ST MICROELECTRONICS STM32G431CBU6 Datasheet

STM32G431x6 STM32G431x8
LQFP48 (7 x 7 mm) LQFP64 (10 x 10 mm) LQFP80 (12 x 12 mm)
LQFP32 (7 x 7 mm)
UFBGA64
(5 x 5 mm)
UFQFPN32 (5 x 5 mm) UFQFPN48 (7 x 7 mm)
WLCSP49 (Pitch 0.4)
FBGA
LQFP100 (14 x 14 mm)
Arm® Cortex®-M4 32b MCU+FPU, 170 MHz / 213DMIPS,
Features
Core: Arm® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator) allowing 0-wait-state execution from Flash memory, frequency up to 170 MHz with 213 DMIPS, MPU, DSP instructions
Operating conditions: – VDD, VDDA voltage range:
1.71 V to 3.6 V
Mathematical hardware accelerators – CORDIC for trigonometric functions
acceleration
– FMAC: Filter mathematical accelerator
Memories – 128 Kbytes of Flash memory with ECC
support, proprietary code readout protection (PCROP), securable memory area, 1 Kbyte OTP
– 22 Kbytes of SRAM, with hardware parity
check implemented on the first 16 Kbytes
– Routine booster: 10 Kbytes of SRAM on
instruction and data bus, with hardware parity check (CCM SRAM)
Reset and supply management – Power-on/power-down reset
(POR/PDR/BOR) – Programmable voltage detector (PVD) – Low-power modes: sleep, stop, standby
and shutdown –V
Clock management –4 – 32 kHz oscillator with calibration – Internal 16 MHz RC with PLL option (± 1%) –
Up to 86 fast I/Os – All mappable on external interrupt vectors – Several I/Os with 5 V tolerant capability
supply for RTC and backup registers
BAT
to 48 MHz crystal oscillator
Internal 32 kHz RC oscillator (± 5%)
STM32G431xB
Datasheet - production data
Interconnect matrix
12-channel DMA controller
2 x ADCs 0.25 µs(up to 23 channels).
Resolution up to 16-bit with hardware oversampling, 0 to 3.6 V conversion range
4 x 12-bit DAC channels – 2 x buffered external channels 1 MSPS – 2 x unbuffered internal channels 15 MSPS
4 x ultra-fast rail-to-rail analog comparators
3 x operational amplifiers that can be used in
PGA mode, all terminals accessible
Internal voltage reference buffer (VREFBUF) supporting three output voltages (2.048 V,
2.5 V, 2.95 V)
14 timers: – 1 x 32-bit timer and 2 x 16-bit timers with up
to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
– 2 x 16-bit 8-channel advanced motor
control timers, with up to 8 x PWM channels, dead time generation and emergency stop
– 1 x 16-bit timer with 2 x IC/OCs, one
OCN/PWM, dead time generation and emergency stop
– 2 x 16-bit timers with IC/OC/OCN/PWM,
dead time generation and emergency stop – 2 x watchdog timers (independent, window) – 1 x SysTick timer: 24-bit downcounter – 2 x 16-bit basic timers – 1 x low-power timer
May 2019 DS12589 Rev 1 1/198
This is information on a product in full production.
www.st.com
STM32G431x6 STM32G431x8 STM32G431xB
Calendar RTC with alarm, periodic wakeup from stop/standby
Communication interfaces – 1 x FDCAN controller supporting flexible
data rate
– 3 x I
2
C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from stop
– 4 x USART/UARTs (ISO 7816 interface,
LIN, IrDA, modem control)
–1 x LPUART – 3 x SPIs, 4 to 16 programmable bit frames,
2 x with multiplexed half duplex I
2
S
– 1 x SAI (serial audio interface) – USB 2.0 full-speed interface with LPM and
BCD support – IRTIM (infrared interface) – USB Type-C™ /USB power delivery
controller (UCPD)
True random number generator (RNG)
CRC calculation unit, 96-bit unique ID
Development support: serial wire debug
(SWD), JTAG, Embedded trace macrocell™
interface

Table 1. Device summary

Reference Part number
STM32G431x6 STM32G431C6, STM32G431K6, STM32G431R6, STM32G431V6, STM32G431M6
STM32G431x8 STM32G431C8, STM32G431K8, STM32G431R8, STM32G431V8, STM32G431M8
STM32G431xB STM32G431CB, STM32G431KB, STM32G431RB, STM32G431VB, STM32G431MB
2/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Adaptive real-time memory accelerator (ART accelerator) . . . . . . . . . . . 17
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 CORDIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9 Filter mathematical accelerator (FMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 21
3.11 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.13 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.14 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.15 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.16 DMA request router (DMAMux) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 28
3.17.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 28
3.18 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.18.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DS12589 Rev 1 3/198
6
Contents STM32G431x6 STM32G431x8 STM32G431xB
3.18.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.19 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.20 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.21 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.22 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.23 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.24 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.24.1 Advanced motor control timer (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . 33
3.24.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16,
TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.24.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.24.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.24.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.24.6 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.24.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.25 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 36
3.26 Tamper and backup registers (TAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.27 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.28 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.29 Universal synchronous/asynchronous receiver transmitter (USART) . . . 39
3.30 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 40
3.31 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.32 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.32.1 SAI peripheral supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.33 Controller area network (FDCAN1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.34 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.35 USB Type-C™ / USB Power Delivery controller (UCPD) . . . . . . . . . . . . . 42
3.36 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.37 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.37.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.37.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1 UFQFPN32 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Contents
4.2 LQFP32 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 UFQFPN48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 LQFP48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 WLCSP49 ballout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 LQFP64 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 LQFP80 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.8 UFBGA64 ballout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.9 LQFP100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.10 Pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.11 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 73
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 73
5.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.6 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
DS12589 Rev 1 5/198
6
Contents STM32G431x6 STM32G431x8 STM32G431xB
5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 122
5.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.18 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 123
5.3.19 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 134
5.3.20 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3.22 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.3.24 V
5.3.25 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.26 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 151
5.3.27 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
BAT
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.1 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.2 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.4 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.5 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.6 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.7 LQFP80 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.8 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.9 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.10 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.10.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.10.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 194
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32G431x6/x8/xB features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3. STM32G431x6/x8/xB peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 4. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 5. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 6. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 7. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 8. I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 9. USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 10. SAI implementation for the features implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 11. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 12. STM32G431x6/x8/xB pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 13. Alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 14. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 15. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 16. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 17. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 18. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 20. Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 21. Current consumption in Run and Low-power run modes, code with data
processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF) . . 77
Table 22. Current consumption in Run and Low-power run modes,
code with data processing running from Flash in single Bank, ART disable . . . . . . . . . . . 79
Table 23. Current consumption in Run and Low-power run modes,
code with data processing running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 24. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 83
Table 25. Typical current consumption in Run and Low-power run modes,
with different codes running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 26. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 27. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 28. Typical current consumption in Run and Low-power run modes, with different codes
running from CCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 29. Current consumption in Sleep and Low-power sleep mode Flash ON . . . . . . . . . . . . . . . . 88
Table 30. Current consumption in low-power sleep modes, Flash in power-down. . . . . . . . . . . . . . . 89
Table 31. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 32. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 33. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 34. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 35. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 36. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 37. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 38. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 39. Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 40. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DS12589 Rev 1 7/198
9
List of tables STM32G431x6 STM32G431x8 STM32G431xB
Table 41. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 42. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 43. LSE oscillator characteristics (f
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
LSE
Table 44. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 45. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 46. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 47. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 48. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 49. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 50. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 51. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 52. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 53. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 54. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 55. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 56. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 57. I/O (except FT_c) AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 58. I/O FT_c AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 59. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 60. EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 61. Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 62. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 63. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 64. ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 65. ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 66. ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 67. DAC 1MSPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 68. DAC 1MSPS accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 69. DAC 15MSPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 70. DAC 15MSPS accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 71. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 72. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Table 73. OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 74. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 75. V Table 76. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
BAT
Table 77. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 78. IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 79. WWDG min/max timeout value at 170 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 80. Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 81. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 82. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 83. I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 84. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Table 85. USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 86. USART electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Table 87. UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 88. UFQFPN - 32 pins, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 89. LQFP - 32-pin, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 90. UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
8/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB List of tables
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 91. LQFP - 48 pins, 7 x 7 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Table 92. WLCSP - 49 balls, 3.15 x 3.13 mm, 0.4 mm pitch, wafer level chip scale
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 93. WLCSP49 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 94. LQFP - 64 pins, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Table 95. LQFP - 80 pins, 12 x 12 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 96. UFBGA – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 97. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . 187
Table 98. LQPF - 100 pins, 14 x 14 mm low-profile quad flat package
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 99. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 100. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Table 101. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
DS12589 Rev 1 9/198
9
List of figures STM32G431x6 STM32G431x8 STM32G431xB
List of figures
Figure 1. STM32G431x6/x8/xB block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 3. Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 4. Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 5. STM32G431x6/x8/xB UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 6. STM32G431x6/x8/xB LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 7. STM32G431x6/x8/xB UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 8. STM32G431x6/x8/xB LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 9. STM32G431x6/x8/xB WLCSP49 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 10. STM32G431x6/x8/xB LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 11. STM32G431x6/x8/xB LQFP80 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 12. STM32G431x6/x8/xB UFBGA64 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 13. STM32G431x6/x8/xB LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 14. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 15. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 16. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 17. Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 18. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 19. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 20. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 21. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 22. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 23. HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 24. HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 25. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 26. I/O AC characteristics definition
Figure 27. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 28. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 29. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 30. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 31. VREFOUT_TEMP in case VRS = 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 32. VREFOUT_TEMP in case VRS = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 33. VREFOUT_TEMP in case VRS = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 34. OPAMP noise density @ 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 35. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 36. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 37. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 38. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 39. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 40. UFQFPN - 32 pins, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 41. UFQFPN - 32 pins, 5 x 5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 42. UFQFPN32, 5 x 5 mm, 0.5 mm pitch package top view example . . . . . . . . . . . . . . . . . 164
Figure 43. LQFP - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 165
Figure 44. LQFP - 32-pin, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 45. LQFP32, 7 x 7 mm, low-profile quad flat package top view example . . . . . . . . . . . . . . . 168
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB List of figures
Figure 46. UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 47. UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 48. UFQFPN48, 7 x 7 mm, low-profile quad flat package top view example . . . . . . . . . . . . . 171
Figure 49. LQFP - 48 pins, 7 x 7 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . . . 172
Figure 50. LQFP - 48 pins, 7 x 7 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 51. LQFP48, 7 x 7 mm, low-profile quad flat package top view example . . . . . . . . . . . . . . . . 175
Figure 52. WLCSP - 49 balls, 3.15 x 3.13 mm, 0.4 mm pitch, wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Figure 53. WLCSP - 49 balls, 3.14x 3.15 mm, 0.4 mm pitch, wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 54. WLCSP49, 0.4 mm pitch wafer level chip scale package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 55. LQFP - 64 pins, 10 x 10 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . 180
Figure 56. LQFP - 64 pins, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 57. LQFP64, 10 x 10 mm, low-profile quad flat package top view example . . . . . . . . . . . . . 182
Figure 58. LQFP - 80 pins, 12 x 12 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . 183
Figure 59. LQFP - 80 pins, 12 x 12 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 60. LQFP80, 12 x 12 mm, low-profile quad flat package top view example . . . . . . . . . . . . . . 185
Figure 61. UFBGA – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 62. UFBGA – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid
array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 63. UFBGA64, 5 × 5 × 0.5 mm ultra thin fine-pitch ball grid array
package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 64. LQFP - 100 pins, 14 x 14 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . 189
Figure 65. LQFP - 100 pins, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 66. LQFP100 - 14 x 14 mm, low-profile quad flat package top view example . . . . . . . . . . . . 191
DS12589 Rev 1 11/198
11
Introduction STM32G431x6 STM32G431x8 STM32G431xB

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of
the STM32G431x6/x8/xB microcontrollers.
This document should be read in conjunction with the reference manual RM0440
“STM32G4 Series advanced Arm
®
32-bit MCUs”. The reference manual is available from
the STMicroelectronics website www.st.com.
For information on the Arm
®(a)
Cortex®-M4 core, refer to the Cortex®-M4 technical
reference manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
12/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Description

2 Description

The STM32G431x6/x8/xB devices are based on the high-performance Arm® Cortex®-M4
32-bit RISC core. They operate at a frequency of up to 170 MHz.
The Cortex-M4 core features a single-precision floating-point unit (FPU), which supports all
the Arm single-precision data-processing instructions and all the data types. It also
implements a full set of DSP (digital signal processing) instructions and a memory protection
unit (MPU) which enhances the application’s security.
These devices embed high-speed memories (128 Kbytes of Flash memory, and 32 Kbytes
of SRAM), an extensive range of enhanced I/Os and peripherals connected to two APB
buses, two AHB buses and a 32-bit multi-AHB bus matrix.
The devices also embed several protection mechanisms for embedded Flash memory and
SRAM: readout protection, write protection, securable memory area and proprietary code
readout protection.
The devices embed peripherals allowing mathematical/arithmetic function acceleration
(CORDIC for trigonometric functions and FMAC unit for filter functions).
They offer two fast 12-bit ADCs (5 Msps), four comparators, three operational amplifiers,
four DAC channels (2 external and 2 internal), an internal voltage reference buffer, a low-
power RTC, one general-purpose 32-bit timers, two 16-bit PWM timers dedicated to motor
control, seven general-purpose 16-bit timers, and one 16-bit low-power timer.
They also feature standard and advanced communication interfaces such as:
Three I2Cs
Three SPIs multiplexed with two half duplex I2Ss
Three USARTs, one UART and one low-power UART.
One FDCAN
One SAI
USB device
UCPD
The devices operate in the -40 to +85 °C (+105 °C junction), -40 to +105 °C (+125 °C
junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V
power supply. A comprehensive set of power-saving modes allows the design of low-power
applications.
Some independent power supplies are supported including an analog independent supply
input for ADC, DAC, OPAMPs and comparators. A VBAT input allows backup of the RTC
and the registers.
The STM32G431x6/x8/xB family offers 9 packages from 32-pin to 100-pin.
DS12589 Rev 1 13/198
43
Description STM32G431x6 STM32G431x8 STM32G431xB

Table 2. STM32G431x6/x8/xB features and peripheral counts

Peripheral STM32G431Kx STM32G431Cx STM32G431Rx STM32G431Mx STM32G431Vx
Flash memory
32 KB64 KB128 KB32 KB64 KB128KB32KB64 KB128KB32 KB64 KB128 KB32 KB64 KB128
SRAM 32 (16 + 6 + 10) KB
Advanced motor control
General purpose
2 (16-bit)
5 (16-bit) 1 (32-bit)
Basic 2 (16-bit)
Low power 1 (16-bit)
SysTick timer 1
Timers
Watchdog timers (independent,
2
window)
PWM channels (all)
23 31 35 35 35
PWM channels (except
19 24 24 24 24
complementary)
SPI(I2S)
2
I
(1)
C3
3 (2)
KB
USART 2 3
UART 0 1 Comm. interfaces
LPUART 1
FDCANs 1
USB device Yes
UCPD Yes
SAI Yes
RTC Yes
Tamper pins 1 2 2 3
Random number generator Yes
AES No
CORDIC Yes
FMAC Yes
GPIOs
Wakeup pins
26
2
38 in LQFP48
42 in UFQFPN48
41 in WLCSP49
3
52
66
4
4
86
5
14/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Description
Table 2. STM32G431x6/x8/xB features and peripheral counts (continued)
Peripheral STM32G431Kx STM32G431Cx STM32G431Rx STM32G431Mx STM32G431Vx
2
12-bit ADCs Number of channels
11
12-bit DAC Number of channels
Internal voltage reference buffer
Analog comparator 4
Operational amplifiers 3
Max. CPU frequency 170 MHz
Operating voltage 1.71 V to 3.6 V
Operating temperature Ambient operating temperature: -40 to 85 °C / -40 to 105 °C / -40 to 125 °C
17 in LQFP48
18 in UFQFPN48
18 in WLCSP49
4 (2 external + 2 internal)
23 23 23
2
Yes
Packages
1. The SPI2/3 interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode.
LQFP32/
UFQFPN32
LQFP48/
UFQFPN48/
WLCSP49
LQFP64/
UFBGA64
LQFP80 LQFP100
DS12589 Rev 1 15/198
43
GPIO PORT A
AHB/APB2
USART 2MBps
EXT IT. WKUP
140 AFP
USART 2MBps
GPIO PORT B
PB(15:0)
USART 2MBps
GPIO PORT C
PC(15:0)
USART 2MBps
RX, TX, SCK,CTS,
RTS as AF
USART 2MBps
GPIO PORT D
PD(15:0)
USART 2MBps
GPIO PORT E
PE(15:0)
USART 2MBps
SPI 1
MOSI, MISO
SCK, NSS as AF
APB2 60MHzAPB1
4 CH, ETR as AF
TIMER2
4 CH, ETR as AF
TIMER3&4
RX, TX, SCK, CTS, RTS as AF
USART2&3
UART4
MOSI, MISO, SCK
SPI2&3
NSS, as AF
OUT1/OUT2
DAC1
TIMER6
RTC_OUT RTC_TS RTC_TAMPx
OSC_IN
OSC_OUT
VDD, VSS, VDDA, VSSA, RESET
VBAT = 1.55 to 3.6V
AHB/APB1
JTAG & SW
Arm
®
Cortex-M4
150MHz
S-BUS
ETM
MPU
TRACECK
TRACED(3:0)
JTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
GP-DMA2
GP-DMA1
6 Chan
FLASH 128 KB
ACCEL/
CACHE
AHB1
@VDDA
POR / BOR
SUPPLY
@VDD
SUPERVISION
Reset
Int
POR
XTAL OSC
4-48MHz
XTAL 32kHz
RTC
AWU
BKPREG
LSI
Standby Interface
IWDG
@VBAT
@VDD
RESET&
CLOCKCTRL
PLL
VDD = 1.71 to 3.6V VSS
VOLT. REG.
3.3V TO 1.2V
VDD12
POWER MNGT
AHB BUS-MATRIX 5M / 7S
APB2
peripheralclocks
RTC Interface
FPU
WinWATCHDOG
and system
LP timer1
AHB2
SAR ADC2
Ain ADC
SysCfg
CRC
LP_UART1
I2C1&2&3
SCL, SDA, SMBAL as AF
RNG
RNB1
analog
COMP 1,2,3,4
SRAM2 6 KB
PWRCTRL
CAN1
FIFO
RX,TX as AF
Vref_Buf
CRS
6 Chan
SRAM1 16 KB
CCM SRAM 10 KB
DMAMUX
HSI
SAR ADC1
IF
@VDDA
16b trigg
TIMER7
16b trigg
USBPD
PHY
CC1 CC2
HSI48
CH2
USB
Device
PHY
D+ D-
FIFO
I2S half
duplex
CH1
OPAMP
1,2,3
USART 2MBps
GPIO PORT F
PF(10:9,2:0)
DAC3
CH2
CH1
USART 2MBps
GPIO PORT G
PG(10:10)
CORDIC
FMAC
SAI1
FS, SCK, SD,
MCLK as AF
MSv62521V1
irDA
Smcard
irDA
RX, TX, CTS, RTS as AF
RX, TX as AF
OSC32_IN
OSC_OUT
@VDDA
NVIC
I-BUS
D-BUS
PVD, PWM
PA(15:0)
TIMER1
16b PWM
TIMER8
16b PWM
USART 2MBps
CH as AF
TIMER15
16b
USART 2MBps
CH as AF
TIMER16
16b
USART 2MBps
TIMER17
CH as AF16b
16b
4 PWM,4PWM, ETR,BKIN as F
4 PWM,4PWM, ETR,BKIN as F
USART1
Smcard
irDA
Description STM32G431x6 STM32G431x8 STM32G431xB

