ST MICROELECTRONICS STM32F303RBT6 Datasheet

STM32F303xB STM32F303xC
LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm)
LQFP48 (7 × 7 mm)
WLCSP100 (0.4 mm pitch)
Arm®-based Cortex®-M4 32b MCU+FPU, up to 256KB Flash+
48KB SRAM, 4 ADCs, 2 DAC ch., 7 comp, 4 PGA, timers, 2.0-3.6 V
Features
Core: Arm® Cortex®-M4 32-bit CPU with FPU (72 MHz max), single-cycle multiplication and HW division, instruction and MPU (memory protection unit)
Operating conditions: –V
DD
Memories – 128 to 256 Kbytes of Flash memory – Up to 40 Kbytes of SRAM, with HW parity
check implemented on the first 16 Kbytes.
– Routine booster: 8 Kbytes of SRAM on
instruction and data bus, with HW parity check (CCM)
CRC calculation unit
Reset and supply management
– Power-on/power-down reset (POR/PDR) – Programmable voltage detector (PVD) – Low-power modes: Sleep, Stop and
Standby
–V
BAT
Clock management –4
to 32 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x 16 PLL option –
Internal 40 kHz oscillator
Up to 87 fast I/Os – All mappable on external interrupt vectors – Several 5 V-tolerant
Interconnect matrix
12-channel DMA controller
Four ADCs 0.20 µS (up to 39 channels) with
selectable resolution of 12/10/8/6 bits, 0 to
3.6 V conversion range, single ended/differential input, separate analog supply from 2 to 3.6 V
Two 12-bit DAC channels with analog supply
from 2.4 to 3.6 V
90 DMIPS (from CCM), DSP
, V
voltage range: 2.0 V to 3.6 V
DDA
supply for RTC and backup registers
Seven fast rail-to-rail analog comparators with
analog supply from 2 to 3.6 V
Four operational amplifiers that can be used in
PGA mode, all terminals accessible with analog supply from 2.4 to 3.6 V
Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensor
Up to
13 timers
s
– One 32-bit timer and two 16-bit timers with
up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
Two 16-bit 6-channel advanced-control
timer
s, with up to 6 PWM channels,
deadtime generation and emergency stop
– One 16-bit timer with 2 IC/OCs, 1
OCN/PWM, deadtime generation and emergency stop
– Two 16-bit timers with IC/OC/OCN/PWM,
deadtime generation and emergency stop
– Two watchdog timers (independent,
window) – SysTick timer: 24-bit downcounter –
Two 16-bit basic timers to drive the DAC
Calendar RTC with Alarm, periodic wakeup from Stop/Standby
Communication interfaces – CAN interface (2.0B Active) –Two I
2
C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from STOP
October 2018 DS9118 Rev 14 1/149
This is information on a product in full production.
www.st.com
STM32F303xB STM32F303xC
– Up to five USART/UARTs (ISO 7816
interface, LIN, IrDA, modem control)
– Up to three SPIs, two with multiplexed
half/full duplex I2S interface, 4 to 16
programmable bit frames – USB 2.0 full speed interface –
Infrared transmitter
Serial wire debug, Cortex JTAG
®
-M4 with FPU ETM,
96-bit unique ID

Table 1. Device summary

Reference Part number
STM32F303xB STM32F303CB, STM32F303RB, STM32F303VB
STM32F303xC STM32F303CC, STM32F303RC, STM32F303VC
2/149 DS9118 Rev 14
STM32F303xB STM32F303xC Contents
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Arm® Cortex®-M4 core with FPU with embedded Flash and SRAM . . . . 14
3.2 Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.2 Power supply supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 20
3.13 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.2 Internal voltage reference (V
3.13.3 V
3.13.4 OPAMP reference voltage (VREFOPAMP) . . . . . . . . . . . . . . . . . . . . . . 22
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
BAT
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
REFINT
3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16 Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17.1 Advanced timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DS9118 Rev 14 3/149
5
Contents STM32F303xB STM32F303xC
3.17.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . . 24
3.17.3 Basic timers (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.18 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25
3.19 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . . 27
3.21 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . . 27
3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 28
3.23 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.24 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.25 Infrared Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.26 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.27 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.27.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.27.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 61
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 61
4/149 DS9118 Rev 14
STM32F303xB STM32F303xC Contents
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.16 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.18 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.21 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.23 V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
BAT
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.1 LQFP100 – 14 x 14 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 LQFP64 – 10 x 10 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3 LQFP48 – 7 x 7 mm, low-profile quad flat package
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4 WLCSP100 - 0.4 mm pitch wafer level chip scale package information 135
7.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.5.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 140
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
DS9118 Rev 14 5/149
5
List of tables STM32F303xB STM32F303xC
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32F303xB/STM32F303xC family device features and peripheral counts . . . . . . . . . . 12
Table 3. External analog supply values for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 4. STM32F303xB/STM32F303xC peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . 17
Table 5. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 7. STM32F303xB/STM32F303xC I
Table 8. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. STM32F303xB/STM32F303xC SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 10. Capacitive sensing GPIOs available on STM32F303xB/STM32F303xC devices . . . . . . . 30
Table 11. No. of capacitive sensing channels available on STM32F303xB/STM32F303xC devices. 30
Table 12. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 13. STM32F303xB/STM32F303xC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. Alternate functions for port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 15. Alternate functions for port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 16. Alternate functions for port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 17. Alternate functions for port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 18. Alternate functions for port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 19. Alternate functions for port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary addresses . . 54
Table 21. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 22. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 23. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 24. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 25. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 26. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 27. Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 28. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 29. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 30. Typical and maximum current consumption from V Table 31. Typical and maximum current consumption from the V Table 32. Typical and maximum V Table 33. Typical and maximum V
DD
DDA
Table 34. Typical and maximum current consumption from V Table 35. Typical current consumption in Run mode, code with data processing running from Flash68
Table 36. Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 69
Table 37. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 38. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 39. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 40. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 41. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 42. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 43. LSE oscillator characteristics (f
Table 44. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 45. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 46. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 47. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 48. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2
C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
supply at V
DD
DDA
supply . . . . . . . . . . . . . . . . . . 65
= 3.6V . . . . . . . . . . . 64
DD
consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 66
consumption in Stop and Standby modes. . . . . . . . . . . . . . . 66
supply. . . . . . . . . . . . . . . . . . . . . . 67
BAT
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
LSE
6/149 DS9118 Rev 14
STM32F303xB STM32F303xC List of tables
Table 49. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 50. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 51. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 52. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 53. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 54. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 55. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 56. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 57. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 58. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 59. IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 60. WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 61. I2C timings specification (see I2C specification, rev.03, June 2007) . . . . . . . . . . . . . . . . . 95
Table 62. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 63. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 64. I
2
S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 65. USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 66. USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 67. USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 68. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 69. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 70. ADC accuracy - limited test conditions, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . 109
Table 71. ADC accuracy, 100-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 72. ADC accuracy - limited test conditions, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 73. ADC accuracy, 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 74. ADC accuracy at 1MSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 75. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 76. Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 77. Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 78. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 79. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 80. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
BAT
Table 81. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . 126
Table 82. LQFP64 – 10 x 10 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . 129
Table 83. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 132
Table 84. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 85. WLCSP100 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 137
Table 86. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 87. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 88. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
DS9118 Rev 14 7/149
7
List of figures STM32F303xB STM32F303xC
List of figures
Figure 1. STM32F303xB/STM32F303xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 3. Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 4. STM32F303xB/STM32F303xC LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 5. STM32F303xB/STM32F303xC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 6. STM32F303xB/STM32F303xC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 7. STM32F303xB/STM32F303xC WLCSP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 8. STM32F303xB/STM32F303xC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 9. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 11. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 12. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 13. Typical V
Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 15. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 16. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 18. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 81
Figure 19. TC and TTa I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 20. TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 89
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port. . . . . . . . . . . . . . . . . . . 89
Figure 23. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 24. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 25. I
2
C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 26. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 27. SPI timing diagram - slave mode and CPHA = 1 Figure 28. SPI timing diagram - master mode Figure 29. I Figure 30. I
2
S slave timing diagram (Philips protocol)
2
S master timing diagram (Philips protocol)
Figure 31. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 32. ADC typical current consumption on VDDA pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 33. ADC typical current consumption on VREF+ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 34. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 35. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 36. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 37. Maximum VREFINT scaler startup time from power down. . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 38. OPAMP voltage noise versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 39. LQFP100 – 14 x 14 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 126
Figure 40. LQFP100 – 14 x 14 mm, low-profile quad flat package recommended footprint . . . . . . . 127
Figure 41. LQFP100 – 14 x 14 mm, low-profile quad flat package top view example . . . . . . . . . . . . 128
Figure 42. LQFP64 – 10 x 10 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . 129
Figure 43. LQFP64 – 10 x 10 mm, low-profile quad flat package recommended footprint . . . . . . . . 130
Figure 44. LQFP64 – 10 x 10 mm, low-profile quad flat package top view example . . . . . . . . . . . . . 131
Figure 45. LQFP48 – 7 x 7 mm, low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . 132
Figure 46. LQFP48 - 7 x 7 mm, low-profile quad flat package recommended footprint. . . . . . . . . . . 133
Figure 47. LQFP48 - 7 x 7 mm, low-profile quad flat package top view example . . . . . . . . . . . . . . . 134
Figure 48. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 67
BAT
(1)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8/149 DS9118 Rev 14
STM32F303xB STM32F303xC List of figures
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 49. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 50. WLCSP100, 0.4 mm pitch wafer level chip scale package
top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
DS9118 Rev 14 9/149
9
Introduction STM32F303xB STM32F303xC

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F303xB/STM32F303xC microcontrollers.
This STM32F303xB/STM32F303xC datasheet should be read in conjunction with the STM32F303x, STM32F358xC and STM32F328x4/6/8 reference manual (RM0316). The reference manual is available from the STMicroelectronics website www.st.com.
For information on the Arm
Cortex®-M4 with FPU Technical Reference Manual, available from the
http://www.arm.com website.
STM32F3xxx and STM32F4xxx Cortex
available from our website www.st.com.
®(a)
Cortex®-M4 core with FPU, refer to:
®
-M4 programming manual (PM0214)
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
10/149 DS9118 Rev 14
STM32F303xB STM32F303xC Description

2 Description

The STM32F303xB/STM32F303xC family is based on the high-performance Arm® Cortex®­M4
32-bit RISC core with FPU operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (up to 256 memory, up to 40 peripherals connected to two APB buses.
The devices offer up to four fast 12-bit ADCs (5 Msps), seven comparators, four operational amplifiers, up to two DAC channels, a low-power RTC, up to five general-purpose 16-bit timers, one general-purpose 32-bit timer, and two timers dedicated to motor control. They also feature standard and advanced communication interfaces: up to two I SPIs (two SPIs are with multiplexed full-duplex I2Ss), three USARTs, up to two UARTs, CAN and USB. To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL.
The STM32F303xB/STM32F303xC family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges from a 2.0 to 3.6 mode allows the design of low-power applications.
The STM32F303xB/STM32F303xC family offers devices in four packages ranging from 48
pins to 100 pins.
Kbytes of SRAM) and an extensive range of enhanced I/Os and
V power supply. A comprehensive set of power-saving
Kbytes of Flash
2
Cs, up to three
The set of included peripherals changes with the device chosen.
DS9118 Rev 14 11/149
55
Description STM32F303xB STM32F303xC

Table 2. STM32F303xB/STM32F303xC family device features and peripheral counts

Peripheral STM32F303Cx STM32F303Rx STM32F303Vx
Flash (Kbytes) 128 256 128 256 128 256
SRAM (Kbytes) on data bus 32 40 32 40 32 40
CCM (Core Coupled Memory) RAM (Kbytes)
Advanced control
8
2 (16-bit)
Timers
General purpose
5 (16-bit) 1 (32-bit)
Basic 2 (16-bit)
PWM channels (all)
(1)
PWM channels (except complementary)
SPI (I2S)
2
C2
I
Communication interfaces
USART 3
UART 0 2
(2)
31 33
22 24
3(2)
CAN 1
USB 1
Normal I/Os (TC, TTa)
20 27
45 in LQFP100
37 in WLCSP100
GPIOs
5-volt tolerant I/Os (FT, FTf)
17 25
42 in LQFP100
40 in WLCSP100
DMA channels 12
Capacitive sensing channels 17 18 24
12-bit ADCs
Number of channels
15 22
4
39 in LQFP100
32 in WLCSP100
12-bit DAC channels 2
Analog comparator 7
Operational amplifiers 4
CPU frequency 72 MHz
Operating voltage 2.0 to 3.6 V
Operating temperature
Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C
Packages LQFP48 LQFP64
1. This total number considers also the PWMs generated on the complementary output channels
2. The SPI interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode.
12/149 DS9118 Rev 14
Junction temperature: - 40 to 125 °C
LQFP100
WLCSP100
STM32F303xB STM32F303xC Description
MS18960V4
Touch Sensing
Controller
TIMER 16
2 Channels,1 Comp Channel, BRK as AF
TIMER 17
TIMER 1 / PWM
TIMER 8 / PWM
4 Channels, 4 Comp channels, ETR, BRK as AF
SPI1
MOSI, MISO, SCK,NSS as AF
USART1
RX, TX, CTS, RTS, SmartCard as AF
WinWATCHDOG
BusMatrix
MPU/FPU
Cortex M4 CPU
F
max
: 72 MHz
NVIC
GP DMA1
7 channels
CCM RAM
8KB
Flash
interface
OBL
FLASH 256 KB
64 bits
JTRST
JTDI JTCK/SWCLK JTMS/SWDIO
JTDO As AF
Power
Voltage reg.
3.3 V to 1.8V
V
DD18
Supply
Supervision
POR /PDR
PVD
POR
Reset Int.
V
DDIO
= 2 to 3.6 V
V
SS
NRESET V
DDA
V
SSA
Ind. WDG32K
Standby interface
PLL
@V
DDIO
@V
DDA
XTAL OSC
4 -32 MHz
Reset &
clock
control
AHBPCLK
APBP1CLK
APBP2CLK
AHB2 APB2
AHB2 APB1
CRC
APB1 F
max
= 36 MHz
APB2 f
max
= 72 MHz
GPIO PORT A
GPIO PORT B
GPIO PORT C
GPIO PORT D
GPIO PORT E
OSC_IN OSC_OUT
SPI3/I2S
SCL, SDA, SMBA as AF
USART2
SCL, SDA, SMBA as AF
USART3
RC LS
TIMER6
TIMER 4
SPI2/I2S
12bit DAC1IF
@V
DDA
TIMER2
(32-bit/PWM)
PA[15:0]
PB[15:0]
PC[15:0]
MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF
4 Channels, ETR as AF
USB_DP, USB_DM
DAC1_CH1 as AF
HCLK FCLK
USARTCLK
RC HS 8MHz
SRAM 40 KB
ETM
Trace/Trig
SWJTAG
TPIU
Ibus
TRADECLK
TRACED[0-3]
as AF
Dbus
System
GP DMA2
5 channels
12-bit ADC1
12-bit ADC2
IF
Temp. sensor
V
REF+
V
REF-
TIMER 15
EXT.IT WKUP
XX AF
1 Channel, 1 Comp Channel, BRK as AF
1 Channel, 1 Comp Channel, BRK as AF
4 Channels, 4 Comp channels, ETR, BRK as AF
GPIO PORT F
PD[15:0]
PE[15:0]
TIMER7
USB SRAM 512B
PF[7:0]
12-bit ADC3
IF
12-bit ADC4
I2CCLK ADC SAR 1/2/3/4 CLK
@V
DDIO
@V
DDA
@VSW
XTAL 32kHz
OSC32_IN OSC32_OUT
V
BAT
= 1.65V to 3.6V
RTC
AWU
Backup
Reg
(64Byte)
Backup
interface
ANTI-TAMP
TIMER 3
UART4
UART5
I2C1
I2C2
bx CAN &
512B SRAM
USB 2.0 FS
DAC1_CH2 as AF
OpAmp1
OpAmp2
OpAmp3
OpAmp4
@V
DDA
INxx / OUTxx
INxx / OUTxx
INxx / OUTxx
INxx / OUTxx
INTERFACE
SYSCFG CTL
GP Comparator 7
p
GP Comparator...
GP Comparator 1
CAN TX, CAN RX
4 Channels, ETR as AF
4 Channels, ETR as AF
MOSI/SD, MISO/ext_SD, SCK/CK, NSS/WS, MCLK as AF
RX, TX, CTS, RTS, as AF
RX, TX, CTS, RTS, as AF
RX, TX as AF
RX, TX as AF
@V
DDA
Xx Ins, 7 OUTs as AF
XX Groups of
4 channels as AF
AHB2
AHB3

Figure 1. STM32F303xB/STM32F303xC block diagram

1. AF: alternate function on I/O pins.
DS9118 Rev 14 13/149
55
Functional overview STM32F303xB STM32F303xC

3 Functional overview

3.1 Arm® Cortex®-M4 core with FPU with embedded Flash and SRAM

The Arm Cortex-M4 processor with FPU is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The Arm Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.
With its embedded Arm core, the STM32F303xB/STM32F303xC family is compatible with all Arm tools and software.
Figure 1 shows the general block diagram of the STM32F303xB/STM32F303xC family
devices.

