ST MICROELECTRONICS STM32G071CBU6 Datasheet

STM32G071x8/xB
LQFP64
UFQFPN48
UFQFPN32
UFQFPN28
LQFP48
LQFP32
WLCSP25
2.3 × 2.5 mm
UFBGA64
5
×
5mm
10
×
10 mm
7
×
7mm
7
×
7mm
7 × 7 mm
5×5mm
4×4mm
Arm® Cortex®-M0+ 32-bit MCU, up to 128 KB Flash, 36 KB RAM,
Datasheet - production data
Features
Core: Arm® 32-bit Cortex®-M0+ CPU, frequency up to 64 MHz
-40°C to 85°C/125°C operating temperature
Memories
– Up to 128 Kbytes of Flash memory – 36 Kbytes of SRAM (32 Kbytes with HW
parity check)
CRC calculation unit
Reset and power management
– Voltage range: 1.7 V to 3.6 V – Power-on/Power-down reset (POR/PDR) – Programmable Brownout reset (BOR) – Programmable voltage detector (PVD) – Low-power modes:
Sleep, Stop, Standby, Shutdown
–V
supply for RTC and backup registers
BAT
Clock management – 4 to 48 MHz crystal oscillator – 32 kHz crystal oscillator with calibration – Internal 16 MHz RC with PLL option (±1 %) – Internal 32 kHz RC oscillator (±5 %)
Up to 60 fast I/Os – All mappable on external interrupt vectors – Multiple 5 V-tolerant I/Os
7-channel DMA controller with flexible mapping
12-bit, 0.4 µs ADC (up to 16 ext. channels)
– Up to 16-bit with hardware oversampling – Conversion range: 0 to 3.6V
Two 12-bit DACs, low-power sample-and-hold
Two fast low-power analog comparators, with
programmable input and output, rail-to-rail
14 timers (two 128 MHz capable): 16-bit for advanced motor control, one 32-bit and five 16­bit general-purpose, two basic 16-bit, two low­power 16-bit, two watchdogs, SysTick timer
Calendar RTC with alarm and periodic wakeup from Stop/Standby/Shutdown
Communication interfaces –Two I
2
C-bus interfaces supporting Fast­mode Plus (1 Mbit/s) with extra current sink, one supporting SMBus/PMBus and wakeup from Stop mode
– Four USARTs with master/slave
synchronous SPI; two supporting ISO7816 interface, LIN, IrDA capability, auto baud rate detection and wakeup feature
– Low-power UART – Two SPIs (32 Mbit/s) with 4- to 16-bit
programmable bitframe, one multiplexed
2
with I
S interface
– HDMI CEC interface, wakeup on header
reception
USB Type-C™ Power Delivery controller
Development support: serial wire debug (SWD)
96-bit unique ID
All packages ECOPACK
Reference Part number
STM32G071xB
STM32G071x8

Table 1. Device summary

STM32G071RB, STM32G071CB,
STM32G071KB, STM32G071GB,
STM32G071C8, STM32G071G8,
STM32G071K8, STM32G071R8
®
2 compliant
STM32G071EB
November 2018 DS12232 Rev 2 1/136
This is information on a product in full production.
www.st.com
Contents STM32G071x8/xB
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Arm® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 16
3.7 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Interconnect of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.10 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.11 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.12 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 23
3.12.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 24
3.13 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.13.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.13.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.13.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.15 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.16 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2/136 DS12232 Rev 2
STM32G071x8/xB Contents
3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.17.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.17.2 General-purpose timers (TIM2, TIM3, TIM14, TIM15, TIM16, TIM17) . . 28
3.17.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.17.4 Low-power timers (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . 28
3.17.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17.6 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.18 Real-time clock (RTC), tamper (TAMP) and backup registers . . . . . . . . . 29
3.19 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . . 31
3.21 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 32
3.22 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.23 USB Type-C™ Power Delivery controller . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.24 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.24.1 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 Pinouts, pin description and alternate functions . . . . . . . . . . . . . . . . . 35
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 57
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 57
5.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
DS12232 Rev 2 3/136
5
Contents STM32G071x8/xB
5.3.6 Wakeup time from low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.15 NRST input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.16 Analog switch booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.17 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.18 Digital-to-analog converter characteristics . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.19 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.22 V
5.3.23 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.24 Characteristics of communication interfaces . . . . . . . . . . . . . . . . . . . . 102
5.3.25 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
BAT
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.1 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
6.2 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
6.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
6.4 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
6.5 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.7 UFQFPN28 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.8 WLCSP25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.9 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.9.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.9.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 132
7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4/136 DS12232 Rev 2
STM32G071x8/xB Contents
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
DS12232 Rev 2 5/136
5
List of tables STM32G071x8/xB
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32G071x8/xB family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . 12
Table 3. Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 15
Table 4. Interconnect of STM32G071x8/xB peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 5. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 6. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 7. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 8. I
Table 9. USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 10. SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 11. Terms and symbols used in Table 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 12. Pin assignment and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 13. Port A alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 14. Port B alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 15. Port C alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 16. Port D alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 17. Port F alternate function mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 18. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 19. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 20. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 21. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 22. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 23. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 24. Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 25. Current consumption in Run and Low-power run modes
Table 26. Typical current consumption in Run and Low-power run modes,
Table 27. Current consumption in Sleep and Low-power sleep modes . . . . . . . . . . . . . . . . . . . . . . . 63
Table 28. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 29. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 30. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 31. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 32. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 33. Current consumption of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 34. Low-power mode wakeup times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 35. Regulator mode transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 36. Wakeup time using LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 37. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 38. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 39. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 40. LSE oscillator characteristics (f
Table 41. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 42. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 43. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 44. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 45. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 46. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2
C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
at different die temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
depending on code executed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
LSE
6/136 DS12232 Rev 2
STM32G071x8/xB List of tables
Table 47. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 48. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 49. Electrical sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 50. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 51. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 52. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 53. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 54. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 55. Analog switch booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 56. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 57. Maximum ADC R
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
AIN
Table 58. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 59. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 60. DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 61. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 62. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 63. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 64. V Table 65. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
BAT
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
BAT
Table 66. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 67. IWDG min/max timeout period at 32 kHz LSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 68. Minimum I2CCLK frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 69. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 70. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 71. I
2
S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 72. USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 73. UCPD operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 74. LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 75. UFBGA64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 76. Recommended PCB design rules for UFBGA64 package . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 77. LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 78. UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 79. LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 80. UFQFPN32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 81. UFQFPN28 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 82. WLCSP25 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 83. Recommended PCB pad design rules for WLCSP25 package . . . . . . . . . . . . . . . . . . . . 130
Table 84. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 85. STM32G071x8/xB ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 86. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
DS12232 Rev 2 7/136
7
List of figures STM32G071x8/xB
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3. STM32G071RxT LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 4. STM32G071RxH UFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 5. STM32G071CxT LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 6. STM32G071CxU UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 7. STM32G071KxT LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 8. STM32G071KxU UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 9. STM32G071GxU UFQFPN28 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 10. STM32G071Ex WLCSP25 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 15. VREFINT vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 16. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 17. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 18. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 19. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 20. HSI16 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 21. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 22. I/O AC characteristics definition
Figure 23. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 24. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 25. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 26. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 27. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 28. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 29. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 30. I Figure 31. I
Figure 32. LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 33. Recommended footprint for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 34. LQFP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 35. UFBGA64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 36. Recommended footprint for UFBGA64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 37. UFBGA64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 38. LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 39. Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 40. LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 41. UFQFPN48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 42. Recommended footprint for UFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 43. UFQFPN48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 44. LQFP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 45. Recommended footprint for LQFP32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 46. LQFP32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 47. UFQFPN32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 48. Recommended footprint for UFQFPN32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2
S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2
S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8/136 DS12232 Rev 2
STM32G071x8/xB List of figures
Figure 49. UFQFPN32 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 50. UFQFPN28 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 51. Recommended footprint for UFQFPN28 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 52. UFQFPN28 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 53. WLCSP25 chip-scale package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 54. Recommended PCB pad design for WLCSP25 package. . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 55. WLCSP25 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
DS12232 Rev 2 9/136
9
Introduction STM32G071x8/xB

1 Introduction

This document provides information on STM32G071x8/xB microcontrollers, such as description, functional overview, pin assignment and definition, electrical characteristics, packaging, and ordering codes.
Information on memory mapping and control registers is object of reference manual.
Information on Arm
®(a)
Cortex®-M0+ core is available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
10/136 DS12232 Rev 2
STM32G071x8/xB Description

2 Description

The STM32G071x8/xB mainstream microcontrollers are based on high-performance
®
Arm
Cortex®-M0+ 32-bit RISC core operating at up to 64 MHz frequency. Offering a high level of integration, they are suitable for a wide range of applications in consumer, industrial and appliance domains and ready for the Internet of Things (IoT) solutions.
The devices incorporate a memory protection unit (MPU), high-speed embedded memories (up to 128 Kbytes of Flash program memory and 36 Kbytes of SRAM), DMA and an extensive range of system functions, enhanced I/Os and peripherals. The devices offer standard communication interfaces (two I USARTs), one 12-bit ADC (2.5 MSps) with up to 19 channels, one 12-bit DAC with two channels, two fast comparators, an internal voltage reference buffer, a low-power RTC, an advanced control PWM timer running at up to double the CPU frequency, five general­purpose 16-bit timers with one running at up to double the CPU frequency, a 32-bit general­purpose timer, two basic and two low-power 16-bit timers, two watchdog timers, and a SysTick timer. The STM32G071x8/xB devices provide a fully integrated USB Type-C Power Delivery controller.
The devices operate within ambient temperatures from -40 to 125°C. They can operate with supply voltages from 1.7 V to 3.6 V. Optimized dynamic consumption combined with a comprehensive set of power-saving modes, low-power timers and low-power UART, allows the design of low-power applications.
2
Cs, two SPIs / one I2S, one HDMI CEC and four
VBAT direct battery input allows keeping RTC and backup registers powered.
The devices come in packages with 28 to 64 pins.
DS12232 Rev 2 11/136
34
Description STM32G071x8/xB

Table 2. STM32G071x8/xB family device features and peripheral counts

STM32G071_
Peripheral
_EB _G8 _GB
Flash memory (Kbyte) 128 64 128 64 128 64 128 64 128 64 128 64 128
SRAM (Kbyte) 32 (with parity) or 36 (without parity)
Advanced control 1 (16-bit) high frequency
General-purpose 4 (16-bit) + 1 (16-bit) high frequency + 1 (32-bit)
Basic 2 (16-bit)
Timers
Low-power 2 (16-bit)
SysTick 1
Watchdog 2
SPI [I2S]
(1)
2
I
C2
USART 4
LPUART 1
Comm. interfaces
CEC 1
UCPD
(2)
RTC Yes
Tamper pins 2
Random number
generator
AES No
_G8 xxN
2
_GB
xxN
_K8 _KB
2 [1]
(2)
No
_K8 xxN
_KB
_C8 _CB _R8 _RB
xxN
2
GPIOs 23 26 30 44 60
Wakeup pins 4 3 4 3 4 5
12-bit ADC channels
10 ext. + 2 int.
9 ext.
+ 2 int.
11 ext. + 2 int.
10 ext. + 2 int.
14 ext. + 3 int.
12-bit DAC channels 2
Internal voltage reference
buffer
No Yes
Analog comparators 2
Max. CPU frequency 64 MHz
Operating voltage 1.7 to 3.6 V
Operating temperature
(3)
Ambient: -40 to 85 °C / -40 to 125 °C
Junction: -40 to 105 °C / -40 to 130 °C
Number of pins 25 28 32 48 64
1. The numbers in brackets denote the count of SPI interfaces configurable as I2S interface.
2. One port with only one CC line available (supporting limited number of use cases).
3. Depends on order code. Refer to Section 7: Ordering information for details.
12/136 DS12232 Rev 2
16 ext. + 3 int.
STM32G071x8/xB Description
MSv42182V2
UCPD
USART3/4
USART1/2
LPTIMER 1/2
TIMER 16/17
Power domain of analog blocks :
V
BAT
4 channels BKIN, BKIN2, ETR
System and
peripheral
clocks
PAx
PBx
PCx
PFx
MOSI/SD
MISO/MCK
SCK/CK
NSS/WS
SWCLK SWDIO
16x IN
OSC_IN OSC_OUT
VBAT
OSC32_IN OSC32_OUT
RTC_OUT RTC_REFIN RTC_TS
MOSI, MISO
SCK, NSS
HSI16
LSI
PLLPCLK
V
DD
IR_OUT
1 channel BKIN
ETR, IN, OUT
1 channel
4 channels ETR
4 channels ETR
CPU
CORTEX-M0+
f
max
= 64 MHz
SWD
NVIC
EXTI
SPI1/I2S
SPI2
AHB-to-APB
RCC
Reset & clock control
I/F
XTAL OSC
4-48 MHz
IWDG
SRAM 36 KB
I/F
ADC
RTC, TAMP Backup regs
I/F
RC 16 MHz
RC 32 kHz
PLL
decoder
XTAL32 kHz
Bus matrix
I/F
V
DD
2 channels BKIN
RX, TX CTS, RTS, CK
RX, TX CTS, RTS, CK
CEC
TIM6
TIM7
COMP1
COMP2
IN+, IN-,
OUT
Port D
Port C
Port B
Port A
V
DDA
SUPPLY
SUPERVISION
POWER
V
CORE
POR
Reset
Int
VDD/VDDA VSS/VSSA
NRST
PVD
POR/BOR
Voltage
regulator
USART3 & 4
USART1 & 2
LPTIM1 & 2
TIM16 & 17
TIM15
TIM14
TIM3
TIM2 (32-bit)
TIM1
GPIOs
IOPORT
HSE
PLLQCLK PLLRCLK
LSE
LSE
T sensor
RX, TX, CTS, RTS
LPUART
TAMP_IN
APB
APB
AHB
CC, DBCC
FRSTX
UCPD1 & 2
HDMI-CEC
VREFBUF
DAC
I/F
DAC_OUT1
DAC_OUT2
CRC
VREF+
SCL, SDA
SCL, SDA SMBA, SMBUS
I2C1
I2C2
DBGMCU
WWDG
PWRCTRL
SYSCFG
DMA
DMAMUX
Port F
PDx
V
DDA
V
DDIO1
Low-voltage
detector
V
DD
Parity
Flash memory
up to 128 KB
V
DDIO1
IRTIM
from peripherals

Figure 1. Block diagram

DS12232 Rev 2 13/136
34
Functional overview STM32G071x8/xB

3 Functional overview

3.1 Arm® Cortex®-M0+ core with MPU

The Cortex-M0+ is an entry-level 32-bit Arm Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:
a simple architecture, easy to learn and program
ultra-low power, energy-efficient operation
excellent code density
deterministic, high-performance interrupt handling
upward compatibility with Cortex-M processor family
platform security robustness, with integrated Memory Protection Unit (MPU).
The Cortex-M0+ processor is built on a highly area- and power-optimized 32-bit core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier.
The Cortex-M0+ processor provides the exceptional performance expected of a modern 32-bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.
Owing to embedded Arm core, the STM32G071x8/xB devices are compatible with Arm tools and software.
The Cortex-M0+ is tightly coupled with a nested vectored interrupt controller (NVIC) described in Section 3.12.1.

3.2 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task.
The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real­time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

3.3 Embedded Flash memory

STM32G071x8/xB devices feature up to 128 Kbytes of embedded Flash memory available for storing code and data.
14/136 DS12232 Rev 2
STM32G071x8/xB Functional overview
Flexible protections can be configured thanks to option bytes:
Readout protection (RDP) to protect the whole memory. Three levels are available:
Level 0: no readout protection
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in RAM or bootloader is selected
Level 2: chip readout protection: debug features (Cortex-M0+ serial wire), boot in
RAM and bootloader selection are disabled. This selection is irreversible.

Table 3. Access status versus readout protection level and execution modes

Area
User
memory
System
memory
Option
bytes
Backup
registers
1. Erased upon RDP change from Level 1 to Level 0.
Protection
level
1 Yes Yes Yes No No No
2 Yes Yes Yes N/A N/A N/A
1 Yes No No Yes No No
2 Yes No No N/A N/A N/A
1 Yes Yes Yes Yes Yes Yes
2 Yes No No N/A N/A N/A
1YesYesN/A
2 Yes Yes N/A N/A N/A N/A
User execution
Read Write Erase Read Write Erase
(1)
Debug, boot from RAM or boot
from system memory (loader)
No No N/A
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas per bank can be selected, with 2-Kbyte granularity.
Proprietary code readout protection (PCROP): a part of the Flash memory can be
protected against read and write from third parties. The protected area is execute-only: it can only be reached by the STM32 CPU as instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. An additional option bit (PCROP_RDP) determines whether the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0.
(1)
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction
double error detection
readout of the ECC fail address from the ECC register

3.4 Embedded SRAM

STM32G071x8/xB devices have 32 Kbytes of embedded SRAM with parity. Hardware parity check allows memory data errors to be detected, which contributes to increasing functional safety of applications.
When the parity protection is not required because the application is not safety-critical, the parity memory bits can be used as additional SRAM, to increase its total size to 36 Kbytes.
The memory can be read/write-accessed at CPU clock speed, with 0 wait states.
DS12232 Rev 2 15/136
34
Functional overview STM32G071x8/xB

3.5 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:
boot from User Flash memory
boot from System memory
boot from embedded SRAM
The boot pin is shared with a standard GPIO and can be disabled through the boot selector option bit. The boot loader is located in System memory. It manages the Flash memory reprogramming through USART on pins PA9/PA10, PC10/PC11 or PA2/PA3, through I
2
C­bus on pins PB6/PB7 or PB10/PB11, or through SPI on pins PA4/PA5/PA6/PA7 or PB12/PB13/PB14/PB15.

3.6 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link time and stored at a given memory location.

3.7 Power supply management

3.7.1 Power supply schemes

The STM32G071x8/xB devices require a 1.7 V to 3.6 V operating supply voltage (VDD). Several different power supplies are provided to specific peripherals:
V
V
V
V
= 1.7 (2.0) to 3.6 V
DD
V
is the external power supply for the internal regulator and the system analog such
DD
as reset, power management and internal clocks. It is provided externally through VDD/VDDA pin.
The minimum voltage of 1.7 V corresponds to power-on reset release threshold V
POR(MAX)
. Once this threshold is crossed and power-on reset is released, the
functionality is guaranteed down to power-down reset threshold V
= 2.0 V (ADC and COMP) / 1.8 V (DAC) / 2.4 V (VREFBUF) to 3.6 V
DDA
V
is the analog power supply for the A/D converter, D/A converter, voltage
DDA
reference buffer and comparators. V provided externally through VDD/VDDA pin.
= V
DDIO1
V
DDIO1
DD
is the power supply for the I/Os. V
as it is provided externally through VDD/VDDA pin.
= 1.55 V to 3.6 V
BAT
V
is the power supply (through a power switch) for RTC, TAMP, low-speed external
BAT
32.768 kHz oscillator and backup registers when V
PDR(MIN)
voltage level is identical to VDD voltage as it is
DDA
voltage level is identical to VDD voltage
DDIO1
is not present. V
DD
.
is provided
BAT
16/136 DS12232 Rev 2
STM32G071x8/xB Functional overview
MSv39736V2
V
DDA
domain
RTC domain
D/A converter
A/D converter
Standby circuitry (Wakeup, IWDG)
Voltage
regulator
Core
SRAM
Digital
peripherals
Low-voltage
detector
LSE crystal 32.768 kHz osc
BKP registers
RCC BDCR register
RTC and TAMP
2 x comparator
Voltage reference buffer
I/O ring
V
CORE
domain
Temp. sensor
Reset block
PLL, HSI
Flash memory
V
DDIO1
VREF+
V
DD
domain
V
CORE
VSS/VSSA
VDD/VDDA
VBAT
V
DDA
V
REF+
V
SSA
V
SS
V
DD
V
DDIO1
domain
externally through VBAT pin. When this pin is not available on the package, VBAT bonding pad is internally bonded to the VDD/VDDA pin.
V
is the input reference voltage for the ADC and DAC, or the output of the internal
REF+
voltage reference buffer (when enabled). When V V
DDA
. When V
DDA
2 V, V
must be between 2 V and V
REF+
DDA
< 2 V, V
must be equal to
REF+
. It can be grounded
DDA
when the ADC and DAC are not active.
The internal voltage reference buffer supports two output voltages, which is configured with VRS bit of the VREFBUF_CSR register:
–V
–V
V
REF+
internally connected with V
around 2.048 V (requiring V
REF+
around 2.5 V (requiring V
REF+
equal to or higher than 2.4 V)
DDA
equal to or higher than 2.8 V)
DDA
is delivered through VREF+ pin. On packages without VREF+ pin, V
, and the internal voltage reference buffer must be kept
DD
REF+
is
disabled (refer to datasheets for package pinout description).
V
CORE
An embedded linear voltage regulator is used to supply the V power. V The Flash memory is also supplied with V
is the power supply for digital peripherals, SRAM and Flash memory.
CORE
DD
.
internal digital
CORE
Figure 2. Power supply overview

3.7.2 Power supply supervisor

The device has an integrated power-on/power-down (POR/PDR) reset active in all power modes except Shutdown and ensuring proper operation upon power-on and power-down. It maintains the device in reset when the supply voltage is below V the need for an external reset circuit. Brownout reset (BOR) function allows extra flexibility. It
POR/PDR
threshold, without
DS12232 Rev 2 17/136
34
Functional overview STM32G071x8/xB
can be enabled and configured through option bytes, by selecting one of four thresholds for rising V
and other four for falling VDD.
DD
The device also features an embedded programmable voltage detector (PVD) that monitors the V when V
power supply and compares it to V
DD
level crosses the V
DD
threshold, selectively while falling, while rising, or while
PVD
threshold. It allows generating an interrupt
PVD
falling and rising. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.7.3 Voltage regulator

Two embedded linear voltage regulators, main regulator (MR) and low-power regulator (LPR), supply most of digital circuitry in the device.
The MR is used in Run and Sleep modes. The LPR is used in Low-power run, Low-power sleep and Stop modes.
In Standby and Shutdown modes, both regulators are powered down and their outputs set in high-impedance state, such as to bring their current consumption close to zero. However, SRAM data retention is possible in Standby mode, in which case the LPR remains active and it only supplies the SRAM.