Figure 1. STM32G431x6/x8/xB block diagram

Note: AF: alternate function on I/O pins.
16/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview

3 Functional overview

3.1 Arm® Cortex®-M4 core with FPU

The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of the MCU implementation, with a reduced pin count and with low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The Arm efficiency, delivering the expected high-performance from an Arm core in a memory size usually associated with 8-bit and 16-bit devices.
The processor supports a set of DSP instructions which allows an efficient signal processing and a complex algorithm execution. Its single precision FPU speeds up the software development by using metalanguage development tools to avoid saturation.
With its embedded Arm core, the STM32G431x6/x8/xB family is compatible with all Arm tools and software.
Figure 1 shows the general block diagram of the STM32G431x6/x8/xB devices.
®
Cortex®-M4 with FPU 32-bit RISC processor features an exceptional code-

3.2 Adaptive real-time memory accelerator (ART accelerator)

The ART accelerator is a memory accelerator that is optimized for the STM32 industry­standard Arm the Arm processor to wait for the Flash memory at higher frequencies.
®
®
Cortex®-M4 processors. It balances the inherent performance advantage of
Cortex®-M4 over Flash memory technologies, which normally requires the

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to the memory and to prevent one task to accidentally corrupt the memory or the resources used by any other active task. This memory area is organized into up to 8 protected areas, which can be divided in up into 8 subareas each. The protection area sizes range between 32 bytes and the whole 4 gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real­time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

3.4 Embedded Flash memory

The STM32G431x6/x8/xB devices feature 128 kbytes of embedded Flash memory which is available for storing programs and data.
Flexible protections can be configured thanks to the option bytes:
DS12589 Rev 1 17/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB
Readout protection (RDP) to protect the whole memory. Three levels of protection are available:
– Level 0: no readout protection – Level 1: memory readout protection; the Flash memory cannot be read from or written
to if either the debug features are connected or the boot in RAM or bootloader are selected
– Level 2: chip readout protection; the debug features (Cortex-M4 JTAG and serial
wire), the boot in RAM and the bootloader selection are disabled (JTAG fuse). This selection is irreversible.
Write protection (WRP): the protected area is protected against erasing and
programming.
Proprietary code readout protection (PCROP): a part of the Flash memory can be
protected against read and write from third parties. The protected area is execute-only and it can only be reached by the STM32 CPU as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.
Securable memory area: a part of Flash memory can be configured by option bytes to
be securable. After reset this securable memory area is not secured and it behaves like the remainder of main Flash memory (execute, read, write access). When secured, any access to this securable memory area generates corresponding read/write error. Purpose of the Securable memory area is to protect sensitive code and data (secure keys storage) which can be executed only once at boot, and never again unless a new reset occurs.
The Flash memory embeds the error correction code (ECC) feature supporting:
Single error detection and correction
Double error detection
The address of the ECC fail can be read in the ECC register
1 Kbyte (128 double word) OTP (one-time programmable) bytes for user data. The
OTP area is available in Bank 1 only. The OTP data cannot be erased and can be written only once.

3.5 Embedded SRAM

STM32G431x6/x8/xB devices feature 32 Kbytes of embedded SRAM. This SRAM is split into three blocks:
16 Kbytes mapped at address 0x2000 0000 (SRAM1). The CM4 can access the
SRAM1 through the System Bus or through the I-Code/D-Code bus.
6 Kbytes mapped at address 0x2000 4000 (SRAM2). The CM4 can access the SRAM2
through the System Bus or through the I-Code/D-Code bus. SRAM2 can be kept in stop and standby modes.
10 Kbytes mapped at address 0x1000 0000 (CCM SRAM). It is accessed by the CPU
through I-Code/D-Code bus for maximum performance. It is also aliased at 0x2000 5800 address to be accessed by all masters (CPU, DMA1, DMA2) through SBUS contiguously to SRAM1 and SRAM2.
18/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview
MS47544V1
Cortex®-M4
with FPU
DMA1 DMA2
CCM
SRAM
AHB1
peripherals
AHB2
peripherals
SRAM1
FLASH 128 KB
ACCEL
S-bus
D-bus
ICode
DCode
I-bus
BusMatrix-S
SRAM2

3.6 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves (Flash memory, RAM, AHB and APB peripherals). It also ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Figure 2. Multi-AHB bus matrix

3.7 Boot modes

At startup, a BOOT0 pin (or nBOOT0 option bit)and an nBOOT1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The BOOT0 value may come from the PB8-BOOT0 pin or from an nBOOT0 option bit depending on the value of a user nBOOT_SEL option bit to free the GPIO pad if needed.
The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, and USB through the DFU (device firmware upgrade).
DS12589 Rev 1 19/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB

3.8 CORDIC

The CORDIC provides hardware acceleration of certain mathematical functions, notably trigonometric, commonly used in motor control, metering, signal processing and many other applications.
It speeds up the calculation of these functions compared to a software implementation, allowing a lower operating frequency, or freeing up processor cycles in order to perform other tasks.
Cordic features
24-bit CORDIC rotation engine
Circular and Hyperbolic modes
Rotation and Vectoring modes
Functions: Sine, Cosine, Sinh, Cosh, Atan, Atan2, Atanh, Modulus, Square root,
Natural logarithm
Programmable precision up to 20-bit
Fast convergence: 4 bits per clock cycle
Supports 16-bit and 32-bit fixed point input and output formats
Low latency AHB slave interface
Results can be read as soon as ready without polling or interrupt
DMA read and write channels

3.9 Filter mathematical accelerator (FMAC)

The filter mathematical accelerator unit performs arithmetic operations on vectors. It comprises a multiplier/accumulator (MAC) unit, together with address generation logic, which allows it to index vector elements held in local memory.
The unit includes support for circular buffers on input and output, which allows digital filters to be implemented. Both finite and infinite impulse response filters can be realized.
The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing up the processor for other tasks. In many cases it can accelerate such calculations compared to a software implementation, resulting in a speed-up of time critical tasks.
20/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview
FMAC features
16 x 16-bit multiplier
24+2-bit accumulator with addition and subtraction
16-bit input and output data
256 x 16-bit local memory
Up to three areas can be defined in memory for data buffers (two input, one output),
defined by programmable base address pointers and associated size registers
Input and output sample buffers can be circular
Buffer “watermark” feature reduces overhead in interrupt mode
Filter functions: FIR, IIR (direct form 1)
AHB slave interface
DMA read and write data channels

3.10 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator with polynomial value and size.
Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the Flash memory integrity.
The CRC calculation unit helps to compute a signature of the software during runtime, which can be ulteriorly compared with a reference signature generated at link-time and which can be stored at a given memory location.

3.11 Power supply management

3.11.1 Power supply schemes

The STM32G431x6/x8/xB devices require a 1.71 V to 3.6 V V Several independent supplies, can be provided for specific peripherals:
V
V
= 1.71 V to 3.6 V
DD
V
is the external power supply for the I/Os, the internal regulator and the system
DD
analog such as reset, power management and internal clocks. It is provided externally through the VDD pins.
= 1.62 V to 3.6 V (see Section 5: Electrical characteristics for the minimum VDDA
DDA
voltage required for ADC, DAC, COMP, OPAMP, VREFBUF operation). V
is the external analog power supply for A/D converters, D/A converters, voltage
DDA
reference buffer, operational amplifiers and comparators. The V
operating voltage supply.
DD
voltage level is
DDA
DS12589 Rev 1 21/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB
independent from the V
DD
these peripherals are not used.
V
= 1.55 V to 3.6 V
BAT
V
is the power supply for RTC, external clock 32 kHz oscillator and backup registers
BAT
(through power switch) when V
V
REF-, VREF+
V
is the input reference voltage for ADCs and DACs. It is also the output of the
REF+
internal voltage reference buffer when enabled.
When V
When V
DDA
DDA
< 2 V V 2 V V
must be equal to V
REF+
must be between 2 V and V
REF+
The internal voltage reference buffer supports three output voltages, which are configured with VRS bits in the VREFBUF_CSR register:
–V
–V
–V
V
REF-
= 2.048 V
REF+
= 2.5 V
REF+
= 2.95 V
REF+
is double bonded with V

3.11.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes (except for Shutdown mode). The BOR ensures proper operation of the device after power­on and during power down. The device remains in reset mode when the monitored supply voltage V
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes.The device features an embedded programmable voltage detector (PVD) that monitors the V interrupt can be generated when V higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
is below a specified threshold, without the need for an external reset circuit.
DD
power supply and compares it to the VPVD threshold. An
DD
voltage and should preferably be connected to VDD when
is not present.
DD
.
DDA
.
DDA
.
SSA
drops below the VPVD threshold and/or when VDD is
DD
In addition, the device embeds a peripheral voltage monitor which compares the independent supply voltages V
, with a fixed threshold in order to ensure that the
DDA
peripheral is in its functional supply range.

3.11.3 Voltage regulator

Two embedded linear voltage regulators, main regulator (MR) and low-power regulator (LPR), supply most of digital circuitry in the device. The MR is used in Run and Sleep modes. The LPR is used in Low-power run, Low-power sleep and Stop modes. In Standby and Shutdown modes, both regulators are powered down and their outputs set in high­impedance state, such as to bring their current consumption close to zero.
The device supports dynamic voltage scaling to optimize its power consumption in Run mode. the voltage from the main regulator that supplies the logic (VCORE) can be adjusted according to the system’s maximum operating frequency.
The main regulator (MR) operates in the following ranges:
Range 1 boost mode with the CPU running at up to 170 MHz.
Range 1 normal mode with CPU running at up to 150 MHz.
Range 2 with a maximum CPU frequency of 26 MHz.
22/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview

3.11.4 Low-power modes

By default, the microcontroller is in Run mode after system or power Reset. It is up to the user to select one of the low-power modes described below:
Sleep mode: In Sleep mode, only the CPU is stopped. All peripherals continue to
operate and can wake up the CPU when an interrupt/event occurs.
Low-power run mode: This mode is achieved with VCORE supplied by the low-power
regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.
Stop mode: In Stop mode, the device achieves the lowest power consumption while
retaining the SRAM and register contents. All clocks in the VCORE domain are stopped. The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are disabled. The LSE or LSI keep running. The RTC can remain active (Stop mode with RTC, Stop mode without RTC). Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode, so as to get clock for processing the wakeup event.
Standby mode: The Standby mode is used to achieve the lowest power consumption
with brown-out reset, BOR. The internal regulator is switched off to power down the VCORE domain. The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are also powered down. The RTC can remain active (Standby mode with RTC, Standby mode without RTC). The BOR always remains active in Standby mode. For each I/O, the software can determine whether a pull-up, a pull-down or no resistor shall be applied to that I/O during Standby mode. Upon entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and standby circuitry. The device exits Standby mode upon external reset event (NRST pin), IWDG reset event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event (alarm, periodic wakeup, timestamp, tamper), or when a failure is detected on LSE (CSS on LSE).
Shutdown mode: The Shutdown mode allows to achieve the lowest power
consumption. The internal regulator is switched off to power down the VCORE domain. The PLL, as well as the HSI16 and LSI RC-oscillators and HSE crystal oscillator are also powered down. The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC). The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode. Therefore, switching to RTC domain is not supported. SRAM and register contents are lost except for registers in the RTC domain. The device exits Shutdown mode upon external reset event (NRST pin), IWDG reset event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event (alarm, periodic wakeup, timestamp, tamper).

3.11.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is “analog state” (the I/O schmitt trigger is disabled). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.11.6 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from V supercapacitor is present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode.
when there is no external battery and when an external
DD
DS12589 Rev 1 23/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB
The VBAT operation is automatically activated when VDD is not present. An internal VBAT battery charging circuit is embedded and can be activated when V
is present.
DD
Note: When the microcontroller is supplied from VBAT, neither external interrupts nor RTC
alarm/events exit the microcontroller from the VBAT operation.
24/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview

3.12 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep and Stop modes.

Table 3. STM32G431x6/x8/xB peripherals interconnect matrix

Interconnect source
TIMx
TIM16/TIM17 IRTIM Infrared interface output generation Y Y Y -
COMPx
ADCx TIM1, 8 Timer triggered by analog watchdog Y Y Y -
RTC
All clocks sources (internal and external)
USB TIM2 Timer triggered by USB SOF Y Y - -
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD
Interconnect
destination
TIMx Timers synchronization or chaining Y Y Y -
ADCx DACx
DMA Memory to memory transfer trigger Y Y Y -
COMPx Comparator output blanking Y Y Y -
TIM1, 8 TIM2, 3, 4
LPTIMER1
TIM16
LPTIMER1
TIM15, 16, 17
TIM1,8 TIM15,16,17
TIMx External trigger Y Y Y -
Conversion triggers Y Y Y -
Timer input channel, trigger, break from analog signals comparison
Low-power timer triggered by analog signals comparison
Timer input channel from RTC events
Low-power timer triggered by RTC alarms or tampers
Clock source used as input channel for RC measurement and trimming
Timer break Y Y Y -
Interconnect action
Run
Sleep
Low-power run
YYY -
YYYY
YYY -
YYYY
YYY -
Stop
GPIO
LPTIMER1 External trigger Y Y Y -
ADCx DACx
DS12589 Rev 1 25/198
Conversion external trigger Y Y Y -
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB

3.13 Clocks and startup

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock source: three different sources can deliver SYSCLK system clock:
4 - 48 MHz high-speed oscillator with external crystal or ceramic resonator (HSE).
It can supply clock to system PLL. The HSE can also be configured in bypass mode for an external clock.
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software. It can
supply clock to system PLL.
System PLL with maximum output frequency of 170 MHz. It can be fed with HSE
or HSI16 clocks.
RC48 with clock recovery system (HSI48): internal HSIRC48 MHz clock source can
be used to drive the USB or the RNG peripherals.
Auxiliary clock source: two ultra-low-power clock sources for the real-time clock
(RTC):
32.768 kHz low-speed oscillator with external crystal (LSE), supporting four drive
capability modes. The LSE can also be configured in bypass mode for using an external clock.
32 kHz low-speed internal RC oscillator (LSI) with ±5% accuracy, also used to
clock an independent watchdog.
Peripheral clock sources: several peripherals (I2S, USART, I2C, LPTimer, ADC, SAI,
RNG) have their own clock independent of the system clock.
Clock security system (CSS): in the event of HSE clock failure, the system clock is
automatically switched to HSI16 and, if enabled, a software interrupt is generated. LSE clock failure can also be detected and generate an interrupt.
Clock-out capability:
MCO: microcontroller clock output: it outputs one of the internal clocks for external
use by the application
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes.
Several prescalers allow to configure the AHB frequency, the High-speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 170 MHz.
26/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview

3.14 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.15 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to Table 4: DMA implementation for the features implementation.
Direct memory access (DMA) is used in order to provide a high-speed data transfer between peripherals and memory as well as from memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps the CPU resources free for other operations.
The two DMA controllers have 12 channels in total, each one dedicated to manage memory access requests from one or more peripherals. Each controller has an arbiter for handling the priority between DMA requests.
The DMA supports:
12 independently configurable channels (requests)
Each channel is connected to a dedicated hardware DMA request, a software
trigger is also supported on each channel. This configuration is done by software.
Priorities between requests from channels of one DMA are both software
programmable (4 levels: very high, high, medium, low) or hardware programmable in case of equality (request 1 has priority over request 2, etc.)
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data size.
Support for circular buffer management
3 event flags (DMA half transfer, DMA transfer complete and DMA transfer error)
logically ORed together in a single interrupt request for each channel
Memory-to-memory transfer
Peripheral-to-memory, memory-to-peripheral, and peripheral-to-peripheral transfers
Access to Flash, SRAM, APB and AHB peripherals as source and destination
Programmable number of data to be transferred: up to 65536.
DMA features DMA1 DMA2
Number of regular channels 6 6

Table 4. DMA implementation

DS12589 Rev 1 27/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB

3.16 DMA request router (DMAMux)

When a peripheral indicates a request for DMA transfer by setting its DMA request line, the DMA request is pending until it is served and the corresponding DMA request line is reset. The DMA request router allows to route the DMA control lines between the peripherals and the DMA controllers of the product.
An embedded multi-channel DMA request generator can be considered as one of such peripherals. The routing function is ensured by a multi-channel DMA request line multiplexer. Each channel selects a unique set of DMA control lines, unconditionally or synchronously with events on synchronization inputs.
For simplicity, the functional description is limited to DMA request lines. The other DMA control lines are not shown in figures or described in the text. The DMA request generator produces DMA requests following events on DMA request trigger inputs.

