ST MICROELECTRONICS STM32 F103VBT6 Instructions

STM32F103x6
STM32F103x8 STM32F103xB
Performance line, ARM-based 32-bit MCU with Flash, USB, CAN,
Preliminary Data
Features
Core: ARM 32-bit Cortex™-M3 CPU
– 72 MHz, 90 DMIPS with 1.25 DMIPS/MHz – Single-cycle multiplication and hardware
division
– Nested interrupt controller with 43
maskable interrupt channels
– Interrupt processing (down to 6 CPU
cycles) with tail chaining
Memories
– 32-to -1 2 8 Kbytes of Flash me m ory – 6-to- 20 Kbytes of SRAM
Clock, reset and supply management
– 2.0 to 3.6 V application supply and I/Os – POR, PDR, and programmable voltage
detector (PVD) – 4-to-16 MHz quartz oscillator – Internal 8 MHz factory-trimmed RC – Internal 32 kHz RC – PLL for CPU clock – Dedicated 32 kHz oscillator for RTC with
calibration
Low power
– Sleep, Stop and Standby modes –V
2 x 12-bit, 1 µs A/D converters (16-channel)
supply for RTC and backup registers
BAT
– Conversion range: 0 to 3.6 V – Dual-sample and hold capability – Synchronizable with advanced control timer – Temperature sensor
DMA
– 7-channel DMA controller – Peripherals supported: timers, ADC, SPIs,
2
I
Cs and USARTs
LQFP48
7 x 7 mm
Debug mode
LQFP100
14 x 14 mm
– Serial wire debug (SWD) & JTAG int erfaces
Up to 80 fast I/O ports
– 32/49/80 5 V-tolerant I/Os – All mappable on 16 external interrupt
vectors
– Atomi c re ad /m o dif y/write operations
Up to 7 timers
– Up to three 16-bit timers, each with up to 4
IC/OC/PWM or pulse counter
– 16-bit, 6-channel advanced control timer:
up to 6 channels for PWM output Dead time generation and emergency
stop
– 2 x 16-bit watchdog timers (Independent
and Window)
– SysTick timer: a 24-bit downcounter
Up to 9 communication interfaces
– Up to 2 x I
2
C interfaces (SMBus/PMBus)
– Up to 3 USARTs (ISO 7816 interface, LIN,
IrDA capability, modem control) – Up to 2 SPIs (18 Mbit/s) – CAN interface (2.0B Active) – USB 2.0 full speed interface

Table 1. Device summary

Reference Root part number
STM32F103x6 STM32F103C6, STM32F103R6 STM32F103x8 STM32F103xB STM32F103RB STM32F103VB
STM32F103C8, STM32F103R8 STM32F103V8
LQFP64
10 x 10 mm
BGA100
10 x 10 mm
July 2007 Rev 2 1/67
This is preliminary information on a new product now in development or undergoing ev aluation. Details are subject to change without notice.
www.st.com
1
Contents STM32F103xx
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 27
5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 28
5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 42
5.3.12 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.13 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2/67
STM32F103xx Contents
5.3.14 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.15 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.16 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.1 Future family enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3/67
List of tables STM32F103xx
List of tables
Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Device features and peripheral counts (STM32F103xx performance line). . . . . . . . . . . . . . 7
Table 3. Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 5. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 6. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 7. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 8. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 9. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 10. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 11. Maximum current consumption in Run and Sleep modes . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 12. Maximum current consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . . . . . 30
Table 13. Typical current consumption in Run and Sleep modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 14. Typical current consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 15. High-speed external (HSE) user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 16. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 17. HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 18. LSE oscillator characteristics (f
Table 19. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 20. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 21. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 22. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 23. Flash memory characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 24. Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 25. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 26. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 27. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 28. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 29. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 30. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 31. I/O AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 32. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 33. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 34. I Table 35. SCL frequency (f
2
C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
= 36 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
PCLK1
Table 36. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 37. USB DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 38. USB: Full speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 39. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 40. ADC accuracy (f
PCLK2
= 14 MHz, f
Table 41. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 42. LFBGA100 - low profile fine pitch ball grid array package mechanical data. . . . . . . . . . . . 59
Table 43. LQFP100 – 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . 61
Table 44. LQFP64 – 64 pin low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . 62
Table 45. LQFP48 – 48 pin low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . . . . . 63
Table 46. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 47. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
LSE
= 14 MHz, R
ADC
<10 kΩ, V
AIN
= 3.3 V). . . . . . . . . 55
DDA
4/67
STM32F103xx List of figures
List of figures
Figure 1. STM32F103xx performance line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2. STM32F103xx performance line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3. STM32F103xx performance line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4. STM32F103xx performance line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 5. STM32F103xx performance line BGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 6. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 7. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 8. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 9. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 10. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 11. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 12. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 13. Typical application with a 8-MHz crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 14. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 15. Unused I/O pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 16. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 17. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 18. I
Figure 19. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 20. SPI timing diagram - slave mode and CPHA = 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 21. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 22. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 23. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 24. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 25. Power supply and reference decoupling (V Figure 26. Power supply and reference decoupling (V
Figure 27. LFBGA100 - low profile fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . 59
Figure 28. Recommended PCB design rules (0.80/0.75 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . . 60
Figure 29. LQFP100 – 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 30. LQFP64 – 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 31. LQFP48 – 48 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2
C bus AC waveforms and measurement circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
not connected to V
REF+
connected to V
REF+
DDA
). . . . . . . . . . . . . . 57
DDA
). . . . . . . . . . . . . . . . . 57
5/67
Introduction STM32F103xx

1 Introduction

This datasheet provides the STM32F103xx performance line ordering information and mechanical device characteristics.
For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10xxx Flash pr og ra mming reference manual, pm0042 , available from www.st.com.
For information on the Cortex-M3 core please refer to the Cortex-M3 Technical Reference Manual.

2 Description

The STM32F103xx performance line family incorporates the high-performance ARM Cortex-M3 32-bit RISC core operating at a 72 MHz frequency, high-speed embedded memories (Flash memory up to 128Kbytes and SRAM up to 20 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer two 12-bit ADCs, three general purpose 16-bit timers plus one PWM timer, as well as standard and advanced communication interfaces: up to tw o I and a CAN.
2
Cs and SPIs, three USARTs, an USB
The STM32F103xx performance line family operates in the −40 to +105 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allo ws to design low-power applications.
The complete STM32F103xx performance line f amily includes devices in 4 different package types: from 48 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.
These features make t he STM32F103xx performance line microcontroller family suitab le for a wide range of applications:
Motor drive and application control
Medical and handheld equipment
PC peripherals gaming and GPS platforms
Industrial applications: PLC, inverters, printers, and scanners
Alarm systems, Video intercom, and HVAC
Figure 1 shows the general block diagram of the device family.
6/67
STM32F103xx Description

2.1 Device overview

Table 2. Device features and peripheral counts (STM32F103xx performance line)

