ST MICROELECTRONICS STM32F303RBT6 Datasheet

STM32F303xB STM32F303xC
LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm)
LQFP48 (7 × 7 mm)
WLCSP100 (0.4 mm pitch)
Arm®-based Cortex®-M4 32b MCU+FPU, up to 256KB Flash+
48KB SRAM, 4 ADCs, 2 DAC ch., 7 comp, 4 PGA, timers, 2.0-3.6 V
Features
Core: Arm® Cortex®-M4 32-bit CPU with FPU (72 MHz max), single-cycle multiplication and HW division, instruction and MPU (memory protection unit)
Operating conditions: –V
DD
Memories – 128 to 256 Kbytes of Flash memory – Up to 40 Kbytes of SRAM, with HW parity
check implemented on the first 16 Kbytes.
– Routine booster: 8 Kbytes of SRAM on
instruction and data bus, with HW parity check (CCM)
CRC calculation unit
Reset and supply management
– Power-on/power-down reset (POR/PDR) – Programmable voltage detector (PVD) – Low-power modes: Sleep, Stop and
Standby
–V
BAT
Clock management –4
to 32 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x 16 PLL option –
Internal 40 kHz oscillator
Up to 87 fast I/Os – All mappable on external interrupt vectors – Several 5 V-tolerant
Interconnect matrix
12-channel DMA controller
Four ADCs 0.20 µS (up to 39 channels) with
selectable resolution of 12/10/8/6 bits, 0 to
3.6 V conversion range, single ended/differential input, separate analog supply from 2 to 3.6 V
Two 12-bit DAC channels with analog supply
from 2.4 to 3.6 V
90 DMIPS (from CCM), DSP
, V
voltage range: 2.0 V to 3.6 V
DDA
supply for RTC and backup registers
Seven fast rail-to-rail analog comparators with
analog supply from 2 to 3.6 V
Four operational amplifiers that can be used in
PGA mode, all terminals accessible with analog supply from 2.4 to 3.6 V
Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensor
Up to
13 timers
s
– One 32-bit timer and two 16-bit timers with
up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
Two 16-bit 6-channel advanced-control
timer
s, with up to 6 PWM channels,
deadtime generation and emergency stop
– One 16-bit timer with 2 IC/OCs, 1
OCN/PWM, deadtime generation and emergency stop
– Two 16-bit timers with IC/OC/OCN/PWM,
deadtime generation and emergency stop
– Two watchdog timers (independent,
window) – SysTick timer: 24-bit downcounter –
Two 16-bit basic timers to drive the DAC
Calendar RTC with Alarm, periodic wakeup from Stop/Standby
Communication interfaces – CAN interface (2.0B Active) –Two I
2
C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from STOP
October 2018 DS9118 Rev 14 1/149
This is information on a product in full production.
www.st.com
STM32F303xB STM32F303xC
– Up to five USART/UARTs (ISO 7816
interface, LIN, IrDA, modem control)
– Up to three SPIs, two with multiplexed
half/full duplex I2S interface, 4 to 16
programmable bit frames – USB 2.0 full speed interface –
Infrared transmitter
Serial wire debug, Cortex JTAG
®
-M4 with FPU ETM,
96-bit unique ID