3.17 Interrupts and events

3.17.1 Nested vectored interrupt controller (NVIC)

The STM32G431x6/x8/xB devices embed a nested vectored interrupt controller which is able to manage 16 priority levels, and to handle up to 71 maskable interrupt channels plus the 16 interrupt lines of the Cortex
®
-M4.
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.17.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 39 edge detector lines used to generate interrupt/event requests and to wake-up the system from the Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently.
A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 86 GPIOs can be connected to the 16 external interrupt lines.
28/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview

3.18 Analog-to-digital converter (ADC)

The device embeds two successive approximation analog-to-digital converters with the following features:
12-bit native resolution, with built-in calibration
4 Msps maximum conversion rate with full resolution
Down to 25 ns sampling time
Increased conversion rate for lower resolution (up to 6.66 Msps for 6-bit
resolution)
One external reference pin is available on all packages, allowing the input voltage
range to be independent from the power supply
Single-ended and differential mode inputs
Low-power design
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups
of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions
Each ADC support multiple trigger inputs for synchronization with on-chip timers
and external signals
Results stored into a data register or in RAM with DMA controller support
Data pre-processing: left/right alignment and per channel offset compensation
Built-in oversampling unit for enhanced SNR
Channel-wise programmable sampling time
Analog watchdog for automatic voltage monitoring, generating interrupts and
trigger for selected timers
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
Flexible sample time control
Hardware gain and offset compensation

3.18.1 Temperature sensor

The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.
DS12589 Rev 1 29/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB
Calibration value name Description Memory address
TS_CAL1
TS_CAL2
Table 5. Temperature sensor calibration values
TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), V
DDA
TS ADC raw data acquired at a temperature of 110 °C (± 5 °C), V
DDA
3.18.2 Internal voltage reference (V
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and the comparators. The VREFINT is internally connected to the ADC1_IN18 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.
Calibration value name Description Memory address
Table 6. Internal voltage reference calibration values
Raw data acquired at a
VREFINT
temperature of 30 °C (± 5 °C), V
DDA
= V
REF+
= V
REF+
REFINT
= V
REF+
0x1FFF 75A8 - 0x1FFF 75A9
= 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
= 3.0 V (± 10 mV)
)
0x1FFF 75AA - 0x1FFF 75AB
= 3.0 V (± 10 mV)
3.18.3 V
battery voltage monitoring
BAT
This embedded hardware enables the application to measure the V the internal ADC1_IN17 channel. As the V
voltage may be higher than the VDDA, and
BAT
thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by
3. As a consequence, the converted digital value is one third of the V

3.19 Digital to analog converter (DAC)

Four 12 bit DAC channels (2 external buffered and 2 internal unbuffered) can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
battery voltage using
BAT
voltage.
BAT
30/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview
MSv40197V1
VREFBUF
Low frequency cut-off capacitor
DAC, ADC
Bandgap +
V
DDA
-
100 nF
VREF+
This digital interface supports the following features:
Up to two DAC output channels
8-bit or 12-bit output mode
Buffer offset calibration (factory and user trimming)
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Saw tooth wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability for each channel
External triggers for conversion
Sample and hold low-power mode, with internal or external capacitor
Up to 1 Msps for external output and 15 Msps for internal output
The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.
3.20 Voltage reference buffer (V
The STM32G431x6/x8/xB devices embed a voltage reference buffer which can be used as voltage reference for ADC, DACs and also as voltage reference for external components through the VREF+ pin.
The internal voltage reference buffer supports three voltages:
2.048 V
2.5 V
2.95 V
An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.

Figure 3. Voltage reference buffer

REFBUF
)
DS12589 Rev 1 31/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB

3.21 Comparators (COMP)

The STM32G431x6/x8/xB devices embed four rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis.
The reference voltage can be one of the following:
External I/O
DAC output channels
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers.

3.22 Operational amplifier (OPAMP)

The STM32G431x6/x8/xB devices embed three operational amplifiers with external or internal follower routing and PGA capability.
The operational amplifier features:
15 MHz bandwidth
Rail-to-rail input/output
PGA with a non-inverting gain ranging of 2, 4, 8, 16, 32 or 64 or inverting gain ranging
of -1, -3, -7, -15, -31 or -63

3.23 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

3.24 Timers and watchdogs

The STM32G431x6/x8/xB devices include two advanced motor control timers, up to six general-purpose timers, two basic timers, one low-power timer, two watchdog timers and a SysTick timer. The table below compares the features of the advanced motor control, general purpose and basic timers.
Timer type Timer
Advanced
motor
control
General-
purpose
General-
purpose
TIM1, TIM8 16-bit
TIM2 32-bit
TIM3, TIM4 16-bit

Table 7. Timer feature comparison

Counter
resolution
Counter
type
Up,
down,
Up/down
Up,
down,
Up/down
Up,
down,
Up/down
Prescaler
factor
Any integer
between 1 and
65536
Any integer
between 1 and
65536
Any integer
between 1 and
65536
DMA
request
generation
Yes 4 4
Yes 4 No
Yes 4 No
Capture/ compare
channels
Complementary
outputs
32/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview
Table 7. Timer feature comparison (continued)
Timer type Timer
General-
purpose
General-
purpose
Basic TIM6, TIM7 16-bit Up
TIM15 16-bit Up
TIM16, TIM17 16-bit Up
Counter
resolution
Counter
type
Prescaler
factor
Any integer
between 1 and
65536
Any integer
between 1 and
65536
Any integer
between 1 and
65536
generation

3.24.1 Advanced motor control timer (TIM1, TIM8)

The advanced motor control timers can each be seen as a four-phase PWM multiplexed on 8 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers.
The 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability
(0-100%)
One-pulse mode output
DMA
request
Yes 2 1
Yes 1 1
Yes 0 No
Capture/ compare
channels
Complementary
outputs
In debug mode, the advanced motor control timer counter can be frozen and the PWM outputs disabled in order to turn off any power switches driven by these outputs.
Many features are shared with the general-purpose TIMx timers (described in
Section 3.24.2) using the same architecture, so the advanced motor control timers can work
together with the TIMx timers via the Timer Link feature for synchronization or event chaining.
DS12589 Rev 1 33/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB

3.24.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)

There are up to six synchronizable general-purpose timers embedded in the STM32G431x6/x8/xB devices (see Table 7 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.
TIM2, TIM3, and TIM4
They are full-featured general-purpose timers:
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler.
These timers feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
TIM15, 16 and 17
They are general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
TIM15 has 2 channels and 1 complementary channel
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode output.
The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.

3.24.3 Basic timers (TIM6 and TIM7)

The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases.
34/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview

3.24.4 Low-power timer (LPTIM1)

The devices embed a low-power timer. This timer has an independent clock and are running in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the system from Stop mode.
LPTIM1 is active in Stop mode.
This low-power timer supports the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous/ one shot mode
Selectable software/hardware input trigger
Selectable clock source
Internal clock sources: LSE, LSI, HSI16 or APB clock
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application).
Programmable digital glitch filter
Encoder mode

3.24.5 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.24.6 System window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.24.7 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source
DS12589 Rev 1 35/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB

3.25 Real-time clock (RTC) and backup registers

The RTC supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode.
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC is supplied through a switch that takes power either from the V present or from the VBAT pin.
The RTC clock sources can be:
A 32.768 kHz external crystal (LSE)
An external resonator or oscillator (LSE)
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
The high-speed external clock (HSE) divided by 32.
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp) can generate an interrupt and wakeup the device from the low-power modes.

3.26 Tamper and backup registers (TAMP)

16 32-bit backup registers, retained in all low-power modes and also in VBAT mode.
They can be used to store sensitive data as their content is protected by an tamper detection circuit. They are not reset by a system or power reset, or when the device wakes up from Standby or Shutdown mode.
Up to three tamper pins for external tamper detection events. The external tamper pins
can be configured for edge detection, edge and level, level detection with filtering.
Five internal tampers events.
Any tamper detection can generate a RTC timestamp event.
Any tamper detection erases the backup registers.
Any tamper detection can generate an interrupt and wake-up the device from all low-
power modes.
supply when
DD
36/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview

3.27 Infrared transmitter

The STM32G431x6/x8/xB devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels.

Figure 4. Infrared transmitter

TIM17_CH1
TIM16_CH1
IRTIM
IR_OUT
MS30474V2
DS12589 Rev 1 37/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB

3.28 Inter-integrated circuit interface (I2C)

The device embeds three I2Cs. Refer to Table 8: I2C implementation for the features implementation.
2
The I
C bus interface handles communications between the microcontroller and the serial
2
I
C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
2
I
C-bus specification and user manual rev. 5 compatibility:
Slave and master modes, multimaster capability
Standard-mode (Sm), with a bitrate up to 100 kbit/s
Fast-mode (Fm), with a bitrate up to 400 kbit/s
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
Programmable setup and hold times
Optional clock stretching
System management bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (packet error checking) generation and verification with ACK
control
Address resolution protocol (ARP) support
SMBus alert
Power system management protocol (PMBus
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming.
Wakeup from Stop mode on address match
Programmable analog and digital noise filters
1-byte buffer with DMA capability

Table 8. I2C implementation

I2C features
(1)
TM
) specification rev 1.1 compatibility
I2C1 I2C2 I2C3
Standard-mode (up to 100 kbit/s) X X X
Fast-mode (up to 400 kbit/s) X X X
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X X
Programmable analog and digital noise filters X X X
SMBus/PMBus hardware support X X X
Independent clock X X X
Wakeup from Stop mode on address match X X X
1. X: supported
38/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview

3.29 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32G431x6/x8/xB devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3) and one universal asynchronous receiver transmitters (UART4).
These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN master/slave capability. They provide hardware management of the CTS and RTS signals, and RS485 driver enable.
The USART1, USART2 and USART3 also provide a Smartcard mode (ISO 7816 compliant) and an SPI-like communication capability.
The USART comes with a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default.
All USART have a clock domain independent from the CPU clock, allowing the USARTx (x=1,2,3,4) to wake up the MCU from Stop mode. The wakeup from Stop mode can be done on:
Start bit detection
Any received data frame
A specific programmed data frame
Some specific TXFIFO/RXFIFO status interrupts when FIFO mode is enabled
All USART interfaces can be served by the DMA controller.
USART modes/features
Hardware flow control for modem X X X X X
Continuous communication using DMA X X X X X
Multiprocessor communication X X X X X
Synchronous mode X X X - -
Smartcard mode X X X - -
Single-wire half-duplex communication X X X X X
IrDA SIR ENDEC block X X X X -
LIN mode X X X X -
Dual clock domain X X X X X
Wakeup from Stop mode X X X X X
Receiver timeout interrupt X X X X -
Modbus communication X X X X -
Auto baud rate detection X (4 modes) -
Driver Enable X X X X X
LPUART/USART data length 7, 8 and 9 bits

Table 9. USART/UART/LPUART features

(1)
USART1 USART2 USART3 UART4 LPUART1
DS12589 Rev 1 39/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB
Table 9. USART/UART/LPUART features (continued)
USART modes/features
Tx/Rx FIFO X
Tx/Rx FIFO size 8
1. X = supported.
(1)
USART1 USART2 USART3 UART4 LPUART1

3.30 Low-power universal asynchronous receiver transmitter (LPUART)

The STM32G431x6/x8/xB devices embed one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half­duplex single-wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.
The LPUART comes with a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default. It has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode. The wake up from Stop mode can be done on:
Start bit detection
Any received data frame
A specific programmed data frame
Some specific TXFIFO/RXFIFO status interrupts when FIFO mode is enabled
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.
The LPUART interface can be served by the DMA controller.

3.31 Serial peripheral interface (SPI)

Three SPI interfaces allow communication up to 75 Mbits/s in master and up to 41 Mbits/s in slave, half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and hardware CRC calculation.
Two standard I standards can operate as master or slave at half-duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.
All SPI interfaces can be served by the DMA controller.
2
S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio
40/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview

3.32 Serial audio interfaces (SAI)

The device embeds 1 SAI. The SAI bus interface handles communications between the microcontroller and the serial audio protocol.

3.32.1 SAI peripheral supports

Two independent audio sub-blocks which can be transmitters or receivers with their
respective FIFO.
8-word integrated FIFOs for each audio sub-block.
Synchronous or asynchronous mode between the audio sub-blocks.
Master or slave configuration independent for both audio sub-blocks.
Clock generator for each audio block to target independent audio frequency sampling
when both audio sub-blocks are configured in master mode.
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.
Peripheral with large configurability and flexibility allowing to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF out.
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
Number of bits by frame may be configurable.
Frame synchronization active level configurable (offset, bit length, level).
First active bit position in the slot is configurable.
LSB first or MSB first for data transfer.
Mute mode.
Stereo/Mono audio frame capability.
Communication clock strobing edge configurable (SCK).
Error flags with associated interrupts if enabled respectively. – Overrun and underrun
detection. – Anticipated frame synchronization signal detection in slave mode. – Late frame synchronization signal detection in slave mode. – Codec not ready for the AC’97 mode in reception.
Interruption sources when enabled: – Errors. – FIFO requests.
DMA interface with 2 dedicated channels to handle access to the dedicated integrated
FIFO of each SAI audio sub-block.
Table 10. SAI implementation for the features implementation
SAI features Support
(1)
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 X
Mute mode X
Stereo/Mono audio frame capability X
16 slots X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X
FIFO size X (8 word)
SPDIF X
DS12589 Rev 1 41/198
43
Functional overview STM32G431x6 STM32G431x8 STM32G431xB
1. X: supported.

3.33 Controller area network (FDCAN1)

The controller area network (CAN) subsystem consists of one CAN module and message RAM memory.
The CAN module (FDCAN) is compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.
A 1-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers.

3.34 Universal serial bus (USB)

The STM32G431x6/x8/xB devices embed a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software­configurable endpoint setting with packet memory up-to 1 Kbyte and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal less operation.

3.35 USB Type-C™ / USB Power Delivery controller (UCPD)

The device embeds one controller (UCPD) compliant with USB Type-C Rev. 1.2 and USB Power Delivery Rev. 3.0 specifications.
The controller uses specific I/Os supporting the USB Type-C and USB Power Delivery requirements, featuring:
USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors
“Dead battery” support
USB Power Delivery message transmission and reception
FRS (fast role swap) support
The digital controller handles notably:
USB Type-C level detection with de-bounce, generating interrupts
FRS detection, generating an interrupt
Byte-level interface for USB Power Delivery payload, generating interrupts (DMA
compatible)
USB Power Delivery timing dividers (including a clock pre-scaler)
CRC generation/checking
4b5b encode/decode
Ordered sets (with a programmable ordered set mask at receive)
Frequency recovery in receiver during preamble
42/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Functional overview
The interface offers low-power operation compatible with Stop mode, maintaining the capacity to detect incoming USB Power Delivery messages and FRS signaling.

3.36 Clock recovery system (CRS)

The devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.37 Development support

3.37.1 Serial wire JTAG debug port (SWJ-DP)

The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.37.2 Embedded trace macrocell™

The Arm embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32G431x6/x8/xB devices through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.
The Embedded trace macrocell operates with third party debugger software tools.
DS12589 Rev 1 43/198
43
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB
MSv47174V1
UFQFPN32
1
2
3
4
5
6
7
8
VDD
PF0-OSC_IN
PF1-OSC_OUT
PG10-NRST
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
24
23
22
21
20
19
18
17
32 31
PB0
VSSA
VDD
PA10
PA14
VDDA
VSS
PA11
PA8
PA9
PA12
PA13
VSS
PB8-BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
30 29 28 27 26 25
9 10 111213141516
Exposed pad
MSv47175V1
LQFP32
1
2
3
4
5
6
7
8
VDD
PF0-OSC_IN
PF1-OSC_OUT
PG10-NRST
PA0
PA1
PA2
PA3
24
23
22
21
20
19
18
17
29
27
25
323130
28
26
12
14
16
91011
13
15
PA4
PA5
PB0
VSS
PA6
PA7
VSSA
VDDA
PA14
PA13
PA12
PA11
PA10
PA9
PA8
VDD
VSS
PB8-BOOT0
PB5
PA15
PB7
PB6
PB4
PB3

4 Pinouts and pin description

4.1 UFQFPN32 pinout description

Figure 5. STM32G431x6/x8/xB UFQFPN32 pinout

1. The above figure shows the package top view.

4.2 LQFP32 pinout description

Figure 6. STM32G431x6/x8/xB LQFP32 pinout

1. The above figure shows the package top view
44/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Pinouts and pin description
MSv47172V1
UFQFPN48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PF0-OSC_IN
PF1-OSC_OUT
PG10-NRST
PA0
PA1
PA2
PA3
PA4
36
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19
PA5
PA6
PB0
VREF+
PB11
PA7
PC4
VDDA
PB1
PB2
PB10
VDD
PA13
VDD
PA12
PA11
PA10
PA9
PA8
PC6
PB15
PB14
PB13
PB12
VDD
PB9
PB6
PB3
PA14
PB8-BOOT0
PB7
PC11
PB5
PB4
PC10
PA15
Exposed pad
VSS
MSv42659V2
LQFP48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC13
PC14 - OSC32_IN
PC15 - OSC32_OUT
PF0 - OSC_IN
PF1 - OSC_OUT
PG10 - NRST
PA0
PA1
PA2
PA3
PA4
36
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19
PA5
PA6
PB1
VREF+
VDD
PA7
PB0
VDDA
PB2
VSSA
PB10
VSS
VDD
VSS
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
PB11
VDD
VSS
PB7
PB4
PA13
PB9
PB8-BOOT0
PB3
PB6
PB5
PA15
PA14

4.3 UFQFPN48 pinout description

Figure 7. STM32G431x6/x8/xB UFQFPN48 pinout

1. The above figure shows the package top view
2. VSS pads are connected to the exposed pad.

4.4 LQFP48 pinout description

Figure 8. STM32G431x6/x8/xB LQFP48 pinout

1. The above figure shows the package top view
DS12589 Rev 1 45/198
66
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB
MSv47176V2
1234567
A
B
C
D
E
F
G
PA15 PC11 PB3 PB5 PB7 VSS VDD
PA12 PA13 PA14 PB4
PB8-
BOOT0
PB9 VBAT
PA11 PA10 PA 9 PB6 PC13
PG10­NRST
PC14-
OSC32_IN
PC6 PA8 PB14 PC4 PA7 PA1
PC15-
OSC32_O
UT
PB15 PB13 PB11 PB1 PA4
PF1-
OSC_OUT
PF0-
OSC_IN
PB12 PB10 VREF+ PB2 PA5 PA2 PA0
VDD VSS VDDA VSSA PB0 PA6 PA3
MSv42658V2
LQFP64
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PF0-OSC_IN
PF1-OSC_OUT
PG10-NRST
PC0
PC1
PC2
PC3
PA0
PA1
PA2
VSS
VDD
PC13
48
46
45
44
43
42
41
40
39
38
37
36
35
34
33
47
55
5352515049
56
54
61
59
57
646362
60
58
26
2829303132
25
27
20
22
24
171819
21
23
PA3
PA4
PA7
PB0
VREF+
PA5
PA6
PB1
PB10
PC4
PC5
VSS
PB2
VSSA
VDDA
VDD
VDD
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PB11
VSS
VDD
VSS
PB7
PB4
PC11
PB9
PB8-BOOT0
PB3
PA15
PB6
PB5
PA14
PD2
PC12
PC10
PA13

4.5 WLCSP49 ballout description

Figure 9. STM32G431x6/x8/xB WLCSP49 ballout

1. The above figure shows the package top view

4.6 LQFP64 pinout description

Figure 10. STM32G431x6/x8/xB LQFP64 pinout

46/198 DS12589 Rev 1
1. The above figure shows the package top view.
STM32G431x6 STM32G431x8 STM32G431xB Pinouts and pin description
MSv60826V1
LQFP80
54
52
51
50
49
48
47
46
45
44
43
42
41
53
67
65
64
68
66
73
71
69
767574
72
70
PA7
PB0
VSSA
PE8
PC4
PC5
VREF+
PE10
PB1
PB2
PE11
VDDA
PE7
PE9
PE12
PC8
PC6
VDD
VSS
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PB11
VDD
PC7
PB7
PB6
PB3
PD0
PA15
PB5
PB4
PC12
PD2
PD1
PC11
PC10
PA14
37
PC1
PC2
PC3
PA0
PA1
PA2
VSS
9
10
11
12
13
14
15
16
17
29
3132333435
28
30
23
25
27
21
22
24
26
36PE13
PE14
55
56
57
PA9
PC9
PA8
PB8-BOOT0
PB9
VSS
VDD
77
PC13 2
VBAT
1
78
79
80
PC14-OSC32_IN 3
PC15-OSC32_OUT
4
PF0-OSC_IN
5
PF1-OSC_OUT
6
PG10-NRST
7
PC0
8
20
18
19
VDD
PA4
PA5
PA6
PA3
38PE15
39PB10
40VSS
60 PA12
59
PA11
58
PA10
63 PA13
62 VDD
61 VSS