Peripheral
Flash - Kbytes 32 64 32 64 128 64 128 SRAM - Kbytes 10 20 10 20 20
General purpose 232 3 3 Advanced Control 111
Timers
SPI 121 2 2
2
I
C 121 2 2 USART 232 3 3 USB 111 1 1
Communication
CAN 1 1 1 1 1
GPIOs 32 49 80
STM32F103Cx STM32F103Rx STM32F103Vx
12-bit synchronized ADC Number of channels
2
10 channels
2
16 channels
CPU frequency 72 MHz Operating voltage 2.0 to 3.6 V Operating temperature -40 to +85 °C / -40 to +105 °C
Packages LQFP48 LQFP64
LQFP100,
BGA100
7/67
Description STM32F103xx

2.2 Overview

ARM® CortexTM-M3 core with embedded Flash and SRAM
The ARM Cortex-M3 processor is the latest generation of ARM processors for embedded systems. It has been de v eloped t o prov ide a low- cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.
The STM32F103xx performance line family having an embedded ARM core, is therefore compatible with all ARM tools and software.
Figure 1 shows the general block diagram of the device family.
Embedded Flash memory
Up to 128 Kbytes of embedded Flash is available for storing programs and data.
Embedded SRAM
Up to 20 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.
Nested vectored interrupt controller (NVIC)
The STM32F103xx performance line embeds a Nested Vectored Interrupt Controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of Cortex­M3) and 16 priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority inte r rupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 19 edge detectors lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge , falling edge, both) and ca n be mask ed ind ependently. A pending register maintains the status of the interrupt requests. The EXTI can detect external line with pulse width lower than the Internal APB2 clock period. Up to 80 GPIOs are connected to the 16 external interrupt lines.
8/67
STM32F103xx Description
Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected and is monitored for failure. During such a scenario, it is disabled and software interrupt management follo ws . Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).
Several prescalers allow the configuration of the AHB frequency, the High Speed APB (APB2) and the low Speed APB (APB1) domains. The maximum frequency of the AHB and the High Speed APB domains is 72 MHz. The maximum allowed frequency of the Low Speed APB domain is 36 MHz.
Boot modes
At startup, boot pins are used to select one of three boot options:
Boot from User Flash
Boot from System Memory
Boot from SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by using the USART.
Power supply schemes
V
V
V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.
DD
Provided externally through V
, V
SSA
and PLL. In V
BAT
= 2.0 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
DDA
range (ADC is limited at 2.4 V).
DD
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup
registers (through power switch) when V
DD
pins.
is not present.
DD
Power supply supervisor
The device has an integrated Power On Reset (POR)/Power Down Reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V for an e xternal reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the V
power supply and compares it to the V
DD
when V
drops below the V
DD
interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
Refer to Table 9: Embedded reset and power control block characteristics for the v alues of V
POR/PDR
and V
PVD
.
is below a specified threshold, V
DD
threshold. An interrupt can be generated
and/or when VDD is higher than the V
PVD
PVD
POR/PDR
PVD
, without the need
threshold. The
9/67
Description STM32F103xx
Voltage regulator
The regulator has three operation modes: ma in (M R ), low power (LPR) and power down.
MR is used in the nominal regulation mode (Run)
LPR is used in the Stop modes.
Power down is used in Standby Mode: the regulator output is in high impedance: the
kernel circuitry is powered-down, inducing zero consumption (but the contents of the registers and SRAM are lost)
This regulator is alwa ys enabled after reset. It is disabled in Standby Mode, providing high impedance output.
Low-power modes
The STM32F103xx performance line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode allows to achieve the lowest po we r consumption while re taining the co ntent of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE RC oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be wok en up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD ou tp ut , the RTC alarm or the USB wakeup.
Standby mode
The Standby mode allows to achieve the lo west power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI and the HSE RC oscillators are also switched off. After entering Standby mode, SRAM and registers content are lost except for registers in the Backup domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.
Note: The RTC, the IWDG, and the cor responding cloc k sources are n ot stopped b y entering Stop
or Standby mode.
DMA
The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I advanced control timers TIMx and ADC.
10/67
2
C, USART, general purpose and
STM32F103xx Description
RTC (real-time clock) and backup registers
The RTC and the bac kup registers are supplied through a switch that takes po wer either on V
supply when present or through the V
DD
registers) can be used to store data when V
pin. The backup registers (ten 16-bit
BAT
power is not present.
DD
The real-time clock provides a set of continuously running counters which can be used with suitable software to pro vide a cloc k calendar funct ion, and prov ides an alarm interrupt and a periodic interrupt. It is clocked by an external 32.768 kHz oscillator, the internal low power RC oscillator or the High Speed External clock divided by 128. The internal low power RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a prob lem occurs , or as a free running timer f or applicati on time out management. It is hardware o r software configurable through the option bytes. The counter can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the de vice when a prob lem occurs . It is clock ed from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.
SysTick timer
This timer is dedicated for OS, but could also be used as a standard down counter. It features:
A 24-bit down counter
Autoreload capability
Maskable system interrupt generation whe n th e co un te r re ach e s 0.
Programmable clock source
General purpose timers (TIMx)
There are up to 3 synchronizable standard timers embedded in the STM32F103xx performance line devices. These timers are based on a 16-bit auto -reloa d up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one pulse mode output. This gives up to 12 input captures / outpu t compares / PWMs on the largest packages. They can work together with the Advanced Control Timer via the Timer Link feature for synchronization or event chaining.
The counter can be frozen in debug mode. Any of the standard timers can be used to generate PWM outputs. Each of the timers has
independent DMA request generations.
11/67
Description STM32F103xx
Advanced control timer (TIM1)
The advanced control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for
Input Capture
Output Compare
PWM generation (edge or center-aligne d mo d es )
One Pulse Mode output
Complementary PWM outputs with programmable inserted dead-times.
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode. Many features are shared with those of the standard TIM timers which have the same
architecture. The adv anced control timer can theref ore w ork together with the TIM timers via the Timer Link feature for synchronization or e vent chaining.
I²C bus
Up to two I²C bus interf aces can oper ate in multi-maste r and slav e modes . They can sup port standard and fast modes.
They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SM Bus 2.0/PM Bus.
Universal synchronous/asynchronous receiver transmitter (USART)
One of the USART interfaces is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, IrDA SIR ENDEC support, are ISO 7816 compliant and have LIN Master/Slave capability.
All USART interfaces can be served by the DMA controller.
Serial peripheral interface (SPI)
Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full­duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 8-bit to 16-bit. The hardware CRC generation/ve rification supports basic SD Card/MMC modes.
Both SPIs can be served by the DMA controller.
Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.
12/67
STM32F103xx Description
Universal serial bus (USB)
The STM32F103xx performance line embeds a USB device peripheral compatible with the USB Full-speed 12 Mbs. The USB interface implements a full speed (12 Mbit/s) function interface. It has software configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock source is generated from the internal main PLL.
GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured b y softw are as output ( push-pull or open-dr ain), as input (with or without pull-up or pull-down) or as pe ripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current­capable.
The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.
I/Os on APB2 with up to 18 MHz toggling speed
ADC (analog to digital converter)
Two 12-bit Analog to Digital Converters are embedded into STM32F103xx performance line devices and each ADC shares up to 16 external channels, performing conversions in single­shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
Single shunt
The ADC can be served by the DMA controller. An analog watchdog f eatur e allo ws very precise monitoring of the converted voltage of one ,
some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.
The ev ents gener ated b y the sta ndard timer s (TIMx) and the Adv an ced Contro l timer (TIM 1) can be internally connected to the ADC start trigger, injection trigger, and DMA trigger respectively, to allow the application to synchronize A/D conversion and timers.
Temperature sensor
The temperature sensor has to generate a linear voltage with any variation in temperature. The conversion range is between 2 V < V
< 3.6 V. The tem pe ratur e sen so r is inte rnally
DDA
connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
13/67
Description STM32F103xx