Table 1. Device summary

Reference Part number
STM32F303xB STM32F303CB, STM32F303RB, STM32F303VB
STM32F303xC STM32F303CC, STM32F303RC, STM32F303VC
2/149 DS9118 Rev 14
STM32F303xB STM32F303xC Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Arm® Cortex®-M4 core with FPU with embedded Flash and SRAM . . . . 14
3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.2 Power supply supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 20
3.13 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.2 Internal voltage reference (V
3.13.3 V
3.13.4 OPAMP reference voltage (VREFOPAMP) . . . . . . . . . . . . . . . . . . . . . . 22
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
BAT
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
REFINT
3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16 Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17.1 Advanced timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DS9118 Rev 14 3/149
5
Contents STM32F303xB STM32F303xC
3.17.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . . 24
3.17.3 Basic timers (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.18 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25
3.19 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . . 27
3.21 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . . 27
3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 28
3.23 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.24 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.25 Infrared Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.26 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.27 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.27.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.27.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 61
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 61
4/149 DS9118 Rev 14
STM32F303xB STM32F303xC Contents
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.16 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.18 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.21 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.23 V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
BAT
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.1 LQFP100 – 14 x 14 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 LQFP64 – 10 x 10 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3 LQFP48 – 7 x 7 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4 WLCSP100 - 0.4 mm pitch wafer level chip scale package information 135
7.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 140
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
DS9118 Rev 14 5/149
5
List of tables STM32F303xB STM32F303xC
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32F303xB/STM32F303xC family device features and peripheral counts . . . . . . . . . . 12
Table 3. External analog supply values for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. STM32F303xB/STM32F303xC peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 7. STM32F303xB/STM32F303xC I
Table 8. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. STM32F303xB/STM32F303xC SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 10. Capacitive sensing GPIOs available on STM32F303xB/STM32F303xC devices . . . . . . . 30
Table 11. No. of capacitive sensing channels available on STM32F303xB/STM32F303xC devices. 30
Table 12. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 13. STM32F303xB/STM32F303xC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. Alternate functions for port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 15. Alternate functions for port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 16. Alternate functions for port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 17. Alternate functions for port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 18. Alternate functions for port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 19. Alternate functions for port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary addresses . . 54
Table 21. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 22. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 23. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 24. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 25. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 26. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 27. Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 28. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 29. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 30. Typical and maximum current consumption from V Table 31. Typical and maximum current consumption from the V Table 32. Typical and maximum V Table 33. Typical and maximum V
DD
DDA
Table 34. Typical and maximum current consumption from V Table 35. Typical current consumption in Run mode, code with data processing running from Flash68
Table 36. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 69
Table 37. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 38. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 39. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 40. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 41. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 42. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 43. LSE oscillator characteristics (f
Table 44. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 45. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 46. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 47. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 48. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2
C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
supply at V
DD
DDA
supply . . . . . . . . . . . . . . . . . . 65
= 3.6V . . . . . . . . . . . 64
DD
consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 66
consumption in Stop and Standby modes. . . . . . . . . . . . . . . 66
supply. . . . . . . . . . . . . . . . . . . . . . 67
BAT
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
LSE
6/149 DS9118 Rev 14
STM32F303xB STM32F303xC List of tables
Table 49. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 50. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 51. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 52. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 53. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 54. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 55. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 56. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 57. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 58. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 59. IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 60. WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 61. I2C timings specification (see I2C specification, rev.03, June 2007) . . . . . . . . . . . . . . . . . 95
Table 62. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 63. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 64. I
2
S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 65. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 66. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 67. USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 68. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 69. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 70. ADC accuracy - limited test conditions, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . 109
Table 71. ADC accuracy, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 72. ADC accuracy - limited test conditions, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 73. ADC accuracy, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 74. ADC accuracy at 1MSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 75. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 76. Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 77. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 78. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 79. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 80. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
BAT
Table 81. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . 126
Table 82. LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . 129
Table 83. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 132
Table 84. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 85. WLCSP100 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 137
Table 86. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 87. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 88. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
DS9118 Rev 14 7/149
7
List of figures STM32F303xB STM32F303xC
List of figures
Figure 1. STM32F303xB/STM32F303xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 3. Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 4. STM32F303xB/STM32F303xC LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 5. STM32F303xB/STM32F303xC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 6. STM32F303xB/STM32F303xC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 7. STM32F303xB/STM32F303xC WLCSP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 8. STM32F303xB/STM32F303xC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 9. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 11. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 12. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 13. Typical V
Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 15. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 16. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 18. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 81
Figure 19. TC and TTa I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 20. TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 89
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port. . . . . . . . . . . . . . . . . . . 89
Figure 23. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 24. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 25. I
2
C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 26. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 27. SPI timing diagram - slave mode and CPHA = 1 Figure 28. SPI timing diagram - master mode Figure 29. I Figure 30. I
2
S slave timing diagram (Philips protocol)
2
S master timing diagram (Philips protocol)
Figure 31. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 32. ADC typical current consumption on VDDA pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 33. ADC typical current consumption on VREF+ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 34. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 35. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 36. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 37. Maximum VREFINT scaler startup time from power down. . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 38. OPAMP voltage noise versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 39. LQFP100 – 14 x 14 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 126
Figure 40. LQFP100 – 14 x 14 mm, low-profile quad flat package recommended footprint . . . . . . . 127
Figure 41. LQFP100 – 14 x 14 mm, low-profile quad flat package top view example . . . . . . . . . . . . 128
Figure 42. LQFP64 – 10 x 10 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . 129
Figure 43. LQFP64 – 10 x 10 mm, low-profile quad flat package recommended footprint . . . . . . . . 130
Figure 44. LQFP64 – 10 x 10 mm, low-profile quad flat package top view example . . . . . . . . . . . . . 131
Figure 45. LQFP48 – 7 x 7 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 46. LQFP48 - 7 x 7 mm, low-profile quad flat package recommended footprint. . . . . . . . . . . 133
Figure 47. LQFP48 - 7 x 7 mm, low-profile quad flat package top view example . . . . . . . . . . . . . . . 134
Figure 48. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 67
BAT
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8/149 DS9118 Rev 14
STM32F303xB STM32F303xC List of figures
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 49. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 50. WLCSP100, 0.4 mm pitch wafer level chip scale package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
DS9118 Rev 14 9/149
9
Introduction STM32F303xB STM32F303xC