4.7 LQFP80 pinout description

Figure 11. STM32G431x6/x8/xB LQFP80 pinout

1. The above figure shows the package top view.
DS12589 Rev 1 47/198
66
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB
MSv47177V2
VDD PB9 PB7 PB6 PB3 PC12 PA15 VDD
PC13 VSS PB8-BOOT0 PB5 PD2 PC11 VSS PA12
PC14-
OSC32_IN
VBAT PC1 PB4 PC10 PA11
PC15-
OSC32_OUT
PG10-NRST PC2
PF0-OSC_IN PC0 PA1
PF1-OSC_OUT PA0
PC3 VSS_2
VDD_2
PA3
PA7
PA6
PA2
VDDA
VREF+
PB1
PB0
PC4
PB2
VSSA
PC5
PA5
PA4
PB11
VSS
PB15
PC7
PA9
PB10
PB13
PC8
PA8
PA10
PA14 PA13
VDD
PB12
PB14
PC6
PC9
12345678
A
B
C
D
E
F
G
H

4.8 UFBGA64 ballout description

Figure 12. STM32G431x6/x8/xB UFBGA64 ballout

1. The above figure shows the package top view
48/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Pinouts and pin description
MSv42661V3
LQFP100
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
9
11
4
6
8
1
2
3
5
7
PF9
PF0-OSC_IN
PF1-OSC_OUT
PG10-NRST
PC0
PC1
PC2
PC3
PF2
PA0
PA1
PA2
VSS
VDD
PA3
PC15-OSC32_OUT
PF10
PE5
VBAT
PC14-OSC32_IN
PE2
PE3
PE4
PE6
PC13
66
64
63
62
61
60
59
58
57
56
55
54
53
52
51
67
65
72
70
68
75
74
73
71
69
91
89888786858483828180797877
76
92
90
97
95
93
100
99
98
96
94
35
37383940414243444546474849
50
34
36
29
31
33
262728
30
32
PA4
PA5
PC4
PB1
VDDA
PA6
PA7
PB2
PE8
PE11
PC5
PB0
PE9
PE12
PE15
VSSA
VREF+
PE13
PB10
VDD
PE7
PE10
PE14
VSS
PB11
PC7
VDD
VSS
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
PC8
PC6
PA11
PA9
PC9
VDD
VSS
PA12
PA10
PA8
VDD
VSS
PB9
PB6
PD7
PE1
PE0
PB5
PD5
PD2
PB8-BOOT0
PB7
PD4
PD1
PC11
PB4
PB3
PD0
PC10
PA14
PD6
PD3
PC12
PA15
PA13

4.9 LQFP100 pinout description

Figure 13. STM32G431x6/x8/xB LQFP100 pinout

1. The above figure shows the package top view.
DS12589 Rev 1 49/198
66
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB

4.10 Pin definition

Table 11. Legend/abbreviations used in the pinout table

Name Abbreviation Definition
Pin name
Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name
S Supply pin
Pin type
I Input only pin
I/O Input / output pin
FT 5 V tolerant I/O
TT 3.6 V tolerant I/O
B Dedicated BOOT0 pin
NRST Bidirectional reset pin with embedded weak pull-up resistor
Option for TT or FT I/Os
I/O structure
_a
(1)
I/O, with Analog switch function supplied by V
DDA
_c I/O, USB Type-C PD capable
_d I/O, USB Type-C PD Dead Battery function
_u
(2)
_f
(3)
I/O, Fm+ capable
I/O, with USB function
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate functions
Functions selected through GPIOx_AFR registers
Pin functions
Additional
functions
Functions directly selected/enabled through peripheral registers
1. The related I/O structures in Table 12 are: FT_a, FT_fa, TT_a.
2. The related I/O structures in Table 12 are: FT_f, FT_fa.
3. The related I/O structures in Table 12 are FT_u.
50/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Pinouts and pin description

Table 12. STM32G431x6/x8/xB pin definition

Pin Number
Pin name (function
after reset)
LQFP32
UFQFPN32
-------- 1 PE2 I/O FT -
-------
-------
-------
-------
--11B71C2
--22C52B1
- - 3 3C73C1
- - 4 4D74D1
-------
-------
2255E75E1
3 3 66E66F1613
4 4 77C67D2714PG10-NRSTI/OFT -
LQFP48
UFQFPN48
WLCSP49
LQFP64
LQFP80
UFBGA64
LQFP100
- 2 PE3 I/O FT -
- 3 PE4 I/O FT -
- 4 PE5 I/O FT -
- 5 PE6 I/O FT -
1 6 VBAT S - - - -
2 7 PC13 I/O FT
38
49
-10 PF9 I/OFT -
- 11 PF10 I/O FT -
5 12 PF0-OSC_IN I FT_fa -
PC14-
OSC32_IN
PC15-
OSC32_OUT
PF1-
OSC_OUT
Pin type
I/O structure
I/O FT
I/O FT
OFT_a -
(1)
Alternate function
Notes
TRACECK, TIM3_CH1,
SAI1_CK1,
SAI1_MCLK_A,
EVENTOUT
TRACED0, TIM3_CH2,
SAI1_SD_B,
EVENTOUT
TRACED1, TIM3_CH3,
SAI1_D2, SAI1_FS_A,
EVENTOUT
TRACED2, TIM3_CH4,
SAI1_CK2,
SAI1_SCK_A,
EVENTOUT
TRACED3,
SAI1_D1,
SAI1_SD_A,
EVENTOUT
(2)
(3)
(2)
(3)
(2)
(3)
TIM1_BKIN, TIM1_CH1N, TIM8_CH4N,
EVENTOUT
EVENTOUT OSC32_IN
EVENTOUT OSC32_OUT
TIM15_CH1,
SPI2_SCK,
SAI1_FS_B,
EVENTOUT
TIM15_CH2,
SPI2_SCK,
SAI1_D3,
EVENTOUT
I2C2_SDA, SPI2_NSS/
I2S2_WS, TIM1_CH3N,
EVENTOUT
SPI2_SCK/
I2S2_CK,
EVENTOUT
MCO,
EVENTOUT
Additional
functions
-
-
-
-
WKUP3,
RTC_TAMP3
WKUP2,
RTC_TAMP1,
RTC_TS,
RTC_OUT1
-
-
ADC1_IN10,
OSC_IN
ADC2_IN10,
COMP3_INM,
OSC_OUT
NRST
DS12589 Rev 1 51/198
66
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB
Table 12. STM32G431x6/x8/xB pin definition
(1)
(continued)
Pin Number
Pin name (function
after reset)
LQFP32
UFQFPN32
-----8E2815 PC0 I/OFT_a-
- - - - - 9 C3 9 16 PC1 I/O TT_a -
- - - - - 10D31017 PC2 I/OFT_a -
-----11G11118 PC3 I/OFT_a-
--------19 PF2 I/OFT-
5 5 8 8 F7 12 F2 12 20 PA0 I/O TT_a -
6 6 9 9 D6 13 E3 13 21 PA1 I/O TT_a -
7 7 10 10 F6 14 F3 14 22 PA2 I/O TT_a -
- - - - - 15 G2 15 23 VSS_2 S - - - -
- - - - - 16H11624 VDD_2 S - - - -
8 8 11 11 G7 17 H2 17 25 PA3 I/O TT_a -
LQFP48
UFQFPN48
WLCSP49
LQFP64
LQFP80
UFBGA64
LQFP100
Pin type
I/O structure
Alternate function
Notes
LPTIM1_IN1,
TIM1_CH1,
LPUART1_RX,
EVENTOUT
LPTIM1_OUT,
TIM1_CH2,
LPUART1_TX,
SAI1_SD_A,
EVENTOUT
LPTIM1_IN2,
TIM1_CH3,
COMP3_OUT,
EVENTOUT
LPTIM1_ETR,
TIM1_CH4,
SAI1_D1,
TIM1_BKIN2,
SAI1_SD_A,
EVENTOUT
I2C2_SMBA,
EVENTOUT
TIM2_CH1,
USART2_CTS,
COMP1_OUT, TIM8_BKIN, TIM8_ETR, TIM2_ETR, EVENTOUT
RTC_REFIN,
TIM2_CH2,
USART2_RTS_DE,
TIM15_CH1N,
EVENTOUT
TIM2_CH3,
USART2_TX,
COMP2_OUT,
TIM15_CH1,
LPUART1_TX,
UCPD1_FRSTX,
EVENTOUT
TIM2_CH4, SAI1_CK1,
USART2_RX,
TIM15_CH2,
LPUART1_RX,
SAI1_MCLK_A,
EVENTOUT
Additional
functions
ADC12_IN6,
COMP3_INM
ADC12_IN7,
COMP3_INP
ADC12_IN8
ADC12_IN9
-
ADC12_IN1,
COMP1_INM,
COMP3_INP,
RTC_TAMP2,
WKUP1
ADC12_IN2,
COMP1_INP, OPAMP1_VINP, OPAMP3_VINP
ADC1_IN3,
COMP2_INM,
OPAMP1_VOUT,
WKUP4/
LSCO
ADC1_IN4,
COMP2_INP,
OPAMP1_VINM/
OPAMP1_VINP
52/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Pinouts and pin description
Table 12. STM32G431x6/x8/xB pin definition
Pin Number
Pin name (function
after reset)
LQFP32
UFQFPN32
9 9 12 12 E5 18 D4 18 26 PA4 I/O TT_a -
10 10 13 13 F5 19 E4 19 27 PA5 I/O TT_a -
11 11 14 14 G6 20 G3 20 28 PA6 I/O TT_a -
12 12 15 15 D5 21 H3 21 29 PA7 I/O TT_a -
- - 16 - D422D522 30 PC4 I/OFT_fa -
-----23F42331 PC5 I/OTT_a-
13 13 17 16 G5 24 E5 24 32 PB0 I/O TT_a -
- - 18 17 E4 25 F5 25 33 PB1 I/O TT_a -
- - 19 18 F4 26 H4 26 34 PB2 I/O TT_a -
LQFP48
UFQFPN48
WLCSP49
LQFP64
LQFP80
UFBGA64
LQFP100
Pin type
I/O structure
(1)
(continued)
Alternate function
Notes
TIM3_CH2, SPI1_NSS,
SPI3_NSS/
I2S3_WS, USART2_CK,
SAI1_FS_B,
EVENTOUT
TIM2_CH1, TIM2_ETR,
SPI1_SCK,
UCPD1_FRSTX,
EVENTOUT
TIM16_CH1,
TIM3_CH1, TIM8_BKIN,
SPI1_MISO,
TIM1_BKIN,
COMP1_OUT,
LPUART1_CTS,
EVENTOUT
TIM17_CH1,
TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI,
TIM1_CH1N,
COMP2_OUT,
UCPD1_FRSTX,
EVENTOUT
TIM1_ETR, I2C2_SCL,
USART1_TX,
EVENTOUT
TIM15_BKIN, SAI1_D3,
TIM1_CH4N,
USART1_RX,
EVENTOUT
TIM3_CH3, TIM8_CH2N, TIM1_CH2N,
UCPD1_FRSTX,
EVENTOUT
TIM3_CH4, TIM8_CH3N, TIM1_CH3N,
COMP4_OUT,
LPUART1_RTS_DE,
EVENTOUT
RTC_OUT2,
LPTIM1_OUT,
I2C3_SMBA,
EVENTOUT
Additional
functions
ADC2_IN17,
DAC1_OUT1,
COMP1_INM
ADC2_IN13, DAC1_OUT2, COMP2_INM,
OPAMP2_VINM
ADC2_IN3,
OPAMP2_VOUT
ADC2_IN4,
COMP2_INP, OPAMP1_VINP, OPAMP2_VINP
ADC2_IN5
ADC2_IN11, OPAMP1_VINM, OPAMP2_VINM,
WKUP5
ADC1_IN15,
COMP4_INP, OPAMP2_VINP, OPAMP3_VINP
ADC1_IN12,
COMP1_INP,
OPAMP3_VOUT
ADC2_IN12,
COMP4_INM,
OPAMP3_VINM
DS12589 Rev 1 53/198
66
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB
Table 12. STM32G431x6/x8/xB pin definition
(1)
(continued)
Pin Number
Pin name (function
after reset)
LQFP32
UFQFPN32
14 14 - 19 G4 27 G4 27 35 VSSA S - - - -
- - 20 20 F3 28 G5 28 36 VREF+ S - - - VREFBUF_OUT
15 15 21 21 G3 29 H5 29 37 VDDA S - - - -
-------3038 PE7 I/OTT_a-
-------
-------
-------
-------
-------
-------
-------
-------
- - 22 22 F2 30 H6
16 16 - 23 G2 31 G7
17 17 23 24 G1 32 H8
- - 24 25 E3 33 H7
LQFP48
UFQFPN48
WLCSP49
LQFP64
LQFP80
UFBGA64
LQFP100
31 39 PE8 I/O FT_a -
32 40 PE9 I/O FT -
33 41 PE10 I/O FT -
34 42 PE11 I/O FT - TIM1_CH2, EVENTOUT -
35 43 PE12 I/O FT -
36 44 PE13 I/O FT - TIM1_CH3, EVENTOUT -
37 45 PE14 I/O FT -
38 46 PE15 I/O FT -
39 47 PB10 I/O TT_a -
40 48 VSS S - - - -
41 49 VDD S - - - -
42 50 PB11 I/O FT_a -
Pin type
I/O structure
Alternate function
Notes
TIM1_ETR,
SAI1_SD_B,
EVENTOUT
TIM1_CH1N,
SAI1_SCK_B,
EVENTOUT
TIM1_CH1, SAI1_FS_B,
EVENTOUT
TIM1_CH2N,
SAI1_MCLK_B,
EVENTOUT
TIM1_CH3N,
EVENTOUT
TIM1_CH4,
TIM1_BKIN2,
EVENTOUT
TIM1_BKIN,
TIM1_CH4N,
USART3_RX,
EVENTOUT
TIM2_CH3,
USART3_TX,
LPUART1_RX,
TIM1_BKIN,
SAI1_SCK_A,
EVENTOUT
TIM2_CH4,
USART3_RX,
LPUART1_TX,
EVENTOUT
Additional
functions
COMP4_INP
COMP4_INM
-
-
-
-
-
OPAMP3_VINM
ADC12_IN14
54/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Pinouts and pin description
Table 12. STM32G431x6/x8/xB pin definition
(1)
(continued)
Pin Number
Pin name (function
after reset)
LQFP32
UFQFPN32
- - 25 26 F1 34 G8 43 51 PB12 I/O FT_a -
- - 26 27 E2 35 G6
- - 27 28 D3 36 F8
- - 28 29 E1 37 F7
-------
-------
-------
--------58 PD11 I/OFT_a-
--------59 PD12 I/OTT-
--------60 PD13 I/OFT-TIM4_CH2, EVENTOUT -
--------61 PD14 I/OFT_a-TIM4_CH3, EVENTOUT OPAMP2_VINP
--------62 PD15 I/OFT-
-------
-------
LQFP48
UFQFPN48
WLCSP49
LQFP64
LQFP80
UFBGA64
LQFP100
44 52 PB13 I/O TT_a -
45 53 PB14 I/O TT_a -
46 54 PB15 I/O FT_a -
47 55 PD8 I/O FT_a -
48 56 PD9 I/O FT -
49 57 PD10 I/O FT -
50 63 VSS S - - - -
51 64 VDD S - - - -
Pin type
I/O structure
Alternate function
Notes
I2C2_SMBA,
SPI2_NSS/
I2S2_WS, TIM1_BKIN,
USART3_CK,
LPUART1_RTS_DE,
EVENTOUT
SPI2_SCK/I2S2_CK,
TIM1_CH1N,
USART3_CTS,
LPUART1_CTS,
EVENTOUT
TIM15_CH1,
SPI2_MISO,
TIM1_CH2N,
USART3_RTS_DE,
COMP4_OUT,
EVENTOUT
RTC_REFIN,
TIM15_CH2, TIM15_CH1N, COMP3_OUT,
TIM1_CH3N,
SPI2_MOSI/
I2S2_SD,
EVENTOUT
USART3_TX,
EVENTOUT
USART3_RX,
EVENTOUT
USART3_CK,
EVENTOUT
USART3_CTS,
EVENTOUT
TIM4_CH1,
USART3_RTS_DE,
EVENTOUT
TIM4_CH4, SPI2_NSS,
EVENTOUT
Additional
functions
ADC1_IN11
OPAMP3_VINP
ADC1_IN5,
OPAMP2_VINP
ADC2_IN15
-
-
-
-
-
-
DS12589 Rev 1 55/198
66
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB
Table 12. STM32G431x6/x8/xB pin definition
Pin Number
Pin name (function
after reset)
LQFP32
UFQFPN32
--29-D138E852 65 PC6 I/O FT -
-----39E7
-----40F6
-----41D8
18 18 30 30 D2 42 E6
19 19 31 31 C3 43 D7
20 20 32 32 C2 44 D6
21 21 33 33 C1 45 C8
LQFP48
UFQFPN48
WLCSP49
LQFP64
LQFP80
UFBGA64
LQFP100
53 66 PC7 I/O FT -
54 67 PC8 I/O FT_f -
55 68 PC9 I/O FT_f -
56 69 PA8 I/O FT_f -
57 70 PA9 I/O FT_fd -
58 71 PA10 I/O
59 72 PA11 I/O FT_u -
Pin type
I/O structure
FT_d
a
(1)
(continued)
Alternate function
Notes
TIM3_CH1, TIM8_CH1,
I2S2_MCK, EVENTOUT
TIM3_CH2, TIM8_CH2,
I2S3_MCK, EVENTOUT
TIM3_CH3, TIM8_CH3, I2C3_SCL, EVENTOUT
TIM3_CH4, TIM8_CH4, I2SCKIN, TIM8_BKIN2,
I2C3_SDA, EVENTOUT
MCO, I2C3_SCL,
I2C2_SDA, I2S2_MCK,
TIM1_CH1,
USART1_CK,
TIM4_ETR, SAI1_CK2,
SAI1_SCK_A,
EVENTOUT
I2C3_SMBA, I2C2_SCL,
I2S3_MCK, TIM1_CH2,
USART1_TX, TIM15_BKIN,
TIM2_CH3, SAI1_FS_A,
EVENTOUT
TIM17_BKIN,
USB_CRS_SYNC,
I2C2_SMBA,
SPI2_MISO, TIM1_CH3,
­USART1_RX,
TIM2_CH4, TIM8_BKIN,
SAI1_D1, SAI1_SD_A,
EVENTOUT
SPI2_MOSI/
I2S2_SD,
TIM1_CH1N,
USART1_CTS,
COMP1_OUT, FDCAN1_RX,
TIM4_CH1, TIM1_CH4,
TIM1_BKIN2,
EVENTOUT
Additional
functions
-
-
-
-
-
UCPD1_DBCC1
UCPD1_DBCC2
USB_DM
56/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Pinouts and pin description
Table 12. STM32G431x6/x8/xB pin definition
Pin Number
Pin name (function
after reset)
LQFP32
UFQFPN32
22 22 34 34 B1 46 B8 60 73 PA12 I/O FT_u -
---35-47B7
- - 35 36 - 48 A8
23 23 36 37 B2 49 C7
24 24 37 38 B3 50 C6
25 25 38 39 A1 51 A7
- - 39 - - 52 C5
--40-A253B6
LQFP48
UFQFPN48
WLCSP49
LQFP64
LQFP80
UFBGA64
LQFP100
61 74 VSS S - - - -
62 75 VDD S - - - -
63 76 PA13 I/O FT_f
64 77 PA14 I/O FT_f
65 78 PA15 I/O FT_f
66 79 PC10 I/O FT -
67 80 PC11 I/O FT_f -
Pin type
I/O structure
(1)
(continued)
Alternate function
Notes
TIM16_CH1,
I2SCKIN,
TIM1_CH2N,
USART1_RTS_DE,
COMP2_OUT, FDCAN1_TX,
TIM4_CH2, TIM1_ETR,
EVENTOUT
SWDIO-JTMS,
TIM16_CH1N,
I2C1_SCL,
(4)
(4)
(4)
IR_OUT,
USART3_CTS,
TIM4_CH3,
SAI1_SD_B,
EVENTOUT
SWCLK-JTCK,
LPTIM1_OUT,
I2C1_SDA, TIM8_CH2,
TIM1_BKIN,
USART2_TX,
SAI1_FS_B,
EVENTOUT
JTDI,
TIM2_CH1, TIM8_CH1,
I2C1_SCL, SPI1_NSS,
SPI3_NSS/
I2S3_WS, USART2_RX,
UART4_RTS_DE,
TIM1_BKIN, TIM2_ETR,
EVENTOUT
TIM8_CH1N,
UART4_TX,
SPI3_SCK/
I2S3_CK,
USART3_TX,
EVENTOUT
TIM8_CH2N,
UART4_RX, SPI3_MISO,
USART3_RX,
I2C3_SDA, EVENTOUT
Additional
functions
USB_DP
-
-
-
-
-
DS12589 Rev 1 57/198
66
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB
Table 12. STM32G431x6/x8/xB pin definition
Pin Number
Pin name (function
after reset)
LQFP32
UFQFPN32
-----54A668 81 PC12 I/O FT -
-------
-------
-----55B5
-------
-------
-------
-------
-------
26 26 41 40 A3 56 A5
LQFP48
UFQFPN48
WLCSP49
LQFP64
LQFP80
UFBGA64
LQFP100
69 82 PD0 I/O FT -
70 83 PD1 I/O FT -
71 84 PD2 I/O FT -
-85 PD3 I/OFT -
-86 PD4 I/OFT -
-87 PD5 I/OFT -
-88 PD6 I/OFT -
-89 PD7 I/OFT -
72 90 PB3 I/O FT
Pin type
I/O structure
(1)
(continued)
Alternate function
Notes
TIM8_CH3N,
SPI3_MOSI/
I2S3_SD,
USART3_CK,
UCPD1_FRSTX,
EVENTOUT
TIM8_CH4N,
FDCAN1_RX,
EVENTOUT
TIM8_CH4,
TIM8_BKIN2,
FDCAN1_TX,
EVENTOUT
TIM3_ETR, TIM8_BKIN,
EVENTOUT
TIM2_CH1/ TIM2_ETR,
USART2_CTS,
EVENTOUT
TIM2_CH2,
USART2_RTS_DE,
EVENTOUT
USART2_TX,
EVENTOUT
TIM2_CH4,
SAI1_D1, USART2_RX,
SAI1_SD_A,
EVENTOUT
TIM2_CH3,
USART2_CK,
EVENTOUT
JTDO-TRACESWO,
TIM2_CH2, TIM4_ETR,
USB_CRS_SYNC,
TIM8_CH1N,
SPI1_SCK, SPI3_SCK/
(4)
I2S3_CK,
USART2_TX,
TIM3_ETR,
SAI1_SCK_B,
EVENTOUT
Additional
functions
-
-
-
-
-
-
-
-
-
-
58/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Pinouts and pin description
Table 12. STM32G431x6/x8/xB pin definition
Pin Number
Pin name (function
after reset)
LQFP32
UFQFPN32
27 27 42 41 B4 57 C4 73 91 PB4 I/O FT_c
28 28 43 42 A43 58 B4
29 29 44 43 C4 59 A4
30 30 45 44 A5 60 A3
31 31 46 45 B5 61 B3
LQFP48
UFQFPN48
WLCSP49
LQFP64
LQFP80
UFBGA64
LQFP100
74 92 PB5 I/O FT_f -
75 93 PB6 I/O FT_c -
76 94 PB7 I/O FT_f -
77 95 PB8-BOOT0 I/O FT_f
Pin type
(1)
(continued)
Alternate function
Notes
Additional
functions
I/O structure
JTRST,
TIM16_CH1,
TIM3_CH1,
TIM8_CH2N,
(4)
(5)
SPI1_MISO, SPI3_MISO,
USART2_RX,
TIM17_BKIN,
SAI1_MCLK_B,
EVENTOUT
TIM16_BKIN,
TIM3_CH2, TIM8_CH3N, I2C1_SMBA,
SPI1_MOSI, SPI3_MOSI/
I2S3_SD,
USART2_CK,
I2C3_SDA, TIM17_CH1,
LPTIM1_IN1,
SAI1_SD_B,
EVENTOUT
TIM16_CH1N,
TIM4_CH1, TIM8_CH1,
TIM8_ETR,
USART1_TX,
COMP4_OUT,
TIM8_BKIN2,
LPTIM1_ETR,
SAI1_FS_B,
EVENTOUT
TIM17_CH1N,
TIM4_CH2, I2C1_SDA,
TIM8_BKIN, USART1_RX, COMP3_OUT,
TIM3_CH4, LPTIM1_IN2, UART4_CTS,
EVENTOUT
TIM16_CH1,
TIM4_CH3, SAI1_CK1,
I2C1_SCL,
USART3_RX, COMP1_OUT, FDCAN1_RX,
TIM8_CH2, TIM1_BKIN,
SAI1_MCLK_A,
EVENTOUT
UCPD1_CC2
-
UCPD1_CC1
PVD_IN
-
DS12589 Rev 1 59/198
66
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB
Table 12. STM32G431x6/x8/xB pin definition
(1)
(continued)
Pin Number
Pin name (function
after reset)
LQFP32
UFQFPN32
- - 47 46 B6 62 A2 78 96 PB9 I/O FT_f -
-------
-------
32 32 - 47 A6 63 B2
1 1 48 48 A7 64 A1
1. Function availability depends on the chosen device.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
3. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the reference manual RM0440 "STM32G4 Series advanced Arm MCUs".
4. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.
5. It is recommended to set PB8 in another mode than analog mode after startup to limit consumption if the pin is left unconnected.
LQFP48
UFQFPN48
WLCSP49
LQFP64
LQFP80
UFBGA64
LQFP100
- 97 PE0 I/O FT -
- 98 PE1 I/O FT -
79 99 VSS S - - - -
80 100 VDD S - - - -
Pin type
I/O structure
Alternate function
Notes
TIM17_CH1,
TIM4_CH4,
SAI1_D2, I2C1_SDA,
IR_OUT, USART3_TX,
COMP2_OUT, FDCAN1_TX,
TIM8_CH3,
TIM1_CH3N,
SAI1_FS_A,
EVENTOUT
TIM4_ETR,
TIM16_CH1,
USART1_TX,
EVENTOUT
TIM17_CH1,
USART1_RX,
EVENTOUT
Additional
functions
®
-based 32-bit
-
-
-
60/198 DS12589 Rev 1