3.2 Memory protection unit (MPU)

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.
The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.

3.3 Embedded Flash memory

All STM32F303xB/STM32F303xC devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).
14/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview

3.4 Embedded SRAM

STM32F303xB/STM32F303xC devices feature up to 48 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz (when running code from the CCM (Core Coupled Memory) RAM).
8 Kbytes of CCM RAM mapped on both instruction and data bus, used to execute
critical routines or to access data (parity check on all of CCM RAM).
40 Kbytes of SRAM mapped on the data bus (parity check on first 16 Kbytes of SRAM).

3.5 Boot modes

At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU (device firmware upgrade).

3.6 Cyclic redundancy check (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
DS9118 Rev 14 15/149
55
Functional overview STM32F303xB STM32F303xC

3.7 Power management

3.7.1 Power supply schemes

VSS, V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is
DD
provided externally through V
V
SSA
, V
= 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators
DDA
operational amplifiers, reset blocks, RCs and PLL. The minimum voltage to be applied to V the V greater or equal to the V
V
differs from one analog peripheral to another. Ta ble 3 provides the summary of
DDA
ranges for analog peripherals. The V
DDA
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
BAT
voltage level and must be provided first.
DD
backup registers (through power switch) when V
Table 3. External analog supply values for analog peripherals
Analog peripheral Minimum V
ADC / COMP 2.0 V 3.6 V
DAC / OPAMP 2.4 V 3.6V

3.7.2 Power supply supervision

The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage V
POR/PDR, without the need for an external reset circuit.
The POR monitors only the VDD supply voltage. During the startup phase it is required
that V
The PDR monitors both the V
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V equal to V
The device features an embedded programmable voltage detector (PVD) that monitors the V
power supply and compares it to the VPVD threshold. An interrupt can be generated
DD
when V
DD
threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
should arrive first and be greater than or equal to VDD.
DDA
.
DD
drops below the V
PVD
pins.
DD
voltage level must be always
DDA
is not present.
DD
supply Maximum V
DDA
is below a specified threshold,
and V
DD
threshold and/or when VDD is higher than the V
supply voltages, however the V
DDA
DDA
DDA
is higher than or
supply
DDA
PVD
power

3.7.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR), and power-down.
The MR mode is used in the nominal regulation mode (Run)
The LPR mode is used in Stop mode.
The power-down mode is used in Standby mode: the regulator output is in high
impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The voltage regulator is always enabled after reset. It is disabled in Standby mode.
16/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview

3.7.4 Low-power modes

The STM32F303xB/STM32F303xC supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USB wakeup, the RTC alarm, COMPx, I2Cx or U(S)ARTx.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin or an RTC alarm occurs.
Note: The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop
or Standby mode.

3.8 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.
Interconnect source
TIMx
COMPx TIMx Timer input: OCREF_CLR input, input capture
ADCx TIMx Timer triggered by analog watchdog
Table 4. STM32F303xB/STM32F303xC peripheral interconnect matrix
Interconnect
destination
TIMx Timers synchronization or chaining
ADCx DAC1
DMA Memory to memory transfer trigger
Compx Comparator output blanking
Conversion triggers
Interconnect action
DS9118 Rev 14 17/149
55
Functional overview STM32F303xB STM32F303xC
Table 4. STM32F303xB/STM32F303xC peripheral interconnect matrix (continued)
Interconnect source
GPIO RTCCLK HSE/32 MC0
CSS CPU (hard fault) COMPx PVD GPIO
GPIO
DAC1 COMPx Comparator inverting input
Interconnect
destination
TIM16
TIM1, TIM8, TIM15, 16, 17
TIMx External trigger, timer break
ADCx DAC1
Clock source used as input channel for HSI and LSI calibration
Timer break
Conversion external trigger
Interconnect action
Note: For more details about the interconnect actions, please refer to the corresponding sections
in the reference manual (RM0316).

3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32
MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 APB domain is 36
MHz.
MHz, while the maximum allowed frequency of the low speed
18/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview
/32
4-32 MHz HSE OSC
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
8 MHz
HSI RC
IWDGCLK to IWDG
PLL
x2,x3,..
x16
PLLMUL
AHB
APB1
prescaler
/1,2,4,8,16
HCLK
PLLCLK
to AHB bus, core, memory and DMA
LSE
LSI
HSI
HSI
HSE
to RTC
PLLSRC
SW
/8
SYSCLK
RTCCLK
RTCSEL[1:0]
to TIM 2,3,4,6,7
If (APB1 prescaler =1) x1 else x2
FLITFCLK to Flash programming interface
to I2Cx (x = 1,2)
to U(S)ARTx (x = 2..5)
LSE
HSI
SYSCLK
/2
PCLK1
SYSCLK
HSI
PCLK1
MS19989V5
to I2Sx (x = 2,3)
USBCLK to USB interface
to cortex System timer FHCLK Cortex free running clock to APB1 peripherals
AHB prescaler /1,2,..512
CSS
/2,/3,...
/16
LSE OSC
32.768kHz
LSI RC 40kHz
USB
prescaler
/1,1.5
APB2
prescaler
/1,2,4,8,16
to TIM 15,16,17
If (APB2 prescaler =1) x1 else x2
to USART1
LSE
HSI
SYSCLK
PCLK2
PCLK2
to APB2 peripherals
TIM1/8
ADC
Prescaler
/1,2,4
to ADCxy (xy = 12, 34)
ADC
Prescaler
/1,2,4,6,8,10,12,16,
32,64,128,256
I2SSRC
SYSCLK
Ext. clock
I2S_CKIN
x2
MCO
Main clock output
/2
PLLCLK
HSI
HSE
MCO
SYSCLK
LSI

Figure 2. Clock tree

DS9118 Rev 14 19/149
55
Functional overview STM32F303xB STM32F303xC

3.10 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.
Fast I/O handling allows I/O toggling up to 36 MHz.

3.11 Direct memory access (DMA)

The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to­memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.
Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers, DAC and ADC.

3.12 Interrupts and events

3.12.1 Nested vectored interrupt controller (NVIC)

The STM32F303xB/STM32F303xC devices embed a nested vectored interrupt controller (NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels.
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.
20/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview

3.13 Fast analog-to-digital converter (ADC)

four fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6 bit, are embedded in the STM32F303xB/STM32F303xC family devices. The ADCs have up to 39 external channels. Some of the external channels are shared between ADC1&2 and between ADC3&4. Channels can be configured to be either single-ended input or differential input. The ADCs can perform conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADCs have also internal channels: Temperature sensor connected to ADC1 channel 16, V ADCs channel 18, VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2 channel 17, VREFOPAMP3 connected to ADC3 channel 17 and VREFOPAMP4 connected to ADC4 channel 17.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single-shunt phase current reading techniques.
The ADC can be served by the DMA controller. 3 analog watchdogs per ADC are available.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
connected to ADC1 channel 17, Voltage reference V
BAT/2
connected to the 4
REFINT
The events generated by the general-purpose timers and the advanced-control timers (TIM1 and TIM8) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.13.1 Temperature sensor

The temperature sensor (TS) generates a voltage V temperature.
The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.
3.13.2 Internal voltage reference (V
The internal voltage reference (V ADC and Comparators. V
REFINT
channel. The precise voltage of V production test and stored in the system memory area. It is accessible in read-only mode.
REFINT
is internally connected to the ADCx_IN18, x=1...4 input
REFINT
that varies linearly with
SENSE
REFINT
)
) provides a stable (bandgap) voltage output for the
is individually measured for each part by ST during
DS9118 Rev 14 21/149
55
Functional overview STM32F303xB STM32F303xC
3.13.3 V
battery voltage monitoring
BAT
This embedded hardware feature allows the application to measure the V using the internal ADC channel ADC1_IN17. As the V and thus outside the ADC input range, the V divider by 2. As a consequence, the converted digital value is half the V
pin is internally connected to a bridge
BAT

3.13.4 OPAMP reference voltage (VREFOPAMP)

Every OPAMP reference voltage can be measured using a corresponding ADC internal channel: VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2 connected to ADC2 channel 17, VREFOPAMP3 connected to ADC3 channel 17, VREFOPAMP4 connected to ADC4 channel 17.

3.14 Digital-to-analog converter (DAC)

Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.
This digital interface supports the following features:
Two DAC output channels
8-bit or 10-bit monotonic output
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability (for each channel)
External triggers for conversion
battery voltage
voltage may be higher than V
BAT
BAT
BAT
voltage.
DDA
,

3.15 Operational amplifier (OPAMP)

The STM32F303xB/STM32F303xC embeds four operational amplifiers with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement.
The operational amplifier features:
8.2 MHz bandwidth
0.5 mA output capability
Rail-to-rail input/output
In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.
22/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview

3.16 Fast comparators (COMP)

The STM32F303xB/STM32F303xC devices embed seven fast rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output pin
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 28: Embedded
internal reference voltage on page 63 for the value and precision of the internal
reference voltage.
All comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined per pair into a window comparator

3.17 Timers and watchdogs

The STM32F303xB/STM32F303xC includes two advanced control timers, up to six general­purpose timers, two basic timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Table 5. Timer feature comparison

Timer type Timer
Advanced
General-
purpose
General-
purpose
General-
purpose
General-
purpose
Basic
TIM1,
TIM8
TIM2 32-bit
TIM3, TIM4 16-bit
TIM15 16-bit Up
TIM16, TIM17 16-bit Up
TIM6,
TIM7
Counter
resolution
16-bit
16-bit Up
Counter
type
Up, Down,
Up/Down
Up, Down,
Up/Down
Up, Down,
Up/Down
Prescaler
factor
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
Any integer
between 1 and 65536
DMA
request
generation
Yes 4 Yes
Yes 4 No
Yes 4 No
Yes 2 1
Yes 1 1
Yes 0 No
Capture/
compare
Channels
Complementary
outputs
Note: TIM1/8 can have PLL as clock source, and therefore can be clocked at 144 MHz.
DS9118 Rev 14 23/149
55
Functional overview STM32F303xB STM32F303xC

3.17.1 Advanced timers (TIM1, TIM8)

The advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The four independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIM timers (described in
Section 3.17.2 using the same architecture, so the advanced-control timers can work
together with the TIM timers via the Timer Link feature for synchronization or event chaining.

3.17.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)

There are up to six synchronizable general-purpose timers embedded in the STM32F303xB/STM32F303xC (see can be used to generate PWM outputs, or act as a simple time base.
TIM2, 3, and TIM4
These are full-featured general-purpose timers:
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers.
These timers all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general­purpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
TIM15, 16 and 17
These three timers general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
TIM15 has 2 channels and 1 complementary channel
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode output.
The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
Tab l e 5 for differences). Each general-purpose timer

3.17.3 Basic timers (TIM6, TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.
24/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview

3.17.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.17.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.17.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0.
Programmable clock source

3.18 Real-time clock (RTC) and backup registers

The RTC and the 16 backup registers are supplied through a switch that takes power from either the V registers used to store 64 bytes of user application data when V
They are not reset by a system or power reset, or when the device wakes up from Standby mode.
The RTC is an independent BCD timer/counter.It supports the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.
Two programmable alarms with wake up from Stop and Standby mode capability.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stopand Standby modes on tamper event detection.
Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.
supply when present or the V
DD
pin. The backup registers are sixteen 32-bit
BAT
power is not present.
DD
DS9118 Rev 14 25/149
55
Functional overview STM32F303xB STM32F303xC
17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY capability.
The RTC clock sources can be:
A 32.768 kHz external crystal
A resonator or oscillator
The internal low-power RC oscillator (typical frequency of 40 kHz)
The high-speed external clock divided by 32.

3.19 Inter-integrated circuit interface (I2C)

Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2
addresses, 1 with configurable mask). They also include programmable analog and
digital noise filters.
KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes.

Table 6. Comparison of I2C analog and digital filters

Analog filter Digital filter
Pulse width of suppressed spikes
Benefits Available in Stop mode
Drawbacks
50 ns
Variations depending on temperature, voltage, process
Programmable length from 1 to 15 I2C peripheral clocks
1. Extra filtering capability vs. standard requirements.
2. Stable length
Wakeup from Stop on address match is not available when digital filter is enabled.
In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match.
The I2C interfaces can be served by the DMA controller.
Refer to Tab le 7 for the features available in I2C1 and I2C2.
7-bit addressing mode X X
10-bit addressing mode X X
Standard mode (up to 100 kbit/s) X X
Fast mode (up to 400 kbit/s) X X
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X
Table 7. STM32F303xB/STM32F303xC I2C implementation
I2C features
(1)
I2C1 I2C2
Independent clock X X
26/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview
Table 7. STM32F303xB/STM32F303xC I2C implementation (continued)
I2C features
SMBus X X
Wakeup from STOP X X
1. X = supported.
(1)
I2C1 I2C2

3.20 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32F303xB/STM32F303xC devices have three embedded universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).
The USART interfaces are able to communicate at speeds of up to 9 Mbits/s.
They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller.

3.21 Universal asynchronous receiver transmitter (UART)

The STM32F303xB/STM32F303xC devices have 2 embedded universal asynchronous receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR ENDEC, multiprocessor communication mode and single-wire half-duplex communication mode. The UART4 interface can be served by the DMA controller.
Refer to Tab le 8 for the features available in all U(S)ART interfaces.

Table 8. USART features

USART modes/features
Hardware flow control for modem X X X - -
Continuous communication using DMA X X X X -
Multiprocessor communication X X X X X
Synchronous mode X X X - -
Smartcard mode X X X - -
Single-wire half-duplex communication X X X X X
IrDA SIR ENDEC block X X X X X
LIN mode XXXXX
Dual clock domain and wakeup from Stop mode X X X X X
Receiver timeout interrupt XXXXX
Modbus communication X X X X X
Auto baud rate detection X X X - -
(1)
USART1 USART2 USART3 UART4 UART5
Driver Enable X X X - -
1. X = supported.
DS9118 Rev 14 27/149
55
Functional overview STM32F303xB STM32F303xC

3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at half-duplex and full duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.
Refer to Tab le 9 for the features available in SPI1, SPI2 and SPI3.
Hardware CRC calculation X X X
Rx/Tx FIFO X X X
NSS pulse mode X X X

Table 9. STM32F303xB/STM32F303xC SPI/I2S implementation

SPI features
(1)
SPI1 SPI2 SPI3
I2S mode - X X
TI mode XXX
1. X = supported.

3.23 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.24 Universal serial bus (USB)

The STM32F303xB/STM32F303xC devices embed an USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). The USB has a dedicated 512-bytes SRAM memory for data transmission and reception.
28/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview
MSv30365V1
TIMER 16
(for envelop)
TIMER 17
(for carrier)
OC
OC
PB9/PA13

3.25 Infrared Transmitter

The STM32F303xB/STM32F303xC devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels.