3.7.4 Low-power modes

By default, the microcontroller is in Run mode after system or power reset. It is up to the user to select one of the low-power modes described below:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Low-power run mode
This mode is achieved with V
supplied by the low-power regulator to minimize the
CORE
regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.
Low-power sleep mode
This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the Low­power run mode.
Stop 0 and Stop 1 modes
In Stop 0 and Stop 1 modes, the device achieves the lowest power consumption while retaining the SRAM and register contents. All clocks in the V
domain are stopped.
CORE
The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are disabled. The LSE or LSI keep running. The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode, so as to get clock for processing the wakeup event. The main regulator remains active in Stop 0 mode while it is turned off in Stop 1 mode.
Standby mode
The Standby mode is used to achieve the lowest power consumption, with POR/PDR always active in this mode. The main regulator is switched off to power down V
CORE
domain. The low-power regulator is either switched off or kept active. In the latter case,
18/136 DS12232 Rev 2
STM32G071x8/xB Functional overview
it only supplies SRAM to ensure data retention. The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are also powered down. The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
For each I/O, the software can determine whether a pull-up, a pull-down or no resistor shall be applied to that I/O during Standby mode.
Upon entering Standby mode, register contents are lost except for registers in the RTC domain and standby circuitry. The SRAM contents can be retained through register setting.
The device exits Standby mode upon external reset event (NRST pin), IWDG reset event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event (alarm, periodic wakeup, timestamp, tamper), or when a failure is detected on LSE (CSS on LSE).
Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off to power down the V
domain. The PLL, as well as the
CORE
HSI16 and LSI RC-oscillators and HSE crystal oscillator are also powered down. The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode. Therefore, switching to RTC domain is not supported.
SRAM and register contents are lost except for registers in the RTC domain.
The device exits Shutdown mode upon external reset event (NRST pin), IWDG reset event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event (alarm, periodic wakeup, timestamp, tamper).

3.7.5 Reset mode

During and upon exiting reset, the schmitt triggers of I/Os are disabled so as to reduce power consumption. In addition, when the reset source is internal, the built-in pull-up resistor on NRST pin is deactivated.

3.7.6 VBAT operation

The V backup registers.
In VBAT mode, the RTC domain is supplied from VBAT pin. The power source can be, for example, an external battery or an external supercapacitor. Two anti-tamper detection pins are available.
The RTC domain can also be supplied from VDD/VDDA pin.
By means of a built-in switch, an internal voltage supervisor allows automatic switching of RTC domain powering between V voltage of the RTC domain (V are valid, the RTC domain is supplied from VDD/VDDA pin.
An internal circuit for charging the battery on VBAT pin can be activated if the V within a valid range.
Note: External interrupts and RTC alarm/events cannot cause the microcontroller to exit the VBAT
mode, as in that mode the V
power domain, consuming very little energy, includes RTC, and LSE oscillator and
BAT
and voltage from VBAT pin to ensure that the supply
DD
) remains within valid operating conditions. If both voltages
BAT
voltage is
DD
is not within a valid range.
DD
DS12232 Rev 2 19/136
34
Functional overview STM32G071x8/xB

3.8 Interconnect of peripherals

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep and Stop modes.

Table 4. Interconnect of STM32G071x8/xB peripherals

Interconnect source
TIMx
COMPx
ADCx TIM1 Timer triggered by analog watchdog Y Y -
RTC
All clocks sources (internal
and external)
CSS
RAM (parity error)
Flash memory (ECC error)
COMPx
PVD
Interconnect
destination
TIMx Timer synchronization or chaining Y Y -
ADCx DACx
DMA Memory-to-memory transfer trigger Y Y -
COMPx Comparator output blanking Y Y -
TIM1,2,3
LPTIMERx
TIM16 Timer input channel from RTC events Y Y -
LPTIMERx
TIM14,16,17
TIM1,15,16,17 Timer break Y Y -
Conversion triggers Y Y -
Timer input channel, trigger, break from analog signals comparison
Low-power timer triggered by analog signals comparison
Low-power timer triggered by RTC alarms or tampers
Clock source used as input channel for RC measurement and trimming
Interconnect action
Run
YY -
YYY
YYY
YY -
Sleep
Low-power run
Low-power sleep
Stop
CPU (hard fault) TIM1,15,16,17 Timer break Y - -
TIMx External trigger Y Y -
GPIO
20/136 DS12232 Rev 2
LPTIMERx External trigger Y Y Y
ADC
DACx
Conversion external trigger Y Y -
STM32G071x8/xB Functional overview

3.9 Clocks and startup

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock source: three different sources can deliver SYSCLK system clock:
4-48 MHz high-speed oscillator with external crystal or ceramic resonator (HSE). It
can supply clock to system PLL. The HSE can also be configured in bypass mode for an external clock.
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software. It can
supply clock to system PLL.
System PLL with maximum output frequency of 64 MHz. It can be fed with HSE or
HSI16 clocks.
Auxiliary clock source: two ultra-low-power clock sources for the real-time clock
(RTC):
32.768 kHz low-speed oscillator with external crystal (LSE), supporting four drive
capability modes. The LSE can also be configured in bypass mode for using an external clock.
32 kHz low-speed internal RC oscillator (LSI) with ±5% accuracy, also used to
clock an independent watchdog.
Peripheral clock sources: several peripherals (I2S, USARTs, I2Cs, LPTIMs, ADC)
have their own clock independent of the system clock.
Clock security system (CSS): in the event of HSE clock failure, the system clock is
automatically switched to HSI16 and, if enabled, a software interrupt is generated. LSE clock failure can also be detected and generate an interrupt. The CCS feature can be enabled by software.
Clock output:
MCO (microcontroller clock output) provides one of the internal clocks for
external use by the application
LSCO (low speed clock output) provides LSI or LSE in all low-power modes
(except in VBAT operation).
Several prescalers allow the application to configure AHB and APB domain clock frequencies, 64 MHz at maximum.

3.10 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function (AF). Most of the GPIO pins are shared with special digital or analog functions.
DS12232 Rev 2 21/136
34
Functional overview STM32G071x8/xB
Through a specific sequence, this special function configuration of I/Os can be locked, such as to avoid spurious writing to I/O control registers.

3.11 Direct memory access controller (DMA)

Direct memory access (DMA) controller transfers data from a source to a destination, without making it transit through the CPU. DMA transfers are highly efficient; they save CPU resources and facilitate time-critical processing.
The source and the destination of a DMA transfer can be a peripheral or a memory.
The DMA transfer source and destination data types can be programmed independently. If different, the DMA controller performs data type conversion and adapts the addressing at the source and at the destination to their respective data types.
DMA transfer size is the number of DMA transfer cycles to execute, programmable by software. One cycle transfers one data item of selected data type from the DMA transfer source to the DMA transfer destination. The DMA transfer starts at pre-programmed source and destination base addresses. It ends at source and destination addresses that depend on the DMA transfer size, source and destination data types, and on activation of address auto-increment operation.
The DMA transfer starts upon a request from a peripheral or, in the specific case of memory­to-memory transfer, it starts when enabled by software.
The DMA controller executes one DMA transfer cycle per DMA transfer request from a peripheral, until the total number of cycles reaches the pre-programmed DMA transfer size. The circular mode of operation allows to repeat the DMA transfer infinitely, without software intervention.
In the specific case of memory-to-memory transfer, the DMA controller executes, if enabled by the software, the pre-programmed amount of cycles.
The DMA controller provides distinct DMA transfer channels. The channels can be individually configured in term of source and destination location, DMA transfer size, data type, priority level and operating mode. The DMA controller opens one channel at a time, according to channel priorities.
Features of the DMA controller:
7 DMA transfer channels, independently configurable by software
Per-channel DMA transfer trigger upon request from a peripheral
Per-channel DMA transfer triggered by software (memory-to-memory mode)
Programmable channel priority levels: very high, high, medium and low
By-default (hardware) channel priority levels, to arbitrate concurrent requests from
channels with identical programmable priority levels
Byte (8-bit unit), half-word (16-bit unit) and word (32-bit unit) DMA transfer data types,
programmable independently for the source and the destination
22/136 DS12232 Rev 2
STM32G071x8/xB Functional overview
Automatic alignment of DMA transfer source and destination addresses according to
their respective data types
Circular operating mode support
DMA Half Transfer, DMA Transfer Complete and DMA Transfer Error flags, logically
OR-ed together in a single interrupt request per channel
Memory-to-memory, peripheral-to-memory, memory-to-peripheral and peripheral-to-
peripheral DMA transfer types
DMA transfer size programmable up to 65535 DMA transfer cycles
Access to Flash memory, SRAM, APB and AHB peripherals as source and destination

3.12 Interrupts and events

The device flexibly manages events causing interrupts of linear program execution, called exceptions. The Cortex-M0+ processor core, a nested vectored interrupt controller (NVIC) and an extended interrupt/event controller (EXTI) are the assets contributing to handling the exceptions. Exceptions include core-internal events such as, for example, a division by zero and, core-external events such as logical level changes on physical lines. Exceptions result in interrupting the program flow, executing an interrupt service routine (ISR) then resuming the original program flow.
The processor context (contents of program pointer and status registers) is stacked upon program interrupt and unstacked upon program resume, by hardware. This avoids context stacking and unstacking in the interrupt service routines (ISRs) by software, thus saving time, code and power. The ability to abandon and restart load-multiple and store-multiple operations significantly increases the device’s responsiveness in processing exceptions.

3.12.1 Nested vectored interrupt controller (NVIC)

The configurable nested vectored interrupt controller is tightly coupled with the core. It handles physical line events associated with a non-maskable interrupt (NMI) and maskable interrupts, and Cortex-M0+ exceptions. It provides flexible priority management.
The tight coupling of the processor core with NVIC significantly reduces the latency between interrupt events and start of corresponding interrupt service routines (ISRs). The ISR vectors are listed in a vector table, stored in the NVIC at a base address. The vector address of an ISR to execute is hardware-built from the vector table base address and the ISR order number used as offset.
If a higher-priority interrupt event happens while a lower-priority interrupt event occurring just before is waiting for being served, the later-arriving higher-priority interrupt event is served first. Another optimization is called tail-chaining. Upon a return from a higher-priority ISR then start of a pending lower-priority ISR, the unnecessary processor context unstacking and stacking is skipped. This reduces latency and contributes to power efficiency.
DS12232 Rev 2 23/136
34
Functional overview STM32G071x8/xB
Features of the NVIC:
Low-latency interrupt processing
4 priority levels
Handling of a non-maskable interrupt (NMI)
Handling of 32 maskable interrupt lines
Handling of 10 Cortex-M0+ exceptions
Later-arriving higher-priority interrupt processed first
Tail-chaining
Interrupt vector retrieval by hardware

3.12.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller adds flexibility in handling physical line events and allows identifying wake-up events at processor wakeup from Stop mode.
The EXTI controller has 33 channels, of which 16 with rising, falling or rising and falling edge detector capability. Any GPIO and a few peripheral signals can be connected to these channels.
The channels can be independently masked.
The EXTI controller can capture pulses shorter than the internal clock period.
A register in the EXTI controller latches every event even in Stop mode, which allows the software to identify the origin of the processor's wake-up from Stop mode or, to identify the GPIO and the edge event having caused an interrupt.

3.13 Analog-to-digital converter (ADC)

A native 12-bit analog-to-digital converter is embedded into STM32G071x8/xB devices. It can be extended to 16-bit resolution through hardware oversampling. The ADC has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference, V monitoring). It performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of ~2 MSps even with a low CPU speed. An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase.
The ADC can be served by the DMA controller. It can operate in the whole V range.
The ADC features a hardware oversampler up to 256 samples, improving the resolution to 16 bits (refer to AN2668).
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
supply
DD
BAT
The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions with timers.
24/136 DS12232 Rev 2
STM32G071x8/xB Functional overview

3.13.1 Temperature sensor

The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to an ADC input to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor may vary from part to part due to process variation, the uncalibrated internal temperature sensor is suitable only for relative temperature measurements.
To improve the accuracy of the temperature sensor, each part is individually factory­calibrated by ST. The resulting calibration data are stored in the part’s System memory, accessible in read-only mode.
Calibration value name Description Memory address
TS_CAL1
TS_CAL2
Table 5. Temperature sensor calibration values
TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), V
= V
DDA
TS ADC raw data acquired at a temperature of 130 °C (± 5 °C), V
= V
DDA
= 3.0 V (± 10 mV)
REF+
= 3.0 V (± 10 mV)
REF+
0x1FFF 75A8 - 0x1FFF 75A9
0x1FFF 75CA - 0x1FFF 75CB
3.13.2 Internal voltage reference (V
The internal voltage reference (V ADC and comparators. V
REFINT
REFINT
is internally connected to an ADC input. The V
REFINT
)
) provides a stable (bandgap) voltage output for the
voltage is individually precisely measured for each part by ST during production test and stored in the part’s System memory. It is accessible in read-only mode.
3.13.3 V
Calibration value name Description Memory address
battery voltage monitoring
BAT
Table 6. Internal voltage reference calibration values
Raw data acquired at a
VREFINT
temperature of 30 °C (± 5 °C), V
DDA
= V
= 3.0 V (± 10 mV)
REF+
This embedded hardware feature allows the application to measure the V using an internal ADC input. As the V
voltage may be higher than V
BAT
the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third the V

3.14 Digital-to-analog converter (DAC)

REFINT
0x1FFF 75AA - 0x1FFF 75AB
battery voltage
BAT
and thus outside
DDA
voltage.
BAT
The 2-channel 12-bit buffered DAC converts a digital value into an analog voltage available on the channel output. The architecture of either channel is based on integrated resistor string and an inverting amplifier. The digital circuitry is common for both channels.
DS12232 Rev 2 25/136
34
Functional overview STM32G071x8/xB
Features of the DAC:
Two DAC output channels
8-bit or 12-bit output mode
Buffer offset calibration (factory and user trimming)
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Independent or simultaneous conversion for DAC channels
DMA capability for either DAC channel
Triggering with timer events, synchronized with DMA
Triggering with external events
Sample-and-hold low-power mode, with internal or external capacitor

3.15 Voltage reference buffer (VREFBUF)

When enabled, an embedded buffer provides the internal reference voltage to analog blocks (for example ADC) and to VREF+ pin for external components.
The internal voltage reference buffer supports two voltages:
2.048 V
2.5 V
An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is disabled.
On some packages, the VREF+ pad of the silicon die is double-bonded with supply pad to common VDD/VDDA pin and so the internal voltage reference buffer cannot be used.

3.16 Comparators (COMP)

Two embedded rail-to-rail analog comparators have programmable reference voltage (internal or external), hysteresis, speed (low for low-power) and output polarity.
The reference voltage can be one of the following:
external, from an I/O
internal, from DAC
internal reference voltage (V
The comparators can wake up the device from Stop mode, generate interrupts, breaks or triggers for the timers and can be also combined into a window comparator.
) or its submultiple (1/4, 1/2, 3/4)
REFINT

3.17 Timers and watchdogs

The device includes an advanced-control timer, six general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. Table 7 compares features of the advanced control, general purpose and basic timers.
26/136 DS12232 Rev 2
STM32G071x8/xB Functional overview
Timer type Timer
Advanced-
control
TIM1 16-bit
TIM2 32-bit
TIM3 16-bit
General-
purpose
TIM14 16-bit Up 64 MHz
TIM15 16-bit Up 128 MHz
TIM16 TIM17
Basic
Low-power
TIM6 TIM7
LPTIM1 LPTIM2

Table 7. Timer feature comparison

Counter
resolution
Counter
type
Up, down,
up/down
Up, down,
up/down
Up, down,
up/down
16-bit Up 64 MHz
16-bit Up 64 MHz
16-bit Up 64 MHz
Maximum operating
frequency
128 MHz
64 MHz
64 MHz
Prescaler
factor
Integer from
Integer from
Integer from
Integer from
Integer from
Integer from
Integer from
1 to 2
1 to 2
1 to 2
1 to 2
1 to 2
1 to 2
1 to 2
n
where
2
16
16
16
16
16
16
16
n=0 to 7
DMA
request
generation
Capture/ compare
channels
Yes 4 3
Yes 4 -
Yes 4 -
No 1 -
Yes 2 1
Yes 1 1
Yes - -
No N/A -
Comple­mentary
outputs

3.17.1 Advanced-control timer (TIM1)

The advanced-control timer can be seen as a three-phase PWM unit multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:
input capture
output compare
PWM output (edge or center-aligned modes) with full modulation capability (0-100%)
one-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled, so as to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.17.2) using the same architecture, so the advanced-control timers can work
together with the TIMx timers via the Timer Link feature for synchronization or event chaining.
DS12232 Rev 2 27/136
34
Functional overview STM32G071x8/xB

3.17.2 General-purpose timers (TIM2, TIM3, TIM14, TIM15, TIM16, TIM17)

There are six synchronizable general-purpose timers embedded in the device (refer to
Tab l e 7 for comparison). Each general-purpose timer can be used to generate PWM outputs
or act as a simple timebase.
TIM2 and TIM3
These are full-featured general-purpose timers:
TIM2 with 32-bit auto-reload up/downcounter and 16-bit prescaler
TIM3 with 16-bit auto-reload up/downcounter and 16-bit prescaler
They have four independent channels for input capture/output compare, PWM or one­pulse mode output. They can operate together or in combination with other general­purpose timers via the Timer Link feature for synchronization or event chaining. They can generate independent DMA request and support quadrature encoders. Their counters can be frozen in debug mode.
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. It has one channel for input capture/output compare, PWM output or one-pulse mode output. Its counter can be frozen in debug mode.
TIM15, 16 and 17
These are general-purpose timers featuring:
16-bit auto-reload upcounter and 16-bit prescaler
2 channels and 1 complementary channel for TIM15
1 channel and 1 complementary channel for TIM16 and TIM17
All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can operate together via the Timer Link feature for synchronization or event chaining. They can generate independent DMA request. Their counters can be frozen in debug mode.

3.17.3 Basic timers (TIM6 and TIM7)

These timers are mainly used for triggering DAC conversions. They can also be used as generic 16-bit timebases.

