
6.3.32 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 199
6.3.33 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 200
6.3.34 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.3.35 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
BAT
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.1 WLCSP156 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.2 UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.3 LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.4 LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.5 TFBGA240+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
7.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
4/242 DS12930 Rev 1
STM32H747xI/G List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 1. STM32H747xI/G features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. System vs domain low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 3. DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 4. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 5. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 6. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 7. STM32H747xI/G pin/ball definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 8. Port A alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 9. Port B alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 10. Port C alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 11. Port D alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 12. Port E alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 13. Port F alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 14. Port G alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 15. Port H alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 16. Port I alternate functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 17. Port J alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 18. Port K alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 19. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 20. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 21. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 22. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 23. Supply voltage and maximum frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 24. VCAP operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 25. Characteristics of SMPS step-down converter external components . . . . . . . . . . . . . . . . 104
Table 26. SMPS step-down converter characteristics for external usage . . . . . . . . . . . . . . . . . . . . 105
Table 27. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 105
Table 28. Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 29. Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 30. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 31. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM for Cortex-M7 core, and Flash memory for Cortex-M4
(ART accelerator ON), LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 32. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM for Arm Cortex-M7 and Flash memory for Arm Cortex-M4,
ART accelerator ON, SMPS regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 33. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, both cores running, cache ON,
ART accelerator ON, LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 34. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, both cores running, cache OFF,
ART accelerator OFF, LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 35. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM, only Arm Cortex-M7 running, LDO regulator ON . . . . . . . . . . . . . . . 111
Table 36. Typical and maximum current consumption in Run mode, code with data processing
running from ITCM, only Arm Cortex-M7 running, SMPS regulator. . . . . . . . . . . . . . . . . 112
Table 37. Typical and maximum current consumption in Run mode, code with data processing
DS12930 Rev 1 1/242
4
List of tables STM32H747xI/G
running from Flash memory, only Arm Cortex-M7 running, cache ON,
LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 38. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, only Arm Cortex-M7 running, cache OFF,
LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 39. Typical and maximum current consumption batch acquisition mode,
LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 40. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory, only Arm Cortex-M4 running, ART accelerator ON,
LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 41. Typical and maximum current consumption in Run mode, code with data processing
running from Flash bank 2, only Arm Cortex-M4 running, ART accelerator ON,
SMPS regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 42. Typical and maximum current consumption in Stop, LDO regulator ON . . . . . . . . . . . . . 115
Table 43. Typical and maximum current consumption in Stop, SMPS regulator . . . . . . . . . . . . . . . 116
Table 44. Typical and maximum current consumption in Sleep mode, LDO regulator . . . . . . . . . . 117
Table 45. Typical and maximum current consumption in Sleep mode, SMPS regulator . . . . . . . . . 117
Table 46. Typical and maximum current consumption in Standby . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 47. Typical and maximum current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . 118
Table 48. Peripheral current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 49. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 50. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 51. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 52. 4-48 MHz HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 53. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 54. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 55. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 56. CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 57. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 58. PLL characteristics (wide VCO frequency range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 59. PLL characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 60. MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 61. MIPI D-PHY AC characteristics LP mode and HS/LP
transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 62. DSI regulator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 63. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 64. Flash memory programming (single bank configuration nDBANK=1) . . . . . . . . . . . . . . . 141
Table 65. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 66. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 67. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 68. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 69. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 70. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 71. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 72. Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8 . . . . . . . . 148
Table 73. Output voltage characteristics for PC13, PC14, PC15 and PI8 . . . . . . . . . . . . . . . . . . . . 149
Table 74. Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 75. Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 76. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 77. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 155
Table 78. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 155
Table 79. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 157
2/242 DS12930 Rev 1
STM32H747xI/G List of tables
Table 80. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 157
Table 81. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 82. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 159
Table 83. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 84. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 160
Table 85. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 86. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 87. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 88. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 89. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 90. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 91. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 92. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 93. SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 94. LPSDR SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 95. QUADSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 96. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 97. Delay Block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 98. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 99. Minimum sampling time vs RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 100. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 101. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 102. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 103. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Table 104. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 105. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 106. V Table 107. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
BAT
Table 108. Temperature monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 109. Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 110. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Table 111. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Table 112. DFSDM measured timing 1.62-3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Table 113. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 114. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Table 115. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Table 116. Minimum i2c_ker_ck frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 117. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 118. USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Table 119. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Table 120. I
2
S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Table 121. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 122. MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Table 123. Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V . . . . . . . . . . . . . 214
Table 124. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 215
Table 125. Dynamics characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Table 126. Dynamics characteristics: Ethernet MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . 218
Table 127. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 128. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 219
Table 129. Dynamics JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Table 130. Dynamics SWD characteristics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Table 131. WLCSP156 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
DS12930 Rev 1 3/242
4
List of tables STM32H747xI/G
Table 132. WLCSP156 bump recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Table 133. UFBGA169 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Table 134. LQFP176 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Table 135. LQFP208 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Table 136. TFBG240+25 ball package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Table 137. TFBGA240+25 recommended PCB design rules (0.8 mm pitch) . . . . . . . . . . . . . . . . . . . 237
Table 138. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Table 139. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
4/242 DS12930 Rev 1
STM32H747xI/G List of figures
List of figures
Figure 1. STM32H747xI/G block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2. TFBGA240+25 ball assignment differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. ART™ accelerator schematic and environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 5. STM32H747xI/G bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 6. WLCSP156 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 7. UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 8. LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 9. LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 10. TFBGA240+25 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 13. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 15. External capacitor C
Figure 16. External components for SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 17. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = 30 °C. . . . . . . . . . 119
Figure 18. Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = TJmax . . . . . . . . 119
Figure 19. Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = 30 °C . . . . . 120
Figure 20. Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = TJmax . . . 121
Figure 21. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 22. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 23. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 24. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 25. MIPI D-PHY HS/LP clock lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 26. MIPI D-PHY HS/LP data lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 27. VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 28. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 29. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 154
Figure 30. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 156
Figure 31. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 32. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 33. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 34. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 35. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 36. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 37. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 38. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 170
Figure 39. NAND controller waveforms for common memory write access . . . . . . . . . . . . . . . . . . . . 171
Figure 40. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Figure 41. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 42. Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 43. Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 44. ADC accuracy characteristics (12-bit resolution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 45. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 46. Power supply and reference decoupling (V Figure 47. Power supply and reference decoupling (V
Figure 48. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
EXT
not connected to V
REF+
connected to V
REF+
DDA
). . . . . . . . . . . . . 185
DDA
). . . . . . . . . . . . . . . . 185
DS12930 Rev 1 1/242
2
List of figures STM32H747xI/G
Figure 49. Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 50. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Figure 51. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Figure 52. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Figure 53. USART timing diagram in Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Figure 54. USART timing diagram in Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Figure 55. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Figure 56. SPI timing diagram - slave mode and CPHA = 1 Figure 57. SPI timing diagram - master mode Figure 58. I Figure 59. I
2
S slave timing diagram (Philips protocol)
2
S master timing diagram (Philips protocol)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Figure 60. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 61. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 62. MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Figure 63. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 64. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 65. DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Figure 66. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Figure 67. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Figure 68. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Figure 69. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Figure 70. JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Figure 71. SWD timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Figure 72. WLCSP156 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Figure 73. WLCSP156 bump recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Figure 74. WLCSP156 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Figure 75. UFBGA169 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Figure 76. UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Figure 77. LQFP176 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Figure 78. LQFP176 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Figure 79. LQFP176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Figure 80. LQFP208 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Figure 81. LQFP208 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Figure 82. LQFP208 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Figure 83. TFBGA240+25 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Figure 84. TFBGA240+25 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Figure 85. TFBGA240+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
2/242 DS12930 Rev 1
STM32H747xI/G Introduction