Figure 3. Infrared transmitter

3.26 Touch sensing controller (TSC)

The STM32F303xB/STM32F303xC devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.
DS9118 Rev 14 29/149
55
Functional overview STM32F303xB STM32F303xC
Table 10. Capacitive sensing GPIOs available on STM32F303xB/STM32F303xC
devices
Group
1
2
3
4
Capacitive sensing
signal name
TSC_G1_IO1 PA0
Pin
name
Group
Capacitive sensing
signal name
TSC_G5_IO1 PB3
TSC_G1_IO2 PA1 TSC_G5_IO2 PB4
5
TSC_G1_IO3 PA2 TSC_G5_IO3 PB6
TSC_G1_IO4 PA3 TSC_G5_IO4 PB7
TSC_G2_IO1 PA4
TSC_G6_IO1 PB11
TSC_G2_IO2 PA5 TSC_G6_IO2 PB12
6
TSC_G2_IO3 PA6 TSC_G6_IO3 PB13
TSC_G2_IO4 PA7 TSC_G6_IO4 PB14
TSC_G3_IO1 PC5
TSC_G7_IO1 PE2
TSC_G3_IO2 PB0 TSC_G7_IO2 PE3
7
TSC_G3_IO3 PB1 TSC_G7_IO3 PE4
TSC_G3_IO4 PB2 TSC_G7_IO4 PE5
TSC_G4_IO1 PA9
TSC_G8_IO1 PD12
TSC_G4_IO2 PA10 TSC_G8_IO2 PD13
8
TSC_G4_IO3 PA13 TSC_G8_IO3 PD14
TSC_G4_IO4 PA14 TSC_G8_IO4 PD15
Table 11. No. of capacitive sensing channels available on
STM32F303xB/STM32F303xC devices
Pin
name
Number of capacitive sensing channels
Analog I/O group
STM32F303Vx STM32F303Rx STM32F303Cx
G1 3 3 3
G2 3 3 3
G3 3 3 2
G4 3 3 3
G5 3 3 3
G6 3 3 3
G7 3 0 0
G8 3 0 0
Number of capacitive
sensing channels
24 18 17
30/149 DS9118 Rev 14
STM32F303xB STM32F303xC Functional overview

3.27 Development support

3.27.1 Serial wire JTAG debug port (SWJ-DP)

The Arm SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.27.2 Embedded trace macrocell™

The Arm embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F303xB/STM32F303xC through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using a high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.
DS9118 Rev 14 31/149
55
Pinouts and pin description STM32F303xB STM32F303xC
MSv40448V1
47 46 45 44 43 42 41
VSS
BOOT0
PB5
40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
21 22 23 24
PB4
PB3
VDD
VSS
PA12
PB15
PB14
PB13
PB12
PB10
VSS
PB11
VDD
48
13
2 3
4
5
6
7
8
9
10
11
VBAT
PC14/OSC32_IN
PC15/OSC32_OUT
NRST
VSSA/VREF-
VDDA
PA0
PA1
PA2
VDD
PF0/OSC_IN
PF1/OSC_OUT
PC13
12
1
14 15 16 17 18 19 20
PA7
PB1
PB2
LQFP48
PA13
PA11
PA10
PA9
PA8
PA3
PA4
PA5
PA6
PB0
PB9
PB8
PB7
PB6
PA15
PA14

4 Pinouts and pin description

Figure 4. STM32F303xB/STM32F303xC LQFP48 pinout

32/149 DS9118 Rev 14
STM32F303xB STM32F303xC Pinouts and pin description
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48 47 46
45 44 43
42 41
40 39 38
37 36 35
34 33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2 3
4
5 6
7
8
9
10 11 12
13
14 15
16
VBAT
PC14/OSC32_IN
PC15/OSC32_OUT
NRST
PC0 PC1 PC2 PC3
VSSA/VREF-
VDDA
PA0 PA1 PA2
VDD
PD2
PC12
PC11
PC10
VDD VSS
PC8 PC7 PC6
PB12
PF4
PA3
VDD
PC4
PC5
PB2
PB10
PF1/OSC_OUT
PF0/OSC_IN
PC13
VSS
PB11
VSS
VDD
LQFP64
MS40449V2
PA13 PA12
PA11 PA10 PA9
PA8 PC9
PB15 PB14 PB13
PA4
PA5
PA6
PA7
PB0
PB1
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14

Figure 5. STM32F303xB/STM32F303xC LQFP64 pinout

DS9118 Rev 14 33/149
55
Pinouts and pin description STM32F303xB STM32F303xC
100999897969594939291908988878685848382818079787776 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
PE2 PE3 PE4 PE5 PE6
VBAT
PC14/OSC32_IN
PC15/OSC32_OUT
PF9
PF10
PF0/OSC_IN
NRST
PC0 PC1 PC2 PC3 PF2
VSSA/VREF-
VREF+
VDDA
PA0 PA1 PA2
VDD VSS PF6 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PA3
PF4
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
VSS
VDD
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
26272829303132333435363738394041424344454647484950
MS40450V1
LQFP100
PC13
PF1/OSC_OUT
PB11

Figure 6. STM32F303xB/STM32F303xC LQFP100 pinout

34/149 DS9118 Rev 14
STM32F303xB STM32F303xC Pinouts and pin description
MSv40453V1
A
B
C
D
E
F
G
H
J
K
PA2
PA3
PA5
PA4
PA7
7
BOOT0
PE0
VSS
PE3
PE6
PA8
PE12
PE11
VDD
PB2
5
PB3
PB4
PB7
PB8
PA9
PC5
PC4
PA6
PB0
PB1
6
PB5
PB6
PB9
PE2
PE8
PC6
PD9
PB15
PB12
PB10
4
PD2
PD3
PD4
PD7
PC10
PC12
PA13
PC9
PD13
PD10
PB13
PB11
3
PD0
PD1
PC11
PC7
PD14
PD11
PB14
VSS
2
VSS
PA15
PA14
VDD
PA11
PC8
PD15
PD12
VSS
VSS
1
VSS
VSS
PF6
PA12
PA10
PC2
VSSA
VREF+
VDD
PE7
8
PE1
VDD
PE4
VBAT
PF2
PF0
OSCIN
PC0
PC3
VDDA
VSS
10
VDD
VDD
PC14 OSC32IN
PF9
PF10
PC13
PC15
OSC32OUT
NRST
PC1
PA0
PA1
VSS
PF1
OSCOUT
9
VDD
PE5

Figure 7. STM32F303xB/STM32F303xC WLCSP100 pinout

DS9118 Rev 14 35/149
55
Pinouts and pin description STM32F303xB STM32F303xC
Pin
functions