Figure 1. STM32F103xx performance line block diagram

JNTRST
JTDI
JTCK/SWCLK
JTMS/SWDIO
JTDO as AF
NRST
VDDA
VSSA
80AF
PA[15:0]
PB[15:0]
PC[15:0]
PD[15:0]
PE[15:0]
4 Channels 3 compl. Channels
Brk input
MOSI,MISO,
SCK,NSS as AF
RX,TX, CTS, RTS, SmartCard as AF
16AF
V
REF+
V
REF-
JTAG & SWD
CORTEX M3 CPU
F
: 72 MHz
max
NVIC
GP DMA
7 channels
@VDDA
SUPPLY
SUPERVISION
POR / PDR
PVD
EXTI
WAKEUP
GPIOA
GPIOB
GPIOC
GPIOD
GPIOE
TIM1
SPI1
USART1
@VDDA
12bit ADC1
12bit ADC2
Temp sensor
Ibus
=48 / 72 MHz
APB2 : F
max
BusMatrix
Controller
AHB2 APB2
Trace
=48/72 MHz
max
AHB:F
obl
FLASH 128 KB
Interface
flash
SRAM 20 KB
PCLK1 PCLK2
HCLK
FCLK
RC 8 MHz
RC 32 kHz
@VDDA
AHB2 APB1
64 bit
PLL &
CLOCK MANAGT
@VBAT
=24 / 36 MHz
max
APB1 : F
POWER
VOLT. REG.
3.3V TO 1.8V
@VDD
@VDD
XTAL OSC
4-16 MHz
IWDG
Standby
interface
XTAL 32 kHz
Backup
RTC
AWU
Backup interface
TIM2
TIM3
TIM 4
USART2
USART3
SPI2
2x(8x16bit)
I2C1
I2C2
bxCAN
USB 2.0 FS
SRAM 512B
WWDG
reg
V
= 2 to 3.6V
DD
V
SS
OSC_IN OSC_OUT
V
BAT
OSC32_IN OSC32_OUT
ANTI_TAMP
4 Channels
4 Channels
8 Channels
RX,TX, CTS, RTS, SmartCard as AF
RX,TX, CTS, RTS, SmartCard as AF
MOSI,MISO,SCK,NSS as AF
SCL,SDA,SMBAL as AF
SCL,SDA as AF
USBDP/CANTX USBDM/CANRX
pbus
Dbus
System
Rst
Int
IF
IFIF
1. TA = –40 °C to +105 °C (junction temperature up to 125 °C).
2. AF = alternate function on I/O port pin.
14/67
ai14390
STM32F103xx Pin descriptions

3 Pin descriptions

Figure 2. STM32F103xx performance line LQFP100 pinout

VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
PE2 PE3 PE4 PE5 PE6
VBAT
PC13-ANTI_T AMP
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
OSC_IN
OSC_OUT
NRST
PC0 PC1 PC2 PC3
VSSA
VREF-
VREF+
VDDA
PA0-WKUP
PA1 PA2
100999897969594939291908988878685848382818079787776 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26272829303132333435363738394041424344454647484950
PA3
PA4
PA5
PA6
VSS_4
VDD_4
LQFP100
PA7
PB0
PB1
PB2
PE7
PE8
PC4
PC5
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
75
VDD_2
74
VSS_2
73
NC
72
PA 13
71
PA 12
70
PA 11
69
PA 10
68
PA 9
67
PA 8
66
PC9
65
PC8
64
PC7
63
PC6
62
PD15
61
PD14
60
PD13
59
PD12
58
PD11
57
PD10
56
PD9
55
PD8
54
PB15
53
PB14
52
PB13
51
PB12
VDD_1
ai14391
15/67
Pin descriptions STM32F103xx

Figure 3. STM32F103xx performance line LQFP64 pinout

VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
PC13-ANTI_T AMP
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST
PC0 PC1 PC2
PC3 VSSA VDDA
PA0-WKUP
PA1 PA2
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
PA3
VSS_4
VDD_4
LQFP64
PA4
PA5
PA6
PA7
PB0
PB1
PC5
PB2
PB10
PB11
PC4
VDD_2
48
VSS_2
47
PA13
46
PA12
45
PA11
44
PA10
43
PA9
42
PA8
41
PC9
40
PC8
39
PC7
38
PC6
37
PB15
36
PB14
35
PB13
34 33
PB12
VSS_1
VDD_1
ai14392

Figure 4. STM32F103xx performance line LQFP48 pinout

VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PC13-ANTI_TAMP
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PD0 OSC_IN
PD1 OSC_OUT
NRST VSSA VDDA
PA0-WKUP
PA1 PA2
48 47 46 45
1 2 3 4 5 6 7 8 9 10 11
12
13 14 15 16 17 18 19 20 21 22
PA3
44 43 42 41 40 39 38 37
LQFP48
PA4
PA5
PA6
PA7
PB0
PB1
PB2
36
34
33 32 31 30 29 28 27 26 25
24
23
PB10
PB11
VSS_1
VDD_1
PA14
35
VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12
ai14393
16/67
STM32F103xx Pin descriptions