1 Introduction

This document provides information on STM32H747xI/G microcontrollers, such as description, functional overview, pin assignment and definition, electrical characteristics, packaging, and ordering information.
This document should be read in conjunction
with the STM32H747xI/G reference manual
(RM0399), available from the STMicroelectronics website www.st.com.
For information on the Arm the Cortex
®
-M7 Technical Reference Manual, available from the http://www.arm.com
®(a)
Cortex®-M7 core and Arm® Cortex®-M4 core, please refer to
website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS12930 Rev 1 3/242
46
Description STM32H747xI/G

2 Description

STM32H747xI/G devices are based on the high-performance Arm® Cortex®-M7 and
®
Cortex Cortex supports Arm (IEEE 754 compliant), including a full set of DSP instructions and a memory protection unit (MPU) to enhance application security.
STM32H747xI/G devices incorporate high-speed embedded memories with a dual-bank Flash memory of up to 2 up to 864 range of enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memory access.
All the devices offer three ADCs, two DACs, two ultra-low power comparators, a low-power RTC, a high-resolution timer, 12 general-purpose 16-bit timers, two PWM timers for motor control, five low-power timers, a true random number generator (RNG). The devices support four digital filters for external sigma-delta modulators (DFSDM). They also feature standard and advanced communication interfaces.
Standard peripherals
Advanced peripherals including
-M4 32-bit RISC cores. The Cortex®-M7 core operates at up to 480 MHz and the
®
-M4 core at up to 240 MHz. Both cores feature a floating point unit (FPU) which
®
single- and double-precision (Cortex®-M7 core) operations and conversions
Mbytes, up to 1 Mbyte of RAM (including 192 Kbytes of TCM RAM,
Kbytes of user SRAM and 4 Kbytes of backup SRAM), as well as an extensive
–Four I
2
Cs
Four USARTs, four UARTs and one LPUART
Six SPIs, three I
2
Ss in Half-duplex mode. To achieve audio class accuracy, the I2S peripherals can be clocked by a dedicated internal audio PLL or by an external clock to allow synchronization.
Four SAI serial audio interfaces
One SPDIFRX interface
One SWPMI (Single Wire Protocol Master Interface)
Management Data Input/Output (MDIO) slaves
Two SDMMC interfaces
A USB OTG full-speed and a USB OTG high-speed interface with full-speed
capability (with the ULPI)
One FDCAN plus one TT-FDCAN interface
An Ethernet interface
Chrom-ART Accelerator
HDMI-CEC
A flexible memory control (FMC) interface
A Quad-SPI Flash memory interface
A camera interface for CMOS sensors
An LCD-TFT display controller
A JPEG hardware compressor/decompressor
A DSI Host interface.
4/242 DS12930 Rev 1
STM32H747xI/G Description
Refer to Tab le 1: STM32H747xI/G features and peripheral counts for the list of peripherals available on each part number.
STM32H747xI/G devices operate in the –40 to +85 °C temperature range from a 1.62 to
3.6
V power supply. The supply voltage can drop down to 1.62 V by using an external power
supervisor (see
Section 3.5.2: Power supply supervisor) and connecting the PDR_ON pin to
VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled.
Dedicated supply inputs for USB (OTG_FS and OTG_HS) are available on all packages to allow a greater power supply choice.
A comprehensive set of power-saving modes allows the design of low-power applications.
STM32H747xI/G devices are offered in 5 packages ranging from 156 pins to 240 pins/balls. The set of included peripherals changes with the device chosen.
These features make STM32H747xI/G microcontrollers suitable for a wide range of applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Mobile applications, Internet of Things
Wearable devices: smart watches.
Figure 1 shows the device block diagram.
DS12930 Rev 1 5/242
46
Description STM32H747xI/G
Table 1. STM32H747xI/G features and peripheral counts
Peripherals
STM32H747AG
Flash memory in Kbytes 2 x 512 Kbytes 2 x 1 Mbyte
SRAM
mapped onto
AXI bus
SRAM1
(D2 domain)
SRAM in Kbytes
TCM RAM in
Kbytes
Backup SRAM (Kbytes) 4
FMC Yes
SRAM2
(D2 domain)
SRAM3
(D2 domain)
SRAM4
(D3 domain)
ITCM RAM
(instruction)
DTCM RAM
(data)
STM32H747IG
STM32H747BG
STM32H747XG
STM32H747ZI
512
128
128
32
64
64
128
STM32H747AI
STM32H747II
STM32H747BI
STM32H747XI
General-purpose input/outputs 112 119 148 168 99 112 119 148 168
Quad-SPI Yes
Ethernet Yes
High-
resolution
General-
purpose
Timers
Wakeup pins
Tamper pins
Random number generator Yes
6/242 DS12930 Rev 1
Advanced-
control (PWM)
Basic 2
Low-power 5
4 2
6 3
10
1
2
4 2
6 3
STM32H747xI/G Description
Table 1. STM32H747xI/G features and peripheral counts (continued)
Peripherals
STM32H747AG
STM32H747IG
STM32H747BG
STM32H747XG
SPI / I2S6/3
I2C4
USART/UART
/LPUART
SAI 4
SPDIFRX 4 inputs
Communication
interfaces
SWPMI Yes
MDIO Yes
SDMMC 2
FDCAN/TT-
FDCAN
USB OTG_FS Yes
USB OTG_HS Yes
Ethernet and camera interface Yes
LCD-TFT Yes
MIPI-DSI Host Yes
4/4
/1
1/1
(1)
STM32H747ZI
STM32H747AI
STM32H747II
STM32H747BI
STM32H747XI
JPEG Codec Yes
Chrom-ART Accelerator™
(DMA2D)
Yes
GPIOs Up to 168
16-bit ADCs
Number of Direct channels
Number of Fast channels
Number of Slow channels
12-bit DAC
Number of channels
17
2 9
2 9
21
4 9
23
3
2 7
14
Yes
2
Comparators 2
Operational amplifiers 2
DFSDM Yes
Maximum CPU frequency 480 MHz
DS12930 Rev 1 7/242
17
2 9
2 9
21
4 9
23
46
Description STM32H747xI/G
Table 1. STM32H747xI/G features and peripheral counts (continued)
Peripherals
STM32H747AG
STM32H747IG
STM32H747BG
STM32H747XG
STM32H747ZI
Operating voltage 1.62 to 3.6 V
Ambient temperatures: –40 up to +85 °C
STM32H747AI
(2)
STM32H747II
(3)
STM32H747BI
Operating temperatures
Junction temperature: –40 to + 125 °C
Package
1. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
2. V connecting PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled.
3. The product junction temperature must be kept within the –40 to +125 °C range.
can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2: Power supply supervisor) and
DD/VDDA
UFBGA
169
LQFP
176
LQFP
208
TFBGA 240+25
WLCSP
156
UFBG
A169
LQFP
176
LQFP
208
TFBGA 240+25
STM32H747XI
8/242 DS12930 Rev 1
STM32H747xI/G Description
MSv43739V12
FDCAN1
FDCAN2
I2C1/SMBUS
I2C2/SMBUS
I2C3/SMBUS
AXI/AHB12 (200MHz)