Table 12. Legend/abbreviations used in the pinout table

Name Abbreviation Definition
Pin name
Pin type
I/O structure
Notes
Alternate functions
Additional
functions
Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name
S Supply pin
I Input only pin
I/O Input / output pin
FT 5 V tolerant I/O
FTf 5 V tolerant I/O, FM+ capable
TTa 3.3 V tolerant I/O directly connected to ADC
TC Standard 3.3V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during
and after reset
Functions selected through GPIOx_AFR registers
Functions directly selected/enabled through peripheral registers
Table 13. STM32F303xB/STM32F303xC pin definitions
Pin number
Pin name
(function
after
Pin type
LQFP100
WLCSP100
LQFP64
LQFP48
reset)
D6 1 - - PE2 I/O FT
D7 2 - - PE3 I/O FT
C8 3 - - PE4 I/O FT
B9 4 - - PE5 I/O FT
E7 5 - - PE6 I/O FT
D8611 V
S - - Backup power supply
BAT
Pin functions
Alternate functions Additional functions
Notes
I/O structure
TRACECK, TIM3_CH1,
(1)
TSC_G7_IO1, EVENTOUT
TRACED0, TIM3_CH2,
(1)
TSC_G7_IO2, EVENTOUT
TRACED1, TIM3_CH3,
(1)
TSC_G7_IO3, EVENTOUT
TRACED2, TIM3_CH4,
(1)
TSC_G7_IO4, EVENTOUT
(1)
TRACED3, EVENTOUT WKUP3, RTC_TAMP3
-
-
-
-
36/149 DS9118 Rev 14
STM32F303xB STM32F303xC Pinouts and pin description
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
LQFP100
WLCSP100
Pin name
(function
after
LQFP64
reset)
LQFP48
Pin type
I/O structure
Alternate functions Additional functions
Notes
Pin functions
C9722PC13
C10833
(2)
(2)
PC14
OSC32_IN
I/O TC - TIM1_CH1N
I/O TC - - OSC32_IN
(PC14)
(2)
D9944
PC15
OSC32_
OUT
I/O TC - - OSC32_OUT
(PC15)
D10 10 - - PF9 I/O FT
E10 11 - - PF10 I/O FT
PF0-
F10 12 5 5
OSC_IN
I/O FTf - TIM1_CH3N, I2C2_SDA, OSC_IN
(PF0)
PF1-
F9 13 6 6
OSC_OUT
I/O FTf - I2C2_SCL OSC_OUT
(PF1)
E9 14 7 7 NRST I/O
RS
T
G10 15 8 - PC0 I/O TTa
G9 16 9 - PC1 I/O TTa
G8 17 10 - PC2 I/O TTa
H10 18 11 - PC3 I/O TTa
E8 19 - - PF2 I/O TTa
H8 20 12 8
J8 21 - - VREF+
J10 22 - - VDDA S
--139
VSSA/ VREF-
VDDA/
VREF+
(3)
S
-
S
-
-
S
-
H9 23 14 10 PA0 I/O TTa
WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT
TIM15_CH1, SPI2_SCK,
(1)
EVENTOUT
TIM15_CH2, SPI2_SCK,
(1)
EVENTOUT
-
-
Device reset input / internal reset output (active low)
(1)
EVENTOUT ADC12_IN6, COMP7_INM
(1)
EVENTOUT ADC12_IN7, COMP7_INP
(1)
COMP7_OUT, EVENTOUT ADC12_IN8
(1)
TIM1_BKIN2, EVENTOUT ADC12_IN9
(1)
EVENTOUT ADC12_IN10
- Analog ground/Negative reference voltage
- Positive reference voltage
- Analog power supply
- Analog power supply/Positive reference voltage
USART2_CTS, TIM2_CH1_ETR,TIM8_BKIN,
(4)
TIM8_ETR,TSC_G1_IO1, COMP1_OUT, EVENTOUT
ADC1_IN1, COMP1_INM, RTC_ TAMP2, WKUP1, COMP7_INP
DS9118 Rev 14 37/149
55
Pinouts and pin description STM32F303xB STM32F303xC
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
LQFP100
WLCSP100
Pin name
(function
after
LQFP64
reset)
LQFP48
Pin type
I/O structure
Alternate functions Additional functions
Notes
Pin functions
J9 24 15 11 PA1 I/O TTa
F7 25 16 12 PA2 I/O TTa
G7 26 17 13 PA3 I/O TTa
- 27 18 - PF4 I/O TTa
K9,
K10
- - - VSS S - - Digital ground
USART2_RTS_DE, TIM2_CH2, TSC_G1_IO2,
(4)
TIM15_CH1N, RTC_REFIN, EVENTOUT
USART2_TX, TIM2_CH3,
(4)
TIM15_CH1, TSC_G1_IO3,
(5)
COMP2_OUT, EVENTOUT
USART2_RX, TIM2_CH4,
(4)
TIM15_CH2, TSC_G1_IO4, EVENTOUT
(1)
COMP1_OUT, EVENTOUT ADC1_IN5
(4)
ADC1_IN2, COMP1_INP, OPAMP1_VINP, OPAMP3_VINP
ADC1_IN3, COMP2_INM, OPAMP1_VOUT
ADC1_IN4, OPAMP1_VINP, COMP2_INP, OPAMP1_VINM
K8 28 19 - VDD S -- Digital power supply
ADC2_IN1, DAC1_OUT1,
J7 29 20 14 PA4 I/O TTa
SPI1_NSS,
(4)
SPI3_NSS,I2S3_WS,
(5)
USART2_CK, TSC_G2_IO1, TIM3_CH2, EVENTOUT
OPAMP4_VINP, COMP1_INM, COMP2_INM, COMP3_INM, COMP4_INM, COMP5_INM, COMP6_INM, COMP7_INM
ADC2_IN2, DAC1_OUT2 OPAMP1_VINP, OPAMP2_VINM, OPAMP3_VINP COMP1_INM, COMP2_INM,
H7 30 21 15 PA5 I/O TTa
(4)
SPI1_SCK, TIM2_CH1_ETR,
(5)
TSC_G2_IO2, EVENTOUT
COMP3_INM, COMP4_INM, COMP5_INM, COMP6_INM, COMP7_INM
SPI1_MISO, TIM3_CH1,
(4)
H6 31 22 16 PA6 I/O TTa
TIM8_BKIN, TIM1_BKIN,
(5)
TIM16_CH1, COMP1_OUT,
ADC2_IN3, OPAMP2_VOUT
TSC_G2_IO3, EVENTOUT
K7 32 23 17 PA7 I/O TTa
G6 33 24 - PC4 I/O TTa
SPI1_MOSI, TIM3_CH2, TIM17_CH1, TIM1_CH1N,
(4)
TIM8_CH1N, TSC_G2_IO4, COMP2_OUT, EVENTOUT
(1)
USART1_TX, EVENTOUT ADC2_IN5
(4)
ADC2_IN4, COMP2_INP, OPAMP2_VINP, OPAMP1_VINP
38/149 DS9118 Rev 14
STM32F303xB STM32F303xC Pinouts and pin description
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
LQFP100
WLCSP100
Pin name
(function
after
LQFP64
reset)
LQFP48
Pin type
I/O structure
Alternate functions Additional functions
Notes
Pin functions
F6 34 25 - PC5 I/O TTa
J6 35 26 18 PB0 I/O TTa -
K6 36 27 19 PB1 I/O TTa
USART1_RX, TSC_G3_IO1,
(1)
EVENTOUT
TIM3_CH3, TIM1_CH2N, TIM8_CH2N,TSC_G3_IO2, EVENTOUT
TIM3_CH4, TIM1_CH3N,
(4)
TIM8_CH3N, COMP4_OUT,
(5)
ADC2_IN11, OPAMP2_VINM, OPAMP1_VINM
ADC3_IN12, COMP4_INP, OPAMP3_VINP, OPAMP2_VINP
ADC3_IN1, OPAMP3_VOUT-
TSC_G3_IO3, EVENTOUT
K5 37 28 20 PB2 I/O TTa - TSC_G3_IO4, EVENTOUT
(1)
F8 38 - - PE7 I/O TTa
E6 39 - - PE8 I/O TTa
- 40 - - PE9 I/O TTa
- 41 - - PE10 I/O TTa
H5 42 - - PE11 I/O TTa
G5 43 - - PE12 I/O TTa
- 44 - - PE13 I/O TTa
- 45 - - PE14 I/O TTa
- 46 - - PE15 I/O TTa
K4 47 29 21 PB10 I/O TTa -
K3 48 30 22 PB11 I/O TTa -
TIM1_ETR, EVENTOUT ADC3_IN13, COMP4_INP
(1)
TIM1_CH1N, EVENTOUT COMP4_INM, ADC34_IN6
(4)
TIM1_CH1, EVENTOUT ADC3_IN2
(1)
(1)
TIM1_CH2N, EVENTOUT ADC3_IN14
(1)
TIM1_CH2, EVENTOUT ADC3_IN15
(1)
TIM1_CH3N, EVENTOUT ADC3_IN16
(1)
TIM1_CH3, EVENTOUT ADC3_IN3
(4)
TIM1_CH4, TIM1_BKIN2,
(1)
EVENTOUT
(4)
USART3_RX, TIM1_BKIN,
(1)
EVENTOUT
USART3_TX, TIM2_CH3, TSC_SYNC, EVENTOUT
USART3_RX, TIM2_CH4, TSC_G6_IO1, EVENTOUT
ADC2_IN12, COMP4_INM, OPAMP3_VINM
ADC4_IN1
ADC4_IN2
COMP5_INM, OPAMP4_VINM, OPAMP3_VINM
COMP6_INP, OPAMP4_VINP
K1,
J1, K249 31 23 VSS S - - Digital ground
J5 50 32 24 VDD S - - Digital power supply
SPI2_NSS,I2S2_WS,I2C2_S
(4)
J4 51 33 25 PB12 I/O TTa
MBA, USART3_CK,
(5)
TIM1_BKIN, TSC_G6_IO2,
ADC4_IN3, COMP3_INM, OPAMP4_VOUT
EVENTOUT
DS9118 Rev 14 39/149
55
Pinouts and pin description STM32F303xB STM32F303xC
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
LQFP100
WLCSP100
Pin name
(function
after
LQFP64
reset)
LQFP48
Pin type
I/O structure
Alternate functions Additional functions
Notes
Pin functions
J3 52 34 26 PB13 I/O TTa
J2 53 35 27 PB14 I/O TTa
H4 54 36 28 PB15 I/O TTa
- 55 - - PD8 I/O TTa
G4 56 - - PD9 I/O TTa
H3 57 - - PD10 I/O TTa
H2 58 - - PD11 I/O TTa
H1 59 - - PD12 I/O TTa
G3 60 - - PD13 I/O TTa
G2 61 - - PD14 I/O TTa
G1 62 - - PD15 I/O TTa
F4 63 37 - PC6 I/O FT
F2 64 38 - PC7 I/O FT
F1 65 39 - PC8 I/O FT
F3 66 40 - PC9 I/O FT
SPI2_SCK,I2S2_CK,USART3
(4)
_CTS, TIM1_CH1N, TSC_G6_IO3, EVENTOUT
ADC3_IN5, COMP5_INP, OPAMP4_VINP, OPAMP3_VINP
SPI2_MISO,I2S2ext_SD, USART3_RTS_DE,
(4)
TIM1_CH2N, TIM15_CH1,
COMP3_INP, ADC4_IN4, OPAMP2_VINP
TSC_G6_IO4, EVENTOUT
SPI2_MOSI, I2S2_SD, TIM1_CH3N, RTC_REFIN,
(4)
TIM15_CH1N, TIM15_CH2,
ADC4_IN5, COMP6_INM
EVENTOUT
(1)
USART3_TX, EVENTOUT ADC4_IN12, OPAMP4_VINM
(1)
USART3_RX, EVENTOUT ADC4_IN13
(1)
USART3_CK, EVENTOUT ADC34_IN7, COMP6_INM
(1)
USART3_CTS, EVENTOUT
USART3_RTS_DE,
(1)
TIM4_CH1, TSC_G8_IO1,
ADC34_IN8, COMP6_INP, OPAMP4_VINP
ADC34_IN9, COMP5_INP
EVENTOUT
TIM4_CH2, TSC_G8_IO2,
(1)
EVENTOUT
TIM4_CH3, TSC_G8_IO3,
(1)
EVENTOUT
SPI2_NSS, TIM4_CH4,
(1)
TSC_G8_IO4, EVENTOUT
I2S2_MCK, COMP6_OUT,
(1)
TIM8_CH1, TIM3_CH1,
ADC34_IN10, COMP5_INM
COMP3_INP, ADC34_IN11, OPAMP2_VINP
COMP3_INM
-
EVENTOUT
I2S3_MCK, TIM8_CH2,
(1)
TIM3_CH2, COMP5_OUT,
-
EVENTOUT
TIM8_CH3, TIM3_CH3,
(1)
COMP3_OUT, EVENTOUT
TIM8_CH4,
(1)
TIM8_BKIN2,TIM3_CH4,
-
-
I2S_CKIN, EVENTOUT
40/149 DS9118 Rev 14
STM32F303xB STM32F303xC Pinouts and pin description
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
Pin name
(function
after
Pin type
I/O structure
WLCSP100
LQFP64
LQFP100
reset)
LQFP48
F5 67 41 29 PA8 I/O FT -
E5 68 42 30 PA9 I/O FTf -
E1 69 43 31 PA10 I/O FTf -
E2 70 44 32 PA11 I/O FT -
D1 71 45 33 PA12 I/O FT -
E3 72 46 34 PA13 I/O FT -
C1 73 - - PF6 I/O FTf
A1, A2, B174 47 35 VSS S
-
Alternate functions Additional functions
Notes
I2C2_SMBA,I2S2_MCK, USART1_CK, TIM1_CH1, TIM4_ETR, MCO, COMP3_OUT, EVENTOUT
I2C2_SCL,I2S3_MCK, USART1_TX, TIM1_CH2, TIM2_CH3, TIM15_BKIN, TSC_G4_IO1, COMP5_OUT, EVENTOUT
I2C2_SDA, USART1_RX, TIM1_CH3, TIM2_CH4, TIM8_BKIN, TIM17_BKIN, TSC_G4_IO2, COMP6_OUT, EVENTOUT
USART1_CTS, USB_DM, CAN_RX, TIM1_CH1N, TIM1_CH4, TIM1_BKIN2, TIM4_CH1, COMP1_OUT, EVENTOUT
USART1_RTS_DE, USB_DP, CAN_TX, TIM1_CH2N, TIM1_ETR, TIM4_CH2, TIM16_CH1, COMP2_OUT, EVENTOUT
USART3_CTS, TIM4_CH3, TIM16_CH1N, TSC_G4_IO3, IR_OUT, SWDIO-JTMS, EVENTOUT
I2C2_SCL,
(1)
USART3_RTS_DE, TIM4_CH4, EVENTOUT
- Ground
Pin functions
-
-
-
-
-
-
-
D2 75 48 36 VDD S
-
C2 76 49 37 PA14 I/O FTf -
- Digital power supply
I2C1_SDA, USART2_TX, TIM8_CH2,TIM1_BKIN, TSC_G4_IO4, SWCLK-JTCK,
-
EVENTOUT
DS9118 Rev 14 41/149
55
Pinouts and pin description STM32F303xB STM32F303xC
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
Pin name
(function
after
Pin type
I/O structure
WLCSP100
LQFP64
LQFP100
reset)
LQFP48
B2 77 50 38 PA15 I/O FTf -
E4 78 51 - PC10 I/O FT
D3 79 52 - PC11 I/O FT
A3 80 53 - PC12 I/O FT
B3 81 - - PD0 I/O FT
C3 82 - - PD1 I/O FT
A4 83 54 - PD2 I/O FT
B4 84 - - PD3 I/O FT
C4 85 - - PD4 I/O FT
- 86 - - PD5 I/O FT
- 87 - - PD6 I/O FT
D4 88 - - PD7 I/O FT
A5 89 55 39 PB3 I/O FT -
Alternate functions Additional functions
Notes
I2C1_SCL, SPI1_NSS, SPI3_NSS, I2S3_WS, JTDI, USART2_RX, TIM1_BKIN, TIM2_CH1_ETR, TIM8_CH1, EVENTOUT
SPI3_SCK, I2S3_CK,
(1)
USART3_TX, UART4_TX, TIM8_CH1N, EVENTOUT
SPI3_MISO, I2S3ext_SD,
(1)
USART3_RX, UART4_RX, TIM8_CH2N, EVENTOUT
SPI3_MOSI, I2S3_SD,
(1)
USART3_CK, UART5_TX, TIM8_CH3N, EVENTOUT
(1)
CAN_RX, EVENTOUT -
CAN_TX, TIM8_CH4,
(1)
TIM8_BKIN2,EVENTOUT
UART5_RX, TIM3_ETR,
(1)
TIM8_BKIN, EVENTOUT
USART2_CTS,
(1)
TIM2_CH1_ETR, EVENTOUT
USART2_RTS_DE,
(1)
TIM2_CH2, EVENTOUT
(1)
USART2_TX, EVENTOUT -
USART2_RX, TIM2_CH4,
(1)
EVENTOUT
USART2_CK, TIM2_CH3,
(1)
EVENTOUT
SPI3_SCK, I2S3_CK, SPI1_SCK, USART2_TX, TIM2_CH2, TIM3_ETR, TIM4_ETR, TIM8_CH1N, TSC_G5_IO1, JTDO­TRACESWO, EVENTOUT
Pin functions
-
-
-
-
-
-
-
-
-
-
-
42/149 DS9118 Rev 14
STM32F303xB STM32F303xC Pinouts and pin description
Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number
Pin name
(function
WLCSP100
after
LQFP64
LQFP100
reset)
LQFP48
Pin type
I/O structure
Alternate functions Additional functions
Notes
SPI3_MISO, I2S3ext_SD, SPI1_MISO, USART2_RX,
B5 90 56 40 PB4 I/O FT -
TIM3_CH1, TIM16_CH1, TIM17_BKIN, TIM8_CH2N, TSC_G5_IO2, NJTRST, EVENTOUT
SPI3_MOSI, SPI1_MOSI, I2S3_SD, I2C1_SMBA,
A6 91 57 41 PB5 I/O FT -
USART2_CK, TIM16_BKIN, TIM3_CH2, TIM8_CH3N, TIM17_CH1, EVENTOUT
I2C1_SCL, USART1_TX, TIM16_CH1N, TIM4_CH1,
B6 92 58 42 PB6 I/O FTf -
TIM8_CH1,TSC_G5_IO3, TIM8_ETR, TIM8_BKIN2, EVENTOUT
I2C1_SDA, USART1_RX,
C5 93 59 43 PB7 I/O FTf -
TIM3_CH4, TIM4_CH2, TIM17_CH1N, TIM8_BKIN, TSC_G5_IO4, EVENTOUT
A7 94 60 44 BOOT0 I B - Boot memory selection
I2C1_SCL, CAN_RX, TIM16_CH1, TIM4_CH3,
D5 95 61 45 PB8 I/O FTf -
TIM8_CH2, TIM1_BKIN, TSC_SYNC, COMP1_OUT, EVENTOUT
I2C1_SDA, CAN_TX,
C6 96 62 46 PB9 I/O FTf -
TIM17_CH1, TIM4_CH4, TIM8_CH3, IR_OUT, COMP2_OUT, EVENTOUT
USART1_TX, TIM4_ETR,
B7 97 - - PE0 I/O FT
A8 98 - - PE1 I/O FT
(1)
TIM16_CH1, EVENTOUT
USART1_RX, TIM17_CH1,
(1)
EVENTOUT
C7 99 63 47 VSS S - - Ground
A9,
A10,
100 64 48 VDD S - - Digital power supply
B10,
B8
Pin functions
-
-
-
-
-
-
-
-
DS9118 Rev 14 43/149
55
Pinouts and pin description STM32F303xB STM32F303xC
1. Function availability depends on the chosen device. When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must not be configured in analog mode.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the RM0316 reference manual.
3. The VREF+ functionality is available only on the 100 pin package. On the 64-pin and 48-pin packages, the VREF+ is internally connected to VDDA.
4. Fast ADC channel.
5. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O.
44/149 DS9118 Rev 14
Port
&
Pin
Name
STM32F303xB STM32F303xC Pinouts and pin description
Table 14. Alternate functions for port A
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF14 AF15
DS9118 Rev 14 45/149
TIM2_
PA0 -
RTC_
PA1
REFIN
PA2 -
PA3 -
PA4 - -
PA5 -
PA6 -
PA7 -
PA8 M CO - - -
PA9 - - -
PA1 0 -
PA11 - - - - - - TIM1_CH1N
CH1_ ETR
TIM2_ CH2
TIM2_ CH3
TIM2_ CH4
TIM2_ CH1_ ETR
TIM16_ CH1
TIM17_ CH1
TIM17_ BKIN
TIM3_ CH2
TIM3_ CH1
TIM3_ CH2
-
-
-
-
-
-
TSC_ G1_IO1
TSC_ G1_IO2
TSC_ G1_IO3
TSC_ G1_IO4
TSC_ G2_IO1
TSC_ G2_IO2
TSC_ G2_IO3
TSC_ G2_IO4
TSC_ G4_IO1
TSC_ G4_IO2
-- -
-- -
-- -
-- -
-
-
TIM8_ BKIN
TIM8_ CH1N
I2C2_ SMBA
I2C2_ SCL
I2C2_ SDA
SPI1_ NSS
SPI1_ SCK
SPI1_ MISO
SPI1_ MOSI
I2S2_ MCK
I2S3_ MCK
SPI3_NSS, I2S3_WS
TIM1_BKIN -
TIM1_CH1N -
TIM1_CH1
TIM1_CH2
- TIM1_CH3
--------
USART2_ CTS
USART2_ RTS_DE
USART2_TXCOMP2
USART2_ RX
USART2_ CK
USART1_CKCOMP3
USART1_TXCOMP5
USART1_RXCOMP6
USART1_ CTS
COMP1 _OUT
_OUT
-
--- - --
COMP1 _OUT
COMP2 _OUT
_OUT
_OUT
_OUT
COMP1 _OUT
TIM8_ BKIN
TIM15_ CH1N
TIM15_ CH1
TIM15_ CH2
TIM15_ BKIN
CAN_RX
TIM8_ ETR
----
----
----
-- - --
-- - --
TIM4_
­ETR
TIM2_ CH3
TIM2_
­CH4
TIM4_ CH1
---
---
---
TIM8_BKIN - -
TIM1_CH4
TIM1_ BKIN2
USB_ DMEVENT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
OUT
46/149 DS9118 Rev 14
Port
&
Pin
Name
Table 14. Alternate functions for port A (continued)
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF14 AF15
Pinouts and pin description STM32F303xB STM32F303xC
PA1 2 -
SWDIO
PA1 3
-JTMS
SWCLK
PA1 4
-JTCK
PA1 5 JT DI
TIM16_ CH1
TIM16_ CH1N
--
TIM2_ CH1_ ETR
TIM8_ CH1
- - - - TIM1_CH2N
-
TSC_ G4_IO3
TSC_ G4_IO4
-
I2C1_ SDA
I2C1_ SCL
IR_
­OUT
TIM8_ CH2
SPI1_ NSS
-
TIM1_BKIN
SPI3_NSS, I2S3_WS
USART1_ RTS_DE
USART3_ CTS
USART2_ TX
USART2_ RX
COMP2 _OUT
CAN_TX
--
--- - --
TIM1_
­BKIN
TIM4_ CH2
TIM4_ CH3
TIM1_ETR -
---
----
USB_ DPEVENT
OUT
EVENT OUT
EVENT OUT
EVENT OUT
Port
&
Pin
Name
STM32F303xB STM32F303xC Pinouts and pin description
Table 15. Alternate functions for port B
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF15
DS9118 Rev 14 47/149
PB0 - -
PB1 - -
PB2 - - -
JTDO-
PB3
TRACES WO
PB4 NJTRST
PB5 -
PB6 -
PB7 -
PB8 -
PB9 -
PB10 -
PB11 -
TIM2_ CH2
TIM16_ CH1
TIM16_ BKIN
TIM16_ CH1N
TIM17_ CH1N
TIM16_ CH1
TIM17_ CH1
TIM2_ CH3
TIM2_ CH4
TIM3_ CH3
TIM3_ CH4
TIM4_ ETR
TIM3_ CH1
TIM3_ CH2
TIM4_ CH1
TIM4_ CH2
TIM4_ CH3
TIM4_ CH4
-
-
TSC_ G3_IO2
TSC_ G3_IO3
TSC_ G3_IO4
TSC_ G5_IO1
TSC_ G5_IO2
TIM8_ CH3N
TSC_ G5_IO3
TSC_ G5_IO4
TSC_ SYNC
TSC_ SYNC
TSC_ G6_IO1
TIM8_ CH2N
TIM8_ CH3N
-- ------
TIM8_ CH1N
TIM8_ CH2N
I2C1_ SMBA
I2C1_SCL TIM8_CH1
I2C1_ SDA
I2C1_SCL - - -
I2C1_ SDA
-- -
-- -
- TIM1_CH2N - - - - -
- TIM1_CH3N -
SPI1_ SCK
SPI1_ MISO
SPI1_ MOSI
TIM8_ BKIN
-IR_OUT-
SPI3_SCK, I2S3_CK
SPI3_MISO, I2S3ext_SD
SPI3_MOSI, I2S3_SD
TIM8_ ETR
-
USART2_ TX
USART2_ RX
USART2_ CK
USART1_ TX
USART1_ RX
USART3_ TX
USART3_ RX
COMP4_
OUT
--
--
--
--
--
COMP1_ OUT
COMP2_ OUT
----
----
---
TIM3_ ETR
TIM17_ BKIN
TIM17_ CH1
TIM8_ BKIN2
TIM3_ CH4
CAN_RX
CAN_TX
TIM8_ CH2
TIM8_ CH3
-
-
-
-
-
TIM1_ BKIN
-
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
EVENT OUT
PB12 - - -
TSC_ G6_IO2
I2C2_ SMBA
SPI2_NSS, I2S2_WS
TIM1_ BKIN
USART3_ CK
----
EVENT OUT
48/149 DS9118 Rev 14
Port
&
Pin
Name
Table 15. Alternate functions for port B (continued)
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF12 AF15
Pinouts and pin description STM32F303xB STM32F303xC
PB13 - - -
PB14 -
PB15
RTC_ REFIN
TIM15_ CH1
TIM15_ CH2
TIM15_ CH1N
-
TSC_ G6_IO3
TSC_ G6_IO4
-
TIM1_ CH3N
-
-
SPI2_SCK, I2S2_CK
SPI2_MISO, I2S2ext_SD
SPI2_MOSI, I2S2_SD
TIM1_ CH1N
TIM1_ CH2N
------
USART3_ CTS
USART3_ RTS_DE
----
----
EVENT OUT
EVENT OUT
EVENT OUT
DS9118 Rev 14 49/149

Table 16. Alternate functions for port C

Port &
Pin
Name
PC0 EVENTOUT - - - - - -
PC1 EVENTOUT - - - - - -
PC2 EVENTOUT - COMP7_OUT - - - -
PC3 EVENTOUT - - - - TIM1_BKIN2 -
PC4 EVENTOUT - - - - - USART1_TX
PC5 EVENTOUT - TSC_G3_IO1 - - - USART1_RX
PC6 EVENTOUT TIM3_CH1 - TIM8_CH1 - I2S2_MCK COMP6_OUT
PC7 EVENTOUT TIM3_CH2 - TIM8_CH2 - I2S3_MCK COMP5_OUT
PC8 EVENTOUT TIM3_CH3 - TIM8_CH3 - - COMP3_OUT
PC9 EVENTOUT TIM3_CH4 - TIM8_CH4 I2S_CKIN TIM8_BKIN2 -
PC10 EVENTOUT - - TIM8_CH1N UART4_TX SPI3_SCK, I2S3_CK USART3_TX
PC11 EVENTOUT - - TIM8_CH2N UART4_RX SPI3_MISO, I2S3ext_SD USART3_RX
PC12 EVENTOUT - - TIM8_CH3N UART5_TX SPI3_MOSI, I2S3_SD USART3_CK
PC13 - - - TIM1_CH1N - - -
PC14 - - - - - - -
AF1 AF2 AF3 AF4 AF5 AF6 AF7
STM32F303xB STM32F303xC Pinouts and pin description
PC15 - - - - - - -
50/149 DS9118 Rev 14
Pinouts and pin description STM32F303xB STM32F303xC

Table 17. Alternate functions for port D

Port &
Pin Name
PD0 EVENTOUT - - - - - CAN_RX
PD1 EVENTOUT - - TIM8_CH4 - TIM8_BKIN2 CAN_TX
PD2 EVENTOUT TIM3_ETR - TIM8_BKIN UART5_RX - -
PD3 EVENTOUT TIM2_CH1_ETR - - - - USART2_CTS
PD4 EVENTOUT TIM2_CH2 - - - - USART2_RTS_DE
PD5 EVENTOUT - - - - - USART2_TX
PD6 EVENTOUT TIM2_CH4 - - - - USART2_RX
PD7 EVENTOUT TIM2_CH3 - - - - USART2_CK
PD8 EVENTOUT - - - - - USART3_TX
PD9 EVENTOUT - - - - - USART3_RX
PD10 EVENTOUT - - - - - USART3_CK
PD11 EVENTOUT - - - - - USART3_CTS
PD12 EVENTOUT TIM4_CH1 TSC_G8_IO1 - - - USART3_RTS_DE
PD13 EVENTOUT TIM4_CH2 TSC_G8_IO2 - - - -
PD14 EVENTOUT TIM4_CH3 TSC_G8_IO3 - - - -
PD15 EVENTOUT TIM4_CH4 TSC_G8_IO4 - - SPI2_NSS -
AF1 AF2 AF3 AF4 AF5 AF6 AF7