Figure 5. STM32F103xx performance line BGA100 ballout

A
B PC11PD2
C
D PD4
E
F
PC14-
OSC32_IN
PC15-
OSC32_OUT
OSC_IN
OSC_OUT V
PC0
PC13-
ANTI_TAMP
V
BAT
V
SS_5
DD_5
PCD
PC1
PE2
PE4
PE5
PC3
PB9
PB8PE3
PE1
PE0
V
SS_4
V
DD_4
PB7
PB6
PB5
BOOT0
V
SS_3
DD_3
PB4
PD5
PD6
PD7
V
V
DD_2
SS_2
PB3
PD3
V
SS_1
V
DD_1
87654321
PA15
PC12
PD0
PD1PE6NRST
NCV
PA14
PC10
PA9
PA8
PC9
PC8
109
APA13
PA12
PA11
PA10
PC7
PC6
G
H
K
V
V
J
V
SSA
REF–
REF+
DDA
PA0-WKUP
PA1
PA2
PA3
PC4PA4
PC5PA5
PB0PA6
PB1PA7
PB2
PE8
PE10
PE11PE7
PE12
PE13PE9V
PE14
PE15
PB10
PB11
PB15
PB14
PB13
PB12
PD11
PD10
PD9
PD8
PD15
PD14
PD13
PD12
AI16001
17/67
Pin descriptions STM32F103xx
Pins
LQFP48
(2)
Pin name
(1)
Type
LQFP64
LQFP100
BAT
(4)
(4)
(4)
SS_5 DD_5
SV I/O PC13 ANTI_TAMP I/O PC14-OSC32_IN I/O PC15-OSC32_OUT
SV
SV
I / O Level
FT FT FT FT FT
Main function
(after reset)
PE2 TRACECK PE3 TRACED0 PE4 TRACED1 PE5 TRACED2 PE6 TRACED3
SS_5
DD_5
BAT
(3)
Default alternate functions

Table 3. Pin definitions

BGA100
A3 - - 1 PE2/TRACECK I/O B3 - - 2 PE3/TRACED0 I/O C3 - - 3 PE4/TRACED1 I/O D3 - - 4 PE5/TRACED2 I/O E3 - - 5 PE6/TRACED3 I/O B2 1 1 6 V A2 2 2 7 PC13-ANTI_TAMP A1 3 3 8 PC14-OSC32_IN B1 4 4 9 PC15-OSC32_OUT C2 - - 10 V D2 - - 11 V C1 5 5 12 OSC_IN I OSC_IN D1 6 6 13 OSC_OUT O OSC_OUT E1 7 7 14 NRST I/O NRST F1 - 8 15 PC0/ADC_IN10 I/O PC0 ADC_IN10 F2 - 9 16 PC1/ADC_IN11 I/O PC1 ADC_IN11 E2 - 10 17 PC2/ADC_IN12 I/O PC2 ADC_IN12 F3 - 11 18 PC3/ADC_IN13 I/O PC3 ADC_IN13 G1 8 12 19 V H1 - - 20 V
J1 - - 21 V
K1 9 13 22 V
PA0-WKUP/
G2 10 14 23
USART2_CTS/
ADC_IN0/TIM2_CH1_ETR
H2 11 15 24
J2 12 16 25
K2 13 17 26
PA1/USAR T2_RTS/
ADC_IN1/TIM2_CH2
PA2/USART2_TX/
ADC_IN2/ TIM2_CH3
PA3/USART2_RX/
ADC_IN3/TIM2_CH4 E4 - 18 27 V F4 - 19 28 V
SSA
REF-
REF+
DDA
SS_4 DD_4
SV SV SV SV
SSA
REF-
REF+
DDA
WKUP/USART2_CTS
I/O PA0
I/O PA1
I/O PA2
I/O PA3
SV SV
SS_4
DD_4
ADC_IN2/ TIM2_CH3
ADC_IN3/TIM2_CH4
C_IN0/
TIM2_CH1_ETR
USART2_RTS
ADC_IN1/
TIM2_CH2
USART2_TX
USART2_RX
(6)
(6)
(6)
(6)
(6)
(6)
/
/
/
/AD
(6)
(6)
18/67
STM32F103xx Pin descriptions
Table 3. Pin definitions (continued)
Pins
Pin name
LQFP48
BGA100
G3 14 20 29
LQFP64
LQFP100
PA4/SPI1_NSS/
USART2_CK/ADC_IN4
I/O PA4
H3 15 21 30 PA5/SPI1_SCK/ ADC_IN5 I/O PA5 SPI1_SCK
J3 16 22 31
K3 17 23 32
PA6/SPI1_MISO/
ADC_IN6/TIM3_CH1
PA7/SPI1_MOSI/
ADC_IN7/TIM3_CH2
I/O PA6
I/O PA7
(2)
(1)
Type
Main function
(after reset)
(3)
Default alternate functions
I / O Level
(6)
(6)
/ ADC_IN4
(6)
/ ADC_IN5
(6)
(6)
/
/
(6)
/
(6)
SPI1_NSS
USART2_CK
SPI1_MISO
ADC_IN6/TIM3_CH1
SPI1_MOSI
ADC_IN7/TIM3_CH2 G4 - 24 33 PC4/ADC_IN14 I/O PC4 ADC_IN14 H4 - 25 34 PC5/ADC_IN15 I/O PC5 ADC_IN15
J4 18 26 35 PB0/ADC_IN8/ TIM3_CH3 I/O PB0 ADC_IN8/TIM3_CH3
K4 19 27 36 PB1/ADC_IN9/ TIM3_CH4 I/O PB1 ADC_IN9/TIM3_CH4
(6) (6)
G5 20 28 37 PB2 / BOOT1 I/O FT PB2/BOOT1 H5 - - 38 PE7 I/O FT PE7
J5 - - 39 PE8 I/O FT PE8 K5 - - 40 PE9 I/O FT PE9 G6 - - 41 PE10 I/O FT PE10 H6 - - 42 PE11 I/O FT PE11
J6 - - 43 PE12 I/O FT PE12 K6 - - 44 PE13 I/O FT PE13 G7 - - 45 PE14 I/O FT PE14 H7 - - 46 PE15 I/O FT PE15
J7 21 29 47
K7 22 30 48
PB10/I2C2_SCL/
USART3_TX
PB11/I2C2_SDA /
USART3_RX E7 23 31 49 V F7 24 32 50 V
PB12/SPI2_NSS /
K8 25 33 51
I2C2_SMBAl/ USART3_CK /
TIM1_BKIN
PB13/SPI2_SCK /
J8 26 34 52
USART3_CTS /
TIM1_CH1N
PB14/SPI2_MISO /
H8 27 35 53
USART3_RTS /
TIM1_CH2N
SS_1 DD_1
I/O FT PB10 I2C2_SCL/USART3_TX
I/O FT PB11
SV SV
SS_1
DD_1
I2C2_SDA/
USART3_RX
SPI2_NSS
I/O FT PB12
/I2C2_SMBAl
USART3_CK
TIM1_BKIN SPI2_SCK
I/O FT PB13
USART3_CTS
TIM1_CH1N
SPI2_MISO
I/O FT PB14
/USART3_RTS
TIM1_CH2N
(5)(6)
(5)
(5)
(5)(6)
(6)
(5)
/
(5)(6)
(6)
(5)
(5)(6) (6)
(5)(6)
/
/
/
19/67
Pin descriptions STM32F103xx
Table 3. Pin definitions (continued)
Pins
LQFP48
BGA100
LQFP64
G8 28 36 54
Pin name
LQFP100
PB15/SPI2_MOSI
TIM1_CH3N
I/O FT PB15
(2)
(1)
Type
Main function
(after reset)
(3)
Default alternate functions
I / O Level
SPI2_MOSI TIM1_CH3N
K9 - - 55 PD8 I/O FT PD8
J9 - - 56 PD9 I/O FT PD9 H9 - - 57 PD10 I/O FT PD10 G9 - - 58 PD11 I/O FT PD11
K10 - - 59 PD12 I/O FT PD12
J10 - - 60 PD13 I/O FT PD13 H10 - - 61 PD14 I/O FT PD14 G10 - - 62 PD15 I/O FT PD15 F10 - 37 63 PC6 I/O FT PC6 E10 38 64 PC7 I/O FT PC7
F9 39 65 PC8 I/O FT PC8 E9 - 40 66 PC9 I/O FT PC9
D9 29 41 67
C9 30 42 68
D10314369
C10324470
B10334571
PA8/USART1_CK/
TIM1_CH1/MCO
PA9/USART1_TX/
TIM1_CH2
PA10/USART1_RX/
TIM1_CH3
PA11 / USART1_CTS/
CANRX / USBDM/
TIM1_CH4
PA12 / USART1_RTS/
CANTX / USBDP/
TIM1_ETR
I/O FT PA8
I/O FT PA9
I/O FT PA10
I/O FT PA11
I/O FT PA12
USART1_CK/
TIM1_CH1
USART1_TX
TIM1_CH2
USART1_RX
TIM1_CH3
USART1_CTS/
CANRX
TIM1_CH4
USART1_RTS/
CANTX
TIM1_ETR
(6)
(6)
A10344672 PA13/JTMS/SWDIO I/O FT JTMS/SWDIO PA13
F8 - - 73 Not connected E6 35 47 74 V F6 36 48 75 V
SS_2 DD_2
SV SV
SS_2
DD_2
A9 37 49 76 PA14/JTCK/SWCLK I/O FT JTCK/SWCLK PA14 A8 38 50 77 PA15/JTDI I/O FT JTDI PA15 B9 - 51 78 PC10 I/O FT PC10 B8 - 52 79 PC11 I/O FT PC11 C8 - 53 80 PC12 I/O FT PC12
(5)
/
(6)
(6)
/MCO
(6)
/
(6)
(6)
/
(6)
(6)
/
/ USBDM
(6)
/
/ USBDP
20/67
STM32F103xx Pin descriptions
Table 3. Pin definitions (continued)
Pins
Pin name
LQFP48
BGA100
LQFP64
LQFP100
D8 5 5 81 PD0 I/O FT OSC_IN E8 6 6 82 PD1 I/O FT OSC_OUT
(2)
(1)
Type
Main function
(after reset)
(3)
Default alternate functions
I / O Level
(7)
(7)
B7 54 83 PD2/TIM3_ETR I/O FT PD2 TIM3_ETR C7 - - 84 PD3 I/O FT PD3 D7 - - 85 PD4 I/O FT PD4 B6 - - 86 PD5 I/O FT PD5 C6 - - 87 PD6 I/O FT PD6 D6 - - 88 PD7 I/O FT PD7 A7 39 55 89 PB3/JTDO/TRACESWO I/O FT JTDO PB3/TRACESWO A6 40 56 90 PB4/JNTRST I/O FT JNTRST PB4 C5 41 57 91 PB5/I2C1_SMBAl I/O PB5 I2C1_SMBAl
B5 42 58 92 PB6/I2C1_SCL/ TIM4_CH1 I/O FT PB6
A5 43 59 93 PB7/I2C1_SDA/ TIM4_CH2 I/O FT PB7
I2C1_SCL
TIM4_CH1
I2C1_SDA
TIM4_CH2
(6)
(5)(6)
(6)
(5) (6)
/
/
D5 44 60 94 BOOT0 I BOOT0 B4 45 61 95 PB8/TIM4_CH3 I/O FT PB8 TIM4_CH3 A4 46 62 96 PB9/TIM4_CH4 I/O FT PB9 TIM4_CH4 D4 - - 97 PE0/TIM4_ETR I/O FT PE0 TIM4_ETR
(5) (6) (5) (6)
(5)
C4 - - 98 PE1 I/O FT PE1 E5 47 63 99 V F5 48 64 100 V
1. I = input, O = output, S = supply, HiZ = high impedance.
2. FT= 5 V tolerant.
3. Function availability depends on the chosen device. Refer to Table 2 on page 7.
4. PC13, PC14 and PC15 are supplied through the power switch, and so their use in ouptut mode is limited: they can be used only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time.
5. Available only on devices with a Flash memory density equal or higher than 64 Kbytes.
6. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, UM0306, available from the STMicroelectronics website: www.st.com.
7. For the LQFP48 and LQFP64 packages, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins.
SS_3 DD_3
SV SV
SS_3
DD_3
21/67
Memory mapping STM32F103xx