3.17.4 Low-power timers (LPTIM1 and LPTIM2)

These timers have an independent clock. When fed with LSE, LSI or external clock, they keep running in Stop mode and they can wake up the system from it.
28/136 DS12232 Rev 2
STM32G071x8/xB Functional overview
Features of LPTIM1 and LPTIM2:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output (pulse, PWM)
Continuous/one-shot mode
Selectable software/hardware input trigger
Selectable clock source:
Internal: LSE, LSI, HSI16 or APB clocks
External: over LPTIM input (working even with no internal clock source running,
used by pulse counter application)
Programmable digital glitch filter
Encoder mode

3.17.5 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 32 kHz internal RC (LSI). Independent of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. Its counter can be frozen in debug mode.

3.17.6 System window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked by the system clock. It has an early-warning interrupt capability. Its counter can be frozen in debug mode.

3.17.7 SysTick timer

This timer is dedicated to real-time operating systems, but it can also be used as a standard down counter.
Features of SysTick timer:
24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source

3.18 Real-time clock (RTC), tamper (TAMP) and backup registers

The device embeds an RTC and five 32-bit backup registers, located in the RTC domain of the silicon die.
The ways of powering the RTC domain are described in Section 3.7.6.
The RTC is an independent BCD timer/counter.
DS12232 Rev 2 29/136
34
Functional overview STM32G071x8/xB
Features of the RTC:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month
Programmable alarm
On-the-fly correction from 1 to 32767 RTC clock pulses, usable for synchronization with
a master clock
Reference clock detection - a more precise second-source clock (50 or 60 Hz) can be
used to improve the calendar precision
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy
Two anti-tamper detection pins with programmable filter
Timestamp feature to save a calendar snapshot, triggered by an event on the
timestamp pin, a tamper event or by switching to VBAT mode
17-bit auto-reload wakeup timer (WUT) for periodic events, with programmable
resolution and period
Multiple clock sources and references:
A 32.768 kHz external crystal (LSE)
An external resonator or oscillator (LSE)
The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
The high-speed external clock (HSE) divided by 32
When clocked by LSE, the RTC operates in VBAT mode and in all low-power modes. When clocked by LSI, the RTC does not operate in VBAT mode, but it does in low-power modes except for the Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wake the device up from the low-power modes.
The backup registers allow keeping 20 bytes of user application data in the event of V failure, if a valid backup supply voltage is provided on VBAT pin. They are not affected by the system reset, power reset, and upon the device’s wakeup from Standby or Shutdown modes.

3.19 Inter-integrated circuit interface (I2C)

The device embeds two I2C-bus peripherals I2C1 and I2C2. Refer to Table 8 for the features.
2
The I
C-bus interface handles communication between the microcontroller and the serial
2
I
C-bus. It controls all I2C-bus-specific sequencing, protocol, arbitration and timing.
DD
30/136 DS12232 Rev 2
STM32G071x8/xB Functional overview
Features of the I2C peripheral:
2
I
C-bus specification and user manual rev. 5 compatibility:
Slave and master modes, multimaster capability
Standard-mode (Sm), with a bitrate up to 100 kbit/s
Fast-mode (Fm), with a bitrate up to 400 kbit/s
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and extra output drive I/Os
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
Programmable setup and hold times
Clock stretching
System management bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (packet error checking) generation and verification with ACK
control
Address resolution protocol (ARP) support
SMBus alert
Power system management protocol (PMBus™) specification rev 1.1 compatibility
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent of the PCLK reprogramming
Wakeup from Stop mode on address match
Programmable analog and digital noise filters
1-byte buffer with DMA capability
Table 8. I
I2C features
2
C implementation
(1)
I2C1 I2C2
Standard mode (up to 100 kbit/s) X X
Fast mode (up to 400 kbit/s) X X
Fast Mode Plus (up to 1 Mbit/s) with extra output drive I/Os X X
Programmable analog and digital noise filters X X
SMBus/PMBus hardware support X -
Independent clock X -
Wakeup from Stop mode on address match X -
1. X: supported

3.20 Universal synchronous/asynchronous receiver transmitter (USART)

The device embeds universal synchronous/asynchronous receivers/transmitters (USART1, USART2, USART3, USART4) that communicate at speeds of up to 6 Mbit/s.
They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. Some can also support SmartCard communication (ISO
7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have
DS12232 Rev 2 31/136
34
Functional overview STM32G071x8/xB
a clock domain independent of the CPU clock, which allows them to wake up the MCU from Stop mode. The wakeup events from Stop mode are programmable and can be:
start bit detection
any received data frame
a specific programmed data frame
All USART interfaces can be served by the DMA controller.

Table 9. USART implementation

USART modes/features
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode X X
Smartcard mode X -
Single-wire half-duplex communication X X
IrDA SIR ENDEC block X -
LIN mode X -
Dual clock domain and wakeup from Stop mode X -
Receiver timeout interrupt X -
Modbus communication X -
Auto baud rate detection X -
Driver Enable X X
1. X: supported
(1)
USART1 USART2
USART3 USART4

3.21 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode. The wakeup events from Stop mode are programmable and can be:
start bit detection
any received data frame
a specific programmed data frame
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.
32/136 DS12232 Rev 2
STM32G071x8/xB Functional overview
The LPUART interface can be served by the DMA controller.

3.22 Serial peripheral interface (SPI)

Two SPI interfaces allow communication at up to 32 Mbits/s in master and slave modes. It supports half-duplex, full-duplex and simplex communications. A 3-bit prescaler gives 8 master mode frequencies. The frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and hardware CRC calculation.
The SPI interfaces can be served by the DMA controller.
One standard I can operate as master or slave, in half-duplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, it can output a clock for an external audio component at 256 times the sampling frequency.
Hardware CRC calculation X X
Rx/Tx FIFO X X
2
S interface (multiplexed with SPI1) supporting four different audio standards

Table 10. SPI/I2S implementation

SPI features
(1)
SPI1 SPI2
NSS pulse mode X X
I2S mode X -
TI mode X X
1. X = supported.

3.23 USB Type-C™ Power Delivery controller

The device embeds two controllers (UCPD1 and UCPD2) compliant with USB Type-C Rev.
1.2 and USB Power Delivery Rev. 3.0 specifications.
The controllers use specific I/Os supporting the USB Type-C and USB Power Delivery requirements, featuring:
USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors
“Dead battery” support
USB Power Delivery message transmission and reception
FRS (fast role swap) support
DS12232 Rev 2 33/136
34
Functional overview STM32G071x8/xB
The digital controller handles notably:
USB Type-C level detection with de-bounce, generating interrupts
FRS detection, generating an interrupt
byte-level interface for USB Power Delivery payload, generating interrupts (DMA
compatible)
USB Power Delivery timing dividers (including a clock pre-scaler)
CRC generation/checking
4b5b encode/decode
ordered sets (with a programmable ordered set mask at receive)
frequency recovery in receiver during preamble
The interface offers low-power operation compatible with Stop mode, maintaining the capacity to detect incoming USB Power Delivery messages and FRS signaling.

3.24 Development support

3.24.1 Serial wire debug port (SW-DP)

An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.
34/136 DS12232 Rev 2
STM32G071x8/xB Pinouts, pin description and alternate functions
MSv39710V3
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
PB12
PC11
PC12
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VBAT
VREF+
VDD/VDDA
VSS/VSSA
PF2-NRST
PF0-OSC_IN
PF1-OSC_OUT
PC0
PC1
PC2
PC3
PC8
PA15
PA14-BOOT0
PA1 3
PA12 [PA10]
PA1 1 [ PA9]
PA10
PD9
PD8
PC7
PC6
PA9
PA8
PB15
PB14
PB13
PC9
PD0
PD1
PD2
PD3
PD4
PD5
PD6
PB3
PB4
PB5
PB6
PB7
PB8
PB9
PC10
Top view
LQFP64
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
48
46
45
44
43
42
41
40
39
38
37
36
35
34
33
47
55
5352515049
56
54
61
59
57
646362
60
58
26
2829303132
25
27
20
22
24
171819
21
23

4 Pinouts, pin description and alternate functions

The devices housed in 64- and 48-pin packages provide 2-port USB-C Power Delivery. The devices housed in 28/32-pin packages come in two variants - “GP” with a single-port limited USB-C Power Delivery and “PD” with 2-port USB-C Power Delivery.

Figure 3. STM32G071RxT LQFP64 pinout

DS12232 Rev 2 35/136
52
Pinouts, pin description and alternate functions STM32G071x8/xB
MSv47971V1
A
B
C
D
E
VDD/
VDDA
VREF+
VBAT
PB5 PD3
VSS/
VSSA
PF2-
NRST
PC0
PA7 PC7
PF0-
OSC_I
N
PC1
PA3
PA6 PB0
PF1-
OSC_
OUT
PC2
PA2
PA5 PB1
PC3 PA0 PA 1 PA4 PC4
PC11 PC10 PB7 PB6 PD6
PC15-
OSC32
_OUT
PC12
PB8
PB3 PD5
PC14-
OSC32
_IN
PC13
PB9
PB4 PD4
PA10
PA13 PD9
PA9
PC6 PD8
PB14
PB15 PA 8
PB10
PB12 PB13
PC5 PB2 PB11
PD2 PD0 PC8
PD1
PC9
PA12
[PA10]
PA15
PA14-
BOOT0
PA11 [PA9]
12345678
F
G
H
MSv39711V3
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
PB12
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VBAT
VREF+
VDD/VDDA
VSS/VSSA
PF2-NRST
PF0-OSC_IN
PF1-OSC_OUT
PA0 PA1
PA14-BOOT0 PA13 PA12 [PA10] PA11 [PA9] PA10 PC7 PC6 PA9 PA8 PB15 PB14 PB13
PA15
PD0
PD1
PD2
PD3
PB3
PB4
PB5
PB6
PB7
PB8
PB9
Top view
LQFP48
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19

Figure 4. STM32G071RxH UFBGA64 ballout

Figure 5. STM32G071CxT LQFP48 pinout

36/136 DS12232 Rev 2
STM32G071x8/xB Pinouts, pin description and alternate functions
Exposed pad
MSv39714V3
Top view
E
d
UFQFPN48
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19
VSS
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
PB12
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
VBAT
VREF+
VDD/VDDA
VSS/VSSA
PF2-NRST
PF0-OSC_IN
PF1-OSC_OUT
PA0 PA1
PA14-BOOT0 PA13 PA12 [PA10] PA11 [PA9] PA10 PC7 PC6 PA9 PA8 PB15 PB14 PB13
PA15
PD0
PD1
PD2
PD3
PB3
PB4
PB5
PB6
PB7
PB8
PB9
MSv42120V1
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB9
PC14-OSC32_IN
PC15-OSC32_OUT
VDD/VDDA
VSS/VSSA
PF2-NRST
PA0
PA1
PA13
PA12 [PA10]
PA11 [PA9]
PA10
PC6
PA9
PA8
PB15
PA14-BOOT0
PD0
PD1
PD2
PD3
PB6
PB7
PB8
Top view
LQFP32
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
29
27
25
323130
28
26
12
14
16
9
10
11
13
15
MSv39712V3
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB9
PC14-OSC32_IN
PC15-OSC32_OUT
VDD/VDDA
VSS/VSSA
PF2-NRST
PA0
PA1
PA13
PA12 [PA10]
PA11 [PA9]
PA10
PC6
PA9
PA8
PB2
PA14-BOOT0
PA15
PB3
PB4
PB5
PB6
PB7
PB8
Top view
LQFP32
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
29
27
25
323130
28
26
12
14
16
9
10
11
13
15
GP version
PD version
(STM32G071KxTxN)
(STM32G071KxT)

Figure 6. STM32G071CxU UFQFPN48 pinout

xposed pa

Figure 7. STM32G071KxT LQFP32 pinout

DS12232 Rev 2 37/136
52
Pinouts, pin description and alternate functions STM32G071x8/xB
MSv42121V1
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB9
PC14-OSC32_IN
PC15-OSC32_OUT
VDD/VDDA
VSS/VSSA
PF2-NRST
PA0 PA1
PA13 PA12 [PA10] PA11 [PA9] PA10 PC6 PA9 PA8 PB15
PA14-BOOT0
PD0
PD1
PD2
PD3
PB6
PB7
PB8
Top view
UFQFPN32
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
29
27
25
323130
28
26
12
14
16
9
10
11
13
15
VSS
MSv39715V3
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB9
PC14-OSC32_IN
PC15-OSC32_OUT
VDD/VDDA
VSS/VSSA
PF2-NRST
PA0 PA1
PA13 PA12 [PA10] PA11 [PA9] PA10 PC6 PA9 PA8 PB2
PA14-BOOT0
PA15
PB3
PB4
PB5
PB6
PB7
PB8
Top view
UFQFPN32
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
29
27
25
323130
28
26
12
14
16
9
10
11
13
15
VSS
GP version
PD version
(STM32G071KxUxN)
(STM32G071KxU)

Figure 8. STM32G071KxU UFQFPN32 pinout

38/136 DS12232 Rev 2
STM32G071x8/xB Pinouts, pin description and alternate functions
MSv42122V2
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PC14-OSC32_IN
PC15-OSC32_OUT
VDD/VDDA
VSS/VSSA
PF2-NRST
PA0 PA1
PA14-BOOT0 PA13 PA12 [PA10] PA11 [ PA9] PC6 PA8 PB15
PD0
PD1
PD2
PD3
PB6
PB7
PB8
Top view
UFQFPN28
1
2
3
4
5
6
7
21
20
19
18
17
16
15
25
23
282726
24
22
11
13
8
9
10
12
14
MSv39713V4
PA2
PA3
PA4
PA5
PA6
PA7
PB0
PC14-OSC32_IN
PC15-OSC32_OUT
VDD/VDDA
VSS/VSSA
PF2-NRST
PA0 PA1
PA14-BOOT0 PA13 PA12 [PA10] PA11 [ PA9] PC6 PA8 PB1
PA15
PB3
PB4
PB5
PB6
PB7
PB8
Top view
UFQFPN28
1
2
3
4
5
6
7
21
20
19
18
17
16
15
25
23
282726
24
22
11
13
8
9
10
12
14
GP version
PD version
(STM32G071GxUxN)
(STM32G071GxU)
MSv47938V1
12345
A
B
C
D
E
PA15
PA14-
BOOT0
PB5 PB7
PC14-
OSC32
_IN
PA12
[PA10]
PA13 PB6 PB8
PC15-
OSC32
_OUT
PA11 [PA9]
PA6 PA 3 PA0 VDD
PA8 PA 7 PA4 PA 1 VSS
PB1 PB0 PA5 PA 2
PF2 ­NRST
Top view

Figure 9. STM32G071GxU UFQFPN28 pinout

Figure 10. STM32G071Ex WLCSP25 pinout

DS12232 Rev 2 39/136
52
Pinouts, pin description and alternate functions STM32G071x8/xB

Table 11. Terms and symbols used in Table 12

Column Symbol Definition
Pin name
Terminal name corresponds to its by-default function at reset, unless otherwise specified in parenthesis under the pin name.
S Supply pin
Pin type
I Input only pin
I/O Input / output pin
FT 5 V tolerant I/O
TT 3.6 V tolerant I/O
RST Bidirectional reset pin with embedded weak pull-up resistor
Options for TT or FT I/Os
I/O structure
_f I/O, Fm+ capable
_a I/O, with analog switch function
_c I/O, USB Type-C PD capable
_d I/O, USB Type-C PD Dead Battery function
Note Upon reset, all I/Os are set as analog inputs, unless otherwise specified.
Pin
functions
Alternate functions
Additional
functions
Functions selected through GPIOx_AFR registers
Functions directly selected/enabled through peripheral registers