Table 18. Alternate functions for port E

STM32F303xB STM32F303xC Pinouts and pin description
DS9118 Rev 14 51/149
Port &
Pin Name
PE0 - EVENTOUT TIM4_ETR - TIM16_CH1 - USART1_TX
PE1 - EVENTOUT - - TIM17_CH1 - USART1_RX
PE2 TRACECK EVENTOUT TIM3_CH1 TSC_G7_IO1 - - -
PE3 TRACED0 EVENTOUT TIM3_CH2 TSC_G7_IO2 - - -
PE4 TRACED1 EVENTOUT TIM3_CH3 TSC_G7_IO3 - - -
PE5 TRACED2 EVENTOUT TIM3_CH4 TSC_G7_IO4 - - -
PE6 TRACED3 EVENTOUT - - - -
PE7 - EVENTOUT TIM1_ETR - - - -
PE8 - EVENTOUT TIM1_CH1N - - - -
PE9 - EVENTOUT TIM1_CH1 - - - -
PE10 - EVENTOUT TIM1_CH2N - - - -
PE11 - EVENTOUT TIM1_CH2 - - - -
PE12 - EVENTOUT TIM1_CH3N - - - -
PE13 - EVENTOUT TIM1_CH3 - - - -
PE14 - EVENTOUT TIM1_CH4 - - TIM1_BKIN2 -
PE15 - EVENTOUT TIM1_BKIN - - - USART3_RX
AF0 AF1 AF2 AF3 AF4 AF6 AF7
52/149 DS9118 Rev 14
Pinouts and pin description STM32F303xB STM32F303xC

Table 19. Alternate functions for port F

Port &
Pin Name
PF0 - - - I2C2_SDA - TIM1_CH3N -
PF1 - - - I2C2_SCL - - -
PF2 EVENTOUT - - - - - -
PF4 EVENTOUT COMP1_OUT - - - - -
PF6 EVENTOUT TIM4_CH4 - I2C2_SCL - - USART3_RTS_DE
PF9 EVENTOUT - TIM15_CH1 - SPI2_SCK - -
PF10 EVENTOUT - TIM15_CH2 - SPI2_SCK - -
AF1 AF2 AF3 AF4 AF5 AF6 AF7
STM32F303xB STM32F303xC Memory mapping
0xFFFF FFFF
0xE000 0000
0xC000 0000
0xA000 0000
0x8000 0000
0x6000 0000
0x4000 0000
0x2000 0000
0x0000 0000
0
1
2
3
4
5
6
7
Cortex-M4
with FPU
Internal
Peripherals
Peripherals
SRAM
CODE
Option bytes
System memory
CCM RAM
Flash memory
Flash, system
memory or SRAM,
depending on BOOT
configuration
AHB2
AHB1
APB2
APB1
0x5000 0000
0x4800 1800
0x4800 0000
0x4002 43FF
0x4002 0000
0x4001 6C00
0x4001 0000
0x4000 A000
0x4000 0000
0x1FFF FFFF
0x1FFF F800
0x1FFF D800
0x1000 2000
0x0804 0000
0x0800 0000
0x0004 0000
0x0000 0000
0x1000 0000
Reserved
MSv30355V2
AHB3
0x5000 07FF
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

5 Memory mapping

Figure 8. STM32F303xB/STM32F303xC memory map

DS9118 Rev 14 53/149
55
Memory mapping STM32F303xB STM32F303xC
Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary
addresses
(1)
Bus Boundary address
0x5000 0400 - 0x5000 07FF 1 K ADC3 - ADC4
AHB3
0x5000 0000 - 0x5000 03FF 1 K ADC1 - ADC2
0x4800 1800 - 0x4FFF FFFF ~132 M Reserved
0x4800 1400 - 0x4800 17FF 1 K GPIOF
0x4800 1000 - 0x4800 13FF 1 K GPIOE
0x4800 0C00 - 0x4800 0FFF 1 K GPIOD
AHB2
0x4800 0800 - 0x4800 0BFF 1 K GPIOC
0x4800 0400 - 0x4800 07FF 1 K GPIOB
0x4800 0000 - 0x4800 03FF 1 K GPIOA
0x4002 4400 - 0x47FF FFFF ~128 M Reserved
0x4002 4000 - 0x4002 43FF 1 K TSC
0x4002 3400 - 0x4002 3FFF 3 K Reserved
0x4002 3000 - 0x4002 33FF 1 K CRC
0x4002 2400 - 0x4002 2FFF 3 K Reserved
0x4002 2000 - 0x4002 23FF 1 K Flash interface
AHB1
0x4002 1400 - 0x4002 1FFF 3 K Reserved
Size
(bytes)
Peripheral
APB2
0x4002 1000 - 0x4002 13FF 1 K RCC
0x4002 0800 - 0x4002 0FFF 2 K Reserved
0x4002 0400 - 0x4002 07FF 1 K DMA2
0x4002 0000 - 0x4002 03FF 1 K DMA1
0x4001 8000 - 0x4001 FFFF 32 K Reserved
0x4001 4C00 - 0x4001 7FFF 13 K Reserved
0x4001 4800 - 0x4001 4BFF 1 K TIM17
0x4001 4400 - 0x4001 47FF 1 K TIM16
0x4001 4000 - 0x4001 43FF 1 K TIM15
0x4001 3C00 - 0x4001 3FFF 1 K Reserved
0x4001 3800 - 0x4001 3BFF 1 K USART1
0x4001 3400 - 0x4001 37FF 1 K TIM8
0x4001 3000 - 0x4001 33FF 1 K SPI1
0x4001 2C00 - 0x4001 2FFF 1 K TIM1
0x4001 0800 - 0x4001 2BFF 9 K Reserved
0x4001 0400 - 0x4001 07FF 1 K EXTI
0x4001 0000 - 0x4001 03FF 1 K SYSCFG + COMP + OPAMP
54/149 DS9118 Rev 14
STM32F303xB STM32F303xC Memory mapping
Table 20. STM32F303xB/STM32F303xC memory map, peripheral register boundary
addresses
Bus Boundary address
(1)
(continued)
Size
(bytes)
Peripheral
0x4000 8000 - 0x4000 FFFF 32 K Reserved
0x4000 7800 - 0x4000 7FFF 2 K Reserved
0x4000 7400 - 0x4000 77FF 1 K DAC (dual)
0x4000 7000 - 0x4000 73FF 1 K PWR
0x4000 6800 - 0x4000 6FFF 2 K Reserved
0x4000 6400 - 0x4000 67FF 1 K bxCAN
0x4000 6000 - 0x4000 63FF 1 K USB SRAM 512 bytes
0x4000 5C00 - 0x4000 5FFF 1 K USB device FS
0x4000 5800 - 0x4000 5BFF 1 K I2C2
0x4000 5400 - 0x4000 57FF 1 K I2C1
0x4000 5000 - 0x4000 53FF 1 K UART5
0x4000 4C00 - 0x4000 4FFF 1 K UART4
0x4000 4800 - 0x4000 4BFF 1 K USART3
0x4000 4400 - 0x4000 47FF 1 K USART2
APB1
0x4000 4000 - 0x4000 43FF 1 K I2S3ext
0x4000 3C00 - 0x4000 3FFF 1 K SPI3/I2S3
0x4000 3800 - 0x4000 3BFF 1 K SPI2/I2S2
0x4000 3400 - 0x4000 37FF 1 K I2S2ext
0x4000 3000 - 0x4000 33FF 1 K IWDG
0x4000 2C00 - 0x4000 2FFF 1 K WWDG
0x4000 2800 - 0x4000 2BFF 1 K RTC
0x4000 1800 - 0x4000 27FF 4 K Reserved
0x4000 1400 - 0x4000 17FF 1 K TIM7
0x4000 1000 - 0x4000 13FF 1 K TIM6
0x4000 0C00 - 0x4000 0FFF 1 K Reserved
0x4000 0800 - 0x4000 0BFF 1 K TIM4
0x4000 0400 - 0x4000 07FF 1 K TIM3
0x4000 0000 - 0x4000 03FF 1 K TIM2
1. The gray color is used for reserved Flash memory addresses.
DS9118 Rev 14 55/149
55
Electrical characteristics STM32F303xB STM32F303xC
MS19210V1
MCU pin
C = 50 pF
MS19211V1
MCU pin
V
IN

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3

6.1.2 Typical values

σ).
= 25 °C and TA = TAmax (given by
A
Unless otherwise specified, typical data are based on TA = 25 °C, V are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 9.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.
Figure 9. Pin loading conditions Figure 10. Pin input voltage
(mean±2σ).
DD
= V
= 3.3 V. They
DDA
56/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
MS19875V5
Level shifter
Analog: RCs, PLL,comparators, OPAMP,
....
Power switch
ADC/DAC
Kernel logic
(CPU,
digital
& memories)
I/O logic
Backup circuitry
(LSE, RTC,
Wakeup logic,
Backup registers)
V
BAT
1.65 – 3.6 V
GP I/Os
V
DD
OUT
IN
Regulator
4 x V
DD
4 x V
SS
V
DDA
V
DDA
V
REF+
V
REF-
V
SSA
4 x 100 nF
+ 1 x 4.7 μF
10 nF
+ 1 μF

6.1.6 Power supply scheme

Figure 11. Power supply scheme
1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins.
Caution: Each power supply pair (VDD/VSS, V
ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device.
DS9118 Rev 14 57/149
DDA/VSSA
etc..) must be decoupled with filtering
125
Electrical characteristics STM32F303xB STM32F303xC
MS19213V1
V
BAT
V
DD
V
DDA
I
DD
I
DDA
I
DD_VBAT

6.1.7 Current consumption measurement

Figure 12. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Tab le 21: Voltage characteristics,
Tab l e 22: Current characteristics, and Tab le 23: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 21. Voltage characteristics

Symbol Ratings Min Max Unit
V
DD–VSS
V
DD–VDDA
V
REF+–VDDA
External main supply voltage (including V and VDD)
Allowed voltage difference for VDD > V
(2)
Allowed voltage difference for V
REF+
DDA, VBAT
-0.4
DDA
> V
DDA
Input voltage on FT and FTf pins V
(3)
V
IN
Input voltage on TTa pins V
Input voltage on any other pin V
Input voltage on Boot0 pin 0 9
|ΔV
| Variations between different V
DDx
VSS| Variations between all the different ground pins
|V
SSX
V
ESD(HBM)
1. All main power (VDD, V permitted range. The following relationship must be respected between V
must power on before or at the same time as VDD in the power up sequence.
V
DDA
V
must be greater than or equal to VDD.
DDA
Electrostatic discharge voltage (human body model)
) and ground (VSS, V
DDA
power pins - 50
DD
(4)
) pins must always be connected to the external power supply, in the
SSA
(1)
-0.3 4.0
-0.4
0.3 V
SS
0.3 4.0
SS
− 0.3 4.0
SS
-50
see Section 6.3.12: Electrical
sensitivity characteristics
and VDD:
DDA
DD
+ 4.0
V
mV
-
58/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
2. V
3. V
must be always lower or equal than V
REF+
maximum must always be respected. Refer to Table 22: Current characteristics for the maximum allowed injected
IN
current values.
DDA
(V
REF+
V
. If unused then it must be connected to V
DDA)
DDA
.
4. Include VREF- pin.

Table 22. Current characteristics

Symbol Ratings Max. Unit
ΣI
ΣI
I
I
VDD
VSS
VDD
VSS
Total current into sum of all V
power lines (source) 160
DD
Total current out of sum of all VSS ground lines (sink) − 160
Maximum current into each V
DD
Maximum current out of each V
power line (source)
ground line (sink)
SS
(1)
(1)
100
100
Output current sunk by any I/O and control pin 25
I
IO(PIN)
ΣI
IO(PIN)
I
INJ(PIN)
ΣI
INJ(PIN)
1. All main power (VDD, V permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
4. A positive injection is induced by V exceeded. Refer to Table 21: Voltage characteristics for the maximum allowed input voltage values.
5. A positive injection is induced by V exceeded. Refer also to Table 21: Voltage characteristics for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note
6. When several inputs are submitted to a current injection, the maximum ΣI negative injected currents (instantaneous values).
Output current source by any I/O and control pin − 25
Total output current sunk by sum of all IOs and control pins
Total output current sourced by sum of all IOs and control pins
Injected current on FT, FTf and B pins
Injected current on TC and RST pin
Injected current on TTa pins
(5)
(3)
(4)
Total injected current (sum of all I/O and control pins)
) and ground (VSS and V
DDA
> VDD while a negative injection is induced by VIN< VSS. I
IN
> V
IN
DDA
while a negative injection is induced by VIN< VSS. I
) pins must always be connected to the external power supply, in the
SSA
(2)
below Table 70.
INJ(PIN)
(2)
(2)
80
80
-5/+0
± 5
± 5
(6)
INJ(PIN)
is the absolute sum of the positive and
± 25
must never be
(PIN) must never be
INJ
mA

Table 23. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature 150 °C
DS9118 Rev 14 59/149
125
Electrical characteristics STM32F303xB STM32F303xC

6.3 Operating conditions

6.3.1 General operating conditions

Table 24. General operating conditions
Symbol Parameter Conditions Min Max Unit
f
HCLK
PCLK1
f
PCLK2
V
DD
V
DDA
V
BAT
V
IN
Internal AHB clock frequency - 0 72
Internal APB1 clock frequency - 0 36
Internal APB2 clock frequency - 0 72
Standard operating voltage - 2 3.6 V
Analog operating voltage (OPAMP and DAC not used)
Must have a potential
23.6
equal to or higher than
Analog operating voltage (OPAMP and DAC used)
V
DD
2.4 3.6
Backup operating voltage - 1.65 3.6 V
DD
DDA
+0.3
+0.3
I/O input voltage
TC I/O –0.3 V
TTa I/O –0.3 V
FT and FTf I/O
(1)
–0.3 5.5
BOOT0 0 5.5
WLCSP100 - 500
Power dissipation at T
P
85 °C for suffix 6 or TA =
D
105 °C for suffix 7
(2)
=
A
LQFP100 - 488
LQFP64 - 444
LQFP48 - 364
MHzf
V
V
mW
Ambient temperature for 6
dissipation
suffix version
Low-power dissipation
Maximum power
A
T
Maximum power
Ambient temperature for 7
dissipation
suffix version
Low-power dissipation
6 suffix version –40 105
T
J Junction temperature range
7 suffix version –40 125
1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed T
characteristics).
3. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed T
Section 7.5: Thermal characteristics).
60/149 DS9118 Rev 14
–40 85
(3)
–40 105
–40 105
(3)
–40 125
(see Section 7.5: Thermal
Jmax
Jmax
°C
°C
°C
(see
STM32F303xB STM32F303xC Electrical characteristics

6.3.2 Operating conditions at power-up / power-down

The parameters given in Tab le 25 are derived from tests performed under the ambient temperature condition summarized in Tab le 24.
Symbol Parameter Conditions Min Max Unit
Table 25. Operating conditions at power-up / power-down
t
VDD
t
VDDA
VDD rise time rate
-
V
fall time rate 20
DD
V
rise time rate
DDA
V
fall time rate 20
DDA
-
0
0

6.3.3 Embedded reset and power control block characteristics

The parameters given in Tab le 26 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24.
V
POR/PDR
V
t
RSTTEMPO
1. The PDR detector monitors VDD and also V
2. The product behavior is guaranteed by design down to the minimum V
3. Guaranteed by design.
Table 26. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
Power on/power down
(1)
reset threshold
(1)
PDRhyst
PDR hysteresis - - 40 - mV
POR reset
(3)
temporization
monitors only VDD.
Falling edge
Rising edge 1.84 1.92 2.0 V
- 1.5 2.5 4.5 ms
(if kept enabled in the option bytes). The POR detector
DDA
POR/PDR
(2)
1.8
value.
µs/V
1.88 1.96 V
DS9118 Rev 14 61/149
125
Electrical characteristics STM32F303xB STM32F303xC
Table 27. Programmable voltage detector characteristics
Symbol Parameter Conditions Min
Rising edge 2.1 2.18 2.26
V
PVD0
PVD threshold 0
Falling edge 2 2.08 2.16
Rising edge 2.19 2.28 2.37
V
PVD1
PVD threshold 1
Falling edge 2.09 2.18 2.27
Rising edge 2.28 2.38 2.48
V
PVD2
PVD threshold 2
Falling edge 2.18 2.28 2.38
Rising edge 2.38 2.48 2.58
V
PVD3
PVD threshold 3
Falling edge 2.28 2.38 2.48
Rising edge 2.47 2.58 2.69
V
PVD4
PVD threshold 4
Falling edge 2.37 2.48 2.59
Rising edge 2.57 2.68 2.79
V
PVD5
PVD threshold 5
Falling edge 2.47 2.58 2.69
Rising edge 2.66 2.78 2.9
V
PVD6
PVD threshold 6
Falling edge 2.56 2.68 2.8
Rising edge 2.76 2.88 3
V
PVD7
V
PVDhyst
IDD(PVD)
1. Guaranteed by characterization results.
2. Guaranteed by design.
PVD threshold 7
Falling edge 2.66 2.78 2.9
(2)
PVD hysteresis - - 100 - mV
PVD current consumption
- - 0.15 0.26 µA
(1)
Typ Max
(1)
Unit
V
62/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics

6.3.4 Embedded reference voltage

The parameters given in Tab le 28 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 24.
Symbol Parameter Conditions Min Typ Max Unit
Table 28. Embedded internal reference voltage
V
REFINT
Internal reference voltage
ADC sampling time when
T
S_vrefint
reading the internal reference voltage
Internal reference voltage
V
RERINT
spread over the temperature range
T
Coeff
1. Guaranteed by characterization results.
2. Guaranteed by design.
Temperature coefficient - - -
Table 29. Internal reference voltage calibration values
Calibration value name Description Memory address
Raw data acquired at
V
REFINT_CAL
temperature of 30 °C
= 3.3 V
V
DDA

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 12: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.
–40 °C < T
–40 °C < T
< +105 °C 1.2 1.23 1.25 V
A
< +85 °C 1.2 1.23 1.24
A
-2.2--µs
VDD = 3 V ±10 mV - -
0x1FFF F7BA - 0x1FFF F7BB
10
100
(2)
(1)
(2)
V
mV
ppm/°C
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load)
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the f
to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
When the peripherals are enabled f
When f
> 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or
HCLK
PCLK2
= f
HCLK
HSE (8 MHz) in bypass mode.
DS9118 Rev 14 63/149
frequency (0 wait state from 0
HCLK
and f
PCLK1
= f
HCLK/2
125
Electrical characteristics STM32F303xB STM32F303xC
The parameters given in Tab le 30 to Ta bl e 34 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Tab le 24.
Table 30. Typical and maximum current consumption from VDD supply at V
All peripherals enabled All peripherals disabled
DD =
3.6V
Symbol Parameter Conditions f
External clock (HSE bypass)
Supply current in Run mode, executing from Flash
Internal clock (HSI)
I
DD
External clock (HSE bypass)
Supply current in Run mode, executing from RAM
Internal clock (HSI)
HCLK
Typ
Max @ T
(1)
A
Max @ T
Typ
(1)
A
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
72 MHz 61.2 65.8 67.6 68.5 27.8 30.3 30.7 31.5
64 MHz 54.7 59.1 60.2 61.1 24.6 27.2 27.6 28.3
48 MHz 41.7 45.1 46.2 47.2 19.2 21.1 21.4 21.8
32 MHz 28.1 31.5 32.5 32.7 12.9 14.6 14.8 15.3
24 MHz 21.4 23.7 24.4 25.2 10.0 11.4 11.4 12.1
8 MHz 7.4 8.4 8.6 9.4 3.6 4.1 4.4 5.0
1 MHz 1.3 1.6 1.8 2.6 0.8 1.0 1.2 2.1
64 MHz 49.7 54.4 55.4 56.3 24.5 27.2 27.4 28.1
48 MHz 37.9 42.2 43.0 43.5 18.9 21.4 21.5 21.6
32 MHz 25.8 29.2 29.2 30.0 12.7 14.2 14.6 15.2
24 MHz 19.7 22.3 22.6 23.2 6.7 7.7 7.9 8.5
8 MHz 6.9 7.8 8.3 8.8 3.5 4.0 4.4 5.0
72 MHz 60.8 66.2
(2)
69.7 70.4
(2)
27.4 31.7
(2)
32.2 32.5
64 MHz 54.3 59.1 62.2 63.3 24.3 28.3 28.7 28.8
48 MHz 41.0 45.6 47.3 47.9 18.3 21.6 21.9 22.1
32 MHz 27.6 32.4 32.4 32.9 12.3 15.0 15.2 15.4
24 MHz 20.8 23.9 24.3 25.0 9.3 11.3 11.4 12.0
8 MHz 6.9 7.8 8.7 9.0 3.1 3.7 4.2 4.9
1 MHz 0.9 1.2 1.5 2.3 0.4 0.6 1.0 1.8
64 MHz 49.2 53.9 55.2 57.4 23.9 27.8 28.2 28.4
48 MHz 37.3 40.8 41.4 44.1 18.2 21.0 21.6 21.9
32 MHz 25.1 27.6 29.1 30.1 12.0 14.0 14.5 15.1
24 MHz 19.0 21.6 22.1 22.9 6.3 7.2 7.7 8.1
8 MHz 6.4 7.3 7.9 8.4 3.0 3.5 4.0 4.7
(2)
Unit
mA
64/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
Table 30. Typical and maximum current consumption from VDD supply at V
All peripherals enabled All peripherals disabled
Symbol Parameter Conditions f
HCLK
Max @ T
Typ
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
72 MHz 44.0 48.4 49.4 50.5 6.6 7.5 7.9 8.7
64 MHz 39.2 43.3 44.0 45.2 6.0 6.8 7.2 7.9
48 MHz 29.6 32.7 33.3 34.3 4.5 5.2 5.6 6.3
32 MHz 19.7 23.3 23.3 23.5 3.1 3.5 4.0 4.8
24 MHz 14.9 17.6 17.8 18.3 2.4 2.8 3.3 3.9
8 MHz 4.9 5.7 6.1 6.9 0.8 1.0 1.4 2.2
1 MHz 0.6 0.9 1.2 2.1 0.1 0.3 0.6 1.5
64 MHz 34.2 38.1 39.2 40.3 5.7 6.3 6.8 7.5
I
DD
Supply current in Sleep mode, executing from Flash or RAM
External clock (HSE bypass)
48 MHz 25.8 28.7 29.6 30.3 4.3 4.8 5.2 5.9 Internal clock (HSI)
32 MHz 17.4 19.4 19.9 20.7 2.9 3.2 3.7 4.5
24 MHz 13.2 15.1 15.6 15.9 1.5 1.8 2.2 2.9
8 MHz 4.5 5.0 5.6 6.2 0.7 0.9 1.2 2.1
1. Guaranteed by characterization results unless otherwise specified.
2. Data based on characterization results and tested in production with code executing from RAM.
(1)
A
Typ
3.6V (continued)
DD =
Max @ T
(1)
A
Unit
mA
Table 31. Typical and maximum current consumption from the V
Symbol Parameter
Supply
current in
Conditions
(1)
HSE
bypass
Run/Sleep
I
DDA
mode,
code
executing
from Flash
or RAM
HSI clock
1. Current consumption from the V PLL is off, I
2. Guaranteed by characterization results.
is independent from the frequency.
DDA
supply is independent of whether the peripherals are on or off. Furthermore when the
DDA
supply
DDA
f
HCLK
V
Typ
2.4 V V
DDA =
Max @ T
(2)
A
Typ
DDA =
Max @ T
3.6 V
(2)
A
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
72 MHz 225 276 289 297 245 302 319 329
64 MHz 198 249 261 268 216 270 284 293
48 MHz 149 195 204 211 159 209 222 230
32 MHz 102 145 152 157 110 154 162 169
24 MHz 80 119 124 128 86 126 131 135
8 MHz 2 3 4 6 3 4 5 9
1 MHz 2 3 5 7 3 4 6 9
64 MHz 270 323 337 344 299 354 371 381
48 MHz 220 269 280 286 244 293 309 318
32 MHz 173 218 228 233 193 239 251 257
24 MHz 151 194 200 204 169 211 219 225
8 MHz 73 97 99 103 88 105 110 116
Unit
µA
DS9118 Rev 14 65/149
125
Electrical characteristics STM32F303xB STM32F303xC
Table 32. Typical and maximum VDD consumption in Stop and Standby modes
Symbol Parameter Conditions
Typ @VDD (VDD=V
)Max
DDA
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V
T
=
A
25 °C
TA =
85 °C
(1)
TA =
105 °C
Unit
Supply
Regulator in run mode, all oscillators OFF
20.05 20.33 20.42 20.50 20.67 20.80 44.2
current in
Regulator in low-power mode, all oscillators OFF
7.63 7.77 7.90 8.07 8.17 8.33 30.6
LSI ON and IWDG ON 0.80 0.96 1.09 1.23 1.37 1.51 - - -
I
DD
Stop mode
Supply current in Standby
LSI OFF and IWDG OFF 0.60 0.74 0.83 0.93 1.02 1.11 5.0
mode
1. Guaranteed by characterization results unless otherwise specified.
2. Data based on characterization results and tested in production.
Table 33. Typical and maximum V
consumption in Stop and Standby modes
DDA
Typ @ V
Symbol Parameter Conditions
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V
Supply current in Stop mode
Regulator in run mode, all oscillators OFF
Regulator in low-power mode, all oscillators
1.81 1.95 2.07 2.20 2.35 2.52 3.7 5.5 8.8
1.81 1.95 2.07 2.20 2.35 2.52 3.7 5.5 8.8
OFF
I
DDA
Supply current in Standby mode
Supply current in Stop mode
LSI ON and IWDG ON 2.22 2.42 2.59 2.78 3.0 3.24 - - -
monitoring ON
DDA
LSI OFF and IWDG
V
OFF
Regulator in run mode, all oscillators OFF
1.69 1.82 1.94 2.08 2.23 2.40 3.5 5.4 9.2
1.05 1.08 1.10 1.15 1.22 1.29 - - -
Regulator in low-power mode, all oscillators
1.05 1.08 1.10 1.15 1.22 1.29 - - -
OFF
Supply current in Standby mode
1. Guaranteed by characterization results.
LSI ON and IWDG ON 1.44 1.52 1.60 1.71 1.84 1.98 - - -
monitoring OFF
DDA
LSI OFF and IWDG
V
OFF
0.93 0.95 0.98 1.02 1.08 1.15 - - -
DD
(V
DD
(2)
350 735
(2)
335 720
(2)
7.8 13.3
= V
)Max
DDA
=
TA =
T
A
25 °C
85 °C
(1)
(2)
(2)
(2)
TA =
105 °C
µA
Unit
µA
The total consumption is the sum of IDD and IDDA.
66/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
0
1
25°C 60°C 85°C 105°C
1.6
1.8
2 V
2.4
2.7
3 V
3.3
3.6
T
A
(°C)
(μA)
I
VBAT
MS31124V1
Table 34. Typical and maximum current consumption from V
Typ @V
Symbol
Para
meter
Conditions
(1)
1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V
LSE & RTC ON; "Xtal mode" lower driving
0.48 0.50 0.52 0.58 0.65 0.72 0.80 0.90 1.1 1.5 2.0
capability;
I
DD_VBAT
Backup domain supply current
LSEDRV[1: 0] = '00'
LSE & RTC ON; "Xtal mode" higher driving
0.83 0.86 0.90 0.98 1.03 1.10 1.20 1.30 1.5 2.2 2.9
capability; LSEDRV[1: 0] = '11'
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization results.
BAT
BAT
T
25°C
supply
Max
@V
BAT
=
TA =
A
85°C
= 3.6 V
TA =
105°C
(2)
Unit
µA
Figure 13. Typical V
current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’)
BAT
1.4
1.2 5 V
V
0.8 V
0.6
V
0.4 V
0.2 V
DS9118 Rev 14 67/149
125
Electrical characteristics STM32F303xB STM32F303xC
Typical current consumption
The MCU is placed under the following conditions:
V
All I/O pins available on each package are in analog input configuration
The Flash access time is adjusted to f
When the peripherals are enabled, f
PLL is used for frequencies greater than 8 MHz
AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz,
Table 35. Typical current consumption in Run mode, code with data processing running from
Symbol Parameter Conditions f
I
DD
(1) (2)
I
DDA
1. V
DDA
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.
Supply current in Run mode from V
DD
Supply current in Run mode from V
DDA
monitoring is ON.
DD
= V
DDA
= 3.3 V
frequency (0 wait states from 0 to 24 MHz,
HCLK
1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash prefetch is ON
APB1
= f
AHB/2
, f
APB2
= f
AHB
500 kHz and 125 kHz respectively.
Flash
Typ
supply
supply
Running from HSE crystal clock 8 MHz, code executing from Flash
HCLK
72 MHz 61.3 28.0
64 MHz 54.8 25.4
48 MHz 41.9 19.3
32 MHz 28.5 13.3
24 MHz 21.8 10.4
16 MHz 14.9 7.2
8 MHz 7.7 3.9
4 MHz 4.5 2.5
2 MHz 2.8 1.7
1 MHz 1.9 1.3
500 kHz 1.4 1.1
125 kHz 1.1 0.9
72 MHz 240.3 239.5
64 MHz 210.9 210.3
48 MHz 155.8 155.6
32 MHz 105.7 105.6
24 MHz 82.1 82.0
16 MHz 58.8 58.8
8 MHz 2.4 2.4
4 MHz 2.4 2.4
2 MHz 2.4 2.4
1 MHz 2.4 2.4
500 kHz 2.4 2.4
125 kHz 2.4 2.4
Peripherals
enabled
Peripherals
disabled
Unit
mA
µA
68/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
Table 36. Typical current consumption in Sleep mode, code running from Flash or RAM
Typ
Symbol Parameter Conditions f
HCLK
Peripherals
enabled
Peripherals
disabled
72 MHz 44.1 7.0
64 MHz 39.7 6.3
48 MHz 30.3 4.9
32 MHz 20.5 3.5
24 MHz 15.4 2.8
I
DD
Supply current in Sleep mode from
supply
V
DD
16 MHz 10.6 2.0
8 MHz 5.4 1.1
4 MHz 3.2 1.0
2 MHz 2.1 0.9
1 MHz 1.5 0.8
Running from HSE crystal clock 8 MHz, code executing from Flash or RAM
500 kHz 1.2 0.8
125 kHz 1.0 0.8
72 MHz 239.7 238.5
64 MHz 210.5 209.6
48 MHz 155.0 155.6
32 MHz 105.3 105.2
24 MHz 81.9 81.8
I
DDA
(1) (2)
Supply current in Sleep mode from V
supply
DDA
16 MHz 58.7 58.6
8 MHz 2.4 2.4
4 MHz 2.4 2.4
2 MHz 2.4 2.4
1 MHz 2.4 2.4
500 kHz 2.4 2.4
125 kHz 2.4 2.4
1. V
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,
monitoring is ON.
DDA
OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.
Unit
mA
µA
DS9118 Rev 14 69/149
125
Electrical characteristics STM32F303xB STM32F303xC
I
SW
V
DDfSW
C××=
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in
For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.
Tab l e 54: I/O static characteristics.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (seeTab le 38: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
V
is the MCU supply voltage
DD
f
is the I/O switching frequency
SW
C is the total capacitance seen by the I/O pin: C = C
INT
+ C
EXT+CS
The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.
70/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
Table 37. Switching output I/O current consumption
Symbol Parameter Conditions
V
DD
C
ext
C = C
INT
V
DD
C
ext
C = C
INT
I
SW
I/O current
consumption
C = C
V
DD
C
ext
INT
= 3.3 V
= 0 pF
+ C
EXT
= 3.3 V
= 10 pF
+ C
EXT +CS
= 3.3 V
= 22 pF
+ C
EXT +CS
(1)
+ C
I/O toggling
frequency (fSW)
S
Typ Unit
2 MHz 0.90
4 MHz 0.93
8 MHz 1.16
18 MHz 1.60
36 MHz 2.51
48 MHz 2.97
2 MHz 0.93
4 MHz 1.06
8 MHz 1.47
18 MHz 2.26
36 MHz 3.39
48 MHz 5.99
2 MHz 1.03
4 MHz 1.30
8 MHz 1.79
18 MHz 3.01
mA
1. CS = 5 pF (estimated value).
VDD = 3.3 V
C
C = C
INT
V
C
C = C
INT
= 33 pF
ext
+ C
= 3.3 V
DD
= 47 pF
ext
+ C
EXT
EXT
+ C
+ C
36 MHz 5.99
2 MHz 1.10
4 MHz 1.31
8 MHz 2.06
S
18 MHz 3.47
36 MHz 8.35
2 MHz 1.20
4 MHz 1.54
8 MHz 2.46
S
18 MHz 4.51
36 MHz 9.98
DS9118 Rev 14 71/149
125
Electrical characteristics STM32F303xB STM32F303xC
On-chip peripheral current consumption
The MCU is placed under the following conditions:
all I/O pins are in analog input configuration
all peripherals are disabled unless otherwise mentioned
the given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
ambient operating temperature at 25°C and V
Table 38. Peripheral current consumption
Typical consumption
Peripheral
BusMatrix
GPIOA 10.0
GPIOB 10.3
GPIOC 2.2
GPIOD 8.8
GPIOE 3.3
GPIOF 3.0
ADC1&2 17.3
ADC3&4 18.8
APB2-Bridge
SYSCFG 7.3
USART1 23.3
APB1-Bridge
(2)
DMA1 7.6
DMA2 6.1
CRC 2.1
TSC 5.5
(3)
TIM1 40.0
SPI1 8.8
TIM8 36.4
TIM15 17.1
TIM16 10.1
TIM17 11.0
(3)
TIM2 49.1
TIM3 38.8
TIM4 38.3
DD
12.6
I
DD
3.6
6.1
= V
DDA
= 3.3 V.
(1)
Unit
µA/MHz
72/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
Table 38. Peripheral current consumption (continued)
Typical consumption
Peripheral
TIM6 9.7
TIM7 12.1
WWDG 6.4
SPI2 40.4
SPI3 40.0
USART2 41.9
USART3 40.2
UART4 36.5
UART5 30.8
I2C1 10.5
I2C2 10.4
USB 26.2
CAN 33.4
PWR 5.7
DAC 15.4
I
DD
(1)
Unit
µA/MHz
1. The power consumption of the analog part (I etc. is not included. Refer to the tables of characteristics in the subsequent sections.
2. BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2).
3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.
) of peripherals such as ADC, DAC, Comparators, OpAmp
DDA
DS9118 Rev 14 73/149
125
Electrical characteristics STM32F303xB STM32F303xC