4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF
APB1 30MHz
TX, RX
SCL, SDA, SMBAL as AF
APB1 100 MHz (max)
MDMA
PK[7:0]
4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR, BKIN as
AF
RX, TX, SCK,
CTS, RTS as AF
SCL, SDA, SMBAL as AF
SCL, SDA, SMBAL as AF
MOSI, MISO, SCK, NSS/SDO, SDI, CK, WS, MCK, as AF
TX, RX
RX, TX as AF
RX, TX as AF
RX, TX, SCK CTS, RTS as AF
RX, TX, SCK, CTS, RTS as AF
1 channel as AF
smcard
irDA
1 channel as AF
2 channels as AF
4 channels
4 channels, ETR as AF
4 channels, ETR as AF
4 channels, ETR as AF
RX, TX as AF
FIFO
LCD-TFT
FIFO
CHROM-ART
(DMA2D)
SD, SCK, FS, MCLK as AF
FIFO
LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,
LCD_VSYNC, LCD_DE,
LCD_CLK
CLK, CS,D[7:0]
64-bit AXI BUS-MATRIX
CEC as AF
IN[1:4] as AF
MDC, MDIO
AXIM
AHBP
AHBS
TRACECK
TRACED[3:0]
JTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
JTAG/SW
ETM
I-Cache
16KB
D-Cache
16KB
I­TCM 4KB
D-
TCM
64KB
16 Streams
FIFO
SDMMC1
SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir
CMD, CMDdir, CK, Ckin,
CKio as AF
FIFO
DMA1
FIFOs
8 Stream
DMA2
FIFOs
ETHER
MAC
SDMMC2
FIFO
OTG_HS
FIFO
OTG_FS
FIFO
SRAM1 128 KB
8 Stream
FMC_signals
DMA DMA/ DMA/
PHY PHY
MII / RMII
MDIO as AF
DP, DM, STP, NXT,ULPI:CK , D[7:0], DIR,
ID, VBUS
AHB1 (200MHz)
ADC1
DAC1_OUT, DAC2_OUT as AF
16b
AXI/AHB34 (200MHz)
JPEGWWDG1
AHB2 (200MHz)
AHB2 (200MHz)
PA..J[15:0]
HSYNC, VSYNC, PUIXCLK, D[13:0]
SAI3
MOSI, MISO,
SCK, NSS as AF
MOSI, MISO, SCK, NSS as AF
smcard irDA
32-bit AHB BUS-MATRIX
32-bit AHB BUS-MATRIX
AHB4 (200MHz)
BDMA
DMA Mux2
Up to 20 analog inputs common to ADC1 & 2
HSEM
AHB4 (200MHz)
AHB3
AHB4
AHB4
AHB4
AHB4
AHB4
VDDA, VSSA
NRESET
WKUP[5:0]
@VDD
RCC
Reset &
control
OSC32_IN OSC32_OUT
VBAT = 1.2 to 3.6 V
AWU
VDD12
LS
LS
OSC_IN OSC_OUT
RTC_TS RTC_TAMP[1:3] RTC_OUT RTC_REFIN
VDD = 1.62 to 3.6V VDDUSB33 = 3.0 to 3.6V VDDDSI = 1.8 to 3.6V VSS VCAP VDDMMC33 = 1.8 to 3.6 V VDDSMPS, VSSSMPS VLXSMPS, VFBSMPS
@VDD
@VDD33
@VSW
PWRCTRL
AHB4 (200MHz)
SUPPLY SUPERVISION
Int
POR reset
@VDD
LPTIM1_IN1, LPTIM1_IN2, LPTIM1_OUT as AF
OPAMPx_VINM OPAMPx_VINP OPAMPx_VOUT as AF
HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],
HRTIM1_FLT[5:1]_in, SYSFLT
DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],
DFSDM1_CKIN[0:7]
2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF
1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF
1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF
SDMMC_
D[7:0],
CMD, CK as AF
Up to 17 analog inputs
common to ADC1 and 2
SD, SCK, FS, MCLK,
PDM_DI/CK[4:1] as AF
SCL, SDA, SMBAL as AF
COMPx_INP, COMPx_INM,
COMPx_OUT as AF
LPTIM5_OUT as AF
D-
TCM
64KB
AHB/APB
Quad-SPI
Up to 1 MB
FLASH
Up to 1 MB
FLASH
512 KB AXI
SRAM
FMC
Delay block
DCMI
AHB/APB
HRTIM1
DFSDM1
SD, SCK, FS, MCLK as AF
FIFO
SAI2
SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF
FIFO
SAI1
SPI5
TIM17
TIM16
TIM15
SPI4
MOSI, MISO, SCK, NSS/
SDO, SDI, CK, WS, MCK, as AF
SPI/I2S1
USART6
RX, TX, SCK,
CTS, RTS as AF
irDA
USART1
TIM1/PWM
16b
TIM8/PWM
16b
APB2 100 MHz (max)
ADC3
GPIO PORTA.. J
GPIO PORTK
SAI4
COMP1&2
LPTIM5
LPTIM4_OUT as AF
LPTIM4
LPTIM3_OUT as AF
LPTIM3
I2C4
MISO, MOSI, SCK, NSS as AF
SPI6