Table 12. Pin assignment and description

Pin Number
Pin name
(function
Pin type
I/O structure
WLCSP25
UFQFPN28 - PD
UFQFPN28 - GP
LQFP64
UFBGA64
upon reset)
LQFP48 / UFQFPN48
LQFP32 / UFQFPN32 - PD
LQFP32 / UFQFPN32 - GP
- - - - - - A1 1 PC11 I/O FT -
- - - - - - B2 2 PC12 I/O FT -
- - - - - 1 C2 3 PC13 I/O FT
Alternate
Note
functions
USART3_RX,
USART4_RX, TIM1_CH4
LPTIM1_IN1,
UCPD1_FRSTX,
TIM14_CH1
(1)
(2)
TIM1_BKIN
Additional
functions
-
-
TAM P_I N1,R TC_TS, RTC_OUT1,WKUP2
40/136 DS12232 Rev 2
STM32G071x8/xB Pinouts, pin description and alternate functions
Table 12. Pin assignment and description (continued)
Pin Number
Pin name
LQFP64
WLCSP25
UFQFPN28 - PD
UFQFPN28 - GP
UFBGA64
LQFP48 / UFQFPN48
LQFP32 / UFQFPN32 - PD
LQFP32 / UFQFPN32 - GP
-----2C14
A51122---
B52 2 3 3 3B15
(function
upon reset)
PC14-
OSC32_IN
(PC14)
PC14-
OSC32_IN
(PC14)
PC15-
OSC32_OU
T
(PC15)
Pin type
I/O FT
I/O FT
I/O FT
Note
I/O structure
(1)(2
)
(1)(2
)
(1)(2
)
Alternate
functions
TIM1_BKIN2 OSC32_IN
TIM1_BKIN2 OSC32_IN,OSC_IN
OSC32_EN, OSC_EN,
TIM15_BKIN
Additional
functions
OSC32_OUT
- - - - - 4 D3 6 VBAT S - - - -
- - - - - 5 D2 7 VREF+ S - - - VREF_OUT
C5 3 3 4 4 6 D1 8 VDD/VDDA S - - - -
D5 4 4 5 5 7 E1 9 VSS/VSSA S - - - -
PF0-
-----8F110
OSC_IN
I/O FT - TIM14_CH1 OSC_IN
(PF0)
PF1-
-----9G111
OSC_OUT
I/O FT - OSC_EN, TIM15_CH1N OSC_OUT
(PF1)
E5 5 5 6 6 10 E2 12 PF2 - NRST I/O FT - MCO NRST
LPTIM1_IN1,
- - - - - - E3 13 PC0 I/O FT -
LPUART1_RX,
-
LPTIM2_IN1
LPTIM1_OUT,
- - - - - - F2 14 PC1 I/O FT -
LPUART1_TX,
-
TIM15_CH1
- - - - - - G2 15 PC2 I/O FT -
LPTIM1_IN2,
SPI2_MISO, TIM15_CH2
-
LPTIM1_ETR,
- - - - - - H1 16 PC3 I/O FT -
SPI2_MOSI,
-
LPTIM2_ETR
DS12232 Rev 2 41/136
52
Pinouts, pin description and alternate functions STM32G071x8/xB
Table 12. Pin assignment and description (continued)
Pin Number
Pin name
(function
upon reset)
LQFP64
WLCSP25
UFQFPN28 - PD
UFQFPN28 - GP
LQFP32 / UFQFPN32 - PD
LQFP32 / UFQFPN32 - GP
C4 6 6 7 7 11 H2 17 PA0 I/O FT_a -
D4 7 7 8 8 12 H3 18 PA1 I/O FT_a -
E4 8 8 9 9 13 G3 19 PA2 I/O FT_a -
C3 9 9 10 10 14 F3 20 PA3 I/O FT_a -
- - - - - 15H421 PA4 I/O TT_a -
D3 10 10 11 11 - - - PA4 I/O TT_a -
UFBGA64
LQFP48 / UFQFPN48
Pin type
I/O structure
Alternate
Note
functions
SPI2_SCK,
USART2_CTS,
TIM2_CH1_ETR,
USART4_TX,
LPTIM1_OUT,
UCPD2_FRSTX,
COMP1_OUT
SPI1_SCK/I2S1_CK,
USART2_RTS_DE_CK,
TIM2_CH2,
USART4_RX,
TIM15_CH1N,
I2C1_SMBA,
EVENTOUT
SPI1_MOSI/I2S1_SD,
USART2_TX, TIM2_CH3,
UCPD1_FRSTX,
TIM15_CH1,
LPUART1_TX,
COMP2_OUT
SPI2_MISO,
USART2_RX,
TIM2_CH4,
UCPD2_FRSTX,
TIM15_CH2,
LPUART1_RX,
EVENTOUT
SPI1_NSS/I2S1_WS,
SPI2_MOSI,
TIM14_CH1,
LPTIM2_OUT,
UCPD2_FRSTX,
EVENTOUT
SPI1_NSS/I2S1_WS,
SPI2_MOSI,
TIM14_CH1,
LPTIM2_OUT,
UCPD2_FRSTX,
EVENTOUT
Additional
functions
COMP1_INM,
ADC_IN0,
TAMP_IN2,WKUP1
COMP1_INP,
ADC_IN1
COMP2_INM,
ADC_IN2,
WKUP4,LSCO
COMP2_INP,
ADC_IN3
ADC_IN4,
DAC_OUT1,
RTC_OUT2
ADC_IN4,
DAC_OUT1, TAM P_I N1,R TC_TS, RTC_OUT1,WKUP2
42/136 DS12232 Rev 2
STM32G071x8/xB Pinouts, pin description and alternate functions
Table 12. Pin assignment and description (continued)
Pin Number
Pin name
(function
Pin type
I/O structure
WLCSP25
UFQFPN28 - PD
UFQFPN28 - GP
LQFP64
UFBGA64
upon reset)
LQFP48 / UFQFPN48
LQFP32 / UFQFPN32 - PD
LQFP32 / UFQFPN32 - GP
E3 11 11 12 12 16 G4 22 PA5 I/O TT_a -
C2 12 12 13 13 17 F4 23 PA6 I/O FT_a -
Alternate
Note
functions
SPI1_SCK/I2S1_CK,
CEC, TIM2_CH1_ETR,
USART3_TX,
LPTIM2_ETR,
UCPD1_FRSTX,
EVENTOUT
SPI1_MISO/I2S1_MCK, TIM3_CH1, TIM1_BKIN,
USART3_CTS,
TIM16_CH1,
LPUART1_CTS,
COMP1_OUT
Additional
functions
ADC_IN5,
DAC_OUT2
ADC_IN6
D2 13 13 14 14 18 E4 24 PA7 I/O FT_a -
- - - - - - H5 25 PC4 I/O FT_a -
- - - - - - H6 26 PC5 I/O FT_a -
E2 14 - 15 15 19 F5 27 PB0 I/O FT_a -
- - 14 - - - - - PB0 I/O FT_da -
SPI1_MOSI/I2S1_SD,
TIM3_CH2, TIM1_CH1N,
TIM14_CH1, TIM17_CH1,
UCPD1_FRSTX,
COMP2_OUT
USART3_TX, USART1_TX,
TIM2_CH1_ETR
USART3_RX,
USART1_RX, TIM2_CH2
SPI1_NSS/I2S1_WS,
TIM3_CH3, TIM1_CH2N,
USART3_RX,
LPTIM1_OUT,
UCPD1_FRSTX,
COMP1_OUT
SPI1_NSS/I2S1_WS,
TIM3_CH3, TIM1_CH2N,
USART3_RX,
LPTIM1_OUT,
UCPD1_FRSTX,
COMP1_OUT
ADC_IN7
COMP1_INM,
ADC_IN17
COMP1_INP,
ADC_IN18, WKUP5
ADC_IN8
UCPD1_DBCC2,
ADC_IN8
DS12232 Rev 2 43/136
52
Pinouts, pin description and alternate functions STM32G071x8/xB
Table 12. Pin assignment and description (continued)
Pin Number
Pin name
(function
upon reset)
LQFP64
WLCSP25
UFQFPN28 - PD
UFQFPN28 - GP
LQFP32 / UFQFPN32 - PD
LQFP32 / UFQFPN32 - GP
E1 15 - 16 16 20 G5 28 PB1 I/O FT_a -
- - - 17 - 21 H7 29 PB2 I/O FT_a -
- - - - - 22 G6 30 PB10 I/O FT_fa -
- - - - - 23H831 PB11 I/O FT_fa -
- - - - - 24 G7 32 PB12 I/O FT_a -
- - - - - 25 G8 33 PB13 I/O FT_f -
- - - - - 26 F6 34 PB14 I/O FT_f -
UFBGA64
LQFP48 / UFQFPN48
Pin type
I/O structure
Alternate
Note
functions
TIM14_CH1, TIM3_CH4,
TIM1_CH3N,
USART3_RTS_DE_CK,
LPTIM2_IN1,
LPUART1_RTS_DE,
EVENTOUT
SPI2_MISO,
USART3_TX,
LPTIM1_OUT,
EVENTOUT
CEC, LPUART1_RX,
TIM2_CH3, USART3_TX,
SPI2_SCK, I2C2_SCL,
COMP1_OUT
SPI2_MOSI,
LPUART1_TX,
TIM2_CH4,
USART3_RX, I2C2_SDA,
COMP2_OUT
SPI2_NSS,
LPUART1_RTS_DE,
TIM1_BKIN,
TIM15_BKIN,
UCPD2_FRSTX,
EVENTOUT
SPI2_SCK,
LPUART1_CTS,
TIM1_CH1N,
USART3_CTS,
TIM15_CH1N,
I2C2_SCL, EVENTOUT
SPI2_MISO,
UCPD1_FRSTX,
TIM1_CH2N,
USART3_RTS_DE_CK,
TIM15_CH1, I2C2_SDA,
EVENTOUT
Additional
functions
COMP1_INM,
ADC_IN9
COMP1_INP,
ADC_IN10
ADC_IN11
ADC_IN15
ADC_IN16
-
-
44/136 DS12232 Rev 2
STM32G071x8/xB Pinouts, pin description and alternate functions
Table 12. Pin assignment and description (continued)
Pin Number
Pin name
(function
Pin type
I/O structure
WLCSP25
UFQFPN28 - PD
UFQFPN28 - GP
LQFP64
UFBGA64
upon reset)
LQFP48 / UFQFPN48
LQFP32 / UFQFPN32 - PD
LQFP32 / UFQFPN32 - GP
- - 15 - 17 27 F7 35 PB15 I/O FT_c -
D1 16 16 18 18 28 F8 36 PA8 I/O FT_c -
- - - 1919 29E637 PA9 I/O FT_fd -
Alternate
Note
functions
SPI2_MOSI,
TIM1_CH3N,
TIM15_CH1N,
TIM15_CH2, EVENTOUT
MCO, SPI2_NSS,
TIM1_CH1,
LPTIM2_OUT,
EVENTOUT
MCO, USART1_TX,
TIM1_CH2, SPI2_MISO,
TIM15_BKIN, I2C1_SCL,
EVENTOUT
Additional
functions
UCPD1_CC2,
RTC_REFIN,
UCPD1_CC1
UCPD1_DBCC1
- 17 - 20 20 30 E7 38 PC6 I/O FT -
--17----- PC6 I/OFT_d -
- - - - - 31E539 PC7 I/O FT -
- - - - - - E8 40 PD8 I/O FT -
- - - - - - D8 41 PD9 I/O FT -
- - - 21 2132D642 PA10 I/O FT_fd -
C1 18 18 22 22 33 C8 43
B1 19 19 23 23 34 B8 44
PA11
[PA9]
PA1 2
[PA10]
I/O FT_f -
(3)
I/O FT_f -
(3)
UCPD1_FRSTX,
TIM3_CH1, TIM2_CH3
UCPD1_FRSTX,
TIM3_CH1, TIM2_CH3
UCPD2_FRSTX,
TIM3_CH2, TIM2_CH4
USART3_TX,
SPI1_SCK/I2S1_CK,
LPTIM1_OUT
USART3_RX,
SPI1_NSS/I2S1_WS,
TIM1_BKIN2
SPI2_MOSI,
USART1_RX,
TIM1_CH3, TIM17_BKIN,
I2C1_SDA, EVENTOUT
SPI1_MISO/I2S1_MCK,
USART1_CTS, TIM1_CH4, TIM1_BKIN2, I2C2_SCL, COMP1_OUT
SPI1_MOSI/I2S1_SD,
USART1_RTS_DE_CK,
TIM1_ETR, I2S_CKIN,
I2C2_SDA,
COMP2_OUT
-
UCPD1_DBCC1
-
-
-
UCPD1_DBCC2
-
-
DS12232 Rev 2 45/136
52
Pinouts, pin description and alternate functions STM32G071x8/xB
Table 12. Pin assignment and description (continued)
Pin Number
Pin name
(function
Pin type
I/O structure
WLCSP25
UFQFPN28 - PD
UFQFPN28 - GP
LQFP64
UFBGA64
upon reset)
LQFP48 / UFQFPN48
LQFP32 / UFQFPN32 - PD
LQFP32 / UFQFPN32 - GP
B2 20 20 24 24 35 D7 45 PA13 I/O FT
A2 21 21 25 25 36 C7 46
PA1 4-
BOOT0
I/O FT
A1 22 - 26 - 37 C6 47 PA15 I/O FT -
- - - - - - A8 48 PC8 I/O FT -
Alternate
Note
(4)
functions
SWDIO, IR_OUT,
EVENTOUT
SWCLK, USART2_TX,
(4)
EVENTOUT
SPI1_NSS/I2S1_WS,
USART2_RX,
TIM2_CH1_ETR, USART4_RTS_DE_CK, USART3_RTS_DE_CK,
EVENTOUT
UCPD2_FRSTX,
TIM3_CH3, TIM1_CH1
Additional
functions
-
BOOT0
-
-
- - - - - - B7 49 PC9 I/O FT -
- - 22 - 2638A750 PD0 I/O FT_c -
- - 23 - 2739B651 PD1 I/O FT_d -
- - 24 - 2840A652 PD2 I/O FT_c -
- - 25 - 29 41D553 PD3 I/O FT_d -
- - - - - - C5 54 PD4 I/O FT -
- - - - - - B5 55 PD5 I/O FT -
- - - - - - A5 56 PD6 I/O FT -
- 23 - 27 - 42B457 PB3 I/O FT_a -
I2S_CKIN, TIM3_CH4,
TIM1_CH2
EVENTOUT, SPI2_NSS,
TIM16_CH1
EVENTOUT, SPI2_SCK,
TIM17_CH1
USART3_RTS_DE_CK,
TIM3_ETR, TIM1_CH1N
USART2_CTS,
SPI2_MISO, TIM1_CH2N
USART2_RTS_DE_CK,
SPI2_MOSI, TIM1_CH3N
USART2_TX,
SPI1_MISO/I2S1_MCK,
TIM1_BKIN
USART2_RX,
SPI1_MOSI/I2S1_SD,
LPTIM2_OUT
SPI1_SCK/I2S1_CK,
TIM1_CH2, TIM2_CH2,
USART1_RTS_DE_CK,
EVENTOUT
-
UCPD2_CC1
UCPD2_DBCC1
UCPD2_CC2
UCPD2_DBCC2
-
-
-
COMP2_INM
46/136 DS12232 Rev 2
STM32G071x8/xB Pinouts, pin description and alternate functions
Table 12. Pin assignment and description (continued)
Pin Number
Pin name
(function
Pin type
I/O structure
WLCSP25
UFQFPN28 - PD
UFQFPN28 - GP
LQFP64
UFBGA64
upon reset)
LQFP48 / UFQFPN48
LQFP32 / UFQFPN32 - PD
LQFP32 / UFQFPN32 - GP
- 24 - 28 - 43C458 PB4 I/O FT_a -
A3 25 - 29 - 44 D4 59 PB5 I/O FT -
B3 26 26 30 30 45 A4 60 PB6 I/O FT_fa -
Alternate
Note
functions
SPI1_MISO/I2S1_MCK,
TIM3_CH1,
USART1_CTS,
TIM17_BKIN,
EVENTOUT
SPI1_MOSI/I2S1_SD,
TIM3_CH2, TIM16_BKIN,
LPTIM1_IN1, I2C1_SMBA,
COMP2_OUT
USART1_TX, TIM1_CH3,
TIM16_CH1N,
SPI2_MISO,
LPTIM1_ETR,
I2C1_SCL, EVENTOUT
Additional
functions
COMP2_INP
WKUP6
COMP2_INP
A4 27 27 31 31 46 A3 61 PB7 I/O FT_fa -
B4 28 28 32 32 47 B3 62 PB8 I/O FT_f -
- - - 1 1 48C363 PB9 I/O FT_f -
- - - - - - A2 64 PC10 I/O FT -
USART1_RX,
SPI2_MOSI,
TIM17_CH1N,
USART4_CTS,
LPTIM1_IN2, I2C1_SDA,
EVENTOUT
CEC, SPI2_SCK,
TIM16_CH1,
USART3_TX,
TIM15_BKIN, I2C1_SCL,
EVENTOUT
IR_OUT,
UCPD2_FRSTX,
TIM17_CH1,
USART3_RX,
SPI2_NSS, I2C1_SDA,
EVENTOUT
USART3_TX,
USART4_TX, TIM1_CH3
COMP2_INM,
PVD_IN
-
-
-
DS12232 Rev 2 47/136
52
Pinouts, pin description and alternate functions STM32G071x8/xB
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (for example to drive an LED).
2. After a RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers. The RTC registers are not reset upon system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the RM0444 reference manual.
3. Pin pair PA9/PA10 can be remapped in place of pin pair PA11/PA12 (default mapping), using SYSCFG_CFGR1 register.
4. Upon reset, these pins are configured as SW debug alternate functions, and the internal pull-up on PA13 pin and the internal pull-down on PA14 pin are activated.
48/136 DS12232 Rev 2
DS12232 Rev 2 49/136

Table 13. Port A alternate function mapping

Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
PA0 SPI2_SCK USART2_CTS TIM2_CH1_ETR - USART4_TX LPTIM1_OUT UCPD2_FRSTX COMP1_OUT
PA1
PA2
PA3 SPI2_MISO USART2_RX TIM2_CH4 - UCPD2_FRSTX TIM15_CH2 LPUART1_RX EVENTOUT
PA4
PA5
PA6
PA7
PA8 MCO SPI2_NSS TIM1_CH1 - - LPTIM2_OUT - EVENTOUT
PA9 MCO USART1_TX TIM1_CH2 - SPI2_MISO TIM15_BKIN I2C1_SCL EVENTOUT
PA10 SPI2_MOSI USART1_RX TIM1_CH3 - - TIM17_BKIN I2C1_SDA EVENTOUT
PA11
PA1 2
PA13 SWDIO IR_OUT - - - - - EVENTOUT
PA14 SWCLK USART2_TX - - - - - EVENTOUT
PA1 5
SPI1_SCK/
I2S1_CK
SPI1_MOSI/
I2S1_SD
SPI1_NSS/
I2S1_WS
SPI1_SCK/
I2S1_CK
SPI1_MISO/
I2S1_MCK
SPI1_MOSI/
I2S1_SD
SPI1_MISO/
I2S1_MCK
SPI1_MOSI/
I2S1_SD
SPI1_NSS/
I2S1_WS
USART2_RTS
_DE_CK
USART2_TX TIM2_CH3 - UCPD1_FRSTX TIM15_CH1 LPUART1_TX COMP2_OUT
SPI2_MOSI - - TIM14_CH1 LPTIM2_OUT UCPD2_FRSTX EVENTOUT
CEC TIM2_CH1_ETR - USART3_TX LPTIM2_ETR UCPD1_FRSTX EVENTOUT
TIM3_CH1 TIM1_BKIN - USART3_CTS TIM16_CH1 LPUART1_CTS COMP1_OUT
TIM3_CH2 TIM1_CH1N - TIM14_CH1 TIM17_CH1 UCPD1_FRSTX COMP2_OUT
USART1_CTS TIM1_CH4 - - TIM1_BKIN2 I2C2_SCL COMP1_OUT
USART1_RTS
_DE_CK
USART2_RX TIM2_CH1_ETR -
TIM2_CH2 - USART4_RX TIM15_CH1N I2C1_SMBA EVENTOUT
TIM1_ETR - - I2S_CKIN I2C2_SDA COMP2_OUT
USART4_RTS
_DE_CK
USART3_RTS
_DE_CK
-EVENTOUT
STM32G071x8/xB Pinouts, pin description and alternate functions
50/136 DS12232 Rev 2

Table 14. Port B alternate function mapping

Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
Pinouts, pin description and alternate functions STM32G071x8/xB
PB0
PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N -
SPI1_NSS/I2S1
_WS
TIM3_CH3 TIM1_CH2N - USART3_RX LPTIM1_OUT UCPD1_FRSTX COMP1_OUT
USART3_RTS
_DE_CK
LPTIM2_IN1
LPUART1_RTS
_DE
EVENTOUT
PB2 - SPI2_MISO - - USART3_TX LPTIM1_OUT - EVENTOUT
PB3
PB4
PB5
SPI1_SCK/I2S1
_CK
SPI1_MISO/I2S1
_MCK
SPI1_MOSI/I2S1
_SD
TIM1_CH2 TIM2_CH2 -
TIM3_CH1 - - USART1_CTS TIM17_BKIN - EVENTOUT
TIM3_CH2 TIM16_BKIN - - LPTIM1_IN1 I2C1_SMBA COMP2_OUT
USART1_RTS
_DE_CK
- - EVENTOUT
PB6 USART1_TX TIM1_CH3 TIM16_CH1N - SPI2_MISO LPTIM1_ETR I2C1_SCL EVENTOUT
PB7 USART1_RX SPI2_MOSI TIM17_CH1N - USART4_CTS LPTIM1_IN2 I2C1_SDA EVENTOUT
PB8 CEC SPI2_SCK TIM16_CH1 - USART3_TX TIM15_BKIN I2C1_SCL EVENTOUT
PB9 IR_OUT UCPD2_FRSTX TIM17_CH1 - USART3_RX SPI2_NSS I2C1_SDA EVENTOUT
PB10 CEC LPUART1_RX TIM2_CH3 - USART3_TX SPI2_SCK I2C2_SCL COMP1_OUT
PB11 SPI2_MOSI LPUART1_TX TIM2_CH4 - USART3_RX - I2C2_SDA COMP2_OUT
PB12 SPI2_NSS
LPUART1_RTS
_DE
TIM1_BKIN - - TIM15_BKIN UCPD2_FRSTX EVENTOUT
PB13 SPI2_SCK LPUART1_CTS TIM1_CH1N - USART3_CTS TIM15_CH1N I2C2_SCL EVENTOUT
PB14 SPI2_MISO UCPD1_FRSTX TIM1_CH2N -
USART3_RTS
_DE_CK
TIM15_CH1 I2C2_SDA EVENTOUT
PB15 SPI2_MOSI - TIM1_CH3N - TIM15_CH1N TIM15_CH2 - EVENTOUT
DS12232 Rev 2 51/136

Table 15. Port C alternate function mapping

STM32G071x8/xB Pinouts, pin description and alternate functions
Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
PC0LPTIM1_IN1LPUART1_RXLPTIM2_IN1-----
PC1LPTIM1_OUTLPUART1_TXTIM15_CH1-----
PC2LPTIM1_IN2SPI2_MISOTIM15_CH2-----
PC3LPTIM1_ETRSPI2_MOSILPTIM2_ETR-----
PC4USART3_TXUSART1_TXTIM2_CH1_ETR-----
PC5USART3_RXUSART1_RXTIM2_CH2-----
PC6UCPD1_FRSTXTIM3_CH1TIM2_CH3-----
PC7UCPD2_FRSTXTIM3_CH2TIM2_CH4-----
PC8UCPD2_FRSTXTIM3_CH3TIM1_CH1-----
PC9I2S_CKINTIM3_CH4TIM1_CH2-----
PC10USART3_TXUSART4_TXTIM1_CH3-----
PC11USART3_RXUSART4_RXTIM1_CH4-----
PC12LPTIM1_IN1UCPD1_FRSTXTIM14_CH1-----
PC13--TIM1_BKIN-----
PC14--TIM1_BKIN2-----
PC15 OSC32_EN OSC_EN TIM15_BKIN - ----
52/136 DS12232 Rev 2
*

Table 16. Port D alternate function mapping

Pinouts, pin description and alternate functions STM32G071x8/xB
Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
PD0EVENTOUTSPI2_NSSTIM16_CH1-----
PD1EVENTOUTSPI2_SCKTIM17_CH1-----
PD2
USART3_RTS
_DE_CK
TIM3_ETRTIM1_CH1N-----
PD3USART2_CTSSPI2_MISOTIM1_CH2N-----
PD4
PD5 USART2_TX
PD6 USART2_RX
PD8 USART3_TX
PD9 USART3_RX
USART2_RTS
_DE_CK
SPI2_MOSITIM1_CH3N-----
SPI1_MISO/I2S1
_MCK
SPI1_MOSI/I2S1
_SD
SPI1_SCK/I2S1
_CK
SPI1_NSS/I2S1
_WS
TIM1_BKIN-----
LPTIM2_OUT-----
LPTIM1_OUT-----
TIM1_BKIN2-----

Table 17. Port F alternate function mapping

Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
PF0--TIM14_CH1-----
PF1OSC_EN-TIM15_CH1N-----
PF2MCO-------
STM32G071x8/xB Electrical characteristics
MS19210V1
MCU pin
C = 50 pF
MS19211V1
MCU pin
V
IN

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.
TBD indicates a value to be defined.