6.3.6 Wakeup time from low-power mode

The wakeup times given in Tab le 39 are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:
For Stop or Sleep mode: the wakeup event is WFE.
WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in
Table 39. Low-power mode wakeup timings
Tab l e 24.
Symbol Parameter Conditions
Regulator in
t
WUSTOP
t
WUSTANDBY
t
WUSLEEP
1. Guaranteed by characterization results.
Wakeup from Stop mode
Wakeup from
(1)
Standby mode
Wakeup from Sleep mode
run mode
Regulator in low-power mode
LSI and IWDG OFF
Typ @ V DD, V
DD
= V
DDA
Max Unit
2.0 V 2.4 V 2.7 V 3 V 3.3 V 3.6 V
4.1 3.9 3.8 3.7 3.6 3.5 4.5
7.9 6.7 6.1 5.7 5.4 5.2 9
µs
69.2 60.3 56.4 53.7 51.7 50 100
CPU
-6-
clock
cycles
74/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
MS19214V2
V
HSEH
t
f(HSE)
90%
10%
T
HSE
t
t
r(HSE)
V
HSEL
t
w(HSEH)
t
w(HSEL)

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in recommended clock input waveform is shown in Figure 14.
Symbol Parameter Conditions Min Typ Max Unit
Table 40. High-speed external user clock characteristics
Section 6.3.14. However, the
f
HSE_ext
V
HSEH
V
HSEL
t
w(HSEH)
t
w(HSEL)
t
r(HSE)
t
f(HSE)
1. Guaranteed by design.
User external clock source frequency
OSC_IN input pin high level voltage 0.7V
OSC_IN input pin low level voltage V
OSC_IN high or low time
OSC_IN rise or fall time
Figure 14. High-speed external clock source AC timing diagram
(1)
(1)
(1)
1832MHz
-V
DD
-
SS
-0.3V
DD
V
DD
15 - -
ns
--20
DS9118 Rev 14 75/149
125
Electrical characteristics STM32F303xB STM32F303xC
MS19215V2
V
LSEH
t
f(LSE)
90%
10%
T
LSE
t
t
r(LSE)
V
LSEL
t
w(LSEH)
t
w(LSEL)
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in recommended clock input waveform is shown in Figure 15
Symbol Parameter Conditions Min Typ Max Unit
Table 41. Low-speed external user clock characteristics
Section 6.3.14. However, the
f
LSE_ext
V
LSEH
V
LSEL
t
w(LSEH)
t
w(LSEL)
t
r(LSE)
t
f(LSE)
1. Guaranteed by design.
User External clock source frequency
OSC32_IN input pin high level voltage
OSC32_IN input pin low level voltage
OSC32_IN high or low time
OSC32_IN rise or fall time
Figure 15. Low-speed external clock source AC timing diagram
(1)
(1)
(1)
- 32.768 1000 kHz
0.7V
DD
-V
DD
V
-
V
SS
-0.3V
DD
450 - -
ns
--50
76/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Symbol Parameter Conditions
Table 42. HSE oscillator characteristics
(1)
Min
Table 42. In the
(2)
Typ Ma x
(2)
Unit
f
OSC_IN
R
I
DD
g
t
SU(HSE)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design.
3. This consumption level occurs during the first 2/3 of the t
4. t
SU(HSE)
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Oscillator frequency - 4 8 32 MHz
Feedback resistor - - 200 kΩ
F
During startup
V
=3.3 V, Rm= 30Ω,
DD
CL=10 pF@8 MHz
=3.3 V, Rm= 45Ω,
V
DD
CL=10 pF@8 MHz
HSE current consumption
=3.3 V, Rm= 30Ω,
V
DD
CL=5 pF@32 MHz
=3.3 V, Rm= 30Ω,
V
DD
CL=10 pF@32 MHz
V
=3.3 V, Rm= 30Ω,
DD
CL=20 pF@32 MHz
Oscillator transconductance Startup 10 - - mA/V
m
(4)
Startup time VDD is stabilized - 2 - ms
SU(HSE)
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
(3)
startup time.
--8.5
-0.4-
-0.5-
-0.8-
-1-
-1.5-
mA
DS9118 Rev 14 77/149
125
Electrical characteristics STM32F303xB STM32F303xC
MS19876V1
(1)
OSC_IN
OSC_OUT
R
F
Bias
controlled
gain
f
HSE
R
EXT
8 MHz
resonator
Resonator with integrated capacitors
C
L1
C
L2
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5
pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see
Figure 16). CL1 and C
are usually the
L2
same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C
and CL2. PCB and MCU pin capacitance must be included (10 pF
L1
can be used as a rough estimate of the combined pin and board capacitance) when sizing C
and CL2.
L1
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 16. Typical application with an 8 MHz crystal
1. R
value depends on the crystal characteristics.
EXT
78/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Symbol Parameter Conditions
Table 43. LSE oscillator characteristics (f
= 32.768 kHz)
LSE
(1)
Min
(2)
Table 43. In the
Typ Max
(2)
Unit
LSEDRV[1:0]=00
lower driving capability
LSEDRV[1:0]=10
medium low driving capability
I
DD
LSE current consumption
LSEDRV[1:0]=01
medium high driving capability
LSEDRV[1:0]=11
higher driving capability
LSEDRV[1:0]=00
lower driving capability
LSEDRV[1:0]=10
g
m
Oscillator transconductance
medium low driving capability
LSEDRV[1:0]=01
medium high driving capability
LSEDRV[1:0]=11
higher driving capability
(3)
t
SU(LSE)
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”.
2. Guaranteed by design.
3. t
SU(LSE)
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.
Startup time VDD is stabilized - 2 - s
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
-0.50.9
--1
--1.3
--1.6
5--
8--
µA/V
15 - -
25 - -
µA
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DS9118 Rev 14 79/149
125
Electrical characteristics STM32F303xB STM32F303xC
MS30253V2
OSC32_IN
OSC32_OUT
Drive
programmable
amplifier
f
LSE
32.768 kHz resonator
Resonator with integrated capacitors
C
L1
C
L2
Figure 17. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.

6.3.8 Internal clock source characteristics

The parameters given in Tab le 44 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24.
High-speed internal (HSI) RC oscillator
Table 44. HSI oscillator characteristics
(1)
Symbol Parameter Conditions Min Typ Max Unit
f
HSI
TRIM HSI user trimming step - - - 1
DuCy
ACC
t
su(HSI)
I
DDA(HSI)
1. V
DDA
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Factory calibrated, parts not soldered.
Frequency - - 8 - MHz
-2.8
(2)
(3)
(3)
(3)
(3)
(3)
-55
-3.8
-2.3
-2
-2
-2
-1 - 1
(2)
-2
Duty cycle - 45
(HSI)
= -40 to
T
A
105°C
T
= -10 to 85°C -1.9
A
Accuracy of the HSI oscillator
HSI
TA = 0 to 85°C -1.9
TA = 0 to 70°C -1.3
TA = 0 to 55°C -1
TA = 25°C
HSI oscillator startup time - 1
HSI oscillator power consumption
= 3.3 V, TA = –40 to 105 °C unless otherwise specified.
(4)
- - 80 100
(2)
(2)
(3)
(3)
(3)
(3)
(3)
(2)
(2)
%
%
%
µs
µA
80/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
MS30985V4
T [ºC]
A
MAX
MIN
-40 -20 0 20 40 60 80 100 120
4%
3%
2%
1%
0%
-1%
-2%
-3%
-4%
Figure 18. HSI oscillator accuracy characterization results for soldered parts
Low-speed internal (LSI) RC oscillator
Table 45. LSI oscillator characteristics
(1)
Symbol Parameter Min Typ Max Unit
f
LSI
t
su(LSI)
I
DD(LSI)
1. V
DDA
2. Guaranteed by design.
Frequency 30 40 50 kHz
(2)
LSI oscillator startup time - - 85 µs
(2)
LSI oscillator power consumption - 0.75 1.2 µA
= 3.3 V, TA = –40 to 105 °C unless otherwise specified.
DS9118 Rev 14 81/149
125
Electrical characteristics STM32F303xB STM32F303xC

6.3.9 PLL characteristics

The parameters given in Tab le 46 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24.
Symbol Parameter
PLL input clock
f
PLL_IN
f
PLL_OUT
t
LOCK
PLL input clock duty cycle 40
PLL multiplier output clock 16
PLL lock time - - 200
Jitter Cycle-to-cycle jitter - - 300
1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f
2. Guaranteed by design.
PLL_OUT
Table 46. PLL characteristics
Min Typ Max
(1)
.
(2)
1
(2)
(2)
Value
Unit
-24
-60
(2)
(2)
MHz
%
-72MHz
(2)
(2)
µs
ps

6.3.10 Memory characteristics

Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max
prog
t
ME
I
DD
16-bit programming time TA = –40 to +105 °C 40 53.5 60 µs
Page (2 KB) erase time TA = –40 to +105 °C 20 - 40 ms
Mass erase time TA = –40 to +105 °C 20 - 40 ms
Supply current
Table 48. Flash memory endurance and data retention
t
t
ERASE
1. Guaranteed by design.
Symbol Parameter Conditions
N
t
RET
END
Endurance
Data retention
Table 47. Flash memory characteristics
Write mode - - 10 mA
Erase mode - - 12 mA
= –40 to +85 °C (6 suffix versions)
T
A
T
= –40 to +105 °C (7 suffix versions)
A
1 kcycle
10 kcycles
(2)
at TA = 85 °C
(2)
at TA = 105 °C 10
(2)
at TA = 55 °C 20
Value
(1)
Min
10 kcycles
30
(1)
Unit
Unit
Years1 kcycle
1. Guaranteed by characterization results.
2. Cycling performed over the whole temperature range.
82/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is
SS
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Tab le 49. They are based on the EMS levels and classes defined in the application note AN1709.
Table 49. EMS characteristics
DD
and
Symbol Parameter Conditions
= 3.3 V, LQFP100, TA = +25°C,
V
V
V
FESD
EFTB
Voltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be applied through 100 pF on VDD and V pins to induce a functional disturbance
SS
DD
f
= 72 MHz
HCLK
conforms to IEC 61000-4-2
V
= 3.3 V, LQFP100, TA = +25°C,
DD
f
= 72 MHz
HCLK
conforms to IEC 61000-4-4
Level/
Class
3B
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
DS9118 Rev 14 83/149
125
Electrical characteristics STM32F303xB STM32F303xC
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC
61967-2 standard which specifies the test board and the pin loading.
Table 50. EMI characteristics
Symbol Parameter Conditions
= 3.6 V, TA = 25 °C,
V
DD
S
EMI
Peak level
LQFP100 package compliant with IEC 61967-2

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114,
Symbol Ratings Conditions Packages Class
Table 51. ESD absolute maximum ratings
ANSI/ESD STM5.3.1 standard.
Monitored
frequency band
Max vs. [f
8/72 MHz
HSE/fHCLK
]
Unit
0.1 to 30 MHz 7
dBµV30 to 130 MHz 20
130 MHz to 1GHz 27
SAE EMI Level 4 -
Maximum
(1)
value
Unit
Electrostatic
V
ESD(HBM)
discharge voltage (human body model)
Electrostatic
V
ESD(CDM)
discharge voltage (charge device model)
1. Guaranteed by characterization results.
= +25 °C, conforming
T
A
to ANSI/ESDA/JEDEC JS-001
= +25 °C, conforming
T
A
to ANSI/ESDA/JEDEC JS-002
84/149 DS9118 Rev 14
All 2 2000
V
All C2a 500
STM32F303xB STM32F303xC Electrical characteristics
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Symbol Parameter Conditions Class
Table 52. Electrical sensitivities
LU Static latch-up class T
= +105 °C conforming to JESD78A II level A
A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below VSS or above V operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator frequency deviation).
The test results are given in Tab le 53.
(for standard, 3 V-capable I/O pins) should be avoided during normal product
DD
DS9118 Rev 14 85/149
125
Electrical characteristics STM32F303xB STM32F303xC
Table 53. I/O current injection susceptibility
Symbol Description
Injected current on BOOT0 – 0 NA
Injected current on PC0, PC1, PC2, PC3, PF2, PA0, PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5, PB2 with induced leakage current on other pins from this group less than -50 µA
Injected current on PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with induced leakage current on other pins from this group less than -50 µA
I
INJ
Injected current on PC0, PC1, PC2, PC3, PF2, PA0, PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5, PB2, PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with induced leakage current on other pins from this group less than 400 µA
Injected current on any other FT and FTf pins – 5 NA
Injected current on any other pins – 5 +5
Functional susceptibility
Negative injection
Positive
injection
– 5 -
– 5 -
-+5
Unit
mA
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
86/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics

6.3.14 I/O port characteristics

General input/output characteristics
Unless otherwise specified, the parameters given in Tab le 54 are derived from tests performed under the conditions summarized in Table 24. All I/Os are CMOS and TTL compliant.
Table 54. I/O static characteristics
Symbol Parameter Conditions Min Typ
TC and TTa I/O - - 0.3 V
V
IL
Low level input voltage
FT and FTf I/O - - 0.475 V
BOOT0 - - 0.3 VDD–0.3
All I/Os except BOOT0 - - 0.3 V
(2)
(1)
(1)
(1)
--
--
--
--
V
IH
High level input voltage
TC and TTa I/O 0.445 VDD+0.398
FT and FTf I/O 0.5 V
BOOT0 0.2 V
DD
DD
All I/Os except BOOT0 0.7 V
+0.2
+0.95
DD
TC and TTa I/O - 200
V
Schmitt trigger
hys
hysteresis
BOOT0 - 300
TC, FT and FTf I/O
TTa I/O in digital mode
V
IN
V
DD
V
SS
TTa I/O in digital mode
I
lkg
Input leakage current
(3)
V
V
IN
V
DDA
DD
TTa I/O in analog mode
V
DD
V
IN
V
IN
IN
= V
V
5 V
SS
DDA
(4)
V
SS
FT and FTf I/O
V
R
Weak pull-up
PU
equivalent resistor
(5)
--±0.1
--1
--±0.2
--10
25 40 55 kΩ
(1)
(1)
(1)
Max Unit
(1)
DD
+0.07
DD
DD
-0.2
(2)
(1)
(1)
V
-
-
mVFT and FTf I/O - 100
-
µA
R
1. Data based on design simulation.
2. Tested in production.
3. Leakage could be higher than the maximum value. if negative current is injected on adjacent pins. Refer to Table 53: I/O
4. To sustain a voltage higher than V
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
Weak pull-down
PD
equivalent resistor
C
I/O pin capacitance - - 5 - pF
IO
current injection susceptibility.
PMOS/NMOS contribution to the series resistance is minimum (~10% order).
(5)
DD
V
= V
IN
DD
+0.3 V, the internal pull-up/pull-down resistors must be disabled.
25 40 55 kΩ
DS9118 Rev 14 87/149
125
Electrical characteristics STM32F303xB STM32F303xC
MS30255V2
V
DD
(V)
V
IHmin
2.0
V
ILmax
0.7
V
IL
/V
IH
(V)
1.3
2.0 3.6
V
ILmax
= 0.3V
DD
+0.07
0.6
2.7 3.0 3.3
CMOS standard requirements VILmax = 0.3V
DD
V
IHmin
= 0.445V
DD
+0.398
Area not determined
Tested in production
Tested in production
Based on design simulations
Based on design simulations
CMOS standard requirements V
IH
min = 0.7V
DD
MS30256V2
V
DD
(V)
V
IHmin
2.0
V
ILmax
0.8
V
IL
/V
IH
(V)
1.3
2.0 3.6
V
ILmax
= 0.3V
DD
+0.07
0.7
2.7 3.0 3.3
TTL standard requirements VILmax = 0.8V
V
IHmin
= 0.445V
DD
+0.398
Area not determined
Based on design simulations
Based on design simulations
TTL standard requirements VIHmin = 2V
All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in
Figure 19 and Figure 20 for standard I/Os.
Figure 19. TC and TTa I/O input characteristics - CMOS port
Figure 20. TC and TTa I/O input characteristics - TTL port
88/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
V
DD
(V)
2.0
0.5
V
IL
/V
IH
(V)
2.0 3.6
1.0
2.7
Area not determined
MS30257V3
V
ILmax
= 0.475V
DD
-0.2
V
IHmin
= 0.5V
DD
+0.2
Based on design simulations
Based on design simulations
CMOS standard requirements V
IH
min = 0.7V
DD
CMOS standard requirements V
IL
max = 0.3V
DD
MS30258V2
V
DD
(V)
2.0
V
IL
/V
IH
(V)
1.0
2.0 3.6
V
ILmin
= 0.475V
DD
-0.2
0.5
V
IHmin
= 0.5V
DD
+0.2
Area not determined
2.7
TTL standard requirements VIHmin = 2V
TTL standard requirements
VILmax = 0.8V
0.8
Based on design simulations
Based on design simulations
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port
DS9118 Rev 14 89/149
125
Electrical characteristics STM32F303xB STM32F303xC
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20
mA (with a relaxed V
OL/VOH
).
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in
The sum of the currents sourced by all the I/Os on V
consumption of the MCU sourced on V
Σ
I
(see Table 22).
VDD
The sum of the currents sunk by all the I/Os on V
consumption of the MCU sunk on V
Σ
I
(see Table 22).
VSS
cannot exceed the absolute maximum rating
SS
Section 6.2:
plus the maximum Run
cannot exceed the absolute maximum rating
DD,
DD,
plus the maximum Run
SS
Output voltage levels
Unless otherwise specified, the parameters given in Tab le 55 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in
Tab l e 24. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL
compliant.
Table 55. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
= +8 mA
< 3.6 V
DD
(2)
= +8 mA
< 3.6 V
DD
= +6 mA
< 2.7 V
DD
< 3.6 V
DD
(2)
-0.4
-0.4
-1.3
-0.4
-0.4
(1)
V
OL
(3)
V
OH
(1)
V
OL
(3)
V
OH
(1)(4)
V
OL
(3)(4)
V
OH
(1)(4)
V
OL
(3)(4)
V
OH
V
OLFM+
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 22 and the sum of (I/O ports and control pins) must not exceed ΣI
I
IO
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The I
4. Data based on design simulation.
current sourced by the device must always respect the absolute maximum rating specified in Table 22 and the sum
IO
(I/O ports and control pins) must not exceed ΣI
of I
IO
Output low level voltage for an I/O pin CMOS port
I
Output high level voltage for an I/O pin VDD–0.4 -
IO
2.7 V < V
Output low level voltage for an I/O pin TTL port
I
Output high level voltage for an I/O pin 2.4 -
Output low level voltage for an I/O pin
Output high level voltage for an I/O pin VDD–1.3 -
Output low level voltage for an I/O pin
Output high level voltage for an I/O pin VDD–0.4 -
Output low level voltage for an FTf I/O pin in
(1)(4)
FM+ mode
.
IO(PIN)
.
IO(PIN)
IO
2.7 V < V
I
= +20 mA
IO
2.7 V < VDD < 3.6 V
I
IO
2 V < V
I
= +20 mA
IO
2.7 V < V
V
90/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 23 and
Tab l e 56, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V
Table 56. I/O AC characteristics
supply voltage conditions summarized in Tabl e 24.
DD
(1)
OSPEEDRy [1:0]
value
(1)
x0
01
11
FM+
configuration
-t
Symbol Parameter Conditions Min Max Unit
(2)
CL = 50 pF, V
C
(2)
CL = 50 pF, V
C
CL = 30 pF, V
(2)
C
C
CL = 30 pF, V
C
CL = 50 pF, V
CL = 30 pF, V
CL = 50 pF, V
CL = 50 pF, V
(2)
= 50 pF, V
L
= 50 pF, V
L
= 50 pF, VDD = 2.7 V to 3.6 V - 30
L
= 50 pF, V
L
= 50 pF, V
L
= 2 V to 3.6 V - 2
DD
= 2 V to 3.6 V
DD
= 2 V to 3.6 V - 10
DD
= 2 V to 3.6 V
DD
= 2.7 V to 3.6 V - 50
DD
= 2 V to 2.7 V - 20
DD
= 2.7 V to 3.6 V - 5
DD
= 2.7 V to 3.6 V - 8
DD
= 2 V to 2.7 V - 12
DD
= 2.7 V to 3.6 V - 5
DD
= 2.7 V to 3.6 V - 8
DD
= 2 V to 2.7 V - 12
DD
CL = 50 pF, VDD = 2 V to 3.6 V
-10
- 125
- 125
-25
-25
-2
-12
-34
(3)
(4)
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
EXTIpw
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Maximum frequency
Output high to low level fall time
Output low to high level rise time
Pulse width of external signals detected by the
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(4)
(4)
(4)
-ns
EXTI controller
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of GPIO Port configuration register.
2. The maximum frequency is defined in Figure 23.
3. Guaranteed by design.
4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F303x STM32F313xx reference manual RM0316 for a description of FM+ I/O mode configuration.
MHz
ns
MHz
ns
MHz
MHz
MHz
ns
MHz
ns
DS9118 Rev 14 91/149
125
Electrical characteristics STM32F303xB STM32F303xC
ai14131c
10%
90%
50%
t
r(IO)out
OUTPUT
EXTERNAL
ON 50pF
Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%)
10%
50%
90%
when loaded by 50pF
T
t
f(IO)out
Figure 23. I/O AC characteristics definition

6.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R
Unless otherwise specified, the parameters given in Tab le 57 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in
Tab l e 24.
(see Tab le 54).
PU
Table 57. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
IL(NRST)
V
IH(NRST)
V
V
V
NF(NRST)
1. Guaranteed by design.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
(1)
NRST Input low level voltage - - -
(1)
NRST Input high level voltage -
hys(NRST)
R
PU
F(NRST)
resistance must be minimum
NRST Schmitt trigger voltage hysteresis - - 200 - mV
Weak pull-up equivalent resistor
(1)
NRST Input filtered pulse - - - 100
(1)
NRST Input not filtered pulse - 500
(~10% order).
(2)
0.445V
0.398
V
= V
IN
SS
+
DD (1)
25 40 55 kΩ
(1)
0.3V
DD
(1)
0.07
--
(1)
--ns
to the series
+
V
ns
92/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
MS19878V1
External reset circuitry
(1)
NRST
(2)
0.1 μF
V
DD
R
PU
Filter
Internal reset
Figure 24. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the V
Table 57. Otherwise the reset will not be taken into account by the device.
max level specified in
IL(NRST)

6.3.16 Timer characteristics

The parameters given in Tab le 58 are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).
Table 58. T I M x
(1)(2)
characteristics
Symbol Parameter Conditions Min Max Unit
-1-
t
res(TIM)
f
EXT
Res
Timer resolution time
Timer external clock frequency on CH1 to CH4
Timer resolution
TIM
f
TIMxCLK
f
TIMxCLK
x=1.8
f
TIMxCLK
TIMx (except TIM2) - 16
TIM2 - 32
= 72 MHz 13.9 - ns
= 144 MHz
-0
6.95 - ns
f
TIMxCLK
= 72 MHz 0 36 MHz
- 1 65536
t
COUNTER
16-bit counter clock period
f
TIMxCLK
f
TIMxCLK
x=1.8
= 72 MHz 0.0139 910 µs
= 144 MHz
0.0069 455 µs
- - 65536 × 65536
t
MAX_COUNT
Maximum possible count with 32-bit counter
f
f x=1.8
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM8, TIM15, TIM16 and TIM17 timers.
2. Guaranteed by design.
= 72 MHz - 59.65 s
TIMxCLK
= 144 MHz
TIMxCLK
- 29.825 s
t
TIMxCLK
/2
t
TIMxCLK
t
TIMxCLK
MHz
bit
DS9118 Rev 14 93/149
125
Electrical characteristics STM32F303xB STM32F303xC
Table 59. IWDG min/max timeout period at 40 kHz (LSI)
Prescaler divider PR[2:0] bits
Min timeout (ms) RL[11:0]=
0x000
Max timeout (ms) RL[11:0]=
(1)
0xFFF
/4 0 0.1 409.6
/8 1 0.2 819.2
/16 2 0.4 1638.4
/32 3 0.8 3276.8
/64 4 1.6 6553.6
/128 5 3.2 13107.2
/256 7 6.4 26214.4
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Table 60. WWDG min-max timeout value @72 MHz (PCLK)
(1)
Prescaler WDGTB Min timeout value Max timeout value
1 0 0.05687 3.6409
2 1 0.1137 7.2817
4 2 0.2275 14.564
8 3 0.4551 29.127
1. Guaranteed by design.
94/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics

6.3.17 Communications interfaces

I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev.03 for:
Standard-mode (Sm) : with a bit rate up to 100 Kbits/s
Fast-mode (Fm) : with a bit rate up to 400 Kbits/s
Fast-mode Plus (Fm+) : with a bit rate up to 1Mbits/s
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to
characteristics.
All I2C I/Os embed an analog filter. refer to theTabl e 62: I2C analog filter characteristics.
Table 61. I2C timings specification (see I2C specification, rev.03, June 2007)
Symbol Parameter
Standard mode Fast mode Fast Mode Plus
Min Max Min Max Min Max
Section 6.3.14: I/O port
(1)
Unit
f
SCL
t
LOW
t
HIGH
t
r
t
f
t
HD;DAT
t
VD;DAT
t
VD;ACK
t
SU;DAT
t
HD:STA
t
SU:STA
t
SU:STO
t
BUF
C
t
SP
SCL clock frequency 0 100 0 400 0 1000 KHz
Low period of the SCL clock 4.7 - 1.3 - 0.5 - µs
High Period of the SCL clock 4 0.6 0.26 - µs
Rise time of both SDA and SCL signals
Fall time of both SDA and SCL signals
- 1000 - 300 - 120 ns
- 300 - 300 - 120 ns
Data hold time 0 - 0 - 0 - µs
Data valid time - 3.45
Data valid acknowledge time - 3.45
(2)
(2)
-0.9
-0.9
(2)
(2)
-0.45
-0.45
Data setup time 250 - 100 - 50 - ns
Hold time (repeated) START condition
Set-up time for a repeated START condition
4.0 - 0.6 - 0.26 - µs
4.7 - 0.6 - 0.26 µs
Set-up time for STOP condition 4.0 - 0.6 - 0.26 - µs
Bus free time between a STOP and START condition
Capacitive load for each bus line - 400 - 400 - 550 pF
b
Pulse width of spikes that are suppressed by the analog filter for
4.7 - 1.3 - 0.5 - µs
050
(3)
050
(3)
--ns
Standard and Fast mode
(2)
(2)
µs
µs
DS9118 Rev 14 95/149
125
Electrical characteristics STM32F303xB STM32F303xC
MS19879V3
Rs
I2C bus
Rp
Rs
V
DD_I2C
MCU
SDA
SCL
Rp
V
DD_I2C
continued
continued
SDA
SCL
SDA
SCL
70%
30%
70%
30%
70%
30%
70%
30%
70%
30%
70%
30%
t
f
t
f
t
r
t
r
t
SU;DAT
t
HD;DAT
t
HIGH
t
VD;DAT
t
1 / f
SCL
t
LOW
9th clock
1st clock cycle
t
SU;STA
t
HD;STA
t
SP
t
VD;ACK
t
SU;STO
t
BUF
9th clock
S
r
SP
S
HD;STA
1. The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when I2Cx_TIMING register is correctly programmed (Refer to the RM0316 reference manual).
2. The maximum tHD;DAT could be 3.45 µs, 0.9 µs and 0.45 µs for standard mode, fast mode and fast mode plus, but must be less than the maximum of tVD;DAT or tVD;ACK by a transition time.
3. The minimum width of the spikes filtered by the analog filter is above t
SP
(max).
Table 62. I2C analog filter characteristics
(1)
Symbol Parameter Min Max Unit
t
AF
1. Guaranteed by design.
Pulse width of spikes that are suppressed by the analog filter
50 260 ns
Figure 25. I2C bus AC waveforms and measurement circuit
1. Rs: Series protection resistors, Rp: Pull-up resistors, VDD_I2C: I2C bus supply.
96/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Tab le 63 for SPI or in Ta bl e 64 for I2S are derived from tests performed under ambient temperature, f supply voltage conditions summarized in
Tabl e 24.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 63. SPI characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1)
frequency and VDD
PCLKx
Master mode, SPI1
2.7<VDD<3.6
Slave mode, SPI1
DD
DD
<3.6
<3.6
--
1/t
f
SCK
c(SCK)
SPI clock frequency
2.7<V
Master mode, SPI1/2/3 2<V
Slave mode, SPI1/2/3
<3.6
2<V
DD
SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 %
DuCy(
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
t
a(SO)
t
dis(SO)
NSS setup time Slave mode, SPI presc = 2 4*Tpclk - -
NSS hold time Slave mode, SPI presc = 2 2*Tpclk - -
SCK high and low time Master mode Tpclk-2 Tpclk Tpclk+2
Master mode 5.5 - -
Data input setup time
Slave mode 6.5 - -
Master mode 5 - -
Data input hold time
Slave mode 5 - -
Data output access time Slave mode 0 - 4*Tpclk
Data output disable time Slave mode 0 - 24
Slave mode - 12 27
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
1. Guaranteed by characterization results.
Data output valid time
Data output hold time
Slave mode, SPI1
2.7<V
DD
<3.6V
-1218
Master mode - 1.5 3
Slave mode 11 - -
Master mode 0 - -
24
24
MHz
18
18
ns
DS9118 Rev 14 97/149
125
Electrical characteristics STM32F303xB STM32F303xC
ai14135b
NSS input
t
SU(NSS)
tc(SCK)
th(NSS)
SCK input
CPHA=1 CPOL=0
CPHA=1 CPOL=1
t
w(SCKH)
tw(SCKL)
ta(SO)
tv(SO)
th(SO)
tr(SCK) tf(SCK)
tdis(SO)
MISO
OUTPUT
MOSI
INPUT
t
su(SI)
th(SI)
MSB OUT
MSB IN
BIT6 OUT
LSB OUT
LSB IN
BIT 1 IN
Figure 26. SPI timing diagram - slave mode and CPHA = 0
Figure 27. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at 0.5V
and with external CL = 30 pF.
DD
(1)
98/149 DS9118 Rev 14
STM32F303xB STM32F303xC Electrical characteristics
ai14136c
SCK Output
CPHA=0
MOSI
OUTPUT
MISO
INP U T
CPHA=0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
t
c(SCK)
t
w(SCKH)
t
w(SCKL)
t
r(SCK)
t
f(SCK)
t
h(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
t
su(MI)
t
v(MO)
t
h(MO)
MSB IN
BIT6 IN
MSB OUT
Figure 28. SPI timing diagram - master mode
(1)
1. Measurement points are done at 0.5V
and with external CL = 30 pF.
DD
DS9118 Rev 14 99/149
125
Electrical characteristics STM32F303xB STM32F303xC
Table 64. I2S characteristics
(1)
Symbol Parameter Conditions Min Max Unit
f
CK
1/t
c(CK)
t
r(CK)
t
f(CK)
t
w(CKH)
Master data: 16 bits,
I2S clock frequency
audio freq=48 kHz
I2S clock rise and fall
time
I2S clock high time Master f
Slave 0 12.288
Capacitive load
CL = 30 pF
= 36 MHz,
PCLK
1.496 1.503
-8
331 -
audio frequency =
t
w(CKL)
t
v(WS)
t
h(WS)
t
su(WS)
t
h(WS)
Duty Cycle
t
su(SD_MR)
t
su(SD_SR)
t
h(SD_MR)
t
h(SD_SR)
t
v(SD_ST)
t
h(SD_ST)
t
v(SD_MT)
t
h(SD_MT)
I2S clock low time 332 -
48 kHz
WS valid time Master mode 4 -
WS hold time Master mode 4 -
WS setup time Slave mode 4 -
WS hold time Slave mode 0 -
2
S slave input clock
I
duty cycle
Slave mode 30 70 %
Data input setup time Master receiver 9 -
Data input setup time Slave receiver 2 -
Master receiver 0 -
Data input hold time
Slave receiver 0 -
Data output valid time
Data output hold time
Data output valid time
Data output hold time
Slave transmitter
(after enable edge)
Slave transmitter
(after enable edge)
Master transmitter
(after enable edge)
Master transmitter
(after enable edge)
-29
12 -
-3
2-
MHz
ns
ns
1. Guaranteed by characterization results.
100/149 DS9118 Rev 14
Loading...