STMicroelectronics STM32H747AI, STM32H747BI, STM32H747II, STM32H747XI, STM32H747ZI User manual

...

STM32H747xI/G

Dual 32-bit Arm® Cortex®-M7 up to 2MB Flash, 1MB RAM, 46 com. and

480MHz and -M4 MCUs, up to analog interfaces, SMPS, DSI

Datasheet - production data

Features

Dual core

32-bit Arm® Cortex®-M7 core with doubleprecision FPU and L1 cache: 16 Kbytes of data and 16 Kbytes of instruction cache; frequency up to 480 MHz, MPU, 1027 DMIPS/

2.14 DMIPS/MHz (Dhrystone 2.1), and DSP instructions

32-bit Arm® 32-bit Cortex®-M4 core with FPU, Adaptive real-time accelerator (ART Accelerator™) for internal Flash memory and external memories, frequency up to 240 MHz, MPU, 300 DMIPS/1.25 DMIPS /MHz (Dhrystone 2.1), and DSP instructions

Memories

Up to 2 Mbytes of Flash memory with read- while-write support

1 Mbyte of RAM: 192 Kbytes of TCM RAM (inc. 64 Kbytes of ITCM RAM + 128 Kbytes of DTCM RAM for time critical routines),

864 Kbytes of user SRAM, and 4 Kbytes of SRAM in Backup domain

Dual mode Quad-SPI memory interface running up to 133 MHz

Flexible external memory controller with up to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR SDRAM, NOR/NAND Flash memory clocked up to 125 MHz in Synchronous mode

CRC calculation unit

Security

ROP, PC-ROP, active tamper

General-purpose input/outputs

Up to 168 I/O ports with interrupt capability

FBGA

LQFP176

 

 

 

 

 

 

 

 

 

 

 

 

UFBGA169

WLCSP156

(24x24 mm)

(7 × 7 mm)

(4.96x4.64 mm)

LQFP208

TFBGA240+25

 

 

 

(28x28 mm)

(14x14 mm)

 

 

 

Reset and power management

3 separate power domains which can be independently clock-gated or switched off:

D1: high-performance capabilities

D2: communication peripherals and timers

D3: reset/clock control/power management

1.62 to 3.6 V application supply and I/Os

POR, PDR, PVD and BOR

Dedicated USB power embedding a 3.3 V internal regulator to supply the internal PHYs

Embedded regulator (LDO) to supply the digital circuitry

High power-efficiency SMPS step-down

converter regulator to directly supply VCORE and/or external circuitry

Voltage scaling in Run and Stop mode (6 configurable ranges)

Backup regulator (~0.9 V)

Voltage reference for analog peripheral/VREF+

1.2 to 3.6 V VBAT supply

Low-power modes: Sleep, Stop, Standby and VBAT supporting battery charging

Low-power consumption

VBAT battery operating mode with charging capability

CPU and domain power state monitoring pins

2.95 µA in Standby mode (Backup SRAM OFF, RTC/LSE ON)

May 2019

DS12930 Rev 1

1/242

This is information on a product in full production.

www.st.com

STM32H747xI/G

Clock management

Internal oscillators: 64 MHz HSI, 48 MHz HSI48, 4 MHz CSI, 32 kHz LSI

External oscillators: 4-48 MHz HSE, 32.768 kHz LSE

3× PLLs (1 for the system clock, 2 for kernel clocks) with Fractional mode

Interconnect matrix

3 bus matrices (1 AXI and 2 AHB)

Bridges (5× AHB2-APB, 2× AXI2-AHB)

2× operational amplifiers (7.3 MHz bandwidth)

1× digital filters for sigma delta modulator (DFSDM) with 8 channels/4 filters

Graphics

LCD-TFT controller up to XGA resolution

MIPI DSI host including an MIPI D-PHY to interface with low-pin count large displays

Chrom-ART graphical hardware Accelerator™ (DMA2D) to reduce CPU load

Hardware JPEG Codec

4 DMA controllers to unload the CPU

high-speed master direct memory access controller (MDMA) with linked list support

dual-port DMAs with FIFO

1× basic DMA with request router capabilities

Up to 35 communication peripherals

4× I2Cs FM+ interfaces (SMBus/PMBus)

4× USARTs/4x UARTs (ISO7816 interface, LIN, IrDA, up to 12.5 Mbit/s) and 1x LPUART

6× SPIs, 3 with muxed duplex I2S audio class accuracy via internal audio PLL or external clock, 1x I2S in LP domain (up to 150 MHz)

4x SAIs (serial audio interface)

SPDIFRX interface

SWPMI single-wire protocol master I/F

MDIO Slave interface

2× SD/SDIO/MMC interfaces (up to 125 MHz)

2× CAN controllers: 2 with CAN FD, 1 with time-triggered CAN (TT-CAN)

2× USB OTG interfaces (1FS, 1HS/FS) crystalless solution with LPM and BCD

Ethernet MAC interface with DMA controller

HDMI-CEC

8- to 14-bit camera interface (up to 80 MHz)

11 analog peripherals

3× ADCs with 16-bit max. resolution (up to 36 channels, up to 3.6 MSPS)

1× temperature sensor

12-bit D/A converters (1 MHz)

ultra-low-power comparators

Up to 22 timers and watchdogs

high-resolution timer (2.1 ns max resolution)

32-bit timers with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input (up to 240 MHz)

16-bit advanced motor control timers (up to 240 MHz)

10× 16-bit general-purpose timers (up to 240 MHz)

16-bit low-power timers (up to 240 MHz)

4× watchdogs (independent and window)

2× SysTick timers

RTC with sub-second accuracy and hardware calendar

Debug mode

SWD & JTAG interfaces

4-Kbyte Embedded Trace Buffer

True random number generators (3 oscillators each)

96-bit unique ID

All packages are ECOPACK®2 compliant

 

Table 1. Device summary

Reference

 

Part number

 

 

 

STM32H747

 

STM32H747AI, STM32H747BI,

xI

 

STM32H747II, STM32H747XI, STM32H747ZI

 

 

 

STM32H747

 

STM32H747AG, STM32H747BG,

xG

 

STM32H747IG, STM32H747XG

 

 

 

2/242

DS12930 Rev 1

STM32H747xI/G

Contents

 

 

Contents

1

Introduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 3

2

Description . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

3

Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

3.1

Dual Arm® Cortex® cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

 

3.1.1

Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

 

3.1.2

Arm® Cortex®-M4 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.2 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.3 ART™ accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.5 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5.1 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.5.3 Voltage regulator (SMPS step-down converter and LDO) . . . . . . . . . . . 18 3.5.4 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Low-power strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.7 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7.1 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.7.2 System reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.8 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.9 Bus-interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10 DMA controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 24 3.13 Extended interrupt and event controller (EXTI) . . . . . . . . . . . . . . . . . . . . 24 3.14 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 24 3.15 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.16 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 25

DS12930 Rev 1

1/242

Contents

STM32H747xI/G

 

 

3.17 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.18 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.19 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.20 Digital-to-analog converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.21 Ultra-low-power comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.22 Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.23 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 28 3.24 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.25 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.26 DSI Host (DSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.27 JPEG Codec (JPEG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.28 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.29 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.29.1 High-resolution timer (HRTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.29.2 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.29.3 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.29.4 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.29.5Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) . . . . 36

3.29.6 Independent watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.29.7 Window watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.29.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.30 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 37 3.31 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.32Universal synchronous/asynchronous receiver transmitter (USART) . . . 38

3.33Low-power universal asynchronous receiver transmitter (LPUART) . . . . 39

3.34Serial peripheral interface (SPI)/interintegrated sound interfaces (I2S) . 40

3.35 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.36 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.37 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 41 3.38 Management Data Input/Output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . 42 3.39 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . . . 42 3.40 Controller area network (FDCAN1, FDCAN2) . . . . . . . . . . . . . . . . . . . . . 42 3.41 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 43 3.42 Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 43

2/242

DS12930 Rev 1

STM32H747xI/G

 

 

Contents

 

 

 

 

3.43 High-definition multimedia interface (HDMI)

 

 

 

- consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . .

. . . . . 44

 

3.44

Debug infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 44

4

Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 46

5

Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 47

6

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 96

 

6.1

Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 96

 

 

6.1.1

Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 96

 

 

6.1.2

Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 96

 

 

6.1.3

Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 96

 

 

6.1.4

Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 96

 

 

6.1.5

Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 96

 

 

6.1.6

Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 97

 

 

6.1.7

Current consumption measurement . . . . . . . . . . . . . . . . . . . . . .

. . . . . 98

6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3.2 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.3 SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.3.4 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 105 6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . 106 6.3.6 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.12 MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.3.13 MIPI D-PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.14 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.15 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.3.16 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 144 6.3.17 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.3.18 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

DS12930 Rev 1

3/242

Contents

STM32H747xI/G

 

 

6.3.19 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.3.20 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.3.21 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.3.22 Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.3.23 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.3.24 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.3.25 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 190 6.3.26 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.3.27 Temperature and VBAT monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 6.3.28 Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.3.29 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.3.30 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.3.31Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 196

6.3.32 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 199 6.3.33 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 200 6.3.34 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.3.35 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

222

 

7.1

WLCSP156 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

222

 

7.2

UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

225

 

7.3

LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

227

 

7.4

LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

231

 

7.5

TFBGA240+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . .

235

 

7.6

Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

238

7.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8

Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

240

9

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

241

4/242

DS12930 Rev 1

STM32H747xI/G

List of tables

 

 

List of tables

Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table 1. STM32H747xI/G features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 2. System vs domain low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 3. DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 4. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 5. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 6. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 7. STM32H747xI/G pin/ball definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 8. Port A alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 9. Port B alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 10. Port C alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Table 11. Port D alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 12. Port E alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 13. Port F alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Table 14. Port G alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Table 15. Port H alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Table 16. Port I alternate functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 17. Port J alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Table 18. Port K alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 19. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 20. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 21. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 22. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table 23. Supply voltage and maximum frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Table 24. VCAP operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 25. Characteristics of SMPS step-down converter external components. . . . . . . . . . . . . . . . 104 Table 26. SMPS step-down converter characteristics for external usage . . . . . . . . . . . . . . . . . . . . 105 Table 27. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 105 Table 28. Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 29. Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table 30. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 31. Typical and maximum current consumption in Run mode, code with data processing

running from ITCM for Cortex-M7 core, and Flash memory for Cortex-M4

(ART accelerator ON), LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 32. Typical and maximum current consumption in Run mode, code with data processing

running from ITCM for Arm Cortex-M7 and Flash memory for Arm Cortex-M4,

ART accelerator ON, SMPS regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 33. Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory, both cores running, cache ON,

ART accelerator ON, LDO regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 34. Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory, both cores running, cache OFF,

ART accelerator OFF, LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 35. Typical and maximum current consumption in Run mode, code with data processing

running from ITCM, only Arm Cortex-M7 running, LDO regulator ON . . . . . . . . . . . . . . . 111 Table 36. Typical and maximum current consumption in Run mode, code with data processing

running from ITCM, only Arm Cortex-M7 running, SMPS regulator. . . . . . . . . . . . . . . . . 112 Table 37. Typical and maximum current consumption in Run mode, code with data processing

DS12930 Rev 1

1/242

List of tables

STM32H747xI/G

 

 

running from Flash memory, only Arm Cortex-M7 running, cache ON,

LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Table 38. Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory, only Arm Cortex-M7 running, cache OFF,

LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 39. Typical and maximum current consumption batch acquisition mode,

LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Table 40. Typical and maximum current consumption in Run mode, code with data processing

running from Flash memory, only Arm Cortex-M4 running, ART accelerator ON,

LDO regulator ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 41. Typical and maximum current consumption in Run mode, code with data processing

running from Flash bank 2, only Arm Cortex-M4 running, ART accelerator ON,

SMPS regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 42. Typical and maximum current consumption in Stop, LDO regulator ON . . . . . . . . . . . . . 115 Table 43. Typical and maximum current consumption in Stop, SMPS regulator . . . . . . . . . . . . . . . 116 Table 44. Typical and maximum current consumption in Sleep mode, LDO regulator . . . . . . . . . . 117 Table 45. Typical and maximum current consumption in Sleep mode, SMPS regulator . . . . . . . . . 117 Table 46. Typical and maximum current consumption in Standby . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 47. Typical and maximum current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . 118 Table 48. Peripheral current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Table 49. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 50. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 51. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Table 52. 4-48 MHz HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Table 53. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Table 54. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Table 55. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 56. CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 57. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 58. PLL characteristics (wide VCO frequency range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 Table 59. PLL characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Table 60. MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Table 61. MIPI D-PHY AC characteristics LP mode and HS/LP

transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Table 62. DSI regulator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Table 63. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Table 64. Flash memory programming (single bank configuration nDBANK=1) . . . . . . . . . . . . . . . 141 Table 65. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Table 66. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Table 67. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Table 68. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Table 69. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Table 70. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Table 71. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Table 72. Output voltage characteristics for all I/Os except PC13, PC14, PC15 and PI8 . . . . . . . . 148 Table 73. Output voltage characteristics for PC13, PC14, PC15 and PI8 . . . . . . . . . . . . . . . . . . . . 149 Table 74. Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Table 75. Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Table 76. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Table 77. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 155 Table 78. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 155 Table 79. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 157

2/242

DS12930 Rev 1

STM32H747xI/G

List of tables

 

 

Table 80. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 157 Table 81. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Table 82. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 159 Table 83. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Table 84. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 160 Table 85. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Table 86. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Table 87. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 166 Table 88. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Table 89. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Table 90. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Table 91. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Table 92. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Table 93. SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Table 94. LPSDR SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Table 95. QUADSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Table 96. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Table 97. Delay Block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Table 98. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Table 99. Minimum sampling time vs RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Table 100. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Table 101. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Table 102. DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Table 103. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Table 104. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Table 105. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Table 106. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Table 107. VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Table 108. Temperature monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Table 109. Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Table 110. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Table 111. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 Table 112. DFSDM measured timing 1.62-3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Table 113. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Table 114. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Table 115. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Table 116. Minimum i2c_ker_ck frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Table 117. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Table 118. USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Table 119. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Table 120. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Table 121. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Table 122. MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Table 123. Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V . . . . . . . . . . . . . 214 Table 124. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 215 Table 125. Dynamics characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Table 126. Dynamics characteristics: Ethernet MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . 218 Table 127. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 219 Table 128. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 219 Table 129. Dynamics JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Table 130. Dynamics SWD characteristics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Table 131. WLCSP156 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

DS12930 Rev 1

3/242

List of tables

STM32H747xI/G

 

 

Table 132. WLCSP156 bump recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Table 133. UFBGA169 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Table 134. LQFP176 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Table 135. LQFP208 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 Table 136. TFBG240+25 ball package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Table 137. TFBGA240+25 recommended PCB design rules (0.8 mm pitch) . . . . . . . . . . . . . . . . . . . 237 Table 138. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Table 139. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

4/242

DS12930 Rev 1

STM32H747xI/G

List of figures

 

 

List of figures

Figure 1.

STM32H747xI/G block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 9

Figure 2.

TFBGA240+25 ball assignment differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 10

Figure 3. ART™ accelerator schematic and environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 15

Figure 4.

Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 17

Figure 5.

STM32H747xI/G bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 22

Figure 6.

WLCSP156 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 47

Figure 7.

UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 48

Figure 8.

LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 49

Figure 9.

LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 50

Figure 10.

TFBGA240+25 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 51

Figure 11.

Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 96

Figure 12.

Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 96

Figure 13.

Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 97

Figure 14.

Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 98

Figure 15.

External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 103

Figure 16.

External components for SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . .

. . . 104

Figure 17.

Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = 30 °C. . . . . . .

. . . 119

Figure 18.

Typical SMPS efficiency (%) vs load current (A) in Run mode at TJ = TJmax . . . . .

. . . 119

Figure 19.

Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = 30 °C . .

. . . 120

Figure 20.

Typical SMPS efficiency (%) vs load current (A) in low-power mode at TJ = TJmax

. . . 121

Figure 21.

High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . .

. . . 129

Figure 22.

Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . .

. . . 130

Figure 23.

Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 132

Figure 24.

Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 133

Figure 25.

MIPI D-PHY HS/LP clock lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . .

. . . 140

Figure 26.

MIPI D-PHY HS/LP data lane transition timing diagram. . . . . . . . . . . . . . . . . . . . . . .

. . . 140

Figure 27.

VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 147

Figure 28.

Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 153

Figure 29.

Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . .

. . . 154

Figure 30.

Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . .

. . . 156

Figure 31.

Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . .

. . . 158

Figure 32.

Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . .

. . . 161

Figure 33.

Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 163

Figure 34.

Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . .

. . . 165

Figure 35.

Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 167

Figure 36.

NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 169

Figure 37.

NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 170

Figure 38.

NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . .

. . . 170

Figure 39.

NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . .

. . . 171

Figure 40.

SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 172

Figure 41.

SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 174

Figure 42.

Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 177

Figure 43.

Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 177

Figure 44.

ADC accuracy characteristics (12-bit resolution) . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 184

Figure 45.

Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 184

Figure 46.

Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . .

. . . 185

Figure 47.

Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . .

. . . 185

Figure 48.

12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 189

DS12930 Rev 1

1/242

List of figures

STM32H747xI/G

 

 

Figure 49. Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Figure 50. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Figure 51. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Figure 52. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Figure 53. USART timing diagram in Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Figure 54. USART timing diagram in Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Figure 55. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Figure 56. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 Figure 57. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 Figure 58. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Figure 59. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Figure 60. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Figure 61. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Figure 62. MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Figure 63. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Figure 64. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Figure 65. DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Figure 66. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Figure 67. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Figure 68. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Figure 69. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Figure 70. JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Figure 71. SWD timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Figure 72. WLCSP156 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Figure 73. WLCSP156 bump recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Figure 74. WLCSP156 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Figure 75. UFBGA169 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Figure 76. UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Figure 77. LQFP176 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Figure 78. LQFP176 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Figure 79. LQFP176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Figure 80. LQFP208 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Figure 81. LQFP208 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Figure 82. LQFP208 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Figure 83. TFBGA240+25 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Figure 84. TFBGA240+25 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Figure 85. TFBGA240+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

2/242

DS12930 Rev 1

STM32H747xI/G

Introduction

 

 

1 Introduction

This document provides information on STM32H747xI/G microcontrollers, such as description, functional overview, pin assignment and definition, electrical characteristics, packaging, and ordering information.

This document should be read in conjunction with the STM32H747xI/G reference manual (RM0399), available from the STMicroelectronics website www.st.com.

For information on the Arm®(a) Cortex®-M7 core and Arm® Cortex®-M4 core, please refer to the Cortex®-M7 Technical Reference Manual, available from the http://www.arm.com website.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

DS12930 Rev 1

3/242

Description

STM32H747xI/G

 

 

2 Description

STM32H747xI/G devices are based on the high-performance Arm® Cortex®-M7 and Cortex®-M4 32-bit RISC cores. The Cortex®-M7 core operates at up to 480 MHz and the Cortex®-M4 core at up to 240 MHz. Both cores feature a floating point unit (FPU) which supports Arm® singleand double-precision (Cortex®-M7 core) operations and conversions (IEEE 754 compliant), including a full set of DSP instructions and a memory protection unit (MPU) to enhance application security.

STM32H747xI/G devices incorporate high-speed embedded memories with a dual-bank Flash memory of up to 2 Mbytes, up to 1 Mbyte of RAM (including 192 Kbytes of TCM RAM, up to 864 Kbytes of user SRAM and 4 Kbytes of backup SRAM), as well as an extensive range of enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external memory access.

All the devices offer three ADCs, two DACs, two ultra-low power comparators, a low-power RTC, a high-resolution timer, 12 general-purpose 16-bit timers, two PWM timers for motor control, five low-power timers, a true random number generator (RNG). The devices support four digital filters for external sigma-delta modulators (DFSDM). They also feature standard and advanced communication interfaces.

Standard peripherals

Four I2Cs

Four USARTs, four UARTs and one LPUART

Six SPIs, three I2Ss in Half-duplex mode. To achieve audio class accuracy, the I2S peripherals can be clocked by a dedicated internal audio PLL or by an external clock to allow synchronization.

Four SAI serial audio interfaces

One SPDIFRX interface

One SWPMI (Single Wire Protocol Master Interface)

Management Data Input/Output (MDIO) slaves

Two SDMMC interfaces

A USB OTG full-speed and a USB OTG high-speed interface with full-speed capability (with the ULPI)

One FDCAN plus one TT-FDCAN interface

An Ethernet interface

Chrom-ART Accelerator

HDMI-CEC

Advanced peripherals including

A flexible memory control (FMC) interface

A Quad-SPI Flash memory interface

A camera interface for CMOS sensors

An LCD-TFT display controller

A JPEG hardware compressor/decompressor

A DSI Host interface.

4/242

DS12930 Rev 1

STM32H747xI/G

Description

 

 

Refer to Table 1: STM32H747xI/G features and peripheral counts for the list of peripherals available on each part number.

STM32H747xI/G devices operate in the –40 to +85 °C temperature range from a 1.62 to 3.6 V power supply. The supply voltage can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2: Power supply supervisor) and connecting the PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled.

Dedicated supply inputs for USB (OTG_FS and OTG_HS) are available on all packages to allow a greater power supply choice.

A comprehensive set of power-saving modes allows the design of low-power applications.

STM32H747xI/G devices are offered in 5 packages ranging from 156 pins to 240 pins/balls. The set of included peripherals changes with the device chosen.

These features make STM32H747xI/G microcontrollers suitable for a wide range of applications:

Motor drive and application control

Medical equipment

Industrial applications: PLC, inverters, circuit breakers

Printers, and scanners

Alarm systems, video intercom, and HVAC

Home audio appliances

Mobile applications, Internet of Things

Wearable devices: smart watches.

Figure 1 shows the device block diagram.

DS12930 Rev 1

5/242

Description

 

 

 

 

 

 

 

 

 

 

 

STM32H747xI/G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. STM32H747xI/G features and peripheral counts

 

 

 

 

Peripherals

<![if ! IE]>

<![endif]>STM32H747AG

 

<![if ! IE]>

<![endif]>STM32H747IG

<![if ! IE]>

<![endif]>STM32H747BG

 

<![if ! IE]>

<![endif]>STM32H747XG

<![if ! IE]>

<![endif]>STM32H747ZI

<![if ! IE]>

<![endif]>STM32H747AI

 

<![if ! IE]>

<![endif]>STM32H747II

 

<![if ! IE]>

<![endif]>STM32H747BI

<![if ! IE]>

<![endif]>STM32H747XI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flash memory in Kbytes

 

 

2 x 512 Kbytes

 

 

 

 

2 x 1 Mbyte

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mapped onto

 

 

 

 

 

 

512

 

 

 

 

 

 

 

 

 

AXI bus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRAM1

 

 

 

 

 

 

128

 

 

 

 

 

 

 

 

 

(D2 domain)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRAM in Kbytes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRAM2

 

 

 

 

 

 

128

 

 

 

 

 

 

 

 

 

(D2 domain)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRAM3

 

 

 

 

 

 

32

 

 

 

 

 

 

 

 

 

(D2 domain)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRAM4

 

 

 

 

 

 