5.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ).

5.1.2 Typical values

= 25 °C and TA = TA(max) (given by
A
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = V are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 11.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions Figure 12. Pin input voltage
(mean ±2σ).
= 3 V. They
DDA
DS12232 Rev 2 53/136
109
Electrical characteristics STM32G071x8/xB
MSv47900V1
V
DD
Backup circuitry
(LSE, RTC and
backup registers)
Kernel logic
(CPU, digital and
memories)
Level shifter
IO
logic
IN
OUT
Regulator
GPIOs
1.55 V to 3.6 V
1 x 100 nF
+ 1 x 4.7 μF
VDD/VDDA
VBAT
V
CORE
Power switch
V
DDIO1
ADC DAC
COMPs
VREFBUF
VREF+
VREF-
VSS/VSSA
V
REF
100 nF
1 μF
V
SS
V
SSA
V
DDA
V
DD
VREF+
MSv47901V1
I
DDVBAT
V
BAT
I
DD
V
DD
(V
DDA
)
VBAT
VDD/VDDA

5.1.6 Power supply scheme

Figure 13. Power supply scheme
Caution: Power supply pin pair (VDD/VDDA and VSS/VSSA) must be decoupled with filtering

5.1.7 Current consumption measurement

54/136 DS12232 Rev 2
ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.
Figure 14. Current consumption measurement scheme
STM32G071x8/xB Electrical characteristics

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 18, Table 19 and Table 20 may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Symbol Ratings Min Max Unit
V
- V
DD
SS
External supply voltage -0.3 4.0
- V
V
BAT
SS
Input voltage on FT_xx pins except FT_c
(1)
V
IN
Input voltage on FT_c pins
Input voltage on any other pin
1. Refer to Table 19 for the maximum allowed injected current values.
2. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.

Table 18. Voltage characteristics

V
- 0.3 VDD +
SS
- 0.3
V
SS
V
- 0.3
SS
5.5
4.0
4.0
(2)
V

Table 19. Current characteristics

Symbol Ratings Max Unit
(1)
(1)
100
100
I
V
DD/VDDA
I
V
SS/VSSA
Current into VDD/VDDA power pin (source)
Current out of VSS/VSSA ground pin (sink)
Output current sunk by any I/O and control pin except FT_f 15
I
IO(PIN)
Output current sunk by any FT_f pin 20
Output current sourced by any I/O and control pin 15
(6)
(2)
(2)
INJ(PIN)
80
80
(4)
-5 / 0
25
must never be
I
Total output current sunk by sum of all I/Os and control pins
IO(PIN)
(3)
I
INJ(PIN)
|I
1. All main power (VDD/VDDA, VBAT) and ground (VSS/VSSA) pins must always be connected to the external power supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count packages.
3. A positive injection is induced by V exceeded. Refer also to Table 18: Voltage characteristics for the maximum allowed input voltage values.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
5. On these I/Os, any current injection disturbs the analog performances of the device.
6. When several inputs are submitted to a current injection, the maximum ∑|I injected currents (instantaneous values).
INJ(PIN)
|
Total output current sourced by sum of all I/Os and control pins
Injected current on a FT_xx pin -5 / NA
Injected current on a TT_a pin
(5)
Total injected current (sum of all I/Os and control pins)
> V
IN
while a negative injection is induced by VIN < VSS. I
DDIOx
|
is the absolute sum of the negative
INJ(PIN)
mA
DS12232 Rev 2 55/136
109
Electrical characteristics STM32G071x8/xB

Table 20. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature 150 °C

5.3 Operating conditions

5.3.1 General operating conditions

Symbol Parameter Conditions Min Max Unit
f
HCLK
f
PCLK
V
V
Internal AHB clock frequency - 0 64
Internal APB clock frequency - 0 64
Standard operating voltage - 1.7
DD
Analog supply voltage
DDA
Table 21. General operating conditions
(1)
For ADC and COMP operation
For DAC operation 1.8 3.6
For VREFBUF operation 2.4 3.6
1.62 3.6
MHz
3.6 V
V
V
Backup operating voltage - 1.55 3.6 V
BAT
All except TT_xx and FT_c -0.3 Min(V
V
I/O input voltage
IN
FT_c -0.3 5.0
(4)
T
Ambient temperature
A
T
Junction temperature
J
1. When RESET is released functionality is guaranteed down to V
2. For operation with voltage higher than V
3. The T
4. Temperature range digit in the order code. See Section 7: Ordering information.
(max) applies to PD(max). At PD < PD(max) the ambient temperature is allowed to go higher than TA(max) provided
A
that the junction temperature TJ does not exceed TJ(max). Refer to Section 6.9: Thermal characteristics.
(3)
Suffix 6
(4)
Suffix 3
(4)
Suffix 6
(4)
Suffix 3
min.
PDR
+0.3 V, the internal pull-up and pull-down resistors must be disabled.
DD
-40 85
-40 125
-40 105
-40 130
+ 3.6, 5.5)
DD
(2)
(2)
VTT_xx -0.3 VDD + 0.3
°C
°C
56/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics

5.3.2 Operating conditions at power-up / power-down

The parameters given in Table 22 are derived from tests performed under the ambient temperature condition summarized in Table 21.
Symbol Parameter Conditions Min Max Unit
t
VDD slew rate
VDD
Table 22. Operating conditions at power-up / power-down
rising -
V
DD
falling; ULPEN = 0 10
V
DD
falling; ULPEN = 1 100 ms/V
V
DD
µs/V

5.3.3 Embedded reset and power control block characteristics

The parameters given in Table 23 are derived from tests performed under the ambient temperature conditions summarized in Table 21: General operating conditions.
Table 23. Embedded reset and power control block characteristics
Symbol Parameter Conditions
POR temporization when VDD crosses
POR
PDR
BOR1
BOR2
BOR3
BOR4
V
PVD0
V
PVD1
V
PVD2
V
PVD3
V
PVD4
(2)
(2)
(2)
V
POR
V
rising - 250 400 μs
DD
Power-on reset threshold - 1.62 1.66 1.70 V
Power-down reset threshold - 1.60 1.64 1.69 V
V
rising 2.05 2.10 2.18
Brownout reset threshold 1
Brownout reset threshold 2
Brownout reset threshold 3
Brownout reset threshold 4
Programmable voltage detector threshold 0
PVD threshold 1
PVD threshold 2
PVD threshold 3
PVD threshold 4
DD
falling 1.95 2.00 2.08
V
DD
V
rising 2.20 2.31 2.38
DD
falling 2.10 2.21 2.28
V
DD
V
rising 2.50 2.62 2.68
DD
falling 2.40 2.52 2.58
V
DD
V
rising 2.80 2.91 3.00
DD
falling 2.70 2.81 2.90
V
DD
V
rising 2.05 2.15 2.22
DD
falling 1.95 2.05 2.12
V
DD
V
rising 2.20 2.30 2.37
DD
falling 2.10 2.20 2.27
V
DD
V
rising 2.35 2.46 2.54
DD
falling 2.25 2.36 2.44
V
DD
V
rising 2.50 2.62 2.70
DD
falling 2.40 2.52 2.60
V
DD
V
rising 2.65 2.74 2.87
DD
falling 2.55 2.64 2.77
V
DD
t
RSTTEMPO
V
V
V
V
V
V
(1)
Min Typ Max Unit
V
V
V
V
V
V
V
V
V
DS12232 Rev 2 57/136
109
Electrical characteristics STM32G071x8/xB
Table 23. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions
V
rising 2.80 2.91 3.03
V
V
PVD5
PVD6
PVD threshold 5
PVD threshold 6
DD
falling 2.70 2.81 2.93
V
DD
V
rising 2.90 3.01 3.14
DD
falling 2.80 2.91 3.04
V
DD
Hysteresis in continuous mode
V
hyst_POR_PDR
Hysteresis of V
POR
and V
PDR
Hysteresis in other mode
V
hyst_BOR_PVD
I
DD(BOR_PVD)
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
2. Guaranteed by design.
Hysteresis of V
(2)
BOR and PVD consumption - - 1.1 1.6 µA
BORx
and V
PVDx
(1)
Min Typ Max Unit
V
V
-20-
mV
-30-
- - 100 - mV
58/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
MSv40169V1
1.185
1.19
1.195
1.2
1.205
1.21
1.215
1.22
1.225
1.23
1.235
-40 -20 0 20 40 60 80 100 120
V
°C
Mean Min Max

5.3.4 Embedded voltage reference

The parameters given in Table 24 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating
conditions.
Symbol Parameter Conditions Min Typ Max Unit
Table 24. Embedded internal voltage reference
V
REFINT
t
S_vrefint
t
start_vrefint
I
DD(VREFINTBUF)
V
REFINT
T
Coeff_vrefint
A
Coeff
V
DDCoeff
V
REFINT_DIV1
V
REFINT_DIV2
V
REFINT_DIV3
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Internal reference voltage -40°C < TJ < 130°C 1.182 1.212 1.232 V
ADC sampling time when reading
(1)
the internal reference voltage
Start time of reference voltage buffer when ADC is enable
V
buffer consumption from
REFINT
VDD when converted by ADC
Internal reference voltage spread over the temperature range
-4
--812
- - 12.5 20
V
= 3 V - 5 7.5
DD
Temperature coefficient - - 30 50
Long term stability 1000 hours, T = 25 °C - 300 1000
Voltage coefficient 3.0 V < VDD < 3.6 V - 250 1200
1/4 reference voltage
1/2 reference voltage 49 50 51
-
3/4 reference voltage 74 75 76
Figure 15. V
vs. temperature
REFINT
(2)
--µs
24 25 26
(2)
(2)
(2)
(2)
(2)
(2)
µs
µA
mV
ppm/°C
ppm
ppm/V
%
V
REFINT
DS12232 Rev 2 59/136
109
Electrical characteristics STM32G071x8/xB

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted with the minimum wait states number,
depending on the f to CPU clock (HCLK) frequency” available in the RM0444 reference manual).
When the peripherals are enabled f
For Flash memory and shared peripherals f
Unless otherwise stated, values given in Table 25 through Table 31 are derived from tests performed under ambient temperature and supply voltage conditions summarized in
Table 21: General operating conditions.
frequency (refer to the table “Number of wait states according
HCLK
= f
PCLK
HCLK
PCLK
= f
HCLK
= f
HCLKS
60/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
Table 25. Current consumption in Run and Low-power run modes
at different die temperatures
(1)
Unit
C
mA
Symbol Parameter
Supply
I
DD(Run)
current in
Run mode
General f
Range 1; PLL enabled;
= f
f
HCLK
HSE_bypass
(16 MHz),
= f
f
HCLK
(>16 MHz);
(3)
PLLRCLK
Range 2; PLL enabled;
= f
f
HCLK
HSE_bypass
(16 MHz),
= f
f
HCLK
(>16 MHz);
(3)
PLLRCLK
Conditions Typ Max
HCLK
64 MHz
Fetch
from
25°C85°C125°C25°C85°C130°
(2)
6.3 6.4 6.8 6.7 7.0 7.7
56 MHz 5.5 5.7 5.9 5.9 6.3 6.8
48 MHz 5.0 5.1 5.4 5.2 5.7 6.3
32 MHz 3.5 3.6 3.8 4.0 4.3 4.7
Flash
memory
24 MHz 2.8 2.9 3.1 3.1 3.6 4.0
16 MHz 1.8 1.9 2.1 2.1 2.5 3.0
64 MHz
6.0 6.2 6.4 6.3 6.6 7.0
56 MHz 5.3 5.5 5.7 5.6 5.8 6.2
48 MHz 4.7 4.8 5.0 5.0 5.2 5.6
SRAM
32 MHz 3.3 3.4 3.5 3.5 3.8 4.1
24 MHz 2.6 2.7 2.9 2.8 3.1 3.4
16 MHz 1.7 1.7 1.9 1.9 2.1 2.7
16 MHz
8 MHz 0.8 0.9 1.0 1.2 1.3 1.8
2 MHz 0.3 0.3 0.5 0.5 0.8 1.4
Flash
memory
16 MHz
8 MHz 0.7 0.8 1.0 1.1 1.2 1.6
1.4 1.5 1.7 1.7 2.0 2.6
1.4 1.4 1.6 1.6 1.8 2.2
SRAM
4 MHz 0.4 0.5 0.6 0.7 0.9 1.5
2 MHz 0.3 0.3 0.5 0.5 0.8 1.2
2 MHz
220 255 420 530 795 1255
1 MHz 105 155 320 505 770 1200
Flash
memory
199 231 380 485 700 1220
SRAM
I
DD(LPRun)
Supply
current in
Low-power
run mode
PLL disabled; f
= f
HCLK
HSE
bypass (> 32 kHz),
= f
f
HCLK
bypass (= 32 kHz);
(3)
LSE
500 kHz 67 105 265 465 700 1110
125 kHz 26 66 230 450 520 1045
32 kHz 17 56 220 375 475 1035
2 MHz
1 MHz 95 140 290 430 660 1140
500 kHz 61 95 240 365 625 1100
125 kHz 24 59 225 335 440 970
32 kHz 15 55 220 325 355 940
1. Based on characterization results, not tested in production.
2. Prefetch and cache enabled when fetching from Flash
= 3.0 V for values in Typ columns and 3.6 V for values in Max columns, all peripherals disabled, cache enabled,
3. V
DD
prefetch disabled for code and data fetch from Flash and enabled from SRAM
DS12232 Rev 2 61/136
µA
109
Electrical characteristics STM32G071x8/xB
Table 26. Typical current consumption in Run and Low-power run modes,
depending on code executed
Symbol Parameter
Supply
I
DD(Run)
current in
Run mode
General Code
Range 1; f
= f
HCLK
64 MHz;
(2)
PLLRCLK
=
Range 2; f
HCLK
= f
HSI16
= 16 MHz, PLL disabled,
(2)
Conditions Typ
Unit
6.4
Reduced code
(3)
Fetch
from
25 °C 25 °C
(1)
Coremark 6.2 97
Dhrystone 2.1 5.9 92
Flash
memory
Fibonacci 4.6 71
While(1) loop 4.6 71
Reduced code
(3)
6.2 96
Coremark 6.2 97
Dhrystone 2.1 6.0 93
SRAM
Fibonacci 6.2 96
While(1) loop 4.8 75
Reduced code
(3)
1.5 94
Coremark 1.5 94
Dhrystone 2.1 1.5 91
Flash
memory
Fibonacci 1.1 69
While(1) loop 1.1 69
Reduced code
(3)
1.5 91
Coremark 1.4 88
Dhrystone 2.1 1.4 84
SRAM
mA
Typ
Unit
100
uA/MHz
Fibonacci 1.5 91
While(1) loop 1.1 69
Reduced code
(3)
380
Coremark 395 198
Dhrystone 2.1 405 203
Flash
memory
Fibonacci 385 193
I
DD(LPRun)
Supply
current in
Low-power
run mode
f
= f
HCLK
HSI16
2 MHz; PLL disabled,
(2)
/8 =
While(1) loop 400 200
Reduced code
(3)
250 125
uA
Coremark 245 123
Dhrystone 2.1 240 120
SRAM
Fibonacci 250 125
While(1) loop 230 115
1. Prefetch and cache enabled when fetching from Flash
VDD = 3.3 V, all peripherals disabled, cache enabled, prefetch disabled for execution in Flash and enabled in SRAM
2.
3. Reduced code used for characterization results provided in Table 25.
62/136 DS12232 Rev 2
190
uA/MHz
STM32G071x8/xB Electrical characteristics
Table 27. Current consumption in Sleep and Low-power sleep modes
Conditions Typ Max
Symbol Parameter
General
Voltage
scaling
Flash memory enabled;
= f
I
DD(Sleep)
Supply
current in
Sleep mode
f
HCLK
(16 MHz; PLL disabled), f
HCLK
(>16 MHz; PLL
= f
bypass
HSE
PLLRCLK
Range 1
enabled); All peripherals disabled
Range 2
Supply
I
DD(LPSleep)
current in
Low-power
sleep mode
1. Based on characterization results, not tested in production.
Flash memory disabled; PLL disabled;
= f
f
HCLK
f
HCLK
bypass (> 32 kHz),
HSE
= f
bypass (= 32 kHz);
LSE
All peripherals disabled
f
HCLK
25°C85°C125°C25°C85°C130°
64 MHz 1.8 1.9 2.1 1.8 2.1 2.9
56 MHz 1.6 1.7 1.9 1.7 1.9 2.8
48 MHz 1.4 1.5 1.7 1.6 1.7 2.7
32 MHz 1.0 1.1 1.3 1.2 1.3 2.3
24 MHz 0.8 0.9 1.1 1.0 1.1 1.9
16 MHz 0.5 0.6 0.8 0.6 0.7 1.7
16 MHz 0.4 0.5 0.7 0.5 0.6 1.4
8 MHz 0.3 0.3 0.5 0.3 0.5 1.2
2 MHz 0.1 0.2 0.4 0.2 0.4 1.1
2 MHz 60 99 265 150 360 1110
1 MHz 33 75 240 130 330 1010
500 kHz 25 64 230 125 250 870
125 kHz 16 55 220 110 235 715
32 kHz 14 53 215 110 225 645
(1)
Unit
C
mA
µA
Table 28. Current consumption in Stop 0 mode
Conditions Typ Max
Symbol Parameter
HSI kernel V
DD
1.8 V 275 305 430 330 425 750
2.4 V 280 310 435 330 450 850
Enabled
3 V 280 315 435 350 490 950
I
DD(Stop 0)
Supply
current in
Stop 0
3.6 V 285 315 440 375 500 1020
1.8 V 95 140 270 120 180 490
mode
2.4 V 100 145 275 125 220 610
Disabled
3 V 100 145 280 125 240 720
3.6 V 105 150 285 130 250 840
1. Based on characterization results, not tested in production.
(1)
Unit
25°C 85°C 125°C 25°C 85°C 130°C
µA
DS12232 Rev 2 63/136
109
Electrical characteristics STM32G071x8/xB
Table 29. Current consumption in Stop 1 mode
Conditions Typ Max
Symbol Parameter
Flash
memory
RTC
(2)
1.8 V 3.2 32 150 8 100 480
2.4 V 3.3 32 150 10 120 535
Disabled
3.6 V 3.8 33 155 18 140 705
1.8 V 3.4 32 150 9 100 480
2.4 V 3.7 32 155 11 120 540
I
DD(Stop 1)
Supply
current in
Stop 1
Not
powered
Enabled
mode
3.6 V 4.4 34 160 20 145 720
1.8 V 6.9 36 155 12 100 575
2.4 V 7.3 36 160 14 110 600
Powered Disabled
3.6 V 7.8 38 160 23 135 665
1. Based on characterization results, not tested in production.
2. Clocked by LSI
(1)
V
25°C 85°C 125°C 25°C 85°C 130°C
DD
3 V 3.4 33 155 15 135 620
3 V 4.0 33 155 16 140 630
3 V 7.3 37 160 18 120 645
Unit
µA
Symbol Parameter
Supply current
I
DD(Standby)
in Standby
mode
Table 30. Current consumption in Standby mode
Conditions Typ Max
(2)
General V
RTC disabled
RTC enabled,
clocked by LSI;
IWDG enabled,
clocked by LSI
ULPEN = 0
1.8 V 0.07 1.7 6.7 0.7 9 34
2.4 V 0.13 2.1 8.1 0.8 12 38
3.0 V 0.20 2.5 10.0 0.9 14 46
3.6 V 0.34 3.0 12.0 1.0 16 55
1.8 V 0.35 2.0 7.0 0.8 10 35
2.4 V 0.49 2.4 8.4 1.0 12 40
3.0 V 0.66 2.9 10.5 1.3 15 47
3.6 V 0.90 3.5 12.5 2.2 18 56
1.8 V 0.26 1.9 6.8 0.8 10 34
2.4 V 0.37 2.3 8.3 1.0 12 39
3.0 V 0.49 2.7 10.3 1.4 15 45
3.6 V 0.69 3.3 12.3 2.1 18 52
1.8 V 0.70 1.6 6.6 - - -
2.4 V 0.89 2.0 8.0 - - -
3.0 V 1.10 2.4 9.8 - - -
3.6 V 1.30 2.9 11.8 - - -
25°C 85°C 125°C 25°C 85°C 130°C
DD
(1)
Unit
µA
64/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
Table 30. Current consumption in Standby mode (continued)
Symbol Parameter
Conditions Typ Max
General V
Extra supply
I
DD(SRAM)
1. Based on characterization results, not tested in production.
2. Without SRAM retention and with ULPEN bit set
3. To be added to I
current to retain SRAM
(3)
content
DD(Standby)
SRAM retention
enabled
as appropriate
Table 31. Current consumption in Shutdown mode
1.8 V 0.49 3.0 14.8 0.6 16 58
2.4 V 0.57 3.1 14.9 1.1 17 63
3.0 V 0.67 3.2 15.0 1.5 17 67
3.6 V 0.77 3.3 15.0 1.9 18 71
Conditions Typ Max
Symbol Parameter
RTC V
1.8 V 17 515 4500 250 3000 32600
2.4 V 23 600 5150 450 3500 33600
3.0 V 33 730 6450 1075 4250 37400
3.6 V 53 940 7700 1250 5300 43600
1.8 V 205 710 4700 900 4500 27300
2.4 V 300 890 5500 1550 5500 34800
3.0 V 420 1150 6800 2475 6000 40900
I
DD(Shutdown)
Supply current
in Shutdown
mode
Disabled
Enabled, clocked
by LSE bypass at
32.768 kHz
3.6 V 565 1450 8100 3250 7000 48500
1. Based on characterization results, not tested in production.
Table 32. Current consumption in VBAT mode
Conditions Typ Max
Symbol Parameter
I
DD(VBAT)
Supply
current in
VBAT mode
RTC V
Enabled,
clocked by LSE
bypass at
32.768 kHz
Enabled,
clocked by LSE
crystal at
32.768 kHz
DD
1.8 V 165 170 620 - - -
2.4 V 260 355 970 - - -
3.0 V 365 475 1200 - - -
3.6 V 505 655 2070 - - -
1.8 V 290 390 960 - - -
2.4 V 370 480 1150 - - -
3.0 V 470 600 1650 - - -
3.6 V 600 815 2250 - - -
1.8 V 1 80 660 - - -
Disabled
2.4 V 2 90 750 - - -
3.0 V 2 105 1200 - - -
3.6 V 6 200 1700 - - -
25°C 85°C 125°C 25°C 85°C 130°C
DD
25°C 85°C 125°C 25°C 85°C 130°C
DD
25°C 85°C 125°C 25°C 85°C 130°C
(1)
Unit
µA
(1)
Unit
nA
(1)
Unit
nA
1. Based on characterization results, not tested in production.
DS12232 Rev 2 65/136
109
Electrical characteristics STM32G071x8/xB
I
SW
V
DDIO1fSW
C××=
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 51: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 33: Current consumption of peripherals, the I/Os used by an application also
contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:
where
I
is the current sunk by a switching I/O to charge/discharge the capacitive load
SW
V
f
C is the total capacitance seen by the I/O pin: C = C
is the I/O supply voltage
DDIO1
is the I/O switching frequency
SW
INT
+ C
EXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.
66/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 33. The MCU is placed under the following conditions:
All I/O pins are in Analog mode
The given value is calculated by measuring the difference of the current consumptions:
when the peripheral is clocked on
when the peripheral is clocked off
Ambient operating temperature and supply voltage conditions summarized in Table 18:
Voltage characteristics
The power consumption of the digital part of the on-chip peripherals is given in
Table 33. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 33. Current consumption of peripherals
IOPORT
AHB
APB
Peripheral Range 1 Range 2
IOPORT Bus 1.0 0.7 0.5
GPIOA 3.4 2.8 3.0
GPIOB 3.1 2.6 2.5
GPIOC 2.9 2.5 3.0
GPIOD 1.8 1.5 1.5
GPIOF 0.7 0.6 1.0
Bus matrix 3.2 2.2 2.8
All AHB Peripherals 15.0 12.5 14.0
DMA1/DMAMUX 4.7 3.8 4.5
CRC 0.5 0.4 0.5
FLASH 4.1 3.5 4.0
All APB peripherals 46.5 47.5 48.0
AHB to APB bridge
PWR 0.4 0.3 0.5
SYSCFG/VREFBUF/COMP 0.4 0.4 0.3
WWDG 0.4 0.3 0.5
(1)
0.2 0.2 0.1
Low-power
run and sleep
Unit
µA/MHz
µA/MHz
µA/MHz
TIM1 7.3 6.1 6.5
TIM2 4.7 3.8 5.0
TIM3 3.6 3.0 2.5
TIM6 0.7 0.6 0.5
DS12232 Rev 2 67/136
109
Electrical characteristics STM32G071x8/xB
Table 33. Current consumption of peripherals (continued)
APB
Peripheral Range 1 Range 2
Low-power
run and sleep
TIM7 0.7 0.7 1.0
TIM14 1.5 1.2 1.5
TIM15 4.0 3.3 3.0
TIM16 2.3 2.0 2.0
TIM17 0.7 0.7 0.5
LPTIM1 3.2 2.7 3.0
LPTIM2 3.1 2.5 3.0
I2C1 3.8 3.1 3.5
I2C2 0.7 0.6 1.0
SPI2 1.5 1.2 1.0
USART1 7.2 6.0 6.5
USART2 7.2 6.0 6.0
USART3 2.0 1.7 2.0
USART4 2.0 1.7 2.0
LPUART1 4.3 3.5 4.0
CEC 0.4 0.3 0.5
UCPD1 4.0 7.7 NA
UCPD2 4.0 7.7 NA
ADC 2.0 1.7 2.0
DAC 2.2 1.8 2.0
Unit
µA/MHz
(2)
(2)
1. The AHB to APB Bridge is automatically active when at least one peripheral is ON on the APB.
2. UCPDx are always clocked by HSI16.