4.11 Alternate functions

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
STM32G431x6 STM32G431x8 STM32G431xB Pinouts and pin description

Table 13. Alternate function

DS12589 Rev 1 61/198
Port
Port A
SYS_AF
PA0 -
PA1
PA2 -
PA3 -
PA4 - - TIM3_CH2 - - SPI1_NSS
PA5 -
PA6 -
PA7 -
PA8 MCO - I2C3_SCL - I2C2_SDA I2S2_MCK TIM1_CH1
PA9 - -
PA1 0 -
PA11 - - - - -
PA1 2 -
PA1 3
PA1 4
PA1 5 J TDI
RTC_
REFIN
SWDIO-
JTMS
SWCLK-
JTCK
LPTIM1/TI M2/5/15/1
6/17
TIM2_
CH1
TIM2_
CH2
TIM2_
CH3
TIM2_
CH4
TIM2_
CH1
TIM16_
CH1
TIM17_
CH1
TIM17_
BKIN
TIM16_
CH1
TIM16_
CH1N
LPTIM1_
OUT
TIM2_
CH1
I2C3/TIM1/
2/3/4/8/15/
GPCOMP1
TIM2_ETR--SPI1_SCK--------
TIM3_CH1 - TIM8_BKIN SPI1_MISO TIM1_BKIN -
TIM3_CH2 -
I2C3_ SMBA
TIM8_CH1 - I2C1_SCL SPI1_NSS
I2C3/SAI1/
USB/TIM8/
15/
GPCOMP3
- ----
- ----
- ----
-SAI1_CK1---
-
---I2SCKIN
- - I2C1_SCL IR_OUT -
- - I2C1_SDA TIM8_CH2 TIM1_BKIN
USB_
CRS_SYNC
I2C1/2/3/
TIM1/8/16/
TIM8_ CH1N
- I2C2_SCL I2S3_MCK TIM1_CH2
I2C2_ SMBA
SPI1/2/3/
I2S2/3/
17
UART4
/TIM8/Infra
SPI1_MOSI
SPI2_MISO TIM1_CH3
SPI2_MOSI
/I2S2_SD
red
SPI2/3/ I2S2/3/ TIM1/8/
Infrared
SPI3_NSS/
I2S3_WS
TIM1_
CH1N
TIM1_
CH1N
TIM1_
CH2N
SPI3_NSS/
I2S3_WS
I2C3/4
RX
CK
CK
TX
RX
TX
/UART4/
LPUART1/
3
GPCOMP1/
2/3
COMP1_
OUT
-
OUT
-
-----SAI1_FS_B-
COMP1_
OUT
COMP2_
­OUT
- - TIM4_ETR - SAI1_CK2 -
-
- - TIM2_CH4 TIM8_BKIN SAI1_D1 -
COMP1_
OUT
COMP2_
OUT
--TIM4_CH3--
-----SAI1_FS_B-
RTS_DE
USART1/2/
USART2_
CTS
USART2_
RTS_DE
USART2_TXCOMP2_
USART2_
USART2_
USART1_
USART1_
USART1_
USART1_
CTS
USART1_
RTS_DE
USART3_
CTS
USART2_
USART2_RXUART4_
TIM1/8/15/
FDCAN1
TIM8_BKIN TIM8_ETR - - - TIM2_ETR
TIM15_
CH1N
TIM15_
TIM15_
TIM15_
FDCAN1_R
FDCAN1_T
TIM1_BKIN----TIM2_ETR
TIM2/3/4/8/
CH1
CH2
---
-----
TIM2_CH3 - - - SAI1_FS_A
BKIN
TIM4_CH1 TIM1_CH4
X
TIM4_CH2 TIM1_ETR - - -
X
LPTIM1/TI
M1/8/FDCA
17
-----
--
--
N1
LPUART1/ SAI1/TIM1
LPUART1_
LPUART1_RXSAI1_
LPUART1_
CTS
TIM1_ BKIN2
OPAMP2
TX
MCLK_A
SAI1_SD_
UART4/SAI
SAI1/
1/TIM2/15/
UCPD1
UCPD1_
­FRSTX
-
UCPD1_
FRSTX
--
UCPD1_
FRSTX
SAI1_
SCK_A
SAI1_SD_AEVENT
--
B
-
EVENT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
62/198 DS12589 Rev 1
Table 13. Alternate function (continued)
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB
Port
Port B
SYS_AF
PB0 - - TIM3_CH3 -
PB1 - - TIM3_CH4 -
PB2 RTC_OUT2
JTDO-
PB3
TRACESWO
PB4 JTRST
PB5 -
PB6 -
PB7 -
PB8 -
PB9 -
PB10 -
PB11 -
PB12 - - - -
LPTIM1/TI M2/5/15/1
6/17
LPTIM1_
OUT
TIM2_
CH2
TIM16_
CH1
TIM16_
BKIN
TIM16_
CH1N
TIM17_
CH1N
TIM16_
CH1
TIM17_
CH1
TIM2_
CH3
TIM2_
CH4
I2C3/TIM1/
2/3/4/8/15/
GPCOMP1
--
TIM4_ETR
TIM3_CH1 -
TIM3_CH2
TIM4_CH1 - - TIM8_CH1 TIM8_ETR
TIM4_CH2 - I2C1_SDA TIM8_BKIN -
TIM4_CH3 SAI1_CK1 I2C1_SCL - -
TIM4_CH4 SAI1_D2 I2C1_SDA - IR_OUT
- ----
- ----
I2C3/SAI1/
USB/TIM8/
15/
GPCOMP3
USB_CRS_
SYNC
TIM8_ CH3N
I2C1/2/3/
TIM1/8/16/
17
TIM8_ CH2N
TIM8_ CH3N
I2C3_ SMBA
TIM8_ CH1N
TIM8_ CH2N
I2C1_ SMBA
I2C2_ SMBA
SPI1/2/3/
I2S2/3/ UART4
/TIM8/Infra
red
SPI1_SCK
SPI1_MISO SPI3_MISO
SPI1_MOSI
SPI2_NSS/
I2S2_WS
SPI2/3/ I2S2/3/ TIM1/8/
Infrared
-
-
----------
TIM1_
CH2N
TIM1_
CH3N
SPI3_SCK/
I2S3_CK
SPI3_MOSI
/I2S3_SD
TIM1_BKIN
USART1/2/
3
-------
-
USART2_
TX
USART2_
RX
USART2_
CK
USART1_TXCOMP4_
USART1_RXCOMP3_
USART3_RXCOMP1_
USART3_TXCOMP2_
USART3_TXLPUART1_
USART3_RXLPUART1_
USART3_CKLPUART1_
I2C3/4
/UART4/
LPUART1/
GPCOMP1/
COMP4_
I2C3_SDA -
RTS_DE
TIM1/8/15/
FDCAN1
2/3
OUT
--TIM3_ETR---
--
OUT
OUT
FDCAN1_R
OUT
FDCAN1_T
OUT
RX
TX
TIM2/3/4/8/
---
TIM17_
BKIN
TIM17_
-
- TIM3_CH4
X
X
---TIM1_BKIN-
------
------
TIM8_ BKIN2
TIM8_CH2 - TIM1_BKIN -
TIM8_CH3 -
17
CH1
LPTIM1/TI
M1/8/FDCA
LPTIM1_
LPTIM1_
LPTIM1_
LPUART1/ SAI1/TIM1
N1
LPUART1_
RTS_DE
---
SAI1_SD_
IN1
ETR
IN2
B
- - SAI1_FS_B
--
TIM1_ CH3N
SAI1/
OPAMP2
UART4/SAI
1/TIM2/15/
UCPD1
UCPD1_FR
STX
--
SAI1_SCK_BEVENT
SAI1_
MCLK_B
--
UART4_
CTS
SAI1_
MCLK_A
-SAI1_FS_A
SAI1_
SCK_A
EVENT
EVENT
OUT
EVENT
OUT
EVENT
OUT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
PB13 - - - - -
PB14 -
PB15 RTC_REFIN
TIM15_
CH1
TIM15_
CH2
- - - SPI2_MISO
TIM15_
CH1N
COMP3_
OUT
TIM1_ CH3N
SPI2_SCK/
I2S2_CK
SPI2_MOSI
/I2S2_SD
TIM1_
CH1N
TIM1_
CH2N
USART3_
USART3_
RTS_DE
---------
CTS
LPUART1_
CTS
COMP4_
OUT
------
------
EVENT
OUT
EVENT
OUT
EVENT
OUT
Table 13. Alternate function (continued)
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
STM32G431x6 STM32G431x8 STM32G431xB Pinouts and pin description
DS12589 Rev 1 63/198
Port
Port C
SYS_AF
PC0 -
PC1 -
PC2 -
PC3 -
PC4 - - TIM1_ETR - I2C2_SCL - -
PC5 - -
PC6 - - TIM3_CH1 -
PC7 - - TIM3_CH2 -
PC8 - - TIM3_CH3 -
PC9 - - TIM3_CH4 -
PC10 - - - -
PC11 - - - -
PC12 - - - -
LPTIM1/TI M2/5/15/1
6/17
LPTIM1_
IN1
LPTIM1_
OUT
LPTIM1_
IN2
LPTIM1_
ETR
I2C3/TIM1/
2/3/4/8/15/
GPCOMP1
TIM1_CH1-----
TIM1_CH2-----
TIM1_CH3
TIM1_CH4 SAI1_D1 - -
TIM15_
BKIN
I2C3/SAI1/
USB/TIM8/
15/
GPCOMP3
COMP3_
OUT
SAI1_D3 - -
I2C1/2/3/
TIM1/8/16/
TIM8_
CH1
TIM8_
CH2
TIM8_
CH3
TIM8_
CH4
TIM8_ CH1N
TIM8_ CH2N
TIM8_ CH3N
SPI1/2/3/
I2S2/3/
17
UART4
/TIM8/Infra
red
-----------
-I2S2_MCK--------
-I2S3_MCK--------
---I2C3_SCL------
I2SCKIN
UART4_TX
UART4_RX SPI3_MISO
-
SPI2/3/ I2S2/3/ TIM1/8/
Infrared
TIM1_ BKIN2
TIM1_
CH4N
TIM8_ BKIN2
SPI3_SCK/
I2S3_CK
SPI3_MOSI
/I2S3_SD
I2C3/4
USART1/2/
USART1_
USART1_
USART3_
USART3_
USART3_
/UART4/
LPUART1/
3
GPCOMP1/
LPUART1_
LPUART1_
------
TX
RX
-I2C3_SDA------
TX
I2C3_SDA------
RX
CK
TIM1/8/15/
FDCAN1
2/3
RX
TX
-------
-------
-------
------
TIM2/3/4/8/
------
----
LPTIM1/TI
M1/8/FDCA
17
LPUART1/ SAI1/TIM1
N1
OPAMP2
SAI1_SD_
SAI1_SD_
SAI1/
A
A
UART4/SAI
1/TIM2/15/
UCPD1
-
-
UCPD1_
FRSTX
EVENT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
PC13 - - TIM1_BKIN -
PC14- --- -----------
PC15- --- -----------
TIM1_ CH1N
-
TIM8_
CH4N
--------
EVENT
OUT
EVENT
OUT
EVENT
OUT
64/198 DS12589 Rev 1
Table 13. Alternate function (continued)
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB
Port
SYS_AF
PD0 - - - - - -
PD1 - - - - TIM8_CH4 -
PD2- -TIM3_ETR-TIM8_BKIN----------
PD3 - -
PD4 - - TIM2_CH2 - - - -
PD5- -- - ---
PD6 - - TIM2_CH4 SAI1_D1 - - -
PD7 - - TIM2_CH3 - - - -
Port D
PD8- -- - ---
PD9- -- - ---
PD10- --- ---
PD11- -- - ---
PD12 - - TIM4_CH1 - - - -
PD13- -TIM4_CH2- -----------
PD14- -TIM4_CH3- -----------
PD15- -TIM4_CH4- --SPI2_NSS--------
LPTIM1/TI M2/5/15/1
6/17
I2C3/TIM1/
2/3/4/8/15/
GPCOMP1
TIM2_CH1/
TIM2_ETR
I2C3/SAI1/
USB/TIM8/
15/
GPCOMP3
I2C1/2/3/
TIM1/8/16/
----
SPI1/2/3/
I2S2/3/
17
UART4
/TIM8/Infra
red
SPI2/3/ I2S2/3/ TIM1/8/
Infrared
TIM8_
CH4N
TIM8_ BKIN2
USART1/2/
3
--
--
USART2_
CTS
USART2_
RTS_DE
USART2_
TX
USART2_
RX
USART2_
CK
USART3_
TX
USART3_
RX
USART3_
CK
USART3_
CTS
USART3_
RTS_DE
I2C3/4
/UART4/
LPUART1/
GPCOMP1/
TIM1/8/15/
FDCAN1
2/3
FDCAN1_R
FDCAN1_T
-------
-------
-------
-----
-------
-------
-------
-------
-------
-------
TIM2/3/4/8/
X
X
LPTIM1/TI
M1/8/FDCA
17
-----
-----
LPUART1/ SAI1/TIM1
N1
OPAMP2
SAI1_SD_
SAI1/
A
UART4/SAI
1/TIM2/15/
UCPD1
-
EVENT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
Table 13. Alternate function (continued)
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
STM32G431x6 STM32G431x8 STM32G431xB Pinouts and pin description
DS12589 Rev 1 65/198
Port
Port E
SYS_AF
PE0 - - TIM4_ETR -
PE1 - - - -
PE2 TRACECK -
PE3 TRACED0 -
PE4 TRACED1 -
PE5 TRACED2 -
PE6TRACED3--SAI1_D1---------
PE7 - -
PE8 - -
PE9 - -
PE10 - -
PE11 - -
PE12 - -
PE13 - -
PE14 - -
PE15 - -
LPTIM1/TI M2/5/15/1
6/17
I2C3/TIM1/
2/3/4/8/15/
GPCOMP1
TIM3_
CH1
TIM3_
CH2
TIM3_
CH3
TIM3_
CH4
TIM1_
ETR
TIM1_ CH1N
TIM1_
CH1
TIM1_ CH2N
TIM1_
CH2
TIM1_ CH3N
TIM1_
CH3
TIM1_
CH4
TIM1_
BKIN
I2C3/SAI1/
USB/TIM8/
15/
GPCOMP3
SAI1_CK1---------
SAI1_D2---------
SAI1_CK2---------
I2C1/2/3/
TIM1/8/16/
TIM16_
CH1
TIM17_
CH1
----------
----------
----------
----------
----------
------------
------------
------------
---
---
SPI1/2/3/
I2S2/3/
17
UART4
/TIM8/Infra
red
SPI2/3/ I2S2/3/ TIM1/8/
Infrared
--
--
TIM1_ BKIN2
TIM1_
CH4N
USART1/2/
USART1_
USART1_
USART3_
3
TX
RX
--------
RX
I2C3/4
/UART4/
LPUART1/
GPCOMP1/
TIM1/8/15/
FDCAN1
2/3
-------
-------
-------
TIM2/3/4/8/
LPTIM1/TI
M1/8/FDCA
17
LPUART1/ SAI1/TIM1
N1
SAI1/
OPAMP2
SAI1_
MCLK_A
SAI1_ SD_B
SAI1_ FS_A
SAI1_
SCK_A
SAI1_ SD_A
SAI1_ SD_B
SAI1_
SCK_B
SAI1_ FS_B
SAI1_
MCLK_B
UART4/SAI
1/TIM2/15/
UCPD1
-
-
-
-
-
-
-
-
-
EVENT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
66/198 DS12589 Rev 1
Table 13. Alternate function (continued)
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Pinouts and pin description STM32G431x6 STM32G431x8 STM32G431xB
Port
Port F
Port G
SYS_AF
PF0 - - - -
PF1 - - - - -
PF2 - - - -
PF9- --TIM15_CH1-SPI2_SCK-------SAI1_FS_B-
PF10- --TIM15_CH2-SPI2_SCK-------SAI1_D3-
PG10MCO--- -----------
LPTIM1/TI M2/5/15/1
6/17
I2C3/TIM1/
2/3/4/8/15/
GPCOMP1
I2C3/SAI1/
USB/TIM8/
15/
GPCOMP3
I2C1/2/3/
TIM1/8/16/
I2C2_
SDA
I2C2_ SMBA
SPI1/2/3/
I2S2/3/
17
UART4
/TIM8/Infra
red
SPI2_NSS/
I2S2_WS
SPI2_SCK/
I2S2_CK
SPI2/3/ I2S2/3/ TIM1/8/
Infrared
TIM1_
CH3N
----------
USART1/2/
3
--------
---------
I2C3/4
/UART4/
LPUART1/
GPCOMP1/
2/3
TIM1/8/15/
FDCAN1
TIM2/3/4/8/
17
LPTIM1/TI
M1/8/FDCA
N1
LPUART1/ SAI1/TIM1
SAI1/
OPAMP2
UART4/SAI
1/TIM2/15/
UCPD1
EVENT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
EVENT
OUT
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
MS19210V1
MCU pin
C = 50 pF
MS19211V1
MCU pin
V
IN