64

 

 

 

 

 

 

 

 

 

(D3 domain)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ITCM RAM

 

 

 

 

 

 

64

 

 

 

 

 

 

 

TCM RAM in

 

(instruction)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kbytes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DTCM RAM

 

 

 

 

 

 

128

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(data)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Backup SRAM (Kbytes)

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FMC

 

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General-purpose input/outputs

112

 

119

148

 

168

99

112

 

119

 

148

168

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quad-SPI

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ethernet

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High-

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

resolution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General-

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

purpose

 

 

 

 

 

 

 

 

 

 

 

 

 

Timers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advanced-

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

control (PWM)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Basic

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low-power

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wakeup pins

 

4

 

 

6

 

4

 

 

 

 

6

 

Tamper pins

 

2

 

 

3

 

2

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random number generator

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6/242

DS12930 Rev 1

STM32H747xI/G

 

 

 

 

 

 

 

 

 

 

 

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. STM32H747xI/G features and peripheral counts (continued)

 

 

 

Peripherals

<![if ! IE]>

<![endif]>STM32H747AG

 

<![if ! IE]>

<![endif]>STM32H747IG

<![if ! IE]>

<![endif]>STM32H747BG

<![if ! IE]>

<![endif]>STM32H747XG

 

<![if ! IE]>

<![endif]>STM32H747ZI

<![if ! IE]>

<![endif]>STM32H747AI

 

<![if ! IE]>

<![endif]>STM32H747II

 

<![if ! IE]>

<![endif]>STM32H747BI

<![if ! IE]>

<![endif]>STM32H747XI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPI / I2S

 

 

 

 

 

 

6/3(1)

 

 

 

 

 

 

 

 

 

I2C

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

USART/UART

 

 

 

 

 

4/4

 

 

 

 

 

 

 

 

 

/LPUART

 

 

 

 

 

/1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SAI

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Communication

 

SPDIFRX

 

 

 

 

 

 

4 inputs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SWPMI

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

interfaces

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MDIO

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDMMC

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FDCAN/TT-

 

 

 

 

 

1/1

 

 

 

 

 

 

 

 

 

FDCAN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

USB OTG_FS

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

USB OTG_HS

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ethernet and camera interface

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LCD-TFT

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MIPI-DSI Host

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JPEG Codec

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chrom-ART Accelerator™

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

(DMA2D)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GPIOs

 

 

 

 

 

Up to 168

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16-bit ADCs

 

 

 

 

 

3

 

 

 

 

 

 

 

Number of Direct channels

 

2

 

2

4

 

2

 

2

 

2

4

 

Number of Fast channels

 

9

 

9

9

 

7

 

9

 

9

9

 

Number of Slow channels

 

17

21

23

 

14

 

17

 

21

23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12-bit DAC

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

Number of channels

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparators

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operational amplifiers

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DFSDM

 

 

 

 

 

 

Yes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum CPU frequency

 

 

 

 

 

480 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DS12930 Rev 1

7/242

Description

 

 

 

 

 

 

STM32H747xI/G

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. STM32H747xI/G features and peripheral counts (continued)

 

 

 

Peripherals

<![if ! IE]>

<![endif]>STM32H747AG

<![if ! IE]>

<![endif]>STM32H747IG

<![if ! IE]>

<![endif]>STM32H747BG

<![if ! IE]>

<![endif]>STM32H747XG

<![if ! IE]>

<![endif]>STM32H747ZI

<![if ! IE]>

<![endif]>STM32H747AI

<![if ! IE]>

<![endif]>STM32H747II

 

<![if ! IE]>

<![endif]>STM32H747BI

<![if ! IE]>

<![endif]>STM32H747XI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operating voltage

 

 

 

1.62 to 3.6 V(2)

 

 

 

 

 

Operating temperatures

 

 

Ambient temperatures: –40 up to +85 °C(3)

 

 

 

 

 

Junction temperature: –40 to + 125 °C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Package

UFBGA

LQFP

LQFP

TFBGA

WLCSP

UFBG

LQFP

 

LQFP

TFBGA

 

169

176

208

240+25

156

A169

176

 

208

240+25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

2.VDD/VDDA can drop down to 1.62 V by using an external power supervisor (see Section 3.5.2: Power supply supervisor) and connecting PDR_ON pin to VSS. Otherwise the supply voltage must stay above 1.71 V with the embedded power voltage detector enabled.

3.The product junction temperature must be kept within the –40 to +125 °C range.

8/242

DS12930 Rev 1

STMicroelectronics STM32H747AI, STM32H747BI, STM32H747II, STM32H747XI, STM32H747ZI User manual

STM32H747xI/G

Description

 

 

Figure 1. STM32H747xI/G block diagram

JTDO/SWD, JTDO

JTRST, JTDI,

JTCK/SWCLK

TRACECK

TRACED[3:0]

LCD_R[7:0], LCD_G[7:0],

LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE,

LCD_CLK

DSI_D0_P, DSI_D0_N

DSI_D1_P, DSI_D1_N

DSI_CK_P, DSI_CK_N

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir

SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,

CKio as AF

HSYNC, VSYNC, PUIXCLK, D[13:0]

HRTIM1_CH[A..E]x

HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,

DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

SD, SCK, FS, MCLK as AF

SD, SCK, FS, MCLK as AF

 

I-

D-

D-

 

 

 

TCM

TCM

TCM

 

 

 

4KB

64KB

64KB

 

 

 

 

 

AHBP

 

AXI/AHB12 (200MHz)

 

 

Arm

 

 

Up to 1 MB

JTAG/SW

 

 

FLASH

Cortex

AXIM

 

 

 

M7

 

Up to 1 MB

 

 

 

 

ETM

 

 

 

FLASH

 

I-Cache D-Cache

 

 

512 KB AXI

 

16KB

16KB

AHBS

<![if ! IE]>

<![endif]>MATRIX-

SRAM

 

CHROM-ART

16 Streams

FMC

 

MDMA

FIFO

 

 

 

 

 

 

FMC_signals

 

 

 

 

 

 

(DMA2D)

FIFO

<![if ! IE]>

<![endif]>BUS

Quad-SPI

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>AXI

CLK, CS,D[7:0]

<![if ! IE]>

<![endif]>PHY

D

LCD-TFT

FIFO

AXI/AHB34 (200MHz)

 

 

<![if ! IE]>

<![endif]>64-bit

I

WWDG1

JPEG

<![if ! IE]>

<![endif]>AHB3

 

S

 

 

 

 

 

 

 

 

 

AHB/APB

 

SDMMC1

FIFO

 

 

 

 

ART

 

 

 

 

(instruction cache)

 

 

 

 

 

 

AHB ART (200MHz)

 

Delay block

 

AHB2 (200MHz)

 

 

 

 

 

DCMI

AHB/APB

 

 

 

 

 

 

 

HRTIM1

 

 

 

 

 

DFSDM1

 

 

 

 

 

SAI3

<![if ! IE]>

<![endif]>FIFO

 

 

 

 

SAI2

<![if ! IE]>

<![endif]>FIFO

 

 

 

 

SAI1

<![if ! IE]>

<![endif]>FIFO

 

SD, SCK, FS, MCLK, D[3:1],

 

 

CK[2:1] as AF

 

 

 

 

 

 

SPI5

 

<![if ! IE]>

<![endif]>(max)

MOSI, MISO, SCK, NSS as AF

 

 

 

 

 

 

1 compl. chan.(TIM17_CH1N),

 

TIM17

 

<![if ! IE]>

<![endif]>MHz

1 chan. (TIM17_CH1, BKIN as AF

 

 

 

1 compl. chan.(TIM16_CH1N),

 

TIM16

 

<![if ! IE]>

<![endif]>100

1 chan. (TIM16_CH1, BKIN as AF

 

 

2 compl. chan.(TIM15_CH1[1:2]N),

 

TIM15

 