5.3.6 Wakeup time from low-power modes and voltage scaling transition times

The wakeup times given in Table 34 are the latency between the event and the execution of the first user instruction.
Table 34. Low-power mode wakeup times
Symbol Parameter Conditions Typ Max Unit
Wakeup time from
t
WUSLEEP
Sleep to Run
-1111
mode
Transiting to Low-power-run-mode execution in Flash memory not powered in Low-power sleep mode;
HCLK = HSI16 / 8 = 2 MHz
t
WULPSLEEP
Wakeup time from Low-power sleep mode
68/136 DS12232 Rev 2
(1)
11 1 4
CPU
cycles
STM32G071x8/xB Electrical characteristics
Table 34. Low-power mode wakeup times
(1)
(continued)
Symbol Parameter Conditions Typ Max Unit
Transiting to Run-mode execution in Flash memory not
t
WUSTOP0
Wakeup time from Stop 0
powered in Stop 0 mode; HCLK = HSI16 = 16 MHz; Regulator in Range 1 or Range 2
Transiting to Run-mode execution in SRAM or in Flash memory powered in Stop 0 mode;
HCLK = HSI16 = 16 MHz;
5.6 6
µs
22.4
Regulator in Range 1 or Range 2
Transiting to Run-mode execution in Flash memory not powered in Stop 1 mode;
HCLK = HSI16 = 16 MHz;
9.0 11.2
Regulator in Range 1 or Range 2
Transiting to Run-mode execution in SRAM or in Flash
t
WUSTOP1
Wakeup time from Stop 1
memory powered in Stop 1 mode; HCLK = HSI16 = 16 MHz; Regulator in Range 1 or Range 2
Transiting to Low-power-run-mode execution in Flash memory not powered in Stop 1 mode;
HCLK = HSI16/8 = 2 MHz;
57.5
µs
22 25.3
Regulator in low-power mode (LPR = 1 in PWR_CR1)
Transiting to Low-power-run-mode execution in SRAM or in Flash memory powered in Stop 1 mode;
HCLK = HSI16 / 8 = 2 MHz;
18 23.5
Regulator in low-power mode (LPR = 1 in PWR_CR1)
t
WUSTBY
t
WUSHDN
Wakeup time from Standby mode
Wakeup time from Shutdown mode
Wakeup time from
t
WULPRUN
1. Based on characterization results, not tested in production.
2. Time until REGLPF flag is cleared in PWR_SR2.
Low-power run
(2)
mode
Transiting to Run mode; HCLK = HSI16 = 16 MHz; Regulator in Range 1
Transiting to Run mode; HCLK = HSI16 = 16 MHz; Regulator in Range 1
Transiting to Run mode; HSISYS = HSI16/8 = 2 MHz
Table 35. Regulator mode transition times
(1)
14.5 30 µs
258 340 µs
57µs
Symbol Parameter Conditions Typ Max Unit
t
VOST
1. Based on characterization results, not tested in production.
2. Time until VOSF flag is cleared in PWR_SR2.
Transition times between regulator Range 1 and Range 2
(2)
HSISYS = HSI16 20 40 µs
DS12232 Rev 2 69/136
109
Electrical characteristics STM32G071x8/xB
MS19214V2
V
HSEH
t
f(HSE)
90%
10%
T
HSE
t
t
r(HSE)
V
HSEL
t
w(HSEH)
t
w(HSEL)
Table 36. Wakeup time using LPUART
(1)
Symbol Parameter Conditions Typ Max Unit
Wakeup time needed to calculate the maximum
t
WULPUART
LPUART baud rate allowing to wakeup up from Stop mode when LPUART clock source is HSI16
1. Guaranteed by design.
Stop mode 0 - 1.7
Stop mode 1 - 8.5

5.3.7 External clock source characteristics

High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 5.3.14. See
Figure 16 for recommended clock input waveform.
Table 37. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE_ext
V
HSEH
V
HSEL
t
w(HSEH)
t
w(HSEL)
1. Guaranteed by design.
User external clock source frequency
OSC_IN input pin high level voltage - 0.7 V
OSC_IN input pin low level voltage - V
OSC_IN high or low time
Voltage scaling Range 1
Voltage scaling Range 2
Voltage scaling Range 1
Voltage scaling Range 2
-848
-826
DDIO1
SS
7- -
18 - -
(1)
-V
-0.3 V
DDIO1
DDIO1
µs
MHz
V
ns
Figure 16. High-speed external clock source AC timing diagram
70/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
MS19215V2
V
LSEH
t
f(LSE)
90%
10%
T
LSE
t
t
r(LSE)
V
LSEL
t
w(LSEH)
t
w(LSEL)
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 5.3.14. See
Figure 17 for recommended clock input waveform.
Table 38. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1)
f
LSE_ext
V
LSEH
V
LSEL
t
w(LSEH)
t
w(LSEL)
1. Guaranteed by design.
User external clock source frequency - - 32.768 1000 kHz
OSC32_IN input pin high level voltage - 0.7 V
OSC32_IN input pin low level voltage - V
OSC32_IN high or low time - 250 - - ns
DDIO1
SS
-V
- 0.3 V
DDIO1
DDIO1
Figure 17. Low-speed external clock source AC timing diagram
V
DS12232 Rev 2 71/136
109
Electrical characteristics STM32G071x8/xB
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 39. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Table 39. HSE oscillator characteristics
Symbol Parameter Conditions
(2)
(1)
Min Typ Max Unit
f
OSC_IN
R
Oscillator frequency - 4 8 48 MHz
Feedback resistor - - 200 - k
F
During startup
V
= 3 V,
DD
Rm = 30 Ω,
(3)
--5.5
-0.44-
CL = 10 pF@8 MHz
V
= 3 V,
DD
Rm = 45 Ω,
-0.45-
CL = 10 pF@8 MHz
V
= 3 V,
I
DD(HSE)
HSE current consumption
DD
Rm = 30 Ω,
-0.68-
CL = 5 pF@48 MHz
V
= 3 V,
DD
Rm = 30 Ω,
-0.94-
CL = 10 pF@48 MHz
V
= 3 V,
DD
Rm = 30 Ω,
-1.77-
CL = 20 pF@48 MHz
G
t
SU(HSE)
1. Guaranteed by design.
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
3. This consumption level occurs during the first 2/3 of the t
4. t
SU(HSE)
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Maximum critical crystal
m
transconductance
(4)
Startup time VDD is stabilized - 2 - ms
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
Startup - - 1.5 mA/V
startup time
SU(HSE)
mA
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 18). C same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C
and CL2. PCB and MCU pin capacitance must be included (10 pF
L1
can be used as a rough estimate of the combined pin and board capacitance) when sizing C
and CL2.
L1
72/136 DS12232 Rev 2
and C
L1
are usually the
L2
STM32G071x8/xB Electrical characteristics
MS19876V1
(1)
OSC_IN
OSC_OUT
R
F
Bias
controlled
gain
f
HSE
R
EXT
8 MHz
resonator
Resonator with integrated capacitors
C
L1
C
L2
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 18. Typical application with an 8 MHz crystal
1. R
value depends on the crystal characteristics.
EXT
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 40. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Symbol Parameter Conditions
I
DD(LSE)
Gm
critmax
LSE current consumption
Maximum critical crystal gm
Table 40. LSE oscillator characteristics (f
LSEDRV[1:0] = 00 Low drive capability
LSEDRV[1:0] = 01 Medium low drive capability
LSEDRV[1:0] = 10 Medium high drive capability
LSEDRV[1:0] = 11 High drive capability
LSEDRV[1:0] = 00 Low drive capability
LSEDRV[1:0] = 01 Medium low drive capability
LSEDRV[1:0] = 10 Medium high drive capability
LSE
(2)
= 32.768 kHz)
Min Typ Max Unit
-250 -
-315 -
-500 -
-630 -
--0.5
- - 0.75
--1.7
(1)
nA
µA/V
t
SU(LSE)
LSEDRV[1:0] = 11 High drive capability
(3)
Startup time VDD is stabilized - 2 - s
DS12232 Rev 2 73/136
--2.7
109
Electrical characteristics STM32G071x8/xB
MS30253V2
OSC32_IN
OSC32_OUT
Drive
programmable
amplifier
f
LSE
32.768 kHz resonator
Resonator with integrated capacitors
C
L1
C
L2
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”.
3. t
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
SU(LSE)
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 19. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden

5.3.8 Internal clock source characteristics

Symbol Parameter Conditions Min Typ Max Unit
f
HSI16
TRIM HSI16 frequency user trimming step
D
HSI16
Temp(HSI16)
to add one.
The parameters given in Table 41 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 21: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI16) RC oscillator
Table 41. HSI16 oscillator characteristics
HSI16 Frequency VDD=3.0 V, TA=30 °C 15.88 - 16.08 MHz
From code 127 to 128 -8 -6 -4
From code 63 to 64 From code 191 to 192
For all other code increments
(2)
Duty Cycle - 45 - 55 %
= 0 to 85 °C -1 - 1 %
T
HSI16 oscillator frequency drift over temperature
A
= -40 to 125 °C -2 - 1.5
T
A
(1)
-5.8 -3.8 -1.8
0.2 0.3 0.4
%
%
74/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
MSv39299V1
15.6
15.7
15.8
15.9
16
16.1
16.2
16.3
16.4
MHz
min mean max
+1%
-1%
+2%
-2%
+1.5%
-1.5%
-40 -20 0 20 40 60 80 100 120 °C
Table 41. HSI16 oscillator characteristics
(1)
(continued)
Symbol Parameter Conditions Min Typ Max Unit
VDD(HSI16)
t
su(HSI16)
t
stab(HSI16)
I
DD(HSI16)
1. Based on characterization results, not tested in production.
2. Guaranteed by design.
HSI16 oscillator frequency drift over V
DD
(2)
HSI16 oscillator start-up time - - 0.8 1.2 μs
(2)
HSI16 oscillator stabilization time - - 3 5 μs
(2)
HSI16 oscillator power consumption - - 155 190 μA
VDD=1.62 V to 3.6 V -0.1 - 0.05 %
Figure 20. HSI16 frequency vs. temperature
Low-speed internal (LSI) RC oscillator
Symbol Parameter Conditions Min Typ Max Unit
f
LSI
t
SU(LSI)
t
STAB(LSI)
I
DD(LSI)
1. Based on characterization results, not tested in production.
LSI frequency
(2)
LSI oscillator start-up time - - 80 130 μs
(2)
LSI oscillator stabilization time 5% of final frequency - 125 180 μs
LSI oscillator power
(2)
consumption
Table 42. LSI oscillator characteristics
= 3.0 V, TA = 30 °C 31.04 - 32.96
V
DD
V
= 1.62 V to 3.6 V, TA = -40 to
DD
125 °C
- - 110 180 nA
DS12232 Rev 2 75/136
(1)
29.5 - 34
kHz
109
Electrical characteristics STM32G071x8/xB
2. Guaranteed by design.

5.3.9 PLL characteristics

The parameters given in Table 43 are derived from tests performed under temperature and V
supply voltage conditions summarized in Table 21: General operating conditions.
DD
Table 43. PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
PLL_IN
D
PLL_IN
PLL input clock frequency
PLL input clock duty cycle - 45 - 55 %
(2)
Voltage scaling Range 1 3.09 - 122
f
PLL_P_OUT
PLL multiplier output clock P
Voltage scaling Range 2 3.09 - 40
Voltage scaling Range 1 12 - 128
f
PLL_Q_OUT
PLL multiplier output clock Q
Voltage scaling Range 2 12 - 33
Voltage scaling Range 1 12 - 64
f
PLL_R_OUT
PLL multiplier output clock R
Voltage scaling Range 2 12 - 16
(1)
-2.66-16MHz
MHz
MHz
MHz
f
VCO_OUT
t
LOCK
Jitter
PLL VCO output
Voltage scaling Range 2 96 - 128
PLL lock time - - 15 40 μs
RMS cycle-to-cycle jitter
-50-
System clock 56 MHz
RMS period jitter - 40 -
VCO freq = 96 MHz - 200 260
Voltage scaling Range 1 96 - 344
I
DD(PLL)
PLL power consumption
(1)
on V
DD
VCO freq = 344 MHz - 520 650
1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between the two PLLs.