RX, TX, CK, CTS, RTS as AF
LPUART1
LPTIM2
VREF
SYSCFG
EXTI WKUP
CRC
DAP
DMA
Mux1
To APB1-2 peripherals
SRAM2 128 KB
SRAM3
32 KB
ADC2
AHB/APB
TIM6
16b
TIM7
16b
SWPMI
TIM2
32b
TIM3
16b
TIM4
16b
TIM5
32b
TIM12
16b
TIM13
16b
TIM14
16b
USART2
smcard
irDA
USART3
UART4
UART5
UART7
RX, TX as AF
UART8
SPI2/I2S2
MOSI, MISO, SCK, NSS/SDO, SDI, CK, WS, MCK, as AF
SPI3/I2S3
Digital filter
MDIOS
FIFO
10 KB SRAM
RAM
I/F
CRS
SPDIFRX1
HDMI-CEC
DAC1&2
LPTIM1
OPAMP1&2
AHB/APB
XTAL 32 kHz
RTC
Backup registers
XTAL OSC 4- 48 MHz
32 KHz LSI RC
PLL1+PLL2+PLL3
POR/PDR/BOR
PVD
smcard
LSI
HSI
CSI
RC48
LPTIM2_OUT as AF
AHB1 (200MHz)
DP, DM, ID,
VBUS
64 KB SRAM
4 KB BKP
RAM
AHB4
ARM
Cortex
M4
Arm
Cortex
M7
I-
Bus
D-
Bus
S-
Bus
D
S
I
DSI_D0_P, DSI_D0_N DSI_D1_P, DSI_D1_N DSI_CK_P, DSI_CK_N
PHY
ART
(instruction cache)
AHB ART (200MHz)
AHB ART(200MHz)
RNG
WWDG2
IWDG1
IWDG2
Voltage regulator
3.3 to 1.2V
SMPS step-down
converter
4 MHz CSI
48 MHz HSI48 RC
64 MHz HSI RC
APB4 100 MHz (max)
APB4 100 MHz (max)
IWDG1
IWDG2
VDDREF_ADC
Tem. sensor
Figure 1. STM32H747xI/G block diagram
XI
DS12930 Rev 1 9/242
46
Description STM32H747xI/G
MSv48802V2
VDD
SMPS
STM32H7x7 STM32H7x3
VLX
SMPS
VSS
SMPS
VFB
SMPS
NC
PI9
PF2
NC
NC
NC
12345678910 111213 14151617
A
VSS PI6 PI5 PI4 PB5 VDDLDO
VCAP
PK5 PG10 PG9 PD5 PD4 PC10 PA15 PI1 PI0 VSS
B
VBAT VSS PI7 PE1 PB6 VSS PB4 PK4 PG11 PJ15 PD6 PD3 PC11 PA14 PI2 PH15 PH14
C
PC15-
OSC32_
OUT
PC14-
OSC32_
IN
PE2 PE0 PB7 PB3 PK6 PK3 PG12 VSS PD7 PC12 VSS PI3 PA13 VSS VDDLDO
D
PE5 PE4 PE3 PB9 PB8 PG15 PK7 PG14 PG13 PJ14 PJ12 PD2 PD0 PA10 PA9 PH13
VCAP
E
PI9 PC13 PI8 PE6 VDD
PDR _ON
BOOT0 VDD PJ13 VDD PD1 PC8 PC9 PA8 PA12 PA11
F
PI10 PI11 VDD PC7 PC6 PG8 PG7
VDD33
USB
G
PF2 PF1 PF0 VDD VSS VSS VSS VSS VSS VDD PG5 PG6 VSS
VDD5
USB
H
PI12 PI13 PI14 PF3 VDD VSS VSS VSS VSS VSS VDD PG4 PG3 PG2 PK2
J
PH1-
OSC_
OUT
PH0-
OSC_
IN
VSS PF5 PF4 VSS VSS VSS VSS VSS VDD PK0 PK1
VSS
DSI
VSSDSI
K
NRST PF6 PF7 PF8 VDD VSS VSS VSS VSS VSS VDD PJ11
L
VDDA PC0 PF10 PF9 VDD VSS VSS VSS VSS VSS VDD PJ10
M
VREF+ PC1 PC2 PC3 VDD VDD PJ9
N
VREF- PH2 PA2 PA1 PA0 PJ0 VDD VDD PE10 VDD VDD VDD PJ8 PJ7 PJ6 VSS
P
VSSA PH3 PH4 PH5 PI15 PJ1 PF13 PF14 PE9 PE11 PB10 PB11 PH10 PH11 PD15 PD14
R
PC2_C PC3_C PA6 VSS PA7 PB2 PF12 VSS PF15 PE12 PE15 PJ5 PH9 PH12 PD11 PD12 PD13
T
PA0_C PA1_C PA5 PC4 PB1 PJ2 PF11 PG0 PE8 PE13 PH6 VSS PH8 PB12 PB15 PD10 PD9
U
VSS PA3 PA4 PC5 PB0 PJ3 PJ4 PG1 PE7 PE14
VCAP
VDDLDO
PH7 PB13 PB14 PD8 VSS
VSSDSI
PI9
PF2
VSSDSI
DSI_CKP
DSI_CKN
DSI_D0N
DSI_D1P
DSI_D1N
VSS
VDDCAP
DSI
PJ6
PD14
VDDDSI
PD15
PI9
PF2 VSSDSI DSI_D0P
VSS
PI9
PF2
VSS
NC
NC
NC
NC
NC
VSS
NC
PJ6
PD14
VDD
PD15
VSS NC
Compatibility throughout the family
STM32H747xI/G devices are not pin-to-pin compatible with STM32H7x3 devices (single core line):
The TFBGA240+25 ballout is compatible with STM32H7x3 devices, except for a few I/O balls as shown in Figure 2.
LQFP208 and LQFP176 pinouts, as well as UFBGA176+25 ballout are not compatible with STM32H7x3 devices.
Figure 2. TFBGA240+25 ball assignment differences
1. The balls highlighted in gray correspond to different signals on STM32H747xI/G and STM32H7x3 devices.
10/242 DS12930 Rev 1
STM32H747xI/G Functional overview