4 Memory mapping

The memory map is shown in Figure 6.

Figure 6. Memory map

APB memory space
0xFFFF FFFF
0xFFFF F000
7
0xE010 0000
0xE000 0000
6
0xC000 0000
5
0xA000 0000
4
0x8000 0000
3
0x6000 0000
2
0x4000 0000
1
0x2000 0000
0
0x0000 0000
Cortex-M3 Internal
Peripherals
PERIPHERALS
SRAM
CODE
Reserved
0x1FFF FFFF
0x1FFF F9FF
0x1FFF F800
0x1FFF F000
0x0801 FFFF
0x0800 0000
reserved
OPTION BYTES
SYSTEM MEMORY
reserved
FLASH
0xFFFF FFFF
0xE010 0000
0x6000 0000
0x4002 3400
0x4002 3000
0x4002 2400
0x4002 2000
0x4002 1400
0x4002 1000
0x4002 0400
0x4002 0000
0x4001 3C00
0x4001 3800
0x4001 3400
0x4001 3000
0x4001 2C00
0x4001 2800
0x4001 2400
0x4001 1C00
0x4001 1800
0x4001 1400
0x4001 1000
0x4001 0C00
0x4001 0800
0x4001 0400
0x4001 0000
0x4000 7400
0x4000 7000
0x4000 6C00
0x4000 6800
0x4000 6400
0x4000 6000
0x4000 5C00
0x4000 5800
0x4000 5400
0x4000 4C00
0x4000 4800
0x4000 4400
0x4000 3C00
0x4000 3800
0x4000 3400
0x4000 3000
0x4000 2C00
0x4000 2800
0x4000 0C00
0x4000 0800
0x4000 0400
0x4000 0000
reserved reserved
reserved reserved reserved
Flash Interface
reserved
RCC
reserved
DMA
reserved
USART1 reserved
SPI1 TIM1
ADC2 ADC1
reserved
Port E Port D Port C
Port B Port A
EXTI AFIO
reserved
PWR BKP
reserved
bxCAN
shared 512 byte
USB/CAN SRAM
USB Registers
I2C2 I2C1
reserved
USART3 USART2
reserved
SPI2
reserved
IWDG
WWDG
RTC
reserved
TIM4
TIM3 TIM2
ai14394
4 Kbits
1 Kbit 3 Kbits 1 Kbit
3 Kbits 1 Kbit
3 Kbits
1 Kbit
1 Kbit
1 Kbit
1 Kbit
1 Kbit 1 Kbit 1 Kbit 1 Kbit
2 Kbits
1 Kbit 1 Kbit 1 Kbit 1 Kbit
1 Kbit
1 Kbit
1 Kbit
35 Kbits
1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit 1 Kbit
1 Kbit
2 Kbits
1 Kbit
1 Kbit
2 Kbits
1 Kbit
1 Kbit
1 Kbit
1 Kbit
1 Kbit
7 Kbits
1 Kbit
1 Kbit
1 Kbit
22/67
STM32F103xx Electrical characteristics