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F303xB/STM32F303xC microcontrollers.
This STM32F303xB/STM32F303xC datasheet should be read in conjunction with the STM32F303x, STM32F358xC and STM32F328x4/6/8 reference manual (RM0316). The reference manual is available from the STMicroelectronics website www.st.com.
For information on the Arm
Cortex®-M4 with FPU Technical Reference Manual, available from the
http://www.arm.com website.
STM32F3xxx and STM32F4xxx Cortex
available from our website www.st.com.
®(a)
Cortex®-M4 core with FPU, refer to:
®
-M4 programming manual (PM0214)
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
10/149 DS9118 Rev 14
STM32F303xB STM32F303xC Description

2 Description

The STM32F303xB/STM32F303xC family is based on the high-performance Arm® Cortex®­M4
32-bit RISC core with FPU operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (up to 256 memory, up to 40 peripherals connected to two APB buses.
The devices offer up to four fast 12-bit ADCs (5 Msps), seven comparators, four operational amplifiers, up to two DAC channels, a low-power RTC, up to five general-purpose 16-bit timers, one general-purpose 32-bit timer, and two timers dedicated to motor control. They also feature standard and advanced communication interfaces: up to two I SPIs (two SPIs are with multiplexed full-duplex I2Ss), three USARTs, up to two UARTs, CAN and USB. To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL.
The STM32F303xB/STM32F303xC family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges from a 2.0 to 3.6 mode allows the design of low-power applications.
The STM32F303xB/STM32F303xC family offers devices in four packages ranging from 48
pins to 100 pins.
Kbytes of SRAM) and an extensive range of enhanced I/Os and
V power supply. A comprehensive set of power-saving
Kbytes of Flash
2
Cs, up to three
The set of included peripherals changes with the device chosen.
DS9118 Rev 14 11/149
55
Description STM32F303xB STM32F303xC