3 Functional overview

3.1 Dual Arm
The dual-core MIPI-DSI STM32H747xI/G devices embed two Arm® cores, a Cortex®-M7 and a Cortex while the Cortex
The two cores belong to separate power domains. This allows designing gradual high­power efficiency solutions in combination with the low-power modes already available on all STM32 microcontrollers.
®
Cortex
®
-M4. The Cortex®-M4 offers optimal performance for real-time applications
®
®
cores
-M7 core can execute high-performance tasks in parallel.

3.1.1 Arm® Cortex®-M7 with FPU

The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and optimized power consumption, while delivering outstanding computational performance and low interrupt latency.
The Cortex®-M7 processor is a highly efficient high-performance featuring:
Six-stage dual-issue pipeline
Dynamic branch prediction
Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)
64-bit AXI interface
64-bit ITCM interface
2x32-bit DTCM interfaces
The following memory interfaces are supported:
Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency
Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM
accesses
AXI Bus interface to optimize Burst transfers
Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.
The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.
It also supports single and double precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.
Figure 1 shows the general block diagram of the STM32H747xI/G family.
Note: Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core.
DS12930 Rev 1 11/242
46
Functional overview STM32H747xI/G

3.1.2 Arm® Cortex®-M4 with FPU

The Arm® Cortex®-M4 processor is a high-performance embedded processor which supports DSP instructions. It was developed to provide an optimized power consumption MCU, while delivering outstanding computational performance and low interrupt latency.
The Arm® Cortex®-M4 processor is a highly efficient MCU featuring:
3-stage pipeline with branch prediction
Harvard architecture
32-bit System (S-BUS) interface
32-bit I-BUS interface
32-bit D-BUS interface
The Arm® Cortex®-M4 processor also features a dedicated hardware adaptive real-time accelerator (ART Accelerator four 256-bit lines, a 256-bit cache buffer connected to the 64-bit AXI interface and a 32-bit interface for non-cacheable accesses.
). This is an instruction cache memory composed of sixty-

3.2 Memory protection unit (MPU)

The devices feature two memory protection units. Each MPU manages the CPU access rights and the attributes of the system resources. It has to be programmed and enabled before use. Its main purposes are to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by a privileged task, but also to protect data processes or read-protect memory regions.
The MPU defines access rules for privileged accesses and user program accesses. It allows defining up to 16 protected regions that can in turn be divided into up to 8 independent subregions, where region address, size, and attributes can be configured. The protection area ranges from 32 bytes to 4 When an unauthorized access is performed, a memory management exception is generated.
Gbytes of addressable memory.
12/242 DS12930 Rev 1
STM32H747xI/G Functional overview

3.3 Memories

3.3.1 Embedded Flash memory

The STM32H747xI/G devices embed up to 2 Mbytes of Flash memory that can be used for storing programs and data.
The Flash memory is organized as 266-bit Flash words memory that can be used for storing both code and data constants. Each word consists of:
One Flash word (8 words, 32 bytes or 256 bits)
10 ECC bits.
The Flash memory is divided into two independent banks. Each bank is organized as follows:
A user Flash memory block of 512 Kbytes (STM32H7xxxG) or 1-Mbyte (STM32H7xxxI) containing eight user sectors of 128 Kbytes (4 K Flash memory words)
128 Kbytes of System Flash memory from which the device can boot
2 Kbytes (64 Flash words) of user option bytes for user configuration

3.3.2 Embedded SRAM

All devices feature around 1 Mbyte of RAM with hardware ECC. The RAM is divided as follows:
512 Kbytes of AXI-SRAM mapped onto AXI bus on D1 domain.
SRAM1 mapped on D2 domain: 128 Kbytes
SRAM2 mapped on D2 domain: 128 Kbytes
SRAM3 mapped on D2 domain: 32 Kbytes
SRAM4 mapped on D3 domain: 64 Kbytes
4 Kbytes of backup SRAM
The content of this area is protected against possible unwanted write accesses, and is retained in Standby or V
RAM mapped to TCM interface (ITCM and DTCM):
Both ITCM and DTCM RAMs are 0 wait state memories. They can be accessed either from the Arm AHB slave of the Cortex
®
Cortex®-M7 CPU or the MDMA (even in Sleep mode) through a specific
®
-M7(AHBS):
64 Kbytes of ITCM-RAM (instruction RAM)
This RAM is connected to ITCM 64-bit interface designed for execution of critical real-times routines by the Cortex
128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports)
The DTCM-RAM could be used for critical real-time data, such as interrupt service routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for load/store operations) thanks to the Cortex
The MDMA can be used to load code or data in ITCM or DTCM RAMs.
BAT
mode.
®
-M7.
®
-M7 dual issue capability.
DS12930 Rev 1 13/242
46
Functional overview STM32H747xI/G
Error code correction (ECC)
Over the product lifetime, and/or due to external events such as radiations, invalid bits in memories may occur. They can be detected and corrected by ECC. This is an expected behavior that has to be managed at final-application software level in order to ensure data integrity through ECC algorithms implementation.
SRAM data are protected by ECC:
7 ECC bits are added per 32-bit word.
8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM.
The ECC mechanism is based on the SECDED algorithm. It supports single-error correction and double-error detection.