5 Electrical characteristics

5.1 Test conditions

Unless otherwise specified, all voltages are referred to VSS.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature , supply v olta ge and frequ encies b y tests in production on 100% of the devices with an ambient temperature at T selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum v alu es ref er to sample tests an d represent th e mean value plus or minus three times the standard deviation (mean±3Σ).

5.1.2 Typical values

Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 2V≤V tested.
3.6 V voltage range). They are given only as design guidelines and are not
DD
=25°C and TA=TAmax (given by the
A
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 7.

5.1.5 Pin input voltage

The input voltage measurement on a pi n of the device is described in Figure 8.
(mean±2Σ).
23/67
Electrical characteristics STM32F103xx
Figure 7. Pin loading conditions Figure 8. Pin input voltage
STM32F103xx pin
C = 50 pF

5.1.6 Power supply scheme

Figure 9. Power supply scheme
1.8-3.6 V
V
DD
5 × 100 nF + 1 × 10 µF
V
DD
V
REF
10 nF
+ 1 µF
10 nF
+ 1 µF
ai14141
V
BAT
GP I/Os
V
DD
1/2/3/4/5
V
SS
1/2/3/4/5
V
DDA
V
REF+
V
REF-
V
SSA
3.3 V
3.3V
Power switch
OUT
IN
Regulator
ADC
Backup circuitry
(OSC32K,RTC,
Wake-up logic
Backup registers)
IO
Logic
Level shifter
Analog:
RCs, PLL,
...
V
IN
STM32F103xx pin
ai14142
Kernel logic
(CPU, Digital
& Memories)
ai14125
24/67
STM32F103xx Electrical characteristics

5.1.7 Current consumption measurement

Figure 10. Current consumption measurement scheme
IDD_V
BAT
V
BAT
I
DD
V
DD
V
DDA
ai14126
25/67
Electrical characteristics STM32F103xx

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 4: Voltage characteristics,
Table 5: Current characteristics, and T abl e 6: Thermal characteristics may cause permanent
damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 4. Voltage characteri stics

Symbol Ratings Min Max Unit
VDD–V
External 3.3 V supply voltage (including V
SS
and VDD)
(1)
Input voltage on five volt tolerant pin
V
IN
|V
DDx
VSS| Variations between all the different ground pins 50 50
|V
SSX
V
ESD(HBM)
1. All 3.3 V power (VDD, V supply.
2. I
INJ(PIN)
maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the I induced by V

Table 5. Current characteristics

Input voltage on any other pin
| Variations between different power pins 50 50
Electrostatic discharge voltage (human body model)
) and ground (VSS, V
DDA
must never be exceeded (see Table 5: Current characteristics). This is implicitly insured if VIN
value. A positive injection is induced by VIN>VDD while a negative injection is
INJ(PIN)
< VSS.
IN
(2)
) pins must always be connected to the external 3.3 V
SSA
(2)
DDA
–0.3 4.0
V
0.3 +5.5
SS
VSS − 0.3 VDD+0.3
see Section 5.3.11:
Absolute maximum ratings
(electrical sensitivity)
Symbol Ratings Max. Unit
I
VDD
I
VSS
Total current into V
DD
Total current ou t of V
power lines (source)
ground lines (sink)
SS
(1) (1)
150 150
Output current sunk by any I/O and control pin 25
I
IO
Output current source by any I/Os and control pin − 25 Injected current on NRST pin ± 5
(2)(3)
I
INJ(PIN)
ΣI
INJ(PIN)
1. All 3.3 V power (VDD, V supply.
2. I
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC
4. When several inputs are submitted to a current injection, the maximum ΣI
must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
INJ(PIN)
cannot be respected, the injection current must be limited externally to the I injection is induced by V
characteristics.
positive and negative injected currents (instantaneous values). These results are based on characterization with ΣI
Injected current on HSE OSC_IN and LSE OSC_IN pins ± 5 Injected current on any other pin
(2)
Total injected current (sum of all I/O and control pins)
) and ground (VSS, V
DDA
> VDD while a negative injection is induced by V
IN
maximum current injection on four I/O port pins of the device.
INJ(PIN)
(4)
(4)
) pins must always be connected to the external 3.3 V
SSA
INJ(PIN)
< VSS.
IN
INJ(PIN)
± 5
± 25
value. A positive
is the absolute sum of the
V
mV
mA
26/67
STM32F103xx Electrical characteristics

Table 6. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature (see Thermal characteristics)

5.3 Operating conditions

5.3.1 General operating conditions

Table 7. General operating conditions
Symbol Parameter Conditions Min Max Unit
f
HCLK
PCLK1
f
PCLK2
V
DD
V
BAT
T
A

5.3.2 Operating conditions at power-up / power-down

The parameters given in Table 8 are derived from tests performed under the ambient temperature condition summarized in Table 7.
Internal AHB clock frequency 0 72 Internal APB1 clock frequency 0 36 Internal APB2 clock frequency 0 72
Standard operating voltage 2 3.6 V
Backup operating voltage 1.8 3.6 V
Ambient temperature range −40 105 °C
MHzf
Table 8. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Typ Max Unit
t
VDD
VDD rise/fall time rate
20 µs/V
20 ms/V
27/67
Electrical characteristics STM32F103xx

5.3.3 Embedded reset and power control block characteristics

The parameters given in Table 9 are derived from tests performed under ambient temperature and V
Table 9. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
supply voltage conditions summarized in Table 7.
DD
PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V PLS[2:0]=000 (falling edge) 2 2.08 2.16 V PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V
V
PVD
V
PVDhyst
V
POR/PDR
V
PDRhyst
T
RSTTEMPO
Programmable voltage detector level selection
PVD hysteresis 100 mV Power on/power down reset
threshold PDR hysteresis 40 mV
Reset temporization 1 2.5 4.5 mS