Table 2. STM32F303xB/STM32F303xC family device features and peripheral counts

Peripheral STM32F303Cx STM32F303Rx STM32F303Vx
Flash (Kbytes) 128 256 128 256 128 256
SRAM (Kbytes) on data bus 32 40 32 40 32 40
CCM (Core Coupled Memory) RAM (Kbytes)
Advanced control
8
2 (16-bit)
Timers
General purpose
5 (16-bit) 1 (32-bit)
Basic 2 (16-bit)
PWM channels (all)
(1)
PWM channels (except complementary)
SPI (I2S)
2
C2
I
Communication interfaces
USART 3
UART 0 2
(2)
31 33
22 24
3(2)
CAN 1
USB 1
Normal I/Os (TC, TTa)
20 27
45 in LQFP100
37 in WLCSP100
GPIOs
5-volt tolerant I/Os (FT, FTf)
17 25
42 in LQFP100
40 in WLCSP100
DMA channels 12
Capacitive sensing channels 17 18 24
12-bit ADCs
Number of channels
15 22
4
39 in LQFP100
32 in WLCSP100
12-bit DAC channels 2
Analog comparator 7
Operational amplifiers 4
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperature
Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C
Packages LQFP48 LQFP64
1. This total number considers also the PWMs generated on the complementary output channels
2. The SPI interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode.
12/149 DS9118 Rev 14
Junction temperature: - 40 to 125 °C
LQFP100
WLCSP100
STM32F303xB STM32F303xC Description
MS18960V4
Touch Sensing
Controller
TIMER 16
2 Channels,1 Comp Channel, BRK as AF
TIMER 17
TIMER 1 / PWM
TIMER 8 / PWM
4 Channels, 4 Comp channels, ETR, BRK as AF
SPI1
MOSI, MISO, SCK,NSS as AF
USART1
RX, TX, CTS, RTS, SmartCard as AF
WinWATCHDOG
BusMatrix
MPU/FPU
Cortex M4 CPU
F
max
: 72 MHz
NVIC
GP DMA1
7 channels
CCM RAM
8KB
Flash
interface
OBL
FLASH 256 KB
64 bits
JTRST
JTDI JTCK/SWCLK JTMS/SWDIO
JTDO As AF
Power
Voltage reg.
3.3 V to 1.8V
V
DD18
Supply
Supervision
POR /PDR
PVD
POR
Reset Int.
V
DDIO
= 2 to 3.6 V
V
SS
NRESET V
DDA
V
SSA
Ind. WDG32K
Standby interface
PLL
@V
DDIO
@V
DDA
XTAL OSC
4 -32 MHz
Reset &
clock
control
AHBPCLK
APBP1CLK
APBP2CLK
AHB2 APB2
AHB2 APB1
CRC
APB1 F
max
= 36 MHz
APB2 f
max
= 72 MHz
GPIO PORT A
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
OSC_IN OSC_OUT
SPI3/I2S
SCL, SDA, SMBA as AF
USART2
SCL, SDA, SMBA as AF
USART3
RC LS
TIMER6
TIMER 4
SPI2/I2S
12bit DAC1IF
@V
DDA
TIMER2
(32-bit/PWM)
PA[15:0]
PB[15:0]
PC[15:0]
MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF
4 Channels, ETR as AF
USB_DP, USB_DM
DAC1_CH1 as AF
HCLK FCLK
USARTCLK
RC HS 8MHz
SRAM 40 KB
ETM
Trace/Trig
SWJTAG
TPIU
Ibus
TRADECLK
TRACED[0-3]
as AF
Dbus
System
GP DMA2
5 channels
12-bit ADC1
12-bit ADC2
IF
Temp. sensor
V
REF+
V
REF-
TIMER 15
EXT.IT WKUP
XX AF
1 Channel, 1 Comp Channel, BRK as AF
1 Channel, 1 Comp Channel, BRK as AF
4 Channels, 4 Comp channels, ETR, BRK as AF
GPIO PORT F
PD[15:0]
PE[15:0]
TIMER7
USB SRAM 512B
PF[7:0]
12-bit ADC3
IF
12-bit ADC4
I2CCLK ADC SAR 1/2/3/4 CLK
@V
DDIO
@V
DDA
@VSW
XTAL 32kHz
OSC32_IN OSC32_OUT
V
BAT
= 1.65V to 3.6V
RTC
AWU
Backup
Reg
(64Byte)
Backup
interface
ANTI-TAMP
TIMER 3
UART4
UART5
I2C1
I2C2
bx CAN &
512B SRAM
USB 2.0 FS
DAC1_CH2 as AF
OpAmp1
OpAmp2
OpAmp3
OpAmp4
@V
DDA
INxx / OUTxx
INxx / OUTxx
INxx / OUTxx
INxx / OUTxx
INTERFACE
SYSCFG CTL
GP Comparator 7
p
GP Comparator...
GP Comparator 1
CAN TX, CAN RX
4 Channels, ETR as AF
4 Channels, ETR as AF
MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF
RX, TX, CTS, RTS, as AF
RX, TX, CTS, RTS, as AF
RX, TX as AF
RX, TX as AF
@V
DDA
Xx Ins, 7 OUTs as AF
XX Groups of
4 channels as AF
AHB2
AHB3

Figure 1. STM32F303xB/STM32F303xC block diagram

1. AF: alternate function on I/O pins.
DS9118 Rev 14 13/149
55
Functional overview STM32F303xB STM32F303xC

3 Functional overview

3.1 Arm® Cortex®-M4 core with FPU with embedded Flash and SRAM

The Arm Cortex-M4 processor with FPU is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The Arm Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.
With its embedded Arm core, the STM32F303xB/STM32F303xC family is compatible with all Arm tools and software.
Figure 1 shows the general block diagram of the STM32F303xB/STM32F303xC family
devices.