3.3.3 ART™ accelerator

The ART™ (adaptive real-time) accelerator block speeds up instruction fetch accesses of the Cortex
®
-M4 core from D1-domain internal memories (Flash memory bank 1, Flash memory bank 2, AXI SRAM) and from D1-domain external memories attached via Quad­SPI controller and Flexible memory controller (FMC).
The ART™ accelerator is a 256-bit cache line using 64-bit WRAP4 accesses from the 64-bit AXI D1 domain. The acceleration is achieved by loading selected code into an embedded cache and making it instantly available to Cortex
®
-M4 core, thus avoiding latency due to
memory wait states.
Figure 3. shows the block schematic and the environment of the ART accelerator.
14/242 DS12930 Rev 1
STM32H747xI/G Functional overview
MSv39757V2
64-bit AXI bus matrix
Flash bank 1
Flash bank 2
AXI SRAM
QSPI
FMC
AHB from D2 domain
32-bit bus
64-bit bus
Bus multiplexer
Legend
Master interface
Slave interface
AXI AHB
ART accelerator
AHB switch
Non-cacheable
access path
Cacheable access path
AXI access
AHB access
D1 domain
Control
control
Cache memory
64 x 256-bit
Cache memory
64 x 256-bit
Cache buffer
1 x 256-bit
Cache
non-
cacheable
access
Detect of write to cacheable page
instruction
fetch
cache
hit
cache
miss
cache
refill
Cache
manager
Figure 3. ART™ accelerator schematic and environment

3.4 Boot modes

By default, the boot codes are executed simultaneously by both cores. However, by programming the appropriate Flash user option byte, it is possible to boot from one core while clock-gating the other core.
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes:
All Flash address space
Flash memory and SRAMs (except for ITCM /DTCM RAMs which cannot be accessed
by the Cortex
®
-M4 core)
DS12930 Rev 1 15/242
46
Functional overview STM32H747xI/G
The bootloader is located in non-user System memory. It is used to reprogram the Flash memory through a serial interface (USART, I2C, SPI, USB-DFU). Refer to STM32 microcontroller System memory Boot mode application note (AN2606) for details.

3.5 Power supply management

3.5.1 Power supply scheme

STM32H747xI/G power supply voltages are the following:
V
= 1.62 to 3.6 V: external power supply for I/Os, provided externally through V
DD
pins.
V
V
= 1.62 to 3.6 V: supply voltage for the internal regulator supplying V
DDLDO
= 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and
DDA
CORE
OPAMP.
V
DD33USB and VDD50USB
V
DD50USB
can be supplied through the USB cable to generate the V
USB internal regulator. This allows supporting a V
The USB regulator can be bypassed to supply directly V
V
V
= 1.2 to 3.6 V: power supply for the VSW domain when VDD is not present.
BAT
CAP
: V
supply voltage, which values depend on voltage scaling (1.0 V, 1.1 V,
CORE
:
supply different from 3.3 V.
DD
DD33USB
DD33USB
if VDD = 3.3 V.
via the
1.2 V or 1.35 V). They are configured through VOS bits in PWR_D3CR register and ODEN bit in the SYSCFG_PWRCR register. The V
domain is split into the
CORE
following power domains that can be independently switch off.
D1 domain containing some peripherals and the Cortex
D2 domain containing a large part of the peripherals and the Cortex
®
-M7 core.
®
-M4 core.
D3 domain containing some peripherals and the system control.
V
V
V
DDSMPS
V
DDSMPS
LXSMPS
FBSMPS
= 1.62 V to 3.6 V: SMPS step-down converter power supply
must be kept at the same voltage level as VDD.
= SMPS step-down converter output coupled to an inductor.
= V
, 1.8 V or 2.5 V external SMPS step-down converter feedback
CORE
voltage sense input.
V
V
V
= 1.62 to 3.6 V: supply voltage for the DSI internal regulator
DDDSI
DD12DSI
CAPDSI
= 1.15 to 1.3 V: optional supply voltage for the DSI PHY (DSI regulator off)
: DSI regulator supply output
During power-up and power-down phases, the following power sequence requirements must be respected (see
When VDD is below 1 V, other power supplies (V
must remain below V
When V
is above 1 V, all power supplies are independent (except for V
DD
which must remain at the same level as V
Figure 4):
+ 300 mV.
DD
DD
).
DDA
, V
DD33USB
, V
DD50USB
, V
DDDSI
DDSMPS
During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the microcontroller remains below 1
mJ. This allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase.
DD
,
)
16/242 DS12930 Rev 1
STM32H747xI/G Functional overview
MSv47490V1
0.3
1
V
BOR0
3.6
Operating modePower-on Power-down time
V
V
DDX
(1)
V
DD
Invalid supply area V
DDX
< V
DD
+ 300 mV
V
DDX
independent from V
DD
Figure 4. Power-up/power-down sequence
1. V
2. V
refers to any power supply among V
DDx
DD
and V
must be wired together into order to follow the same voltage sequence.
DDSMPS

3.5.2 Power supply supervisor

The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry:
Power-on reset (POR)
The POR supervisor monitors V The devices remain in Reset mode when V
Power-down reset (PDR)
The PDR supervisor monitors V below a fixed threshold.
The PDR supervisor can be enabled/disabled through PDR_ON pin.
Brownout reset (BOR)
The BOR supervisor monitors V
2.7 V) can be configured through option bytes. A reset is generated when V below this threshold.
, V
DDA
power supply and compares it to a fixed threshold.
DD
power supply. A reset is generated when V
DD
power supply. Three BOR thresholds (from 2.1 to
DD
DD33USB
, V
DD50USB
is below this threshold,
DD
and V
DDDSI
.
DD
DD
drops
drops
DS12930 Rev 1 17/242
46
Functional overview STM32H747xI/G