5.3.4 Embedded reference voltage

The parameters given in Table 10 are derived from tests performed under ambient temperature and V
Table 10. Embedded internal reference voltage
Symbol Parameter Conditions Min
supply voltage conditions summarized in Table 7.
DD
PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V PLS[2:0]=111 (rising edge) 2.76 2.88 3 V PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V
Falling edge 1.8 1.88 1.96 V Rising edge 1.84 1.92 2.0 V
Max Unit
Typ
V
REFINT
Internal reference voltage
28/67
45°C < TA < +105°C 1.16 1.20 1.26 V
45°C < T
< +85°C 1.16 1 .20 1.24 V
A
STM32F103xx Electrical characteristics

5.3.5 Supply current characteristics

The current consumption is measured as described in Figure 10: Current consumption
measurement scheme.
Maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at V
All peripherals are disabled except if it is explicitly mentioned
The Flash access time is adjusted to f
frequency (0 wait state from 0 to 24 MHz, 1
HCLK
wait state from 24 to 48 MHz and 2 wait states above)
The parameters given in Table 11 are derived from tests performed under ambient temperature and V
Table 11. Maximum current consumption in Run and Sleep modes
Symbol Parameter Conditions F
supply voltage conditions summarized in Table 7.
DD
or VSS (no load)
DD
(1)
(2)
HCLK
Typ
=
T
A
85 °C
Max
(3)
TA=
105 °C
Unit
External clock with PLL, code running from Flash, all peripherals enabled (see RCC register description):
= f
f
PCLK1
HCLK
/2, f
PCLK2
= f
HCLK
External clock, PLL stopped, code running from Flash, all peripherals enabled (see RCC register description):
Supply
current in
Run mode
f
= f
PCLK1
HCLK
/2, f
PCLK2
= f
HCLK
External clock with PLL, code running from RAM, all peripherals enabled (see RCC register description):
I
DD
PCLK1
HCLK
/2, f
PCLK2
= f
HCLK
f
= f
External clock, PLL stopped, code running from RAM, all peripherals enabled (see RCC register description):
= f
f
PCLK1
HCLK
/2, f
PCLK2
= f
HCLK
External clock with PLL, code running from RAM or Flash, all peripherals enabled (see RCC register description):
Supply
current in
Sleep mode
f
= f
PCLK1
HCLK
/2, f
PCLK2
= f
HCLK
External clock, PLL stopped, code running from RAM or Flash, all peripherals enabled (see RCC register description):
= f
f
PCLK1
1. TBD stands for to be determined.
2. Typical values are measured at T
3. Data based on characterization results, tested in production at V
/2, f
HCLK
= 25 °C, and V
A
PCLK2
= f
DD
HCLK
= 3.3 V
Dmax
, f
72 MHz 36 TBD TBD 48 MHz 30 TBD TBD 36 MHz 22 TBD TBD 24 MHz 21 TBD TBD
8 MHz 10 TBD TBD
72 MHz 32 45 47 48 MHz 22 31 33 36 MHz 13 18 20 24 MHz 11 15 17
8 MHz 4.5 TBD TBD
72 MHz 22 35 37 48 MHz 14 23 25 36 MHz 13 22 24 24 MHz 10 17 19
8 MHz 3.5 TBD TBD
HCLK
max. T
and code executed from RAM.
Amax,
mA
mA
29/67
Electrical characteristics STM32F103xx
Table 12. Maximum current consumption in Stop and Standby modes
Symbol Parameter Conditions
(2)
Typ
V
/ V
BAT
VDD/V
= 3.3 V
DD
= 2.4 V
Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed
TBD 24 TBD TBD
oscillator OFF (no independent
Supply current
in Stop mode
I
DD
watchdog) Regulator in Low Power mode,
Low-speed and high-speed internal RC oscillators and high-speed
TBD
(4)
oscillator OFF (no independent watchdog)
Supply current
in Standby
(5)
mode
I
DD_VBAT
1. TBD stands for to be determined.
2. Typical values are measured at T
3. Data based on characterization results, tested in production at V
4. Values expected for next silicon revision.
5. To have the Standby consumption with RTC ON, add I VDD is present the Backup Domain is powered by VDD supply).
Backup domain
supply current
Low-speed internal RC oscillator and independent watchdog OFF, low-
TBD
speed oscillator and RTC OFF
Low-speed oscillator and RTC ON 1
= 25 °C, V
A
= 3.3 V, unless otherwise specified.
DD
, f
DD max
DD_VBAT
(Low-speed oscillator and RTC ON) to IDD Standby (when
HCLK
(4)
(4)
max. and TA max (for other temperature.
14
2
1.4
(1)
(4)
(4)
(4)
BAT
TA =
85 °C
TBD
TBD
TBD
Max
(4)
(4)
(4)
(3)
TA =
105 °C
(4)
TBD
(4)
TBD
(4)
TBD
Unit
µA
30/67
STM32F103xx Electrical characteristics
Typical current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at V
All peripherals are disabled except if it is explicitly mentioned.
The Flash access time is adjusted to f
frequency (0 wait state from 0 to 24 MHz, 1
HCLK
wait state from 24 to 48 MHZ and 2 wait states above).
Ambient temperature and V
Table 13. Typical current consumption in Run and Sle ep modes
Symbol Parameter Conditions f
Oscillator running at 8 MHz with PLL, code
running from Flash, all peripheral disabled
(see RCC register description): f
Running on HSI clock, code running from
Flash, all peripheral disabled (see RCC
Supply
current in
Run mode
register description): f f
PCLK2=fHCLK.
Running on HSI clock, code running from
I
DD
RAM, all peripheral disabled (see RCC
register description): f f
PCLK2=fHCLK.
Oscillator running at 8MHz with PLL, code running from Flash, all peripheral disabled
(see RCC register description): f
Supply
current in
Sleep mode
Running on HSI clock, code running from
Flash, all peripheral disabled (see RCC
register description): f f
PCLK2=fHCLK.
supply voltage conditions summarized in Table 7.
DD
/2, f
f
HCLK
PCLK2=fHCLK
PCLK1
= f
AHB pre-scaler used to
reduce the frequency
= f
PCLK1
AHB pre-scaler used to
reduce the frequency
f
/2, f
HCLK
PCLK2=fHCLK
PCLK1
= f
AHB pre-scaler used to
reduce the frequency
or VSS (no load).
DD
=
PCLK1
/2,
HCLK
/2,
HCLK
=
PCLK1
/2,
HCLK
(1)
HCLK
Typ
72 MHz 21 48 MHz 18 36 MHz TBD 24 MHz 13 16 MHz TBD
8 MHz 7.8 4 MHz 7 2 MHz 6.3
1 MHz 6.2 500 kHz 6.1 125 kHz 5.95
8 MHz 2.3
4 MHz 1.6
2 MHz 1.2
1 MHz 1 500 kHz 0.88 125 kHz 0.82
72 MHz 6 48 MHz TBD 36 MHz TBD 24 MHz TBD 16 MHz 1
8 MHz TBD
4 MHz TBD
2 MHz TBD
1 MHz TBD 500 kHz TBD
(2)
Unit
mA
mA
mA
mA
mA
1. TBD stands for to be determined.
2. Typical values are measures at TA = 25 °C, VDD = 3.3 V.
31/67
Electrical characteristics STM32F103xx
Table 14. Typical current consumpt ion in Stop and Standby modes
Symbol Parameter Conditions
Regulator in Run mode, Low-speed and high-speed internal RC oscillators OFF High-speed oscillator OFF (no
Supply current in
Stop mode
independent watchdog) Regulator in Low Power mode,
Low-speed and high-speed internal RC oscillators OFF, High-speed oscillator OFF (no
I
DD
independent watchdog) Low-speed internal RC oscillator and
independent watchdog OFF
Supply current in Standby mode
Low-speed internal RC oscillator and
(4)
independent watchdog ON
Low-speed internal RC oscillator ON, independent watchdog OFF
Low-speed oscillator and RTC ON
I
DD_VBAT
Backup domain
supply current
Low-speed oscillator OFF, RTC ON
1. TBD stands for to be determined.
2. Typical values are measures at T
3. Values expected for next silicon revision.
4. To obtain Standby consumption with RTC ON, add I Standby.
= 25 °C, V
A
DD
= 3.3 V.
DD_VBAT
(Low-speed oscillator and RTC ON) to IDD
V
DD
3.3 V 24
2.4 V TBD
3.3 V 14
2.4 V TBD
3.3 V 2
2.4 V TBD
3.3 V 3.1
2.4 V TBD
3.3 V 2.9
2.4 V TBD
3.3 V 1.4
2.4 V 1
3.3 V 0.5
2.4 V TBD
(1)
Typ
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(2)
(3)
(3)
(3)
(3)
(3)
Unit
µA
µA
µA
32/67
STM32F103xx Electrical characteristics