3.2 Memory protection unit (MPU)

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

3.3 Embedded Flash memory

All STM32F303xB/STM32F303xC devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).
14/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview

3.4 Embedded SRAM

STM32F303xB/STM32F303xC devices feature up to 48 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz (when running code from the CCM (Core Coupled Memory) RAM).
8 Kbytes of CCM RAM mapped on both instruction and data bus, used to execute
critical routines or to access data (parity check on all of CCM RAM).
40 Kbytes of SRAM mapped on the data bus (parity check on first 16 Kbytes of SRAM).

3.5 Boot modes

At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU (device firmware upgrade).

3.6 Cyclic redundancy check (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
DS9118 Rev 14 15/149
55
Functional overview STM32F303xB STM32F303xC

3.7 Power management

3.7.1 Power supply schemes

VSS, V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is
DD
provided externally through V
V
SSA
, V
= 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators
DDA
operational amplifiers, reset blocks, RCs and PLL. The minimum voltage to be applied to V the V greater or equal to the V
V
differs from one analog peripheral to another. Ta ble 3 provides the summary of
DDA
ranges for analog peripherals. The V
DDA
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
BAT
voltage level and must be provided first.
DD
backup registers (through power switch) when V
Table 3. External analog supply values for analog peripherals
Analog peripheral Minimum V
ADC / COMP 2.0 V 3.6 V
DAC / OPAMP 2.4 V 3.6V

3.7.2 Power supply supervision

The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage V
POR/PDR, without the need for an external reset circuit.
The POR monitors only the VDD supply voltage. During the startup phase it is required
that V
The PDR monitors both the V
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V equal to V
The device features an embedded programmable voltage detector (PVD) that monitors the V
power supply and compares it to the VPVD threshold. An interrupt can be generated
DD
when V
DD
threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
should arrive first and be greater than or equal to VDD.
DDA
.
DD
drops below the V
PVD
pins.
DD
voltage level must be always
DDA
is not present.
DD
supply Maximum V
DDA
is below a specified threshold,
and V
DD
threshold and/or when VDD is higher than the V
supply voltages, however the V
DDA
DDA
DDA
is higher than or
supply
DDA
PVD
power

3.7.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR), and power-down.
The MR mode is used in the nominal regulation mode (Run)
The LPR mode is used in Stop mode.
The power-down mode is used in Standby mode: the regulator output is in high
impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The voltage regulator is always enabled after reset. It is disabled in Standby mode.
16/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview

3.7.4 Low-power modes

The STM32F303xB/STM32F303xC supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USB wakeup, the RTC alarm, COMPx, I2Cx or U(S)ARTx.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin or an RTC alarm occurs.
Note: The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop
or Standby mode.

3.8 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.
Interconnect source
TIMx
COMPx TIMx Timer input: OCREF_CLR input, input capture
ADCx TIMx Timer triggered by analog watchdog
Table 4. STM32F303xB/STM32F303xC peripheral interconnect matrix
Interconnect
destination
TIMx Timers synchronization or chaining
ADCx DAC1
DMA Memory to memory transfer trigger
Compx Comparator output blanking
Conversion triggers
Interconnect action
DS9118 Rev 14 17/149
55
Functional overview STM32F303xB STM32F303xC
Table 4. STM32F303xB/STM32F303xC peripheral interconnect matrix (continued)
Interconnect source
GPIO RTCCLK HSE/32 MC0
CSS CPU (hard fault) COMPx PVD GPIO
GPIO
DAC1 COMPx Comparator inverting input
Interconnect
destination
TIM16
TIM1, TIM8, TIM15, 16, 17
TIMx External trigger, timer break
ADCx DAC1
Clock source used as input channel for HSI and LSI calibration
Timer break
Conversion external trigger
Interconnect action
Note: For more details about the interconnect actions, please refer to the corresponding sections
in the reference manual (RM0316).