3.5.3 Voltage regulator (SMPS step-down converter and LDO)

The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can be independently switched off.
Voltage regulator output can be adjusted according to application needs through 6 power supply levels:
Run mode (VOS0 to VOS3)
Scale 0: boosted performance (available only with LDO regulator)
Scale 1: high performance
Scale 2: medium performance and consumption
Scale 3: optimized performance and low-power consumption
Note: For STM32H7x7xIT3 sales types (industrial temperature range) the voltage regulator output
can be set only to VOS2 or VOS3 in Run mode (VOS1 is not available for industrial temperature range).
Stop mode (SVOS3 to SVOS5)
Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C,
LPTIM) are operational
Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled
The peripheral functionality is disabled but wakeup from Stop mode is possible through GPIO or asynchronous interrupt
.

3.5.4 SMPS step-down converter

The built-in SMPS step-down converter is a highly power-efficient DC/DC non-linear switching regulator that provides lower power consumption than a conventional voltage regulator (LDO).
18/242 DS12930 Rev 1
STM32H747xI/G Functional overview
The SMPS step-down converter can be used for the following purposes:
Direct supply of the V
CORE
domain
the SMPS step-down converter operating modes follow the device system
operating modes (Run, Stop, Standby).
the SMPS step-down converter output voltage are set according to the selected
VOS and SVOS bits (voltage scaling)
Delivery of an intermediate voltage level to supply the internal voltage regulator (LDO)
SMPS step-down converter operating modes
When the SDEXTHP bit is equal to 0 in the PWR_CR3 register, the SMPS step­down converter follows the device system operating modes (Run, Stop and Standby).
When the SDEXTHP bit is equal to 1 in PWR_CR3, the SMPS step-down converter is forced to High-performance mode and does not follow the device system operating modes (Run, Stop and Standby).
The SMPS step-down converter output equals 1.8 V or 2.5 V according to the
selected SD level
Delivery of an external supply
The SMPS step-down converter is forced to High-performance mode (provided
SDEXTHP bit is equal to 1 in PWR_CR3)
The SMPS step-down converter output equals 1.8 V or 2.5 V according to the
selected SD level

3.6 Low-power strategy

There are several ways to reduce power consumption on STM32H747xI/G:
Select the SMPS step-down converter as V
enhance power efficiency.
Select the adequate voltage scaling
Decrease the dynamic power consumption by slowing down the system clocks even in
Run mode, and by individually clock gating the peripherals that are not used.
Save power consumption when one or both CPUs are idle, by selecting among the
available low-power mode according to the user application needs. This allows achieving the best compromise between short startup time, low-power consumption, as well as available wakeup sources.
The devices feature several low-power modes:
CSleep (CPU clock stopped)
CStop (CPU sub-system clock stopped)
DStop (Domain bus matrix clock stopped)
Stop (System clock stopped)
DStandby (Domain powered down)
Standby (System powered down)
CSleep and CStop low-power modes are entered by the MCU when executing the WFI (Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of the Cortex
®
-Mx core is set after returning from an interrupt service routine.
supply voltage source, as it allows to
CORE
DS12930 Rev 1 19/242
46
Functional overview STM32H747xI/G
A domain can enter low-power mode (DStop or DStandby) when the processor, its subsystem and the peripherals allocated in the domain enter low-power mode. For instance D1 or D2 domain enters DStop/DStandby mode when the CPU of the domain is in CStop mode AND the other CPU has no peripheral allocated in that domain, or if it is in CStop mode too. D3 domain can enter DStop/DStandby mode if both core subsystems do not have active peripherals in D3 domain, and D3 is not forced in Run mode.
If part of the domain is not in low-power mode, the domain remains in the current mode.
Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared and the power domains are in DStop or DStandby mode.
The clock system can be re-initialize by a master CPU (either the Cortex®-M4 or -M7) after exiting Stop mode while the slave CPU is held in low-power mode. Once the master CPU has re-initialized the system, the slave CPU can receive a wakeup interrupt and proceed with the interrupt service routine.
Table 2. System vs domain low-power mode
System power mode
Run DRun/DStop/DStandby DRun/DStop/DStandby DRun
Stop DStop/DStandby DStop/DStandby DStop
Standby DStandby DStandby DStandby
D1 domain power
mode

3.7 Reset and clock controller (RCC)

The clock and reset controller is located in D3 domain. The RCC manages the generation of all the clocks, as well as the clock gating and the control of the system and peripheral resets. It provides a high flexibility in the choice of clock sources and allows to apply clock ratios to improve the power consumption. In addition, on some communication peripherals that are capable to work with two different clock domains (either a bus interface clock or a kernel peripheral clock), the system frequency can be changed without modifying the baudrate.

3.7.1 Clock management

The devices embed four internal oscillators, two oscillators with external crystal or resonator, two internal oscillators with fast startup time and three PLLs.
The RCC receives the following clock source inputs:
Internal oscillators:
64 MHz HSI clock
48 MHz RC oscillator
4 MHz CSI clock
32 kHz LSI clock
External oscillators:
HSE clock: 4-50 MHz (generated from an external source) or 4-48 MHz(generated
from a crystal/ceramic resonator)
LSE clock: 32.768 kHz
D2 domain power
mode
D3 domain power
mode
20/242 DS12930 Rev 1
Loading...
+ 222 hidden pages