<![if ! IE]>

<![endif]>APB2

2 chan. (TIM_CH15[1:2], BKIN as AF

 

SPI4

 

 

 

 

 

MOSI, MISO, SCK, NSS as AF

 

 

 

 

 

 

 

 

MOSI, MISO, SCK, NSS/

 

SPI/I2S1

 

 

SDO, SDI, CK, WS, MCK, as AF

 

 

 

 

smcardirDA USART6

 

 

RX, TX, SCK, CTS, RTS as AF

 

 

 

RX, TX, SCK, CTS, RTS as AF

 

irDAsmcardUSART1

 

 

4 compl. chan. (TIM1_CH1[1:4]N),

 

TIM1/PWM 16b

 

 

 

4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

 

 

4 compl. chan.(TIM8_CH1[1:4]N),

 

TIM8/PWM 16b

 

4 chan. (TIM8_CH1[1:4], ETR, BKIN as

 

 

AF

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>AHB4

DMA

 

 

Mux2

 

 

 

 

AHB4

 

BDMA

<![if ! IE]>

<![endif]>AHB4

IWDG1

 

 

 

 

 

 

IWDG2

 

 

 

 

 

<![if ! IE]>

<![endif]>AHB4 (200MHz)

 

HSEM

 

 

 

CRC

 

 

Up to 17 analog inputs

ADC3

 

common to ADC1 and 2

 

VDDREF_ADC

Tem. sensor

<![if ! IE]>

<![endif]>AHB4

PA..J[15:0]

GPIO PORTA.. J

 

PK[7:0]

GPIO PORTK

 

SD, SCK, FS, MCLK,

PDM_DI/CK[4:1] as AF

COMPx_INP, COMPx_INM,

COMPx_OUT as AF

LPTIM5_OUT as AF

LPTIM4_OUT as AF

LPTIM3_OUT as AF

SCL, SDA, SMBAL as AF

MISO, MOSI, SCK, NSS as AF

RX, TX, CK, CTS, RTS as AF

LPTIM2_OUT as AF

SAI4

COMP1&2

LPTIM5

LPTIM4

LPTIM3

I2C4

SPI6

LPUART1

LPTIM2

<![if ! IE]>

<![endif]>APB4 100 MHz (max)

VREF

SYSCFG

EXTI WKUP

 

 

 

 

 

 

 

 

MII / RMII

SDMMC_

DP, DM, STP,

 

 

 

 

 

 

 

 

To APB1-2

 

MDIO

D[7:0],

NXT,ULPI:CK DP, DM, ID,

 

 

 

 

 

 

 

, D[7:0], DIR,

VBUS

 

 

 

 

 

 

peripherals

 

as AF CMD, CK as AF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID, VBUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AHB1

(200MHz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ETHER

 

 

PHY

 

PHY

 

 

 

ARM

 

DMA1

DMA2

SDMMC2

OTG_HS

OTG_FS

 

 

 

Cortex

 

 

 

 

 

MAC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M4

 

8 Stream

8 Stream

DMA

FIFO

 

DMA/

 

DMA/

 

 

I-

D-

S-

 

 

 

 

FIFOs

FIFOs

 

 

 

 

 

 

FIFO

 

FIFO

 

Bus

Bus Bus

 

 

 

 

 

 

 

 

32-bit AHB BUS-MATRIX

<![if ! IE]>

<![endif]>AHB4 (200MHz)

<![if ! IE]>

<![endif]>AHB2 (200MHz)

<![if ! IE]>

<![endif]>AHB ART(200MHz)

DMA

Mux1

RNG

TIM6

TIM7

 

<![if ! IE]>

<![endif]>(200MHz)

SRAM1 SRAM2 SRAM3

 

 

 

<![if ! IE]>

<![endif]>AHB1

128 KB 128 KB 32 KB

 

 

ADC1

 

 

 

 

 

 

ADC2

 

AHB/APB

 

 

 

32b

TIM2

 

 

 

16b

 

16b

TIM3

 

 

 

16b

 

16b

TIM4

 

 

 

Up to 20 analog inputs common to ADC1 & 2

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

 

 

SWPMI

 

 

TIM5

 

4 channels

 

 

 

 

 

32b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16b

TIM12

 

2 channels as AF

 

 

 

 

 

 

 

 

 

 

 

 

 

16b

TIM13

 

1 channel as AF

 

 

 

 

 

 

 

 

 

 

 

 

 

16b

TIM14

 

1 channel as AF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

smcard

RX, TX, SCK, CTS,

 

 

 

 

 

 

USART2

 

 

 

 

 

 

 

irDA

RTS as AF

 

 

 

 

 

 

smcard

RX, TX, SCK

 

 

 

 

 

 

USART3

 

CTS, RTS as AF

 

 

 

 

 

 

irDA

 

 

 

 

 

 

UART4

 

RX, TX as AF

 

 

 

 

 

 

UART5

 

RX, TX as AF

 

 

 

 

<![if ! IE]>

<![endif]>10 MHz3

 

UART7

 

RX, TX as AF

 

 

 

 

 

UART8

 

RX, TX as AF

 

 

 

 

<![if ! IE]>

<![endif]>AP B

 

SPI2/I2S2

 

MOSI, MISO, SCK, NSS/SDO,

 

 

 

 

 

 

 

 

SDI, CK, WS, MCK, as AF

 

 

 

 

<![if ! IE]>

<![endif]>(max)

 

SPI3/I2S3

 

MOSI, MISO, SCK, NSS/SDO,

 

 

 

 

 

 

 

SDI, CK, WS, MCK, as AF

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>AHB4

<![if ! IE]>

<![endif]>AHB4

 

<![if ! IE]>

<![endif]>SRAMKB10

<![if ! IE]>

<![endif]>100APB1MHz

 

I2C1/SMBUS

<![if ! IE]>

<![endif]>filterDigital

SCL, SDA, SMBAL as AF

 

 

I2C2/SMBUS

SCL, SDA, SMBAL as AF

 

 

 

 

 

 

 

 

 

DAP

 

 

 

I2C3/SMBUS

 

SCL, SDA, SMBAL as AF

 

 

 

 

 

 

 

 

 

 

 

 

 

MDIOS

 

MDC, MDIO

32-bit AHB BUS-MATRIX

RAM

 

 

FDCAN1

<![if ! IE]>

<![endif]>FIFO

TX, RX

 

 

 

I/F

 

 

FDCAN2

TX, RX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRS

 

 

 

64 KB SRAM

4 KB BKP

 

 

SPDIFRX1

 

IN[1:4] as AF

 

 

 

RAM

 

 

HDMI-CEC

 

CEC as AF

 

 

 

 

 

 

 

 

 

 

RCC

 

 

 

Reset &

 

 

 

control

 

 

 

 

 

@VDD

CSI

 

 

4 MHz CSI

 

 

 

 

 

 

 

 

RC48 48 MHz HSI48 RC

HSI 64 MHz HSI RC

LSI 32 KHz LSI RC

PLL1+PLL2+PLL3

 

 

 

 

 

 

 

 

 

 

 

 

DAC1&2

 

 

DAC1_OUT, DAC2_OUT as AF

 

 

 

 

 

 

 

 

 

 

 

 

LPTIM1 16b

 

LPTIM1_IN1, LPTIM1_IN2,

 

 

 

 

 

 

 

 

 

 

 

 

 

LPTIM1_OUT as AF

 

 

 

 

 

 

 

 

 

 

 

 

WWDG2

 

 

 

<![if ! IE]>

<![endif]>(200MHz)

 

 

 

VDD12

 

 

OPAMP1&2

 

 

OPAMPx_VINM

 

 

 

 

 

 

 

 

VDD = 1.62 to 3.6V

 

 

 

 

 

 

 

 

 

 

 

 

 

OPAMPx_VINP

 

 

 

 

 

 

 

 

 

 

@VDD33

 

 

OPAMPx_VOUT as AF

 