3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32
MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 APB domain is 36
MHz.
MHz, while the maximum allowed frequency of the low speed
18/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview
/32
4-32 MHz HSE OSC
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
8 MHz
HSI RC
IWDGCLK to IWDG
PLL
x2,x3,..
x16
PLLMUL
AHB
APB1
prescaler
/1,2,4,8,16
HCLK
PLLCLK
to AHB bus, core, memory and DMA
LSE
LSI
HSI
HSI
HSE
to RTC
PLLSRC
SW
/8
SYSCLK
RTCCLK
RTCSEL[1:0]
to TIM 2,3,4,6,7
If (APB1 prescaler =1) x1 else x2
FLITFCLK to Flash programming interface
to I2Cx (x = 1,2)
to U(S)ARTx (x = 2..5)
LSE
HSI
SYSCLK
/2
PCLK1
SYSCLK
HSI
PCLK1
MS19989V5
to I2Sx (x = 2,3)
USBCLK to USB interface
to cortex System timer FHCLK Cortex free running clock to APB1 peripherals
AHB prescaler /1,2,..512
CSS
/2,/3,...
/16
LSE OSC
32.768kHz
LSI RC 40kHz
USB
prescaler
/1,1.5
APB2
prescaler
/1,2,4,8,16
to TIM 15,16,17
If (APB2 prescaler =1) x1 else x2
to USART1
LSE
HSI
SYSCLK
PCLK2
PCLK2
to APB2 peripherals
TIM1/8
ADC
Prescaler
/1,2,4
to ADCxy (xy = 12, 34)
ADC
Prescaler
/1,2,4,6,8,10,12,16,
32,64,128,256
I2SSRC
SYSCLK
Ext. clock
I2S_CKIN
x2
MCO
Main clock output
/2
PLLCLK
HSI
HSE
MCO
SYSCLK
LSI

Figure 2. Clock tree

DS9118 Rev 14 19/149
55
Functional overview STM32F303xB STM32F303xC

3.10 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.
Fast I/O handling allows I/O toggling up to 36 MHz.

3.11 Direct memory access (DMA)

The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to­memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.
Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers, DAC and ADC.

3.12 Interrupts and events

3.12.1 Nested vectored interrupt controller (NVIC)

The STM32F303xB/STM32F303xC devices embed a nested vectored interrupt controller (NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels.
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.
20/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview

3.13 Fast analog-to-digital converter (ADC)

four fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6 bit, are embedded in the STM32F303xB/STM32F303xC family devices. The ADCs have up to 39 external channels. Some of the external channels are shared between ADC1&2 and between ADC3&4. Channels can be configured to be either single-ended input or differential input. The ADCs can perform conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADCs have also internal channels: Temperature sensor connected to ADC1 channel 16, V ADCs channel 18, VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2 channel 17, VREFOPAMP3 connected to ADC3 channel 17 and VREFOPAMP4 connected to ADC4 channel 17.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single-shunt phase current reading techniques.
The ADC can be served by the DMA controller. 3 analog watchdogs per ADC are available.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
connected to ADC1 channel 17, Voltage reference V
BAT/2
connected to the 4
REFINT
The events generated by the general-purpose timers and the advanced-control timers (TIM1 and TIM8) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.13.1 Temperature sensor

The temperature sensor (TS) generates a voltage V temperature.
The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.
3.13.2 Internal voltage reference (V
The internal voltage reference (V ADC and Comparators. V
REFINT
channel. The precise voltage of V production test and stored in the system memory area. It is accessible in read-only mode.
REFINT
is internally connected to the ADCx_IN18, x=1...4 input
REFINT
that varies linearly with
SENSE
REFINT
)
) provides a stable (bandgap) voltage output for the
is individually measured for each part by ST during
DS9118 Rev 14 21/149
55
Functional overview STM32F303xB STM32F303xC
3.13.3 V
battery voltage monitoring
BAT
This embedded hardware feature allows the application to measure the V using the internal ADC channel ADC1_IN17. As the V and thus outside the ADC input range, the V divider by 2. As a consequence, the converted digital value is half the V
pin is internally connected to a bridge
BAT

3.13.4 OPAMP reference voltage (VREFOPAMP)

Every OPAMP reference voltage can be measured using a corresponding ADC internal channel: VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2 connected to ADC2 channel 17, VREFOPAMP3 connected to ADC3 channel 17, VREFOPAMP4 connected to ADC4 channel 17.