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

5.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3).

5.1.2 Typical values

= 25 °C and TA = TAmax (given by
A
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = V are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 14.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 15.
Figure 14. Pin loading conditions Figure 15. Pin input voltage
(mean ±2).
= 3 V. They
DDA
DS12589 Rev 1 67/198
161
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
MS60206V1
V
DD
Level shifter
IO
logic
Kernel logic
(CPU, Digital
& Memories)
Backup circuitry
(LSE, RTC,
Backup registers)
IN
OUT
Regulator
GPIOs
1.55 – 3.6 V
n x 100 nF
+1 x 4.7 μF
n x VSS
n x VDD
VBAT
V
CORE
Power switch
V
DDIO
ADCs/ DACs/ OPAMPs/ COMPs/ VREFBUF
VREF-
V
DDA
10 nF +1 μF
VDDA
VSSA
V
REF
100 nF
+1 μF
VREF+
VREF+
Reset block
Temp. sensor
PLL, HSI16, HSI48
Standby circuitry
(Wakeup logic,
IWDG)

5.1.6 Power supply scheme

Figure 16. Power supply scheme
Caution: Each power supply pair (V
DD/VSS
, V
capacitors as shown above. These capacitors must be placed as close as possible to, or
68/198 DS12589 Rev 1
below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.
DDA/VSSA
etc.) must be decoupled with filtering ceramic
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
MS60200V1
I
DD_VBAT
V
BAT
I
DD
V
DD
I
DDA
V
DDA

5.1.7 Current consumption measurement

Figure 17. Current consumption measurement
The I including the current supplying V
parameters given in Table 21 to Table 26 represent the total MCU consumption
DD_ALL
DD
, V
DDA

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics,
Table 15: Current characteristics and Table 16: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand.
Symbol Ratings Min Max Unit
V
- V
DD
External main supply voltage (including
SS
V
DD
Input voltage on FT_xxx pins except FT_c pins
(2)
V
IN
Input voltage on FT_c pins V
Input voltage on TT_xx pins V
Input voltage on any other pins V
|V
DDx
|V
SSx-VSS
1. All main power (VDD, V power supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 15: Current characteristics for the maximum allowed injected current values.
Variations between different V
|
pins of the same domain
Variations between all the different ground
|
pins

Table 14. Voltage characteristics

, V
(5)
DDA
DDA
and V
, V
BAT
)
BAT
) and ground (VSS, V
and V
DDX
SSA
.
BAT
(1)
-0.3 4.0
power
V
-
SS
-
SS
-
SS
-
SS
min (V
0.3
0.3 5.5
0.3 4.0
0.3 4.0
-50
+
4.0
DD
, V
(3)(4)
DDA
)
-50
) pins must always be connected to the external
V
mV
DS12589 Rev 1 69/198
161
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.

Table 15. Current characteristics

Symbol Ratings Max Unit
(1)
(1)
(1)
(1)
150
150
100
100
IV
IV
IV
DD(PIN)
IV
SS(PIN)
Total current into sum of all V
DD
Total current out of sum of all V
SS
Maximum current into each V
Maximum current out of each V
power lines (source)
DD
ground lines (sink)
SS
power pin (source)
DD
ground pin (sink)
SS
Output current sunk by any I/O and control pin except FT_f 20
I
IO(PIN)
Output current sunk by any FT_f pin 20
Output current sourced by any I/O and control pin 20
I
Total output current sunk by sum of all I/Os and control pins
IO(PIN)
I
INJ(PIN)
|I
INJ(PIN)
1. All main power (VDD, V power supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection (when V lower than the specified maximum value.
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 14:
Voltage characteristics for the minimum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum |I the negative injected currents (instantaneous values).
Total output current sourced by sum of all I/Os and control pins
(3)
Injected current on FT_xxx, TT_xx, NRST pins -5/0
| Total injected current (sum of all I/Os and control pins)
, V
DDA
) and ground (VSS, V
BAT
> VDD) is not possible on these I/Os and does not occur for input voltages
IN
) pins must always be connected to the external
SSA
(2)
(2)
(5)
|
is the absolute sum of
INJ(PIN)
100
100
(4)
±25
mA

Table 16. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature 150 °C
70/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics

5.3 Operating conditions

5.3.1 General operating conditions

Table 17. General operating conditions
Symbol Parameter Conditions Min Max Unit
f
HCLK
PCLK1
f
PCLK2
V
Internal AHB clock frequency - 0 170
Internal APB1 clock frequency - 0 170
Internal APB2 clock frequency - 0 170
Standard operating voltage - 1.71
DD
(1)
MHzf
3.6 V
ADC or COMP used 1.62
3.6
DAC 1 MSPS or DAC 15 MSPS 1.71
V
Analog supply voltage
DDA
OPAMP used 2.0 3.6
V
VREFBUF used 2.4
DD
3.6
+0.3
ADC, DAC, OPAMP, COMP, VREFBUF not used
V
Backup operating voltage - 1.55 3.6 V
BAT
0
TT_xx I/O -0.3 V
FT_c I/O -0.3 5
V
I/O input voltage
IN
All I/O except TT_xx and FT_c -0.3
MIN(MIN(V
)+3.6 V,
V
DDA
(2)(3)
5.5 V)
DD
V
,
LQFP100 - - 337
Power dissipation at
P
D
T
= 85 °C for suffix 6
A
(4)
LQFP80 - - TBD
LQFP64 - - 321
LQFP48 - - 317
LQFP32 - - 317
UFBGA64 - - 452
UFQFPN48 - - 699
UFQFPN32 - - 565
WLCSP49 - - 339
DS12589 Rev 1 71/198
mW
161
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
Table 17. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
LQFP100 - - 84
LQFP80 - - TBD
LQFP64 - - 80
LQFP48 - - 79
Power dissipation at
P
D
T
= 125 °C for suffix 3
A
Ambient temperature for the suffix 6 version
T
A
Ambient temperature for the suffix 3 version
T
Junction temperature range
J
(5)
LQFP32 - - 79
UFBGA64 - - 113
UFQFPN48 - - 175
UFQFPN32 - - 141
WLCSP49 - - 85
Maximum power dissipation -40 85
Low-power dissipation
(6)
-40 105
Maximum power dissipation -40 125
Low-power dissipation
(6)
-40 130
Suffix 6 version -40 105
Suffix 3 version -40 130
mW
°C
°C
1. When RESET is released functionality is guaranteed down to V
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between MIN(V
, V
3. For operation with voltage higher than Min (V disabled.
is lower, higher PD values are allowed as long as TJ does not exceed T
4. If T
A
characteristics).
is lower, higher PD values are allowed as long as TJ does not exceed T
5. If T
A
characteristics).
6. In low-power dissipation state, T
Thermal characteristics).
can be extended to this range as long as TJ does not exceed T
A
DD
) +0.3 V, the internal Pull-up and Pull-Down resistors must be
DDA
BOR0
DD
Min.
, V
)+3.6 V and 5.5V.
DDA
(see Section 6.10: Thermal
Jmax
(see Section 6.10: Thermal
Jmax
(see Section 6.10:
Jmax
72/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics

5.3.2 Operating conditions at power-up / power-down

The parameters given in Table 18 are derived from tests performed under the ambient temperature condition summarized in Table 17.
Symbol Parameter Conditions Min Max Unit
Table 18. Operating conditions at power-up / power-down
t
VDD
t
VDDA
VDD rise time rate
-
fall time rate 10
V
DD
V
rise time rate
DDA
fall time rate 10
V
DDA
-
0
0

5.3.3 Embedded reset and power control block characteristics

The parameters given in Table 19 are derived from tests performed under the ambient temperature conditions summarized in Table 17: General operating conditions.
t
RSTTEMPO
Table 19. Embedded reset and power control block characteristics
Symbol Parameter Conditions
Reset temporization after
V
BOR0
(2)
BOR0 is detected
(2)
Brown-out reset threshold 0
rising - 250 400 s
V
DD
Rising edge 1.62 1.66 1.7
Falling edge 1.6 1.64 1.69
Rising edge 2.06 2.1 2.14
V
BOR1
Brown-out reset threshold 1
Falling edge 1.96 2 2.04
(1)
Min Typ Max Unit
µs/V
µs/V
V
V
V
V
V
V
V
V
V
BOR2
BOR3
BOR4
PVD0
PVD1
PVD2
PVD3
Brown-out reset threshold 2
Brown-out reset threshold 3
Brown-out reset threshold 4
Programmable voltage detector threshold 0
PVD threshold 1
PVD threshold 2
PVD threshold 3
DS12589 Rev 1 73/198
Rising edge 2.26 2.31 2.35
V
Falling edge 2.16 2.20 2.24
Rising edge 2.56 2.61 2.66
V
Falling edge 2.47 2.52 2.57
Rising edge 2.85 2.90 2.95
V
Falling edge 2.76 2.81 2.86
Rising edge 2.1 2.15 2.19
V
Falling edge 2 2.05 2.1
Rising edge 2.26 2.31 2.36
V
Falling edge 2.15 2.20 2.25
Rising edge 2.41 2.46 2.51
V
Falling edge 2.31 2.36 2.41
Rising edge 2.56 2.61 2.66
V
Falling edge 2.47 2.52 2.57
161
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
Table 19. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions
(1)
Min Typ Max Unit
V
PVD4
V
PVD5
V
PVD6
V
hyst_BORH0
V
hyst_BOR_PVD
I
DD
PVM1
PVM2
I
DD
(2)
(2)
(BOR_PVD)
V
V
V
hyst_PVM1
V
hyst_PVM2
(PVM1/PVM2)
PVD threshold 4
V
Falling edge 2.59 2.64 2.69
Rising edge 2.85 2.91 2.96
Rising edge 2.69 2.74 2.79
PVD threshold 5
V
Falling edge 2.75 2.81 2.86
Rising edge 2.92 2.98 3.04
PVD threshold 6
V
Falling edge 2.84 2.90 2.96
Hysteresis in
Hysteresis voltage of BORH0
Hysteresis voltage of BORH (except BORH0) and PVD
(3)
BOR
(except BOR0) and
PVD consumption from V
V
peripheral voltage
DDA
DD
monitoring (COMP/ADC)
V
peripheral voltage
DDA
monitoring (OPAMP/DAC)
continuous mode
Hysteresis in other mode
--100-mV
--1.11.6µA
Rising edge 1.61 1.65 1.69
Falling edge 1.6 1.64 1.68
Rising edge 1.78 1.82 1.86
Falling edge 1.77 1.81 1.85
-20-
mV
-30-
V
V
PVM1 hysteresis - - 10 - mV
PVM2 hysteresis - - 10 - mV
PVM1 and PVM2 consumption from V
DD
--2-µA
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.
74/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics

5.3.4 Embedded voltage reference

The parameters given in Table 20 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 17: General operating
conditions.
Symbol Parameter Conditions Min Typ Max Unit
Table 20. Embedded internal voltage reference
V
REFINT
Internal reference voltage
–40 °C < T
< +130 °C 1.182 1.212 1.232 V
A
ADC sampling time
t
S_vrefint
(1)
internal reference
-4
(2)
when reading the
voltage
Start time of reference
t
start_vrefint
voltage buffer when
--812
ADC is enable
I
DD(VREFINTBUF
V consumption from VDD
)
when converted by
REFINT
buffer
--12.520
ADC
Internal reference
V
REFINT
voltage spread over
VDD = 3 V - 5 7.5
the temperature range
T
Coeff
A
Coeff
V
DDCoeff
V
REFINT_DIV1
V
REFINT_DIV2
V
REFINT_DIV3
1. The shortest sampling time is determined in the application by multiple iterations.
2. Guaranteed by design.
Average temperature coefficient
Long term stability 1000 hours, T = 25°C - 300 1000
Average voltage coefficient
1/4 reference voltage
1/2 reference voltage 49 50 51
3/4 reference voltage 74 75 76
–40°C < T
3.0 V < V
< +130°C - 30 50
A
< 3.6 V - 250 1200
DD
24 25 26
-
--µs
(2)
(2)
(2)
(2)
(2)
(2)
µs
µA
mV
ppm/°C
ppm
ppm/V
%
V
REFINT
DS12589 Rev 1 75/198
161
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
MSv40169V2
1.185
1.19
1.195
1.2
1.205
1.21
1.215
1.22
1.225
1.23
1.235
-40 -20 0 20 40 60 80 100 120
V
°C
Mean Min Max
Figure 18. V