AHB/APBAHB4

 

 

 

 

 

 

Voltage regulator

 

 

 

VDDUSB33 = 3.0 to 3.6V

 

 

<![if ! IE]>

<![endif]>PWRCTRL

 

 

 

3.3 to 1.2V

 

 

 

VDDMMC33 = 1.8 to 3.6 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDDDSI = 1.8 to 3.6V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

 

 

 

 

 

 

 

 

 

SMPS step-down

 

 

 

VCAP

 

 

 

 

 

 

 

 

 

 

 

 

converter

 

 

 

VDDSMPS, VSSSMPS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@VSW

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VLXSMPS, VFBSMPS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSC32_IN

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>LS

 

 

 

XTAL 32 kHz

 

 

OSC32_OUT

 

 

 

 

 

 

 

 

 

 

RTC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RTC_TS

 

 

 

 

 

 

 

 

 

 

Backup registers

 

 

 

RTC_TAMP[1:3]

 

<![if ! IE]>

<![endif]>(max)

 

 

 

 

<![if ! IE]>

<![endif]>LS

 

AWU

 

 

 

RTC_OUT

 

<![if ! IE]>

<![endif]>MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RTC_REFIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VBAT = 1.2 to 3.6 V

 

<![if ! IE]>

<![endif]>100

 

 

 

 

 

 

 

 

 

@VDD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>APB4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4- 48 MHz

 

 

OSC_OUT

 

 

 

 

 

 

 

 

 

 

 

 

XTAL OSC

 

 

OSC_IN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IWDG1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IWDG2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

@VDD

 

 

 

 

POR

SUPPLY SUPERVISION

 

 

 

 

 

VDDA, VSSA

 

 

reset

 

 

 

 

 

 

POR/PDR/BOR

 

 

 

 

 

NRESET

 

 

Int

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WKUP[5:0]

 

 

 

 

 

 

 

 

 

 

 

PVD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSv43739V12

DS12930 Rev 1

9/242

Description

STM32H747xI/G

 

 

Compatibility throughout the family

STM32H747xI/G devices are not pin-to-pin compatible with STM32H7x3 devices (single core line):

The TFBGA240+25 ballout is compatible with STM32H7x3 devices, except for a few I/O balls as shown in Figure 2.

LQFP208 and LQFP176 pinouts, as well as UFBGA176+25 ballout are not compatible with STM32H7x3 devices.

Figure 2. TFBGA240+25 ball assignment differences

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

 

 

 

A

VSS

PI6

PI5

PI4

PB5

VDDLDO

VCAP

PK5

PG10

PG9

PD5

PD4

PC10

PA15

PI1

PI0

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

VBAT

VSS

PI7

PE1

PB6

VSS

PB4

PK4

PG11

PJ15

PD6

PD3

PC11

PA14

PI2

PH15

PH14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

PC15-

PC14-

PE2

PE0

PB7

PB3

PK6

PK3

PG12

VSS

PD7

PC12

VSS

PI3

PA13

VSS

VDDLDO

 

OSC32_

OSC32_

 

 

OUT

IN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

PE5

PE4

PE3

PB9

PB8

PG15

PK7

PG14

PG13

PJ14

PJ12

PD2

PD0

PA10

PA9

PH13

VCAP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

PI9

PC13

PI8

PE6

VDD

PDR

BOOT0

VDD

PJ13

VDD

PD1

PC8

PC9

PA8

PA12

PA11

 

 

_ON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

 

PI10

PI11

VDD

 

 

 

 

 

 

 

PC7

PC6

PG8

PG7

VDD33

 

 

 

 

 

 

 

 

 

 

USB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

PF2

 

PF1

PF0

VDD

 

VSS

VSS

VSS

VSS

VSS

 

VDD

PG5

PG6

VSS

VDD5

 

 

 

 

USB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

PI12

PI13

PI14

PF3

VDD

 

VSS

VSS

VSS

VSS

VSS

 

VDD

PG4

PG3

PG2

PK2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PH1-

PH0-

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

 

J

OSC_

OSC_

VSS

PF5

PF4

 

VSS

VSS

VSS

VSS

VSS

 

VDD

PK0

PK1

VSSDSI

 

 

 

DSI

 

 

OUT

IN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

NRST

PF6

PF7

PF8

VDD

 

VSS

VSS

VSS

VSS

VSS

 

VDD

PJ11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

VDDA

PC0

PF10

PF9

VDD

 

VSS

VSS

VSS

VSS

VSS

 

VDD

PJ10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

VREF+

PC1

PC2

PC3

VDD

 

 

 

 

 

 

 

VDD

PJ9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

VREF-

PH2

PA2

PA1

PA0

PJ0

VDD

VDD

PE10

VDD

VDD

VDD

PJ8

PJ7

PJ6

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

VSSA

PH3

PH4

PH5

PI15

PJ1

PF13

PF14

PE9

PE11

PB10

PB11

PH10

PH11

PD15

PD14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

PC2_C

PC3_C

PA6

VSS

PA7

PB2

PF12

VSS

PF15

PE12

PE15

PJ5

PH9

PH12

PD11

PD12

PD13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

PA0_C

PA1_C

PA5

PC4

PB1

PJ2

PF11

PG0

PE8

PE13

PH6

VSS

PH8

PB12

PB15

PD10

PD9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

VSS

PA3

PA4

PC5

PB0

PJ3

PJ4

PG1

PE7

PE14

VCAP

VDDLDO

PH7

PB13

PB14

PD8

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STM32H7x7 STM32H7x3

VLX

PI9

SMPS

 

VDD

VSS

SMPS

SMPS

PF2

VFB

SMPS

 

VSSDSI

PI9

DSI_D1N

DSI_D1P

VSSDSI

DSI_CKP

DSI_CKN

 

 

 

VSSDSI

DSI_D0P

DSI_D0N

PF2

 

 

PJ6

VSS

VDDCAP

DSI

 

 

PD15

PD14

VDDDSI

 

 

 

NC

PI9

 

 

NC

NC

 

NC

PF2

 

 

VSS

PI9

NC

NC

VSS

NC

NC

 

 

 

VSS

NC

NC

PF2

 

 

PJ6

VSS

NC

 

 

 

PD15

PD14

VDD

 

 

 

MSv48802V2

1. The balls highlighted in gray correspond to different signals on STM32H747xI/G and STM32H7x3 devices.

10/242

DS12930 Rev 1

STM32H747xI/G

Functional overview

 

 

3 Functional overview

3.1Dual Arm® Cortex® cores

The dual-core MIPI-DSI STM32H747xI/G devices embed two Arm® cores, a Cortex®-M7 and a Cortex®-M4. The Cortex®-M4 offers optimal performance for real-time applications while the Cortex®-M7 core can execute high-performance tasks in parallel.

The two cores belong to separate power domains. This allows designing gradual highpower efficiency solutions in combination with the low-power modes already available on all STM32 microcontrollers.

3.1.1Arm® Cortex®-M7 with FPU

The Arm® Cortex®-M7 with double-precision FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and optimized power consumption, while delivering outstanding computational performance and low interrupt latency.

The Cortex®-M7 processor is a highly efficient high-performance featuring:

Six-stage dual-issue pipeline

Dynamic branch prediction

Harvard architecture with L1 caches (16 Kbytes of I-cache and 16 Kbytes of D-cache)

64-bit AXI interface

64-bit ITCM interface

2x32-bit DTCM interfaces

The following memory interfaces are supported:

Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency

Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM accesses

AXI Bus interface to optimize Burst transfers

Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.

 

The processor supports a set of DSP instructions which allow efficient signal processing and

 

complex algorithm execution.

 

It also supports single and double precision FPU (floating point unit) speeds up software

 

development by using metalanguage development tools, while avoiding saturation.

 

Figure 1 shows the general block diagram of the STM32H747xI/G family.