5.3.10 Flash memory characteristics

Table 44. Flash memory characteristics
Symbol Parameter Conditions Typ Max Unit
t
prog
t
prog_row
64-bit programming time - 85 125 µs
Row (32 double word) programming time
Normal programming 2.7 4.6
Fast programming 1.7 2.8
(1)
MHz
±ps
μAVCO freq = 192 MHz - 300 380
t
prog_page
t
ERASE
Page (2 Kbyte) programming time
Page (2 Kbyte) erase time - 22.0 40.0
76/136 DS12232 Rev 2
Normal programming 21.8 36.6
Fast programming 13.7 22.4
ms
STM32G071x8/xB Electrical characteristics
Table 44. Flash memory characteristics
(1)
(continued)
Symbol Parameter Conditions Typ Max Unit
t
prog_bank
t
ME
Bank (128 Kbyte
(2)
) programming
time
Mass erase time - 22.1 40.1 ms
Normal programming 1.4 2.4
Fast programming 0.9 1.4
Programming 3 -
I
DD(FlashA)
Average consumption from V
DD
Mass erase 3 -
Programming, 2 µs peak duration
I
DD(FlashP)
Maximum current (peak)
Erase, 41 µs peak duration
1. Guaranteed by design.
2. Values provided also apply to devices with less Flash memory than one 128 Kbyte bank
Table 45. Flash memory endurance and data retention
Symbol Parameter Conditions Min
N
END
t
RET
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
Endurance TA = -40 to +105 °C 10 kcycles
1 kcycle
1 kcycle
1 kcycle
Data retention
10 kcycles
10 kcycles
10 kcycles
(2)
at TA = 85 °C
(2)
at TA = 105 °C 15
(2)
at TA = 125 °C 7
(2)
at TA = 55 °C 30
(2)
at TA = 85 °C 15
(2)
at TA = 105 °C 10
7-
7-
(1)
Unit
30
Yea rs
s
mAPage erase 3 -
mA

5.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is
SS
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
and
DD
DS12232 Rev 2 77/136
109
Electrical characteristics STM32G071x8/xB
The test results are given in Table 46. They are based on the EMS levels and classes defined in application note AN1709.
Table 46. EMS characteristics
Symbol Parameter Conditions
= 3.3 V, TA = +25 °C,
V
V
FESD
V
Voltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be applied through 100 pF on VDD and V
EFTB
pins to induce a functional disturbance
SS
DD
f
= 64 MHz, LQFP64,
HCLK
conforming to IEC 61000-4-2
VDD = 3.3 V, TA = +25 °C, f
= 64 MHz, LQFP64,
HCLK
conforming to IEC 61000-4-4
Level/
Class
2B
5A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
corrupted program counter
unexpected reset
critical data corruption (for example control registers)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.
78/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
Table 47. EMI characteristics
Symbol Parameter Conditions
VDD = 3.6 V, TA = 25 °C,
S
EMI
Peak level
LQFP64 package compliant with IEC 61967-2

5.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.
Table 48. ESD absolute maximum ratings
Max vs.
Monitored
frequency band
[f
HSE/fHCLK
]
Unit
8 MHz / 64 MHz
0.1 MHz to 30 MHz 7
30 MHz to 130 MHz -1
dBµV
130 MHz to 1 GHz 8
1 GHz to 2 GHz 7
EMI level 2.5 -
Symbol Ratings Conditions Class
= +25 °C, conforming
T
V
ESD(HBM)
Electrostatic discharge voltage (human body model)
Electrostatic discharge
V
ESD(CDM)
voltage (charge device model)
1. Based on characterization results, not tested in production.
A
to ANSI/ESDA/JEDEC JS-001
TA = +25 °C, conforming to ANSI/ESDA/JEDEC JS-002
2 2000
C2a 500
Maximum
(1)
value
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin.
A current is injected to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Symbol Parameter Conditions Class
LU Static latch-up class T
Table 49. Electrical sensitivity
= +125 °C conforming to JESD78 II
A
Unit
V
DS12232 Rev 2 79/136
109
Electrical characteristics STM32G071x8/xB

5.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below VSS or above V product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out-of-range parameter: ADC error above a certain limit (higher than 5 LSB TUE), induced leakage current on adjacent pins out of conventional limits (-5 µA/+0 µA range) or other functional failure (for example reset occurrence or oscillator frequency deviation).
The characterization results are given in Table 50.
Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.
(for standard, 3.3 V-capable I/O pins) should be avoided during normal
DDIO1
Table 50. I/O current injection susceptibility
(1)
Symbol Description
All except PA4, PA5, PA6,
I
INJ
1. Based on characterization results, not tested in production.
Injected current on pin
PB0, PB3, and PC0
PA4 , PA 5 - 5 0 m A
PA6, PB0, PB3, and PC0 0 N/A mA
Functional susceptibility
Negative injection
-5 N/A mA
Positive
injection
Unit
80/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics

5.3.14 I/O port characteristics

General input/output characteristics
Unless otherwise specified, the parameters given in Table 51 are derived from tests performed under the conditions summarized in Table 21: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant.
Symbol Parameter Conditions Min Typ Max Unit
I/O input low level
(1)
V
IL
voltage
I/O input high level
(1)
V
IH
voltage
(3)
V
I/O input hysteresis
hys
Table 51. I/O static characteristics
All except
1.62 V < V
FT_c
FT_c
2 V < V
DDIO1
1.62 V < V
All except
1.62 V < V
FT_c
FT_c 1.62 V < V
TT_xx, FT_xx,
1.62 V < V
NRST
< 3.6 V - -
DDIO1
< 2.7 V - - 0.3 x V
< 2.7 V - - 0.25 x V
DDIO1
< 3.6 V
DDIO1
< 3.6 V 0.7 x V
DDIO1
< 3.6 V - 200 - mV
DDIO1
0.7 x V
+ 0.26
DDIO1
2)
DDIO1
DDIO1
(3)
0.3 x V
0.39 x V
- 0.06
(
--
--
-5
DDIO1
(2)
DDIO1
DDIO1
(3)
DDIO1
V
V0.49 x V
FT_xx except FT_c and FT_d
I
lkg
Input leakage
(3)
current
FT_c
FT_d
TT_a
Weak pull-up
R
R
1. Refer to Figure 21: I/O input characteristics.
2. Tested in production.
3. Guaranteed by design.
equivalent resistor
PU
(5)
Weak pull-down
PD
equivalent resistor
C
I/O pin capacitance - - 5 - pF
IO
(5)
VIN = V
VIN = V
SS
DDIO1
V
0 < V
IN
DDIO1
V
VIN V
DDIO1
V
+1 V < VIN
DDIO1
(3)
5.5 V
0 < V
V
IN
DDIO1
< VIN 5 V - - 3000
V
DDIO1
0 < VIN V
V
DDIO1
0 < V
V
DDIO1
V
DDIO1
DDIO1
< VIN 5.5 V - - 9000
V
IN
DDIO1
< VIN + 0.3 V
+1 V - - 600
DDIO1
--±70
- - 150
- - 2000
- - 4500
--±150
- - 2000
25 40 55 k
25 40 55 k
(4)
(4)
(4)
(4)
(4)
nA
DS12232 Rev 2 81/136
109
Electrical characteristics STM32G071x8/xB
MSv47925V1
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
0
0.5
1
1.5
2
2.5
3
Minimum required
logic level 1 zone
Minimum required
logic level 0 zone
V
IHmin
= 0.7 V
DDIO
(CMOS standard requirement)
V
ILmax
= 0.3 V
DDIO
(CMOS standard requirement)
Undefined input range
V
IHmin
= 0.49 V
DDIO
+ 0.26
V
ILmax
= 0.39 V
DDIO
- 0.06
V
IN
(V)
V
DDIO
(V)
TTL standard requirement
TTL standard requirement
Device characteristics
Test thresholds
4. This value represents the pad leakage of the I/O itself. The total product pad leakage is provided by this formula: I
Total_Ileak_max
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).
= 10 µA + [number of I/Os where VIN is applied on the pad] ₓ I
lkg
(Max).
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters, as shown in Figure 21.
Figure 21. I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed V
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:
OL/VOH
The sum of the currents sourced by all the I/Os on V consumption of the MCU sourced on V I
VDD
The sum of the currents sunk by all the I/Os on V the MCU sunk on V
(see Table 18: Voltage characteristics).
, cannot exceed the absolute maximum rating I
SS
Voltage characteristics).
82/136 DS12232 Rev 2
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in
).
plus the maximum
cannot exceed the absolute maximum rating
DD,
DDIO1,
, plus the maximum consumption of
SS
(see Table 18:
VSS
STM32G071x8/xB Electrical characteristics
Table 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT OR TT
unless otherwise specified).
Table 52. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
V
V
V
Output low level voltage for an I/O pin CMOS port
OL
Output high level voltage for an I/O pin V
OH
(3)
Output low level voltage for an I/O pin TTL port
OL
|I
IO|
= 6 mA for other I/Os V
DDIO1
(2)
= 2 mA for FT_c I/Os
2.7 V
(2)
|IIO| = 2 mA for FT_c I/Os
(3)
V
OH
V
V
OH
V
V
OH
Output high level voltage for an I/O pin 2.4 -
(3)
Output low level voltage for an I/O pin All I/Os except FT_c
OL
(3)
Output high level voltage for an I/O pin V
(3)
Output low level voltage for an I/O pin |IIO| = 1 mA for FT_c I/Os
OL
(3)
Output high level voltage for an I/O pin V
= 6 mA for other I/Os
2.7 V
V
DDIO1
|IIO| = 18 mA
2.7 V
V
DDIO1
= 3 mA for other I/Os
1.62 V
V
DDIO1
|IIO| = 20 mA
2.7 V
V
V
OLFM+
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings ΣIIO.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Guaranteed by design.
Output low level voltage for an FT I/O
(3)
pin in FM+ mode (FT I/O with _f option)
DDIO1
|I
IO|
V
DDIO1
= 9 mA
1.62 V
(1)
-0.4
- 0.4 -
DDIO1
-0.4
-1.3
- 1.3 -
DDIO1
-0.4
- 0.45 -
DDIO1
-0.4
-0.4
V
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 22 and
Table 53, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General
operating conditions.
Table 53. I/O AC characteristics
Speed Symbol Parameter Conditions Min Max Unit
C=50 pF, 2.7 V ≤ V
Fmax Maximum frequency
C=50 pF, 1.6 V ≤ V
C=10 pF, 2.7 V ≤ V
00
C=10 pF, 1.6 V ≤ V
C=50 pF, 2.7 V ≤ V
Tr/Tf Output rise and fall time
C=50 pF, 1.6 V ≤ V
C=10 pF, 2.7 V ≤ V
C=10 pF, 1.6 V ≤ V
DS12232 Rev 2 83/136
(1)(2)
3.6 V - 2
DDIO1
2.7 V - 0.35
DDIO1
3.6 V - 3
DDIO1
2.7 V - 0.45
DDIO1
3.6 V - 100
DDIO1
2.7 V - 225
DDIO1
3.6 V - 75
DDIO1
2.7 V - 150
DDIO1
MHz
ns
109
Electrical characteristics STM32G071x8/xB
Table 53. I/O AC characteristics
(1)(2)
(continued)
Speed Symbol Parameter Conditions Min Max Unit
C=50 pF, 2.7 V ≤ V
Fmax Maximum frequency
C=50 pF, 1.6 V ≤ V
C=10 pF, 2.7 V ≤ V
01
C=10 pF, 1.6 V ≤ V
C=50 pF, 2.7 V ≤ V
Tr/Tf Output rise and fall time
C=50 pF, 1.6 V ≤ V
C=10 pF, 2.7 V ≤ V
C=10 pF, 1.6 V ≤ V
C=50 pF, 2.7 V ≤ V
Fmax Maximum frequency
C=50 pF, 1.6 V ≤ V
C=10 pF, 2.7 V ≤ V
10
C=10 pF, 1.6 V ≤ V
C=50 pF, 2.7 V ≤ V
Tr/Tf Output rise and fall time
C=50 pF, 1.6 V ≤ V
C=10 pF, 2.7 V ≤ V
C=10 pF, 1.6 V ≤ V
C=30 pF, 2.7 V ≤ V
Fmax Maximum frequency
C=30 pF, 1.6 V ≤ V
C=10 pF, 2.7 V ≤ V
11
C=10 pF, 1.6 V ≤ V
C=30 pF, 2.7 V ≤ V
Tr/Tf Output rise and fall time
C=30 pF, 1.6 V ≤ V
C=10 pF, 2.7 V ≤ V
C=10 pF, 1.6 V ≤ V
Fm+
1. The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register. Refer to the RM0444 reference manual for a description of GPIO Port configuration register.
2. Guaranteed by design.
3. This value represents the I/O capability but the maximum system frequency is limited to 64 MHz.
4. The fall time is defined between 70% and 30% of the output waveform, according to I
Fmax Maximum frequency
Tf Output fall time
(4)
C=50 pF, 1.6 V ≤ V
3.6 V - 10
DDIO1
2.7 V - 2
DDIO1
3.6 V - 15
DDIO1
2.7 V - 2.5
DDIO1
3.6 V - 30
DDIO1
2.7 V - 60
DDIO1
3.6 V - 15
DDIO1
2.7 V - 30
DDIO1
3.6 V - 30
DDIO1
2.7 V - 15
DDIO1
3.6 V - 60
DDIO1
2.7 V - 30
DDIO1
3.6 V - 11
DDIO1
2.7 V - 22
DDIO1
3.6 V - 4
DDIO1
2.7 V - 8
DDIO1
3.6 V - 60
DDIO1
2.7 V - 30
DDIO1
3.6 V - 80
DDIO1
2.7 V - 40
DDIO1
3.6 V - 5.5
DDIO1
2.7 V - 11
DDIO1
3.6 V - 2.5
DDIO1
2.7 V - 5
DDIO1
3.6 V
DDIO1
2
C specification.
MHz
MHz
MHz
(3)
-1MHz
-5ns
ns
ns
ns
84/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
MS32132V2
T
10%
50%
90%
10%
50%
90%
Maximum frequency is achieved if (t + t (≤ 2/3)T and if the duty cycle is (45-55%)
when loaded by the specified capacitance.
r
f
r(IO)out
t
f(IO)out
t
Figure 22. I/O AC characteristics definition
1. Refer to Table 53: I/O AC characteristics.

5.3.15 NRST input characteristics

The NRST input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R
Unless otherwise specified, the parameters given in the following table are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions.
.
PU
Table 54. NRST pin characteristics
(1)
(1)
Symbol Parameter Conditions Min Typ Max Unit
V
IL(NRST)
V
IH(NRST)
V
hys(NRST)
R
PU
V
F(NRST)
V
NF(NRST)
1. Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order)
NRST input low level voltage
NRST input high level voltage
NRST Schmitt trigger voltage hysteresis
Weak pull-up equivalent resistor
NRST input filtered pulse
NRST input not filtered pulse
(2)
.
VIN = V
1.7 V ≤ V
- - - 0.3 x V
- 0.7 x V
DDIO1
--
DDIO1
--200-mV
SS
25 40 55 k
---70ns
3.6 V 350 - - ns
DD
V
DS12232 Rev 2 85/136
109
Electrical characteristics STM32G071x8/xB
MS19878V3
R
PU
V
DD
Internal reset
External
reset circuit
(1)
NRST
(2)
Filter
0.1 μF
Figure 23. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the V
Table 54: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
3. The external capacitor on NRST must be placed as close as possible to the device.
max level specified in
IL(NRST)

5.3.16 Analog switch booster

Table 55. Analog switch booster characteristics
Symbol Parameter Min Typ Max Unit
V
DD
t
SU(BOOST)
I
DD(BOOST)
1. Guaranteed by design.
Supply voltage 1.62 V - 3.6 V
Booster startup time - - 240 µs
Booster consumption for
1.62 V ≤ V
2.0 V
DD
Booster consumption for
2.0 V ≤ V
2.7 V
DD
Booster consumption for
2.7 V ≤ V
3.6 V
DD
--250
--500
--900