3.14 Digital-to-analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
This digital interface supports the following features:
Two DAC output channels
8-bit or 10-bit monotonic output
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability (for each channel)
External triggers for conversion
battery voltage
voltage may be higher than V
BAT
BAT
BAT
voltage.
DDA
,

3.15 Operational amplifier (OPAMP)

The STM32F303xB/STM32F303xC embeds four operational amplifiers with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement.
The operational amplifier features:
8.2 MHz bandwidth
0.5 mA output capability
Rail-to-rail input/output
In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.
22/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview

3.16 Fast comparators (COMP)

The STM32F303xB/STM32F303xC devices embed seven fast rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output pin
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 28: Embedded
internal reference voltage on page 63 for the value and precision of the internal
reference voltage.
All comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined per pair into a window comparator

3.17 Timers and watchdogs

The STM32F303xB/STM32F303xC includes two advanced control timers, up to six general­purpose timers, two basic timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Table 5. Timer feature comparison

Timer type Timer
Advanced
General-
purpose
General-
purpose
General-
purpose
General-
purpose
Basic
TIM1,
TIM8
TIM2 32-bit
TIM3, TIM4 16-bit
TIM15 16-bit Up
TIM16, TIM17 16-bit Up
TIM6,
TIM7
Counter
resolution
16-bit
16-bit Up
Counter
type
Up, Down,
Up/Down
Up, Down,
Up/Down
Up, Down,
Up/Down
Prescaler
factor
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
DMA
request
generation
Yes 4 Yes
Yes 4 No
Yes 4 No
Yes 2 1
Yes 1 1
Yes 0 No
Capture/
compare
Channels
Complementary
outputs
Note: TIM1/8 can have PLL as clock source, and therefore can be clocked at 144 MHz.
DS9118 Rev 14 23/149
55
Functional overview STM32F303xB STM32F303xC

3.17.1 Advanced timers (TIM1, TIM8)

The advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The four independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIM timers (described in
Section 3.17.2 using the same architecture, so the advanced-control timers can work
together with the TIM timers via the Timer Link feature for synchronization or event chaining.

3.17.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)

There are up to six synchronizable general-purpose timers embedded in the STM32F303xB/STM32F303xC (see can be used to generate PWM outputs, or act as a simple time base.
TIM2, 3, and TIM4
These are full-featured general-purpose timers:
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers.
These timers all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general­purpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
TIM15, 16 and 17
These three timers general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
TIM15 has 2 channels and 1 complementary channel
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode output.
The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
Tab l e 5 for differences). Each general-purpose timer

3.17.3 Basic timers (TIM6, TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.
24/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview

3.17.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.17.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.17.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source

3.18 Real-time clock (RTC) and backup registers

The RTC and the 16 backup registers are supplied through a switch that takes power from either the V registers used to store 64 bytes of user application data when V
They are not reset by a system or power reset, or when the device wakes up from Standby mode.
The RTC is an independent BCD timer/counter.It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.
Two programmable alarms with wake up from Stop and Standby mode capability.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stopand Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.
supply when present or the V
DD
pin. The backup registers are sixteen 32-bit
BAT
power is not present.
DD
DS9118 Rev 14 25/149
55
Functional overview STM32F303xB STM32F303xC
17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY capability.
The RTC clock sources can be:
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 40 kHz)
The high-speed external clock divided by 32.

3.19 Inter-integrated circuit interface (I2C)

Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2
addresses, 1 with configurable mask). They also include programmable analog and
digital noise filters.
KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes.

Table 6. Comparison of I2C analog and digital filters

Analog filter Digital filter
Pulse width of suppressed spikes
Benefits Available in Stop mode
Drawbacks
50 ns
Variations depending on temperature, voltage, process
Programmable length from 1 to 15 I2C peripheral clocks
1. Extra filtering capability vs. standard requirements.
2. Stable length
Wakeup from Stop on address match is not available when digital filter is enabled.
In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match.
The I2C interfaces can be served by the DMA controller.
Refer to Tab le 7 for the features available in I2C1 and I2C2.
7-bit addressing mode X X
10-bit addressing mode X X
Standard mode (up to 100 kbit/s) X X
Fast mode (up to 400 kbit/s) X X
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X
Table 7. STM32F303xB/STM32F303xC I2C implementation
I2C features
(1)
I2C1 I2C2
Independent clock X X
26/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview
Table 7. STM32F303xB/STM32F303xC I2C implementation (continued)
I2C features
SMBus X X
Wakeup from STOP X X
1. X = supported.
(1)
I2C1 I2C2

3.20 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32F303xB/STM32F303xC devices have three embedded universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).
The USART interfaces are able to communicate at speeds of up to 9 Mbits/s.
They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller.