Note:

Cortex®-M7 with FPU core is binary compatible with the Cortex®-M4 core.

DS12930 Rev 1

11/242

Functional overview

STM32H747xI/G

 

 

3.1.2Arm® Cortex®-M4 with FPU

The Arm® Cortex®-M4 processor is a high-performance embedded processor which supports DSP instructions. It was developed to provide an optimized power consumption MCU, while delivering outstanding computational performance and low interrupt latency.

The Arm® Cortex®-M4 processor is a highly efficient MCU featuring:

3-stage pipeline with branch prediction

Harvard architecture

32-bit System (S-BUS) interface

32-bit I-BUS interface

32-bit D-BUS interface

The Arm® Cortex®-M4 processor also features a dedicated hardware adaptive real-time accelerator (ART Accelerator). This is an instruction cache memory composed of sixtyfour 256-bit lines, a 256-bit cache buffer connected to the 64-bit AXI interface and a 32-bit interface for non-cacheable accesses.

3.2Memory protection unit (MPU)

The devices feature two memory protection units. Each MPU manages the CPU access rights and the attributes of the system resources. It has to be programmed and enabled before use. Its main purposes are to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by a privileged task, but also to protect data processes or read-protect memory regions.

The MPU defines access rules for privileged accesses and user program accesses. It allows defining up to 16 protected regions that can in turn be divided into up to 8 independent subregions, where region address, size, and attributes can be configured. The protection area ranges from 32 bytes to 4 Gbytes of addressable memory.

When an unauthorized access is performed, a memory management exception is generated.

12/242

DS12930 Rev 1

STM32H747xI/G

Functional overview

 

 

3.3Memories

3.3.1Embedded Flash memory

The STM32H747xI/G devices embed up to 2 Mbytes of Flash memory that can be used for storing programs and data.

The Flash memory is organized as 266-bit Flash words memory that can be used for storing both code and data constants. Each word consists of:

One Flash word (8 words, 32 bytes or 256 bits)

10 ECC bits.

The Flash memory is divided into two independent banks. Each bank is organized as follows:

A user Flash memory block of 512 Kbytes (STM32H7xxxG) or 1-Mbyte (STM32H7xxxI) containing eight user sectors of 128 Kbytes (4 K Flash memory words)

128 Kbytes of System Flash memory from which the device can boot

2 Kbytes (64 Flash words) of user option bytes for user configuration

3.3.2Embedded SRAM

All devices feature around 1 Mbyte of RAM with hardware ECC. The RAM is divided as follows:

512 Kbytes of AXI-SRAM mapped onto AXI bus on D1 domain.

SRAM1 mapped on D2 domain: 128 Kbytes

SRAM2 mapped on D2 domain: 128 Kbytes

SRAM3 mapped on D2 domain: 32 Kbytes

SRAM4 mapped on D3 domain: 64 Kbytes

4 Kbytes of backup SRAM

The content of this area is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

RAM mapped to TCM interface (ITCM and DTCM):

Both ITCM and DTCM RAMs are 0 wait state memories. They can be accessed either from the Arm® Cortex®-M7 CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the Cortex®-M7(AHBS):

64 Kbytes of ITCM-RAM (instruction RAM)

This RAM is connected to ITCM 64-bit interface designed for execution of critical real-times routines by the Cortex®-M7.

128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports)

The DTCM-RAM could be used for critical real-time data, such as interrupt service

routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for load/store operations) thanks to the Cortex®-M7 dual issue capability.

The MDMA can be used to load code or data in ITCM or DTCM RAMs.

DS12930 Rev 1

13/242

Functional overview

STM32H747xI/G

 

 

Error code correction (ECC)

Over the product lifetime, and/or due to external events such as radiations, invalid bits in memories may occur. They can be detected and corrected by ECC. This is an expected behavior that has to be managed at final-application software level in order to ensure data integrity through ECC algorithms implementation.

SRAM data are protected by ECC:

7 ECC bits are added per 32-bit word.

8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM.

The ECC mechanism is based on the SECDED algorithm. It supports single-error correction and double-error detection.

3.3.3ARTaccelerator

The ART(adaptive real-time) accelerator block speeds up instruction fetch accesses of the Cortex®-M4 core from D1-domain internal memories (Flash memory bank 1, Flash memory bank 2, AXI SRAM) and from D1-domain external memories attached via QuadSPI controller and Flexible memory controller (FMC).

The ARTaccelerator is a 256-bit cache line using 64-bit WRAP4 accesses from the 64-bit AXI D1 domain. The acceleration is achieved by loading selected code into an embedded cache and making it instantly available to Cortex®-M4 core, thus avoiding latency due to memory wait states.

Figure 3. shows the block schematic and the environment of the ART accelerator.

14/242

DS12930 Rev 1

STM32H747xI/G

Functional overview

 

 

Figure 3. ARTaccelerator schematic and environment

 

 

AHB from D2 domain

 

 

D1 domain

 

 

 

 

 

 

 

 

ART accelerator

 

Non-cacheable

 

Cacheable

 

access path

AHB switch

access path

 

 

 

 

 

 

 

 

control

 

 

 

 

Detect of

instruction

 

 

write to cacheable page

fetch

 

 

 

Cache

cache cache

 

 

 

Cache buffer

hit

miss

 

 

 

 

 

 

non-

 

1 x 256-bit

Cache

 

cacheable

 

 

 

access

 

Cache memory

manager

 

 

 

 

 

 

 

 

64 x 256-bit

 

 

 

 

Cache memory

 

 

 

 

 

64 x 256-bit

 

 

 

 

 

 

cache

 

 

 

 

 

refill

 

 

 

AHB access

 

AXI access

Legend

 

 

 

Flash bank 1

 

Control

 

 

 

Flash bank 2

 

 

 

 

 

 

32-bit bus

 

 

 

AXI SRAM

 

64-bit bus

 

 

 

 

 

 

 

QSPI

 

Bus multiplexer

 

 

 

 

 

 

 

 

AXI

Master interface

 

 

 

FMC

AHB

 

 

 

 

Slave interface

 

 

 

 

 

 

64-bit AXI bus matrix

 

 

 

 

 

 

MSv39757V2

3.4Boot modes

By default, the boot codes are executed simultaneously by both cores. However, by programming the appropriate Flash user option byte, it is possible to boot from one core while clock-gating the other core.

At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes:

All Flash address space

Flash memory and SRAMs (except for ITCM /DTCM RAMs which cannot be accessed by the Cortex®-M4 core)

DS12930 Rev 1

15/242

Functional overview

STM32H747xI/G

 

 

The bootloader is located in non-user System memory. It is used to reprogram the Flash memory through a serial interface (USART, I2C, SPI, USB-DFU). Refer to STM32 microcontroller System memory Boot mode application note (AN2606) for details.

3.5Power supply management

3.5.1Power supply scheme

STM32H747xI/G power supply voltages are the following:

VDD = 1.62 to 3.6 V: external power supply for I/Os, provided externally through VDD pins.

VDDLDO = 1.62 to 3.6 V: supply voltage for the internal regulator supplying VCORE

VDDA = 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and OPAMP.

VDD33USB and VDD50USB:

VDD50USB can be supplied through the USB cable to generate the VDD33USB via the USB internal regulator. This allows supporting a VDD supply different from 3.3 V. The USB regulator can be bypassed to supply directly VDD33USB if VDD = 3.3 V.

VBAT = 1.2 to 3.6 V: power supply for the VSW domain when VDD is not present.

VCAP: VCORE supply voltage, which values depend on voltage scaling (1.0 V, 1.1 V, 1.2 V or 1.35 V). They are configured through VOS bits in PWR_D3CR register and

ODEN bit in the SYSCFG_PWRCR register. The VCORE domain is split into the following power domains that can be independently switch off.

D1 domain containing some peripherals and the Cortex®-M7 core.

D2 domain containing a large part of the peripherals and the Cortex®-M4 core.