5.3.17 Analog-to-digital converter characteristics

Unless otherwise specified, the parameters given in Table 56 are preliminary values derived from tests performed under ambient temperature, f conditions summarized in Table 21: General operating conditions.
Note: It is recommended to perform a calibration after each power-up.
Symbol Parameter Conditions
Table 56. ADC characteristics
(2)
frequency and V
PCLK
(1)
Min Typ Max Unit
(1)
supply voltage
DDA
µA
V
DDA
V
REF+
86/136 DS12232 Rev 2
Analog supply voltage - 1.62 - 3.6 V
Positive reference
voltage
< 2 V V
V
DDA
2 V 2 - V
V
DDA
DDA
DDA
V
STM32G071x8/xB Electrical characteristics
Table 56. ADC characteristics
Symbol Parameter Conditions
Range 1 0.14 - 35
Range 2 0.14 - 16
12 bits; V
10 bits; V
8 bits; V
6 bits; V
f
ADC
DDA
DDA
DDA
DDA
2 V - - 2.18
DDA
2 V - - 2.50
DDA
2 V - - 2.92
DDA
2 V - - 3.50
DDA
= 35 MHz; 12 bits;
V
> 2 V
DDA
= 35 MHz;
2 V
DDA
12 bits; V
DDA
2 V - - f
DDA
-V
V
f
ADC
f
TRIG
AIN
ADC clock frequency
f
s
Sampling rate
12 bits; V
10 bits; V
8 bits; V
6 bits; V
f
External trigger frequency
ADC
12 bits; V
12 bits; V
(3)
Conversion voltage range
(1)
(continued)
(2)
Min Typ Max Unit
> 2 V - - 2.50
> 2 V - - 2.92
> 2 V - - 3.50
> 2 V - - 4.38
- - 2.35
- - 2.18
> 2 V - - f
SSA
-V
ADC
ADC
REF+
MHz
MSps
MHz
/15
/16
V
R
AIN
C
ADC
t
STAB
t
CAL
t
LATR
t
s
t
ADCVREG_STUP
External input impedance
Internal sample and hold capacitor
---50k
--5-pF
ADC power-up time - 2
f
= 35 MHz 2.35 µs
Calibration time
ADC
-821/f
Trigger conversion latency;
CKMODE = 00 2 - 3
CKMODE = 01 - - 2.75
Regular and injected channels without conversion abort
Sampling time
CKMODE = 10 - - 2.63
CKMODE = 11 - - 3
f
= 35 MHz 0.043 - 4.59 µs
ADC
-1.5-160.51/f
ADC voltage regulator start-up time
---20
Conversion
cycle
ADC
1/f
ADC
ADC
µs
DS12232 Rev 2 87/136
109
Electrical characteristics STM32G071x8/xB
(2)
(1)
(continued)
Min Typ Max Unit
0.40 - 4.95 µs
+ 12.5 cycles for successive
t
s
approximation
Table 56. ADC characteristics
Symbol Parameter Conditions
f
= 35 MHz
ADC
Resolution = 12 bits
Resolution = 12 bits
t
CONV
Total conversion time (including sampling time)
= 14 to 173
Laps of time allowed
t
IDLE
between two conversions without
- - - 100 µs
rearm
fs = 2.5 MSps - 410 -
I
DDA(ADC)
ADC consumption from V
DDA
= 1 MSps - 164 -
s
= 10 kSps - 17 -
f
s
fs = 2.5 MSps - 65 -
I
DDV(ADC)
1. Guaranteed by design
2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when V disabled when V
V
3.
is internally connected to V
REF+
functions for further details.
ADC consumption from V
REF+
2.4 V.
DDA
DDA
= 1 MSps - 26 -
s
= 10 kSps - 0.26 -
f
s
on some packages.Refer to Section 4: Pinouts, pin description and alternate
< 2.4 V and
DDA
1/f
ADC
µAf
µAf
Resolution
12 bits
Table 57. Maximum ADC R
Sampling cycle at
35 MHz
(3)
1.5
Sampling time at
35 MHz
.
AIN
[ns]
43 50
3.5 100 680
7.5 214 2200
12.5 357 4700
19.5 557 8200
39.5 1129 15000
79.5 2271 33000
160.5 4586 50000
Max. R
()
AIN
(1)(2)
88/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
Resolution
10 bits
8 bits
Table 57. Maximum ADC R
Sampling cycle at
35 MHz
(3)
1.5
3.5 100 820
7.5 214 3300
12.5 357 5600
19.5 557 10000
39.5 1129 22000
79.5 2271 39000
160.5 4586 50000
(3)
1.5
3.5 100 1500
7.5 214 3900
12.5 357 6800
19.5 557 12000
39.5 1129 27000
79.5 2271 50000
160.5 4586 50000
(3)
1.5
3.5 100 2200
7.5 214 5600
Sampling time at
. (continued)
AIN
35 MHz
[ns]
43 68
43 82
43 390
Max. R
()
AIN
(1)(2)
6 bits
12.5 357 10000
19.5 557 15000
39.5 1129 33000
79.5 2271 50000
160.5 4586 50000
1. Guaranteed by design.
2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when V
2.4 V and disabled when V
3. Only allowed with V
DDA
DDA
> 2 V
2.4 V.
DS12232 Rev 2 89/136
DDA
<
109
Electrical characteristics STM32G071x8/xB
Table 58. ADC accuracy
Symbol Parameter Conditions
V
= V
DDA
f
= 35 MHz; fs 2.5 MSps;
ADC
REF+
= 3 V;
TA = 25 °C
< 3.6 V;
ET
To ta l
unadjusted
error
2 V < V f
DDA=VREF+
= 35 MHz; fs 2.5 MSps;
ADC
TA = entire range
1.65 V < V
DDA=VREF+
TA = entire range
EO Offset error
Range 1: f Range 2: f
= V
V
DDA
f
= 35 MHz; fs 2.5 MSps;
ADC
= 25 °C
T
A
2 V < V
= 35 MHz; fs 2.5 MSps;
f
ADC
TA = entire range
1.65 V < V = entire range
T
A
Range 1: f Range 2: f
V
= V
DDA
f
= 35 MHz; fs 2.5 MSps;
ADC
= 35 MHz; fs ≤ 2.2 MSps;
ADC
= 16 MHz; fs ≤ 1.1 MSps;
ADC
= 3 V;
REF+
DDA=VREF+
DDA=VREF+
ADC
ADC
REF+
< 3.6 V;
= 35 MHz; fs ≤ 2.2 MSps; = 16 MHz; fs ≤ 1.1 MSps;
= 3 V;
TA = 25 °C
(4)
< 3.6 V;
< 3.6 V;
(1)(2)(3)
Min Typ Max Unit
-34
-36.5
-37.5
-1.52
-1.54.5
-1.55.5
-33.5
LSB
LSB
EG Gain error
ED
Differential
linearity error
2 V < V f
DDA=VREF+
= 35 MHz; fs 2.5 MSps;
ADC
< 3.6 V;
TA = entire range
1.65 V < V
DDA=VREF+
TA = entire range Range 1: f Range 2: f
= V
V
DDA
= 35 MHz; fs 2.5 MSps;
f
ADC
= 25 °C
T
A
2 V < V
= 35 MHz; fs 2.5 MSps;
f
ADC
= entire range
T
A
1.65 V < V
= 35 MHz; fs ≤ 2.2 MSps;
ADC
= 16 MHz; fs ≤ 1.1 MSps;
ADC
= 3 V;
REF+
DDA=VREF+
DDA=VREF+
< 3.6 V;
TA = entire range Range 1: f Range 2: f
= 35 MHz; fs ≤ 2.2 MSps;
ADC
= 16 MHz; fs ≤ 1.1 MSps;
ADC
< 3.6 V;
< 3.6 V;
-35 LSB
-36.5
-1.21.5
-1.21.5 LSB
-1.21.5
90/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
Table 58. ADC accuracy
Symbol Parameter Conditions
V
EL
ENOB
SINAD
SNR
Integral
linearity error
Effective
number of
bits
Signal-to-
noise and
distortion
ratio
Signal-to-
noise ratio
= V
DDA
= 35 MHz; fs 2.5 MSps;
f
ADC
TA = 25 °C
2 V < V
= 35 MHz; fs 2.5 MSps;
f
ADC
TA = entire range
1.65 V < V = entire range
T
A
Range 1: f Range 2: f
V
= V
DDA
f
= 35 MHz; fs 2.5 MSps;
ADC
TA = 25 °C
2 V < V f
= 35 MHz; fs 2.5 MSps;
ADC
= entire range
T
A
1.65 V < V
TA = entire range Range 1: f Range 2: f
= V
V
DDA
= 35 MHz; fs 2.5 MSps;
f
ADC
TA = 25 °C
2 V < V
= 35 MHz; fs 2.5 MSps;
f
ADC
TA = entire range
1.65 V < V = entire range
T
A
Range 1: f Range 2: f
= V
V
DDA
f
= 35 MHz; fs 2.5 MSps;
ADC
= 25 °C
T
A
2 V < V f
= 35 MHz; fs 2.5 MSps;
ADC
= entire range
T
A
1.65 V < V
TA = entire range Range 1: f Range 2: f
= 3 V;
REF+
DDA=VREF+
DDA=VREF+
ADC
ADC
REF+
DDA=VREF+
DDA=VREF+
ADC
ADC
REF+
DDA=VREF+
DDA=VREF+
ADC
ADC
REF+
DDA=VREF+
DDA=VREF+
ADC
ADC
< 3.6 V;
< 3.6 V;
= 35 MHz; fs ≤ 2.2 MSps; = 16 MHz; fs ≤ 1.1 MSps;
= 3 V;
< 3.6 V;
< 3.6 V;
= 35 MHz; fs ≤ 2.2 MSps; = 16 MHz; fs ≤ 1.1 MSps;
= 3 V;
< 3.6 V;
< 3.6 V;
= 35 MHz; fs ≤ 2.2 MSps; = 16 MHz; fs ≤ 1.1 MSps;
= 3 V;
< 3.6 V;
< 3.6 V;
= 35 MHz; fs ≤ 2.2 MSps; = 16 MHz; fs ≤ 1.1 MSps;
(1)(2)(3)
(4)
(continued)
Min Typ Max Unit
-2.53
-2.53 LSB
-2.53.5
10.1 10.2 -
9.6 10.2 ­bit
9.5 10.2 -
62.5 63 -
59.5 63 ­dB
59 63 -
63 64 -
60 64 -
dB
60 64 -
DS12232 Rev 2 91/136
109
Electrical characteristics STM32G071x8/xB
MSv19880V3
(1) Example of an actual transfer curve
(2) Ideal transfer curve
(3) End point correlation line
4095
4094
4093
7
6
5
4
3
2
1
0
2 345 6
1 7 4093 4094 4095
E
D
1 LSB
ideal
(1)
(3)
(2)
E
L
E
T
E
G
E
O
Code
(V
AIN
/ V
REF+
)*4095
E
T
total unadjusted error: maximum deviation
between the actual and ideal transfer curves.
E
G
gain error: deviation between the last ideal
transition and the last actual one.
E
D
differential linearity error: maximum deviation
between actual steps and the ideal ones.
E
L
integral linearity error: maximum deviation between
any actual transition and the end point correlation line.
E
O
offset error: maximum deviation between the
first actual transition and the first ideal one.
Table 58. ADC accuracy
Symbol Parameter Conditions
= V
V
DDA
= 35 MHz; fs 2.5 MSps;
f
ADC
REF+
= 3 V;
(1)(2)(3)
(4)
(continued)
Min Typ Max Unit
--74-73
TA = 25 °C
< 3.6 V;
< 3.6 V;
= 35 MHz; fs ≤ 2.2 MSps; = 16 MHz; fs ≤ 1.1 MSps;
--74-70
--74-70
< 2.4 V
DDA
THD
To ta l
harmonic
distortion
2 V < V f TA = entire range
1.65 V < V T Range 1: f Range 2: f
DDA=VREF+
= 35 MHz; fs 2.5 MSps;
ADC
DDA=VREF+
= entire range
A
ADC
ADC
1. Based on characterization results, not tested in production.
2. ADC DC accuracy values are measured after internal calibration.
3. Injecting negative current on any analog input pin significantly reduces the accuracy of A-to-D conversion of signal on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins susceptible to receive negative current.
4. I/O analog switch voltage booster enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when V and disabled when V
DDA
2.4 V.
Figure 24. ADC accuracy characteristics
dB
92/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
MS33900V5
Sample and hold ADC converter
12-bit
converter
C
parasitic
(2)
I
lkg
(3)
V
T
C
ADC
V
DDA
R
AIN
(1)
V
AIN
V
T
AINx
R
ADC
Figure 25. Typical connection diagram using the ADC
1. Refer to Table 56: ADC characteristics for the values of R
2. C
represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
parasitic
pad capacitance (refer to Table 51: I/O static characteristics for the value of the pad capacitance). A high C
value will downgrade conversion accuracy. To remedy this, f
parasitic
AIN
and C
.
ADC
should be reduced.
ADC
3. Refer to Table 51: I/O static characteristics for the values of Ilkg.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 13: Power supply
scheme. The 100 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
DS12232 Rev 2 93/136
109
Electrical characteristics STM32G071x8/xB

5.3.18 Digital-to-analog converter characteristics

Table 59. DAC characteristics
(1)
Symbol Parameter Conditions Min Typ Max Unit
DAC output buffer OFF, DAC_OUT
V
DDA
Analog supply voltage for DAC ON
pin not connected (internal connection only)
1.71 -
3.6 V
Other modes 1.80 -
DAC output buffer OFF, DAC_OUT
V
REF+
Positive reference voltage
pin not connected (internal connection only)
1.71 ­V
DDA
Other modes 1.80 -
R
R
O
R
BON
R
BOFF
C
C
SH
V
DAC_OUT
L
Resistive load
DAC output buffer ON
connected to V
connected to V
SSA
DDA
Output Impedance DAC output buffer OFF 9.6 11.7 13.8 k
Output impedance sample
VDD = 2.7 V - - 2
and hold mode, output
= 2.0 V - - 3.5
V
buffer ON
Output impedance sample
DD
VDD = 2.7 V - - 16.5
and hold mode, output
= 2.0 V - - 18.0
V
DD
DAC output buffer ON - - 50 pF
L
buffer OFF
Capacitive load
Sample and hold mode - 0.1 1 µF
Voltage on DAC_OUT
DAC output buffer ON 0.2 -
output
DAC output buffer OFF 0 - V
5- -
25 - -
V
REF+
– 0.2
REF+
±0.5 LSB - 1.7 3
Normal mode DAC output buffer ON CL 50 pF, RL 5 k
±1 LSB - 1.6 2.9
±2 LSB - 1.55 2.85
±4 LSB - 1.48 2.8
±8 LSB - 1.4 2.75
Normal mode DAC output buffer OFF, ±1LSB, CL = 10 pF
Normal mode DAC output buffer ON CL 50 pF, RL 5 k
Normal mode DAC output buffer OFF, CL 10 pF
-2 2.5
-4.2 7.5
-2 5
t
SETTLING
t
WAKEUP
Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±0.5LSB, ±1 LSB, ±2 LSB, ±4 LSB, ±8 LSB)
Wakeup time from off state (setting the ENx bit in the
(2)
DAC Control register) until final value ±1 LSB
V
k
k
k
V
µs
µs
PSRR V
supply rejection ratio
DDA
Normal mode DAC output buffer ON CL 50 pF, RL = 5 kΩ, DC
94/136 DS12232 Rev 2
--80 -28dB
STM32G071x8/xB Electrical characteristics
Table 59. DAC characteristics
(1)
(continued)
Symbol Parameter Conditions Min Typ Max Unit
T
W_to_W
t
SAMP
Minimum time between two consecutive writes into the DAC_DORx register to guarantee a correct DAC_OUT for a small variation of the input code (1 LSB)
Sampling time in sample and hold mode (code transition between the lowest input code and the highest input code when DACOUT reaches final value ±1LSB)
DAC_MCR:MODEx[2:0] = 000 or 001 CL 50 pF; RL 5 k
DAC_MCR:MODEx[2:0] = 010 or 011 CL 10 pF
DAC output buffer
DAC_OUT pin connected
ON, C
DAC output buffer OFF, C
= 100 nF
SH
= 100 nF
SH
DAC_OUT pin not connected (internal
DAC output buffer OFF
1- -
1.4 - -
-0.7 3.5
ms
-10.5 18
-2 3.s
connection only)
I
leak
CI
int
t
TRIM
V
offset
I
DDA(DAC)
Output leakage current
Internal sample and hold capacitor
Sample and hold mode, DAC_OUT pin connected
- 5.2 7 8.8 pF
-- -
Middle code offset trim time DAC output buffer ON 50 - - µs
= 3.6 V - 1500 -
V
Middle code offset for 1 trim code step
REF+
= 1.8 V - 750 -
V
REF+
DAC output buffer ON
No load, middle code (0x800)
No load, worst code (0xF1C)
- 315 500
- 450 670
DAC consumption from V
DDA
DAC output buffer OFF
Sample and hold mode, C 100 nF
No load, middle code (0x800)
=
SH
-- 0.2
315
-
T
/(Ton+
on
(4)
T
)
off
T
on
T
(3)
670
/(Ton+
)
off
nA
µV
µA
(4)
µs
DS12232 Rev 2 95/136
109
Electrical characteristics STM32G071x8/xB
MSv47959V1
12-bit
digital-to-analog
converter
Buffered / non-buffered DAC
DAC_OUTx
R
LOAD
C
LOAD
Buffer
(1)
Table 59. DAC characteristics
(1)
(continued)
Symbol Parameter Conditions Min Typ Max Unit
No load, middle
DAC output buffer ON
code (0x800)
No load, worst code (0xF1C)
I
DDV(DAC)
DAC consumption from V
REF+
DAC output buffer OFF
No load, middle code (0x800)
Sample and hold mode, buffer ON,
= 100 nF, worst case
C
SH
Sample and hold mode, buffer OFF, CSH = 100 nF, worst case
1. Guaranteed by design.
2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
3. Refer to Table 51: I/O static characteristics.
is the Refresh phase duration. T
4. T
on
is the Hold phase duration. Refer to RM0444 reference manual for more details.
off
- 185 240
- 340 400
- 155 205
185
-
T
/(Ton+
on
T
)
off
155
-
T
/(Ton+
on
T
)
off
(4)
(4)
T
on
T
T
on
T
400
/(Ton+
off
205
/(Ton+
off
(4)
)
(4)
)
Figure 26. 12-bit buffered / non-buffered DAC
µA
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.
96/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
.
Table 60. DAC accuracy
(1)
Symbol Parameter Conditions Min Typ Max Unit
DNL
Differential non linearity
(2)
DAC output buffer ON - - ±2
DAC output buffer OFF - - ±2
- monotonicity 10 bits guaranteed
INL
Offset
Offset1
OffsetCal
Integral non linearity
Offset error at code 0x800
Offset error at code 0x001
(3)
(3)
(4)
Offset Error at code 0x800 after calibration
DAC output buffer ON CL 50 pF, RL 5 k
DAC output buffer OFF CL 50 pF, no RL
DAC output buffer ON CL 50 pF, RL 5 k
DAC output buffer OFF CL 50 pF, no RL
DAC output buffer OFF CL 50 pF, no RL
DAC output buffer ON CL 50 pF, RL 5 k
= 3.6 V - - ±12
V
REF+
V
= 1.8 V - - ±25
REF+
= 3.6 V - - ±5
V
REF+
V
= 1.8 V - - ±7
REF+
--±4
--±4
LSB
--±8
--±5
Gain Gain error
To ta l
TUE
unadjusted error
To ta l
TUECal
unadjusted error after calibration
SNR
THD
Signal-to-noise ratio
Total harmonic distortion
DAC output buffer ON CL 50 pF, RL 5 k
(5)
DAC output buffer OFF CL 50 pF, no RL
DAC output buffer ON CL 50 pF, RL 5 k
DAC output buffer OFF CL 50 pF, no RL
DAC output buffer ON CL 50 pF, RL 5 k
DAC output buffer ON CL 50 pF, RL 5 k 1 kHz, BW 500 kHz
DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz BW 500 kHz
DAC output buffer ON CL 50 pF, RL 5 k, 1 kHz
DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz
--±0.5
%
--±0.5
--±30
LSB
--±12
--±23LSB
-71.2-
dB
-71.6-
--78-
dB
--79-
DS12232 Rev 2 97/136
109
Electrical characteristics STM32G071x8/xB
Table 60. DAC accuracy
(1)
(continued)
Symbol Parameter Conditions Min Typ Max Unit
DAC output buffer ON
SINAD
Signal-to-noise and distortion ratio
CL 50 pF, RL 5 k, 1 kHz
DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz
DAC output buffer ON
ENOB
Effective number of bits
CL 50 pF, RL 5 k, 1 kHz
DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz
1. Guaranteed by design.
2. Difference between two consecutive codes - 1 LSB.
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
4. Difference between the value measured at Code (0x001) and the ideal value.
5. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when
buffer is OFF, and from code giving 0.2 V and (V
– 0.2) V when buffer is ON.
REF+
-70.4-
dB
-71-
-11.4-
bits
-11.5-

5.3.19 Voltage reference buffer characteristics

Table 61. VREFBUF characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1)
V
= 0 2.4 - 3.6
RS
= 1 2.8 - 3.6
V
RS
V
= 0 1.65 - 2.4
RS
V
= 1 1.65 - 2.8
RS
V
= 0 2.046
RS
V
= 1 2.498
RS
V
= 0 V
RS
V
= 1 V
RS
(3)
(3)
-150 mV - V
DDA
-150 mV - V
DDA
2.048 2.049
2.5 2.502
(3)
(3)
DDA
DDA
V
DDA
V
REFBUF_
OUT
TRIM
Analog supply voltage
Voltage reference output
Trim step resolution
Normal mode
Degraded mode
Normal mode
Degraded mode
- - - ±0.05 ±0.1 %
(2)
(2)
CL Load capacitor - - 0.5 1 1.5 µF
Equivalent
esr
I
load
I
line_reg
I
load_reg
Serial Resistor of C
load
Static load current
Line regulation 2.8 V ≤ V
Load regulation 500 μA ≤ I
----2
----4mA
I
= 500 µA - 200 1000
3.6 V
DDA
4 mA Normal mode - 50 500 ppm/mA
load
load
= 4 mA - 100 500
I
load
V
ppm/V
98/136 DS12232 Rev 2
STM32G071x8/xB Electrical characteristics
Table 61. VREFBUF characteristics
(1)
(continued)
Symbol Parameter Conditions Min Typ Max Unit
Temperature
T
Coeff_vrefbuf
PSRR
t
START
coefficient of VREFBUF
Power supply rejection
Start-up time
-40 °C < TJ < +125 °C - - 50 ppm/ °C
(4)
DC 40 60 -
100 kHz 25 40 -
CL = 0.5 µF
CL = 1.5 µF
(5)
(5)
(5)
-300350
-500650
-650800
Control of maximum DC
I
INRUSH
I
DDA(VREFB
UF)
1. Guaranteed by design.
2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (V drop voltage).
3. Guaranteed by test in production.
4. The temperature coefficient at VREF+ output is the sum of T
5. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.
6. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the V the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.
current drive on VREFBUF_OUT during start-up
(6)
phase
VREFBUF consumption
DDA
from V
--8-mA
= 0 µA - 16 25
I
load
= 500 µA - 18 30
load
= 4 mA - 35 50
I
load
Coeff_vrefint
and T
Coeff_vrefbuf
.
DDA
DDA
voltage should be in
dB
µsCL = 1.1 µF
µAI
-

5.3.20 Comparator characteristics

Table 62. COMP characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
DDA
V
IN
(2)
V
BG
V
SC
I
DDA(SCALER)
t
START_SCALER
Analog supply voltage
Comparator input voltage range
Scaler input voltage - V
Scaler offset voltage - - ±5 ±10 mV
Scaler static
BRG_EN=0 (bridge disable) - 200 300 nA consumption from V
DDA
BRG_EN=1 (bridge enable) - 0.8 1 µA
Scaler startup time - - 100 200 µs
-1.62-3.6V
-0-V
DS12232 Rev 2 99/136
(1)
REFINT
DDA
V
V
109
Electrical characteristics STM32G071x8/xB
Table 62. COMP characteristics
(1)
(continued)
Symbol Parameter Conditions Min Typ Max Unit
t
START
Comparator startup time to reach propagation delay specification
High-speed mode - - 5
Medium-speed mode - - 15
200 mV step;
High-speed mode - 30 50 ns
100 mV
t
D
Propagation delay
>200 mV step;
overdrive
Medium-speed mode - 0.3 0.6 µs
High-speed mode - - 70 ns
100 mV
Medium-speed mode - - 1.2 µs
V
offset
Comparator offset error
overdrive
Full common mode range - ±5 ±20 mV
No hysteresis - 0 -
V
hys
Comparator hysteresis
Low hysteresis - 10 -
Medium hysteresis - 20 -
High hysteresis - 30 -
Static - 5 7.5
With 50 kHz and ±100 mV overdrive square signal
-6-
Static - 7 10
With 50 kHz and ±100 mV overdrive square signal
-8-
I
DDA(COMP)
Comparator consumption from V
DDA
Medium-speed
mode;
No deglitcher
Medium-speed
mode;
With deglitcher
Static - 250 400
High-speed
mode
With 50 kHz and ±100 mV overdrive square signal
-250-
µs
mV
µA
1. Guaranteed by design.
2. Refer to Table 24: Embedded internal voltage reference.

5.3.21 Temperature sensor characteristics

Symbol Parameter Min Typ Max Unit
(1)
T
L
Avg_Slope
V
30
t
START(TS_BUF)
(1)
t
START
VTS linearity with temperature - ±1 ±2 °C
(2)
Average slope 2.3 2.5 2.7 mV/°C
Voltage at 30°C (±5 °C)
(1)
Sensor Buffer Start-up time in continuous mode
Start-up time when entering in continuous mode
100/136 DS12232 Rev 2
Table 63. TS characteristics
(3)
(4)
(4)
0.742 0.76 0.785 V
-81s
- 70 120 µs
Loading...