3.21 Universal asynchronous receiver transmitter (UART)

The STM32F303xB/STM32F303xC devices have 2 embedded universal asynchronous receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR ENDEC, multiprocessor communication mode and single-wire half-duplex communication mode. The UART4 interface can be served by the DMA controller.
Refer to Tab le 8 for the features available in all U(S)ART interfaces.

Table 8. USART features

USART modes/features
Hardware flow control for modem X X X - -
Continuous communication using DMA X X X X -
Multiprocessor communication X X X X X
Synchronous mode X X X - -
Smartcard mode X X X - -
Single-wire half-duplex communication X X X X X
IrDA SIR ENDEC block X X X X X
LIN mode XXXXX
Dual clock domain and wakeup from Stop mode X X X X X
Receiver timeout interrupt XXXXX
Modbus communication X X X X X
Auto baud rate detection X X X - -
(1)
USART1 USART2 USART3 UART4 UART5
Driver Enable X X X - -
1. X = supported.
DS9118 Rev 14 27/149
55
Functional overview STM32F303xB STM32F303xC

3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at half-duplex and full duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.
Refer to Tab le 9 for the features available in SPI1, SPI2 and SPI3.
Hardware CRC calculation X X X
Rx/Tx FIFO X X X
NSS pulse mode X X X

Table 9. STM32F303xB/STM32F303xC SPI/I2S implementation

SPI features
(1)
SPI1 SPI2 SPI3
I2S mode - X X
TI mode XXX
1. X = supported.

3.23 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.24 Universal serial bus (USB)

The STM32F303xB/STM32F303xC devices embed an USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). The USB has a dedicated 512-bytes SRAM memory for data transmission and reception.
28/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview
MSv30365V1
TIMER 16
(for envelop)
TIMER 17
(for carrier)
OC
OC
PB9/PA13

3.25 Infrared Transmitter

The STM32F303xB/STM32F303xC devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels.

Figure 3. Infrared transmitter

3.26 Touch sensing controller (TSC)

The STM32F303xB/STM32F303xC devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.
DS9118 Rev 14 29/149
55
Functional overview STM32F303xB STM32F303xC
Table 10. Capacitive sensing GPIOs available on STM32F303xB/STM32F303xC
devices
Group
1
2
3
4
Capacitive sensing
signal name
TSC_G1_IO1 PA0
Pin
name
Group
Capacitive sensing
signal name
TSC_G5_IO1 PB3
TSC_G1_IO2 PA1 TSC_G5_IO2 PB4
5
TSC_G1_IO3 PA2 TSC_G5_IO3 PB6
TSC_G1_IO4 PA3 TSC_G5_IO4 PB7
TSC_G2_IO1 PA4
TSC_G6_IO1 PB11
TSC_G2_IO2 PA5 TSC_G6_IO2 PB12
6
TSC_G2_IO3 PA6 TSC_G6_IO3 PB13
TSC_G2_IO4 PA7 TSC_G6_IO4 PB14
TSC_G3_IO1 PC5
TSC_G7_IO1 PE2
TSC_G3_IO2 PB0 TSC_G7_IO2 PE3
7
TSC_G3_IO3 PB1 TSC_G7_IO3 PE4
TSC_G3_IO4 PB2 TSC_G7_IO4 PE5
TSC_G4_IO1 PA9
TSC_G8_IO1 PD12
TSC_G4_IO2 PA10 TSC_G8_IO2 PD13
8
TSC_G4_IO3 PA13 TSC_G8_IO3 PD14
TSC_G4_IO4 PA14 TSC_G8_IO4 PD15
Table 11. No. of capacitive sensing channels available on
STM32F303xB/STM32F303xC devices
Pin
name
Number of capacitive sensing channels
Analog I/O group
STM32F303Vx STM32F303Rx STM32F303Cx
G1 3 3 3
G2 3 3 3
G3 3 3 2
G4 3 3 3
G5 3 3 3
G6 3 3 3
G7 3 0 0
G8 3 0 0
Number of capacitive
sensing channels
24 18 17
30/149 DS9118 Rev 14
Loading...
+ 119 hidden pages