D3 domain containing some peripherals and the system control.

VDDSMPS= 1.62 V to 3.6 V: SMPS step-down converter power supply VDDSMPS must be kept at the same voltage level as VDD.

VLXSMPS = SMPS step-down converter output coupled to an inductor.

VFBSMPS = VCORE, 1.8 V or 2.5 V external SMPS step-down converter feedback voltage sense input.

VDDDSI = 1.62 to 3.6 V: supply voltage for the DSI internal regulator

VDD12DSI = 1.15 to 1.3 V: optional supply voltage for the DSI PHY (DSI regulator off)

VCAPDSI: DSI regulator supply output

During power-up and power-down phases, the following power sequence requirements must be respected (see Figure 4):

When VDD is below 1 V, other power supplies (VDDA, VDD33USB, VDD50USB, VDDDSI) must remain below VDD + 300 mV.

When VDD is above 1 V, all power supplies are independent (except for VDDSMPS, which must remain at the same level as VDD).

During the power-down phase, VDD can temporarily become lower than other supplies only if the energy provided to the microcontroller remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during the power-down transient phase.

16/242

DS12930 Rev 1

STM32H747xI/G

Functional overview

 

 

Figure 4. Power-up/power-down sequence

V

 

 

 

3.6

(1)

 

 

 

 

 

 

VDDX

 

 

 

VDD

 

 

VBOR0

 

 

 

1

 

 

 

0.3

 

 

 

Power-on

Operating mode

Power-down

time

Invalid supply area

VDDX < VDD + 300 mV

VDDX independent from VDD

MSv47490V1

 

 

 

1.VDDx refers to any power supply among VDDA, VDD33USB, VDD50USB and VDDDSI.

2.VDD and VDDSMPS must be wired together into order to follow the same voltage sequence.

3.5.2Power supply supervisor

The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry:

Power-on reset (POR)

The POR supervisor monitors VDD power supply and compares it to a fixed threshold. The devices remain in Reset mode when VDD is below this threshold,

Power-down reset (PDR)

The PDR supervisor monitors VDD power supply. A reset is generated when VDD drops below a fixed threshold.

The PDR supervisor can be enabled/disabled through PDR_ON pin.

Brownout reset (BOR)

The BOR supervisor monitors VDD power supply. Three BOR thresholds (from 2.1 to 2.7 V) can be configured through option bytes. A reset is generated when VDD drops below this threshold.

DS12930 Rev 1

17/242

Functional overview

STM32H747xI/G

 

 

3.5.3Voltage regulator (SMPS step-down converter and LDO)

 

The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can

 

be independently switched off.

 

Voltage regulator output can be adjusted according to application needs through 6 power

 

supply levels:

 

Run mode (VOS0 to VOS3)

 

– Scale 0: boosted performance (available only with LDO regulator)

 

– Scale 1: high performance

 

– Scale 2: medium performance and consumption

 

– Scale 3: optimized performance and low-power consumption

Note:

For STM32H7x7xIT3 sales types (industrial temperature range) the voltage regulator output

 

can be set only to VOS2 or VOS3 in Run mode (VOS1 is not available for industrial

 

temperature range).

Stop mode (SVOS3 to SVOS5)

Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C, LPTIM) are operational

Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled

The peripheral functionality is disabled but wakeup from Stop mode is possible through GPIO or asynchronous interrupt.

3.5.4SMPS step-down converter

The built-in SMPS step-down converter is a highly power-efficient DC/DC non-linear switching regulator that provides lower power consumption than a conventional voltage regulator (LDO).

18/242

DS12930 Rev 1

STM32H747xI/G

Functional overview

 

 

The SMPS step-down converter can be used for the following purposes:

Direct supply of the VCORE domain

the SMPS step-down converter operating modes follow the device system operating modes (Run, Stop, Standby).

the SMPS step-down converter output voltage are set according to the selected VOS and SVOS bits (voltage scaling)

Delivery of an intermediate voltage level to supply the internal voltage regulator (LDO)

SMPS step-down converter operating modes

When the SDEXTHP bit is equal to 0 in the PWR_CR3 register, the SMPS stepdown converter follows the device system operating modes (Run, Stop and Standby).

When the SDEXTHP bit is equal to 1 in PWR_CR3, the SMPS step-down converter is forced to High-performance mode and does not follow the device system operating modes (Run, Stop and Standby).

The SMPS step-down converter output equals 1.8 V or 2.5 V according to the selected SD level

Delivery of an external supply

The SMPS step-down converter is forced to High-performance mode (provided SDEXTHP bit is equal to 1 in PWR_CR3)

The SMPS step-down converter output equals 1.8 V or 2.5 V according to the selected SD level

3.6Low-power strategy

There are several ways to reduce power consumption on STM32H747xI/G:

Select the SMPS step-down converter as VCORE supply voltage source, as it allows to enhance power efficiency.

Select the adequate voltage scaling

Decrease the dynamic power consumption by slowing down the system clocks even in Run mode, and by individually clock gating the peripherals that are not used.

Save power consumption when one or both CPUs are idle, by selecting among the available low-power mode according to the user application needs. This allows achieving the best compromise between short startup time, low-power consumption, as well as available wakeup sources.

The devices feature several low-power modes:

CSleep (CPU clock stopped)

CStop (CPU sub-system clock stopped)

DStop (Domain bus matrix clock stopped)

Stop (System clock stopped)

DStandby (Domain powered down)

Standby (System powered down)

CSleep and CStop low-power modes are entered by the MCU when executing the WFI (Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of the Cortex®-Mx core is set after returning from an interrupt service routine.

DS12930 Rev 1

19/242

Functional overview

STM32H747xI/G

 

 

A domain can enter low-power mode (DStop or DStandby) when the processor, its subsystem and the peripherals allocated in the domain enter low-power mode. For instance D1 or D2 domain enters DStop/DStandby mode when the CPU of the domain is in CStop mode AND the other CPU has no peripheral allocated in that domain, or if it is in CStop mode too. D3 domain can enter DStop/DStandby mode if both core subsystems do not have active peripherals in D3 domain, and D3 is not forced in Run mode.

If part of the domain is not in low-power mode, the domain remains in the current mode.

Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared and the power domains are in DStop or DStandby mode.

The clock system can be re-initialize by a master CPU (either the Cortex®-M4 or -M7) after exiting Stop mode while the slave CPU is held in low-power mode. Once the master CPU has re-initialized the system, the slave CPU can receive a wakeup interrupt and proceed with the interrupt service routine.

Table 2. System vs domain low-power mode

System power mode

D1 domain power

D2 domain power

D3 domain power

mode

mode

mode

 

 

 

 

 

Run

DRun/DStop/DStandby

DRun/DStop/DStandby

DRun

 

 

 

 

Stop

DStop/DStandby

DStop/DStandby

DStop

 

 

 

 

Standby

DStandby

DStandby

DStandby

 

 

 

 

3.7Reset and clock controller (RCC)

The clock and reset controller is located in D3 domain. The RCC manages the generation of all the clocks, as well as the clock gating and the control of the system and peripheral resets. It provides a high flexibility in the choice of clock sources and allows to apply clock ratios to improve the power consumption. In addition, on some communication peripherals that are capable to work with two different clock domains (either a bus interface clock or a kernel peripheral clock), the system frequency can be changed without modifying the baudrate.

3.7.1Clock management

The devices embed four internal oscillators, two oscillators with external crystal or resonator, two internal oscillators with fast startup time and three PLLs.

The RCC receives the following clock source inputs:

Internal oscillators:

64 MHz HSI clock

48 MHz RC oscillator

4 MHz CSI clock

32 kHz LSI clock

External oscillators:

HSE clock: 4-50 MHz (generated from an external source) or 4-48 MHz(generated from a crystal/ceramic resonator)

LSE clock: 32.768 kHz

20/242

DS12930 Rev 1

Loading...
+ 222 hidden pages