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code
versus temperature
REFINT
The current consumption is measured as described in Figure 17: Current consumption
measurement.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted with the minimum wait states number,
depending on the f to CPU clock (HCLK) frequency” available in the reference manual RM0440 "STM32G4 Series advanced Arm
When the peripherals are enabled f
The voltage scaling Range 1 is adjusted to f
Voltage Range 1 Boost mode for 150 MHz < f
Voltage Range 1 Normal mode for 26 MHz < f
The parameters given in Table 21 to Table 26 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 17: General
operating conditions.
frequency (refer to the table “number of wait states according
HCLK
®
-based 32-bit MCUs").
= f
PCLK
HCLK
frequency as follows:
HCLK
170 MHz
HCLK
150 MHz
HCLK
76/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
Table 21. Current consumption in Run and Low-power run modes, code with data
processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF)
DS12589 Rev 1 77/198
Symbol Parameter
IDD (Run)
Supply current in Run mode
Condition
-
= f
f
HCLK
HSE
up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable
Voltage scaling
Range 2
Range 1 Boost mode
Range 1
Typ Ma x
f
HCLK
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
26 MHz 3.20 3.35 3.60 4.15 5.05 3.50 3.80 4.80 6.10 8.20
16 MHz 2.05 2.15 2.50 3.05 3.95 2.30 2.60 3.60 4.90 7.00
8 MHz 1.10 1.25 1.60 2.10 3.05 1.30 1.60 2.60 3.90 6.10
4 MHz 0.635 0.755 1.15 1.65 2.60 0.750 1.10 2.10 3.40 5.40
2 MHz 0.400 0.525 0.910 1.45 2.35 0.500 0.830 1.80 3.10 5.20
1 MHz 0.280 0.415 0.800 1.35 2.25 0.370 0.700 1.70 3.00 5.00
100 KHz 0.170 0.305 0.690 1.20 2.15 0.260 0.590 1.50 2.90 4.90
170 MHz 25.5 26.0 27.0 27.5 29.0 27.0 28.0 29.0 31.0 34.0
150 MHz 21.0 21.5 22.0 23.0 24.0 23.0 23.0 24.0 25.0 28.0
120 MHz 17.0 17.5 18.0 18.5 20.0 18.0 19.0 20.0 21.0 24.0
80 MHz 11.5 11.5 12.5 13.0 14.0 12.0 13.0 14.0 16.0 18.0
72 MHz 10.5 10.5 11.0 12.0 13.0 11.0 12.0 13.0 14.0 17.0
64 MHz 9.30 9.50 10.0 11.0 12.0 9.70 11.0 12.0 13.0 16.0
48 MHz 6.95 7.15 7.45 8.15 9.30 7.40 7.80 9.00 11.0 14.0
Unit
mA
32 MHz 4.70 4.90 5.25 5.95 7.10 5.10 5.50 6.70 8.40 12.0
24 MHz 3.60 3.80 4.20 4.85 6.00 3.90 4.40 5.60 7.20 9.90
16 MHz 2.45 2.65 3.10 3.75 4.90 2.80 3.20 4.40 6.00 8.60
78/198 DS12589 Rev 1
Table 21. Current consumption in Run and Low-power run modes, code with data
processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF) (continued)
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
Symbol Parameter
Supply current
IDD (LPRun)
in Low-power run mode
Condition
-
f
= f
HCLK
HSE
all peripherals disable
= f
f
HCLK
HSI
/ HPRE all peripherals disable
Voltage scaling
Typ Ma x
f
HCLK
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
2 MHz 350 525 990 1600 2650 500 840 2100 3600 5700
1 MHz 255 410 860 1500 2550 360 690 2000 3400 5700
250 KHz 145 300 750 1400 2450 240 640 1700 3300 5600
62.5 KHz 99.5 270 725 1350 2400 210 610 1700 3300 5600
2 MHz 865 1050 1500 2150 3200 1100 1600 2700 4200 6000
1 MHz 820 965 1400 2050 3100 980 1500 2600 4000 5700
250 KHz 725 875 1300 1950 3000 880 1400 2500 4000 5700
62.5 KHz 685 860 1300 1900 2950 850 1300 2500 4000 5700
Unit
A
Table 22. Current consumption in Run and Low-power run modes,
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
code with data processing running from Flash in single Bank, ART disable
DS12589 Rev 1 79/198
Symbol Parameter
IDD (Run)
Supply current in Run mode
Condition
-
f
= f
HCLK
HSE
up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable
Voltage scaling
Range 2
Range 1 Boost mode
Range 1
Typ Ma x
f
HCLK
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
26 MHz 2.95 3.10 3.40 3.95 4.85 3.20 3.60 4.50 5.80 7.90
16 MHz 2.25 2.35 2.70 3.25 4.15 2.50 2.80 3.80 5.00 7.20
8 MHz 1.20 1.35 1.70 2.25 3.15 1.40 1.70 2.70 4.00 5.60
4 MHz 0.690 0.795 1.20 1.75 2.65 0.810 1.10 2.10 3.40 5.40
2 MHz 0.425 0.540 0.940 1.50 2.40 0.530 0.860 1.80 3.20 5.20
1 MHz 0.295 0.420 0.820 1.35 2.25 0.390 0.720 1.70 3.00 5.00
100 KHz 0.175 0.300 0.695 1.25 2.15 0.260 0.590 1.50 2.90 4.90
170 MHz 17.5 18.0 18.5 19.5 21.0 18.0 19.0 20.0 22.0 25.0
150 MHz 15.5 15.5 16.5 17.0 18.5 16.0 17.0 18.0 19.0 22.0
120 MHz 13.5 14.0 14.5 15.5 16.5 14.0 15.0 16.0 18.0 20.0
80 MHz 10.5 11.0 11.5 12.5 13.5 12.0 12.0 13.0 15.0 17.0
72 MHz 9.75 9.95 10.5 11.5 12.5 10.0 11.0 12.0 14.0 16.0
64 MHz 8.65 8.95 9.50 10.5 11.5 9.00 9.40 11.0 13.0 15.0
Unit
mA
48 MHz 6.50 6.75 7.05 7.75 8.90 6.80 7.30 8.40 10.0 13.0
32 MHz 5.25 5.50 5.85 6.60 7.75 5.70 6.10 7.30 9.00 12.0
24 MHz 4.00 4.20 4.65 5.35 6.50 4.40 4.80 6.10 7.70 11.0
16 MHz 2.75 2.95 3.40 4.10 5.20 3.10 3.50 4.70 6.60 9.10
80/198 DS12589 Rev 1
Table 22. Current consumption in Run and Low-power run modes,
code with data processing running from Flash in single Bank, ART disable (continued)
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
Symbol Parameter
Supply current
IDD (LPRun)
in Low-power run mode
Condition
-
f
= f
HCLK
HSE
all peripherals disable
= f
f
HCLK
HSI
/ HPRE all peripherals disable
Voltage scaling
Typ Ma x
f
HCLK
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
2 MHz 385 575 1050 1650 2700 560 960 2100 3600 5800
1 MHz 265 410 880 1500 2550 400 780 1800 3500 5600
250 KHz 135 285 760 1400 2450 260 640 1700 3300 5600
62.5 KHz 110 260 730 1350 2400 230 610 1700 3300 5600
2 MHz 915 1100 1550 2200 3250 1200 1600 2800 4100 5800
1 MHz 830 950 1400 2050 3100 990 1500 2600 4000 5700
250 KHz 725 865 1300 1950 3000 880 1400 2600 4000 5700
62.5 KHz 670 840 1300 1950 3000 850 1300 2500 4000 5700
Unit
A
Table 23. Current consumption in Run and Low-power run modes,
code with data processing running from SRAM1
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
DS12589 Rev 1 81/198
Symbol Parameter
IDD (Run)
Supply current in Run mode
Condition
-
= f
f
HCLK
HSE
up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable
Voltage scaling
Range 2
Range 1 Boost mode
Range 1
Typ Ma x
f
HCLK
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
26 MHz 2.85 3.00 3.30 3.85 4.75 3.10 3.40 4.40 5.60 7.70
16 MHz 1.80 1.95 2.30 2.85 3.75 2.00 2.40 3.30 4.60 6.70
8 MHz 0.995 1.15 1.50 2.05 2.95 1.20 1.50 2.50 3.80 5.70
4 MHz 0.580 0.725 1.10 1.65 2.55 0.690 1.00 2.00 3.30 5.30
2 MHz 0.370 0.510 0.900 1.45 2.35 0.470 0.800 1.80 3.10 5.10
1 MHz 0.270 0.405 0.790 1.35 2.25 0.360 0.690 1.60 2.90 5.00
100 KHz 0.170 0.310 0.695 1.25 2.15 0.260 0.580 1.50 2.80 4.90
170 MHz 23.0 23.5 24.0 25.0 26.5 24.0 24.0 25.0 27.0 30.0
150 MHz 19.0 19.5 20.0 20.5 22.0 20.0 20.0 21.0 23.0 25.0
120 MHz 15.5 15.5 16.0 17.0 18.0 16.0 16.0 17.0 19.0 22.0
80 MHz 10.5 10.5 11.0 12.0 13.0 11.0 11.0 12.0 14.0 17.0
72 MHz 9.35 9.55 10.0 11.0 12.0 9.40 9.80 11.0 13.0 16.0
64 MHz 8.35 8.55 9.15 9.85 11.0 8.40 8.80 10.0 12.0 15.0
48 MHz 6.25 6.45 6.75 7.45 8.65 6.40 6.80 8.00 9.60 13.0
Unit
mA
32 MHz 4.25 4.45 4.80 5.50 6.65 4.50 4.90 6.20 7.80 11.0
24 MHz 3.25 3.45 3.85 4.55 5.65 3.50 3.90 5.20 6.70 9.30
16 MHz 2.25 2.40 2.85 3.55 4.70 2.50 2.90 4.10 5.50 8.10
82/198 DS12589 Rev 1
Table 23. Current consumption in Run and Low-power run modes,
code with data processing running from SRAM1 (continued)
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
Symbol Parameter
Supply current
IDD (LPRun)
in Low-power run mode
Condition
-
f
= f
HCLK
HSE
all peripherals disable
= f
f
HCLK
HSI
/ HPRE all peripherals disable
Voltage scaling
Typ Ma x
f
HCLK
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
2 MHz 350 495 965 1600 2650 450 860 2000 3600 5700
1 MHz 210 370 845 1500 2550 330 740 1800 3400 5600
250 KHz 115 275 755 1400 2450 230 640 1700 3300 5600
62.5 KHz 98.0 255 725 1350 2400 200 590 1700 3300 5600
2 MHz 850 1000 1500 2100 3150 1000 1600 2800 4200 5900
1 MHz 770 900 1400 2000 3050 950 1500 2700 4200 5800
250 KHz 720 840 1300 1950 3000 870 1400 2600 4000 5800
62.5 KHz 665 830 1300 1900 2950 870 1300 2500 3900 5700
Unit
A
Table 24. Typical current consumption in Run and Low-power run modes, with different codes
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
running from Flash, ART enable (Cache ON Prefetch OFF)
DS12589 Rev 1 83/198
Symbol Parameter
IDD (Run)
Supply current in Run mode
Conditions
- Voltage scaling 25°C 25°C
= f
f
HCLK
HSE
up to 48 MHZ included, bypass mode PLL ON above 48 MHz all peripherals disable
Range2
=26MHz
f
HCLK
Range 1
= 150 MHz
f
HCLK
Range 1 Boost mode f
= 170 MHz
HCLK
Code
TYP
Single Bank
Mode
Unit
TYP
Single Bank
Mode
Pseudo-dhrystone 3.20 mA 123
Coremark 3.15 mA 121
Dhrystone2.1 3.20 mA 123
Fibonacci 3.60 mA 138
While(1) 3.00 mA 115
Pseudo-dhrystone 21.0 mA 140
Coremark 21.0 mA 140
Dhrystone2.1 21.0 mA 140
Fibonacci 23.5 mA 157
While(1) 20.0 mA 133
Pseudo-dhrystone 25.5 mA 150
Coremark 25.0 mA 147
Dhrystone2.1 26.0 mA 153
Fibonacci 28.5 mA 168
Unit
µA/MHz
µA/MHz
µA/MHz
IDD (LPRun)
Supply current in Low-power run
SYSCLK source is HSI f
= 2 MHz
HCLK
all peripherals disable
While(1) 24.5 mA 144
Pseudo-dhrystone 865 µA 433
Coremark 855 µA 428
Dhrystone2.1 875 µA 438
Fibonacci 905 µA 453
While(1) 870 µA 435
µA/MHz
84/198 DS12589 Rev 1
Table 25. Typical current consumption in Run and Low-power run modes,
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
with different codes running from Flash, ART disable
Symbol Parameter
Supply
IDD (Run)
current in Run mode
Conditions
- Voltage scaling 25°C 25°C
f
= f
HCLK
up to 48 MHZ
HSE
included, bypass mode PLL ON above 48 MHz all peripherals disable
Range 2 f
= 26 MHz
HCLK
Range 1
= 150 MHz
f
HCLK
Range 1 Boost mode f
= 170 MHz
HCLK
TYP
Single Bank
Mode
Code
TYP
Single Bank
Mode
Unit
Pseudo-dhrystone 2.95 mA 113
Coremark 2.95 mA 113
Dhrystone2.1 2.95 mA 113
Fibonacci 2.70 mA 104
While(1) 2.95 mA 113
Pseudo-dhrystone 15.5 mA 103
Coremark 15.0 mA 100
Dhrystone2.1 15.5 mA 103
Fibonacci 14.0 mA 93
While(1) 20.0 mA 133
Pseudo-dhrystone 17.5 mA 103
Coremark 17.0 mA 100
Dhrystone2.1 17.5 mA 103
Fibonacci 16.0 mA 94
Unit
µA/MHz
µA/MHz
µA/MHz
IDD (LPRun)
Supply current in Low-power run
SYSCLK source is HSI f
= 2 MHz
HCLK
all peripherals disable
While(1) 24.0 mA 141
Pseudo-dhrystone 915 µA 458
Coremark 890 µA 445
Dhrystone2.1 965 µA 483
Fibonacci 930 µA 465
While(1) 895 µA 448
µA/MHz
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
DS12589 Rev 1 85/198
Symbol Parameter
IDD (Run)
Supply current in Run mode
Table 26. Typical current consumption in Run and Low-power run modes, with different codes
running from SRAM1
Conditions
- Voltage scaling
= f
f
HCLK
up to 48 MHZ
HSE
included, bypass mode PLL ON above 48 MHz all peripherals disable
Range2 f
=26 MHz
HCLK
Range 1 f
= 150 MHz
HCLK
Range 1 Boost mode
= 170 MHz
f
HCLK
Code
Pseudo-dhrystone 2.85 mA 110
Coremark 2.95 mA 113
Dhrystone2.1 2.85 mA 110
Fibonacci 2.85 mA 110
While(1) 3.05 mA 117
Pseudo-dhrystone 19.0 mA 127
Coremark 19.5 mA 130
Dhrystone2.1 19.0 mA 127
Fibonacci 20.5 mA 137
While(1) 18.5 mA 123
Pseudo-dhrystone 23.0 mA 135
Coremark 24.0 mA 141
Dhrystone2.1 23.0 mA 135
Fibonacci 24.5 mA 144
TYP 25°C
Single bank
mode
Unit
TYP 25°C
Single
bank
mode
Unit
µA/MHz
µA/MHz
µA/MHz
IDD (LPRun)
Supply current in Low-power run
SYSCLK source is HSI
= 2 MHz
f
HCLK
all peripherals disable
While(1) 22.0 mA 129
Pseudo-dhrystone 850 µA 425
Coremark 870 µA 435
Dhrystone2.1 840 µA 420
Fibonacci 855 µA 428
While(1) 820 µA 410
µA/MHz
86/198 DS12589 Rev 1
Table 27. Typical current consumption in Run and Low-power run modes, with different codes
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
running from SRAM2
Symbol Parameter
IDD (Run)
Supply current in Run mode
Conditions
- Voltage scaling
= f
f
HCLK
up to 48 MHZ
HSE
included, bypass mode PLL ON above 48 MHz all peripherals disable
Range2 f
=26 MHz
HCLK
Range 1
= 150 MHz
f
HCLK
Range 1 Boost mode f
= 170 MHz
HCLK
Code
TYP 25°C
Single bank
mode
Unit
TYP 25°C
Single
bank
mode
Pseudo-dhrystone 2.40 mA 92
Coremark 2.50 mA 96
Dhrystone2.1 2.40 mA 92
Fibonacci 2.35 mA 90
While(1) 2.25 mA 87
Pseudo-dhrystone 15.5 mA 103
Coremark 16.5 mA 110
Dhrystone2.1 15.5 mA 103
Fibonacci 15.5 mA 103
While(1) 14.5 mA 97
Pseudo-dhrystone 19.0 mA 112
Coremark 20.0 mA 118
Dhrystone2.1 19.0 mA 112
Fibonacci 19.0 mA 112
Unit
µA/MHz
µA/MHz
µA/MHz
IDD (LPRun)
Supply current in Low-power run
SYSCLK source is HSI
= 2 MHz
f
HCLK
all peripherals disable
While(1) 18.0 mA 106
Pseudo-dhrystone 835 µA 418
Coremark 825 µA 413
Dhrystone2.1 830 µA 415
Fibonacci 830 µA 415
While(1) 815 µA 408
µA/MHz
Table 28. Typical current consumption in Run and Low-power run modes, with different codes
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
running from CCM
DS12589 Rev 1 87/198
Symbol Parameter
IDD (Run)
Supply current in Run mode
Conditions
- Voltage scaling
= f
f
HCLK
up to 48 MHZ
HSE
included, bypass mode PLL ON above 48 MHz all peripherals disable
Range2 f
=26 MHz
HCLK
Range 1
= 150 MHz
f
HCLK
Range 1 Boost mode f
= 170 MHz
HCLK
Code
TYP 25°C
Single bank
mode
Unit
TYP 25°C
Single
bank
mode
Pseudo-dhrystone 2.65 mA 102
Coremark 2.80 mA 108
Dhrystone2.1 2.65 mA 102
Fibonacci 3.25 mA 125
While(1) 3.25 mA 125
Pseudo-dhrystone 17.5 mA 117
Coremark 19.0 mA 127
Dhrystone2.1 17.5 mA 117
Fibonacci 21.5 mA 143
While(1) 21.5 mA 143
Pseudo-dhrystone 21.5 mA 126
Coremark 23.0 mA 135
Dhrystone2.1 21.5 mA 126
Fibonacci 26.0 mA 153
Unit
µA/MHz
µA/MHz
µA/MHz
IDD (LPRun)
Supply current in Low-power run
SYSCLK source is HSI
= 2 MHz
f
HCLK
all peripherals disable
While(1) 26.0 mA 153
Pseudo-dhrystone 845 µA 423
Coremark 825 µA 413
Dhrystone2.1 820 µA 410
Fibonacci 885 µA 443
While(1) 890 µA 445
µA/MHz
88/198 DS12589 Rev 1
Table 29. Current consumption in Sleep and Low-power sleep mode Flash ON
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
Symbol Parameter
IDD (Sleep)
Supply current in Sleep mode
Condition
-
f
= f
HCLK
HSE
up to 48 MHz included, bypass mode PLL ON above 48 MHz all peripherals disable
Voltage scaling
Range 2
Range 1 Boost mode
Range 1
Typ Ma x
f
HCLK
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
26 MHz 1.05 1.15 1.45 2.00 2.90 1.30 1.60 2.60 3.90 6.10
16 MHz 0.690 0.810 1.15 1.70 2.60 0.910 1.30 2.30 3.50 5.60
8 MHz 0.425 0.545 0.920 1.45 2.35 0.590 0.930 1.90 3.20 5.20
4 MHz 0.300 0.400 0.815 1.35 2.25 0.420 0.760 1.70 3.00 5.10
2 MHz 0.230 0.355 0.755 1.30 2.20 0.340 0.670 1.60 2.90 5.00
1 MHz 0.200 0.320 0.725 1.25 2.15 0.290 0.620 1.60 2.90 4.90
100 KHz 0.165 0.285 0.690 1.25 2.15 0.250 0.580 1.50 2.80 4.90
170 MHz 7.40 7.65 8.30 9.10 10.5 7.70 8.20 9.90 12.0 15.0
150 MHz 6.10 6.30 6.90 7.60 8.80 6.40 6.90 8.10 9.70 13.0
120 MHz 4.95 5.15 5.70 6.40 7.60 5.30 5.70 6.90 8.50 12.0
80 MHz 3.45 3.65 4.15 4.85 6.00 3.70 4.10 5.40 7.00 9.60
72 MHz 3.15 3.35 3.85 4.55 5.70 3.40 3.80 5.10 6.60 9.20
64 MHz 2.85 3.00 3.55 4.25 5.40 3.10 3.50 4.70 6.30 8.90
Unit
mA
48 MHz 2.10 2.30 2.55 3.25 4.40 2.40 2.90 4.10 5.60 8.20
32 MHz 1.50 1.65 2.00 2.70 3.80 1.80 2.30 3.50 5.10 7.70
24 MHz 1.15 1.35 1.75 2.40 3.55 1.50 1.90 3.20 4.80 7.40
16 MHz 0.850 1.05 1.45 2.15 3.25 1.10 1.60 2.80 4.40 7.00
Table 29. Current consumption in Sleep and Low-power sleep mode Flash ON (continued)
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
DS12589 Rev 1 89/198
Symbol Parameter
Supply current
IDD (LPRun)
in Low-power run mode
Symbol Parameter
IDD (LPSleep)
Supply current in low-power sleep mode
Condition
-
Voltage scaling
f
HCLK
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
Typ Ma x
2 MHz 180 335 810 1450 2500 1300 1800 2700 4200 5900
f
= f
HCLK
HSE
all peripherals disable
1 MHz 135 300 770 1400 2450 790 1400 2200 3700 5800
250 KHz 115 265 740 1350 2400 350 840 1700 3300 5600
62.5 KHz 89.5 255 730 1350 2400 340 840 1700 3200 5500
2 MHz 730 875 1350 1950 3000 1000 1900 2900 4200 5900
= f
f
HCLK
/ HPRE
HSI
all peripherals disable
1 MHz 675 830 1300 1950 3000 1000 1600 2800 4100 5800
250 KHz 655 820 1300 1950 3000 1000 1600 2700 4000 5800
62.5 KHz 680 850 1300 1950 3000 1000 1600 2500 3900 5700
Table 30. Current consumption in low-power sleep modes, Flash in power-down
Condition
-
= f
f
HCLK
HSE
all peripherals disable
= f
f
HCLK
HSI
all peripherals disable
Voltage scaling
-
-
f
HCLK
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
2 MHz 175 290 805 1450 2500 300 660 1900 3400 5600
1 MHz 125 280 765 1400 2450 260 640 1800 3300 5600
250 KHz 105 240 735 1350 2400 220 620 1700 3300 5600
62.5 KHz 105 245 725 1350 2400 210 610 1700 3300 5500
2 MHz 670 830 1350 1950 3000 890 1400 2600 4000 5700
1 MHz 655 825 1300 1950 3000 880 1400 2600 3900 5700
250 KHz 635 825 1300 1900 2950 870 1200 2500 3900 5700
62.5 KHz 640 840 1300 1900 2950 850 1200 2200 3500 5500
Typ Ma x
Unit
A
Unit
A
90/198 DS12589 Rev 1
Symbol Parameter
IDD (Stop 1)
Supply current in Stop 1 mode, RTC disabled
Conditions TYP MAX
-
RTC disabled
RTC clocked by LSI
Table 31. Current consumption in Stop 1 mode
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
(1)
Unit
VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V 58.5 175 550 1050 1900 160 510 1700 2800 8500
2.4 V 58.5 175 550 1050 1950 160 510 1700 4000 8800
3.0 V 59.0 175 555 1050 1950 160 520 1700 4100 8900
3.6 V 59.5 180 560 1100 1950 160 520 1700 4200 9000
1.8 V 59.0 175 550 1050 1950 160 510 1700 2900 8500
2.4 V 59.5 175 555 1050 1950 160 510 1700 4000 8800
3.0 V 59.5 175 555 1050 1950 160 520 1700 4100 8900
3.6 V 60.5 180 560 1100 1950 160 520 1700 4200 9000
1.8 V 58.5 175 550 1050 1900 - - - - -
IDD (Stop 1 with RTC)
Supply current
in Stop 1 mode,
RTC enabled
RTC clocked by LSE bypassed at 32768 Hz
2.4 V 59.0 175 555 1050 1950 - - - - -
3.0 V 60.0 180 555 1050 1950 - - - - -
3.6 V 62.0 180 565 1100 1950 - - - - -
1.8 V 58.5 150 445 890 - - - - - -
RTC clocked by LSE
2.4 V 59.0 150 445 890 - - - - - -
quartz in low drive mode at 32768 Hz
3.0 V 59.5 150 445 890 - - - - - -
3.6 V 61.0 150 450 895 - - - - - -
IDD (Stop 1 with RTC)
Supply current during wakeup
from
Stop 1 mode
Wakeup clock is HSI
= 16 MHz,
Wakeup clock is
HSI = 4 MHz,
(HPRE divider=4),
3.0 V1.39---------
3.0 V0.93---------
voltage Range 2
1. Guaranteed by characterization results, unless otherwise specified.
µA
mA
Table 32. Current consumption in Stop 0 mode
Conditions TYP MAX
Symbol Parameter
-
VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V 150 280 680 1200 2100 260 640 2000 4200 9700
IDD(Stop 0)
Supply current in Stop 0 mode, RTC disabled
-
2.4 V 150 280 680 1200 2100 260 650 2000 4300 9800
3 V 155 280 685 1200 2150 270 650 2000 4400 9900
3.6 V 155 285 685 1200 2150 270 650 2000 4500 10000
1. Guaranteed by characterization results, unless otherwise specified.
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
(1)
Unit
µA
DS12589 Rev 1 91/198
Symbol Parameter
Supply current in Standby
IDD
(Standby)
mode (backup registers retained),
RTC disabled
Table 33. Current consumption in Standby mode
Conditions TYP MAX
-
No independent watchdog
With independent watchdog
VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V 92.0 205 870 2250 5600 220 1500 4100 6300 16000
2.4 V 100 240 1000 2600 6450 250 1900 4500 7200 18000
3 V 120 280 1200 3050 7400 280 2000 5300 8200 20000
3.6 V 175 385 1550 3800 9200 380 2100 6400 9600 24000
1.8 V 275 - - - - - - - - -
2.4 V 335 - - - - - - - - -
3 V400- - - - --- - -
3.6 V 510 - - - - - - - - -
(1)
Unit
nA
92/198 DS12589 Rev 1
Symbol Parameter
Table 33. Current consumption in Standby mode (continued)
Conditions TYP MAX
-
VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
(1)
Unit
IDD
(Standby with RTC)
Supply current in Standby mode (backup registers retained),
RTC enabled
RTC clocked by LSI, no independent watchdog
RTC clocked by LSI, with independent watchdog
RTC clocked by LSE bypassed at 32768 Hz
RTC clocked by LSE quartz drive mode
(2)
in low
1.8 V 490 605 1300 2650 5950 650 1700 4300 6600 16000
2.4 V 630 765 1550 3100 6950 800 2100 5300 7600 18000
3 V 785 955 1850 3700 8050 980 2300 6300 8900 21000
3.6 V 1000 1200 2350 4600 9950 1300 2900 7500 11000 24000 nA
1.8 V 530 - - - - - - - - -
2.4 V 685 - - - - - - - - -
3 V860- - - - --- - -
3.6 V 1100 - - - - - - - - -
1.8 V 360 470 1100 2450 5750 - - - - -
2.4 V 480 625 1400 3000 6800 - - - - -
3 V 825 1100 2200 4200 8700 - - - - -
3.6 V 2550 3400 5250 8000 13500 - - - - ­nA
1.8 V 355 490 990 2150 4800 - - - - -
2.4 V 455 605 1200 2550 5550 - - - - -
3 V 595 775 1450 3100 6400 - - - - -
3.6 V 810 1200 2050 3900 7750 - - - - -
DS12589 Rev 1 93/198
Symbol Parameter
Supply current to be added in Standby mode when SRAM2 is retained
IDD
(SRAM2)
(3)
Supply current to be added in Standby mode when SRAM2 is retained
Table 33. Current consumption in Standby mode (continued)
Conditions TYP MAX
-
-
All clock OFF
VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V 218 530 1680 3500 6900 - - - - -
2.4 V 220 525 1700 3500 7050 - - - - -
3 V 215 530 1650 3500 7100 - - - - -
3.6 V 220 545 1700 3600 6800 - - - - -
1.8 V 310 735 2550 5750 12500 - - - - -
2.4 V 320 765 2700 6100 13500 - - - - -
3 V 335 810 2850 6550 14500 - - - - -
3.6 V 395 930 3250 7400 16000 - - - - -
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
(1)
Unit
nA
94/198 DS12589 Rev 1
Symbol Parameter
Table 33. Current consumption in Standby mode (continued)
Conditions TYP MAX
-
VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
(1)
Unit
IDD (wakeup
from Standby)
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. The supply current in Standby with SRAM2 mode is: + RTC) +
4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 37: Low-power mode wakeup timings.
Supply current during wakeup from Standby mode
IDD_ALL(SRAM2).
Wakeup clock is HSI16 = 16 MHz
3 V2.0- - - - --- - -mA
(4)
IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IIDD_ALL(Standby
Table 34. Current consumption in Shutdown mode
Conditions TYP MAX
(1)
Symbol Parameter
VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V 14.0 94.0 570 1600 4350 190 430 2100 4600 13000
2.4 V 22.0 120 670 1900 4950 290 490 2300 5200 14000
3 V 35.0 150 805 2200 5750 330 660 2500 5900 16000
IDD
(Shutdown)
Supply current in Shutdown mode (backup registers
-
-
retained) RTC disabled
3.6 V 74.0 245 1100 2900 7350 340 770 3000 7000 19000
Unit
nA
Symbol Parameter
Table 34. Current consumption in Shutdown mode (continued)
Conditions TYP MAX
-
VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
(1)
Unit
IDD (Shutdown with
RTC)
Supply current in Shutdown mode (backup registers retained) RTC enabled
RTC clocked by LSE bypassed at 32768 Hz
RTC clocked by LSE quartz
1.8 V 280 355 800 1800 4500 - - - - -
2.4 V 400 500 1050 2250 5350 - - - - -
3 V 745 985 1850 3400 7100 - - - - -
3.6 V 2450 3250 4850 7100 11500 - - - - -
1.8 V 275 375 775 1650 - - - - - -
2.4 V 375 495 950 2050 - - - - - -
(2)
in
3 V 515 640 1200 2550 - - - - - -
low drive
DS12589 Rev 1 95/198
IDD(wakeup from Shutdown)
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 37: Low-power mode wakeup timings.
Supply current during wakeup from Shutdown mode
mode
Wakeup clock is HSI16 = 16 MHz
3.6 V 710 925 1750 3300 - - - - - -
3 V0.24- - - - -----mA
(3)
nA
96/198 DS12589 Rev 1
Symbol Parameter
Table 35. Current consumption in VBAT mode
Conditions TYP MAX
-
VBAT 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V4.0021.0105280685-----
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
(1)
Unit
RTC disabled
2.4 V5.0024.0120310765-----
3 V6.0028.0140360865-----
3.6 V15.054.02406151500-----
IDD(VBAT)
Backup domain supply current
RTC enabled and clocked by LSE
1.8 V270275330475------
2.4 V385400490690------
3 V72586511501550-----­bypassed at 32768 Hz
RTC enabled and
3.6 V 2500 3050 3900 4700 ------
1.8 V2653154156701000-----
2.4 V3554155308651150-----
clocked by LSE
(2)
quartz
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
3 V48054571010501250-----
3.6 V675870110015001700-----
nA
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
I
SW
V
DDIOxfSW
C××=
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 55: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC, OPAMP, COMP input pins which should be configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This is done either by using pull-up/down resistors or by configuring the pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 37: Low-power mode wakeup timings), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:
where
I
is the current sunk by a switching I/O to charge/discharge the capacitive load
SW
V
is the I/O supply voltage
DD
f
is the I/O switching frequency
SW
C is the total capacitance seen by the I/O pin: C = C
INT
+ C
EXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.
DS12589 Rev 1 97/198
161
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 37. The MCU is placed under the following conditions:
All I/O pins are in Analog mode
The given value is calculated by measuring the difference of the current consumptions:
when the peripheral is clocked on
when the peripheral is clocked off
Ambient operating temperature and supply voltage conditions summarized in Table 14:
Voltage characteristics
The power consumption of the digital part of the on-chip peripherals is given in
Table 37. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 36. Peripheral current consumption
BUS Peripheral
AHB Bus Matrix 5.31 5.00 4.07 4.97 µA/MHz
DMA1 3.21 2.95 2.45 2.68
DMA2 3.10 2.86 2.37 2.59
DMAMUX 7.48 6.97 5.74 6.43
AHB1
CORDIC 1.61 1.50 1.24 1.34
FMAC 3.70 3.47 2.86 3.27
FLASH 6.10 5.66 4.64 5.33
SRAM1 0.31 0.32 0.26 0.38
Range 1
Boost Mode
Range 1 Range 2
Low-power
run and sleep
Unit
µA/MHz
98/198 DS12589 Rev 1
STM32G431x6 STM32G431x8 STM32G431xB Electrical characteristics
Table 36. Peripheral current consumption (continued)
BUS Peripheral
Range 1
Boost Mode
Range 1 Range 2
Low-power
run and sleep
Unit
CRC 1.11 1.05 0.86 0.90
GPIOA 1.00 0.91 0.73 0.93
GPIOB 0.55 0.50 0.41 0.54
GPIOC 0.56 0.51 0.42 0.43
GPIOD 0.35 0.33 0.26 0.26
GPIOE 0.59 0.55 0.45 0.41
GPIOF 0.46 0.43 0.36 0.31
GPIOG 0.38 0.36 0.29 0.26
AHB2
CCMSRAM 0.32 0.31 0.26 0.25
µA/MHz
SRAM2 0.70 0.66 0.55 0.55
ADC12 AHB clock domain 6.72 6.27 5.17 5.95
ADC12 independent clock domain 0.61 0.59 0.46 0.56
DAC1 5.57 5.17 4.40 4.99
DAC3 5.67 5.30 NA NA
RNG clock domain 3.63 3.37 NA Na
RNG independent clock domain 1.06 1.00 NA NA
AHB ALL AHB peripherals 79.97 74.54 57.83 66.98 µA/MHz
APB1
AHB to APB1 bridge 0.47 0.37 0.32 0.08
TIM2 10.84 10.04 8.21 9.31
TIM3 9.32 8.65 7.10 8.02
TIM4 8.60 8.00 6.61 7.53
TIM6 2.88 2.69 2.22 2.66
TIM7 2.72 2.53 2.09 2.41
CRS 0.65 0.62 0.50 0.57
RTC 3.72 3.49 2.92 3.73
µA/MHz
WWDG 0.77 0.74 0.60 0.71
SPI2 4.96 4.63 3.82 4.33
SPI3 5.33 4.98 4.09 4.67
I2S2 clock domain 3.45 3.23 2.65 2.95
I2S2 independent clock domain 1.51 1.40 1.17 1.38
I2S3 clock domain 3.86 3.62 2.97 3.49
I2S3 independent clock domain 1.47 1.36 1.12 1.18
DS12589 Rev 1 99/198
161
Electrical characteristics STM32G431x6 STM32G431x8 STM32G431xB
Table 36. Peripheral current consumption (continued)
BUS Peripheral
USART2 clock domain 3.57 3.36 2.76 3.22
USART2 independent clock domain 7.93 7.36 6.10 6.84
USART3 clock domain 3.50 3.29 2.68 3.12
USART3 independent clock domain 7.69 7.14 5.94 6.71
UART4 clock domain 3.30 3.10 2.54 2.91
UART4 independent clock domain 6.53 6.06 5.02 5.61
I2C1 clock domain 1.69 1.60 1.31 1.53
I2C1 independent clock domain 3.95 3.68 3.05 3.47
I2C2 clock domain 1.69 1.60 1.31 1.53
I2C2 independent clock domain 4.04 3.76 3.11 3.58
USB clock domain 0.57 0.55 0.44 0.51
USB independent clock domain 1.19 1.10 5.28 NA
APB1
FDCAN clock domain 9.52 8.90 7.32 8.29
FDCAN independent clock domain 4.82 4.48 3.70 4.37
PWR 1.26 1.19 0.96 1.04
I2C3 clock domain 1.68 1.59 1.30 1.53
I2C3 independent clock domain 2.48 2.30 1.92 2.19
Range 1
Boost Mode
Range 1 Range 2
Low-power
run and sleep
Unit
µA/MHz
LPTIM1 clock domain 1.52 1.45 1.17 1.43
LPTIM1 independent clock domain 4.38 4.05 3.38 3.68
LPUART1 clock domain 2.42 2.29 1.87 2.15
LPUART1 independent clock domain
ALL APB1 on 138.92 129.50 105.42 120.34
AHB to APB2 bridge 0.43 0.36 0.30 0.19
UCPD clock domain 3.67 3.42 2.82 3.24
UCPD independent clock domain 1.28 1.20 5.73 NA
4.65 4.30 3.59 4.14
100/198 DS12589 Rev 1
Loading...