5.3.6 External clock source characteristics

High-speed external user clock
The characteristics given in Table 15 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 7.
Table 15. High-speed external (HSE) user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
HSE_ext
V
HSEH
V
HSEL
t
w(HSE)
t
w(HSE)
t
r(HSE)
t
f(HSE)
1. Value based on design simulation and/or technology characteristics. It is not tested in production.
User external clock source frequency
(1)
OSC_IN input pin high level voltage
OSC_IN input pin low level voltage
OSC_IN high or low time
OSC_IN rise or fall time
OSC_IN Input leakage
I
L
current
(1)
(1)
V
SS≤VIN≤VDD
0.7V
V
16
SS
DD
825MHz
V
DD
0.3V
DD
5
±1 µA
Low-speed external user clock
The characteristics given in Table 16 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 7.
Table 16. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
f
LSE_ext
V
LSEH
V
LSEL
t
w(LSE)
t
w(LSE)
t
r(LSE)
t
f(LSE)
1. Value based on design simulation and/or technology characteristics. It is not tested in production.
User External clock source frequency
(1)
OSC32_IN input pin high level voltage
OSC32_IN input pin low level voltage
OSC32_IN high or low time
OSC32_IN rise or fall time
OSC32_IN Input leakage
I
L
current
(1)
(1)
V
SS≤VIN≤VDD
0.7V
V
450
32.768 1000 kHz
DD
SS
V
DD
0.3V
DD
5
±1 µA
V
ns
V
ns
33/67
Electrical characteristics STM32F103xx
Figure 11. High-speed external clock source AC timing diagram
V
HSEH
V
HSEL
90% 10%
t
r(HSE)
EXTERNAL CLOCK SOURC E
T
f
HSE_ext
HSE
t
f(HSE)
OSC _IN
t
W(HSE)
I
L STM32F103xx
t
W(HSE)
ai14143
t
Figure 12. Low-speed external clock source AC timing diagram
V
LSEH
V
LSEL
90% 10%
t
r(LSE)
EXTERNAL CLOCK SOURC E
f
LSE_ext
T
LSE
t
f(LSE)
OSC32_IN
t
W(LSE)
I
L
STM32F103xx
t
W(LSE)
ai14144b
t
34/67
STM32F103xx Electrical characteristics
High-speed external clock
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the inf ormation given in this paragraph are based on characterization results obtained with typical external components specified in Table 17. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characte ristics (frequency, package, accuracy).
Table 17. HSE 4-16 MHz oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1)
f
OSC_IN
R
C
C
L2
Oscillator frequency 4 8 16 MHz Feedback resistor 200 k
F
Recommended load capacitance
L1
versus equivalent serial
(2)
resistance of the crystal (R
(3)
)
S
RS = 30 30 pF
VDD= 3.3 V
i
HSE driving current
2
VIN=V
with 30 pF
SS
1mA
load
g
t
SU(HSE)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. For CL1 and C designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included when sizing CL1 and C capacitance).
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.
4. t
SU(HSE)
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Oscillator Transconductance Star tup 25 mA/V
m
(4)
startup time VSS is stabilized 2 ms
it is recommended to use high-quality ceramic capacitors in the 5 pF to 25pF range (typ.),
L2
and C
L1
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
are usually the same size. The crystal manufacturer typically specifies a load
L2,
(10 pF can be used as a rough estimate of the combined pin and board
L2
Figure 13. Typical application with a 8-MHz crystal
1. R
Resonator with integrated capacitors
C
L1
OSC_IN
8 MHz resonator
OSC_OUT
(1)
R
C
L2
value depends on the crystal characteristics. Typical value is in the range of 5 to 6RS.
EXT
EXT
R
F
Bias
controlled
gain
f
STM32F103xx
35/67
HSE
ai14145
Electrical characteristics STM32F103xx
Low-speed external clock
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the inf ormation given in this paragraph are based on characterization results obtained with typical external components specified in Table 18. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characte ristics (frequency, package, accuracy).
Table 18. LSE oscillator characteristics (f
Symbol Parameter Conditions Min Typ Max Unit
= 32.768 kHz)
LSE
R
C
L1
C
L2
I
2
g
m
t
SU(LSE)
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
2. t
SU(LSE)
kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Feedback resistor 5 M
F
Recommended load capacitance versus equivalent serial resistance of the crystal (R
LSE driving current
(1)
)
S
RS = 30 k 15 pF
= 3.3 V
V
DD
= V
V
IN
SS
Oscillator Transconductance 5 µA/V
(2)
startup time VSS is stabilized 3 s
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768
1.4 µA
Figure 14. Typical application with a 32.768 kHz crystal
Resonator with integrated capacitors
C
L1
32.768 kHz resonator
C
L2
OSC32_IN
OSC32_OUT
R
F
Bias
controlled
gain
f
LSE
STM32F103xx
ai14146
36/67
STM32F103xx Electrical characteristics

5.3.7 Internal clock source characteristics

The parameters given in Table 19 are derived from tests performed under ambient temperature and V
High-speed internal (HSI) RC oscillator
Table 19. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max
supply voltage conditions summarized in Table 7.
DD
(1)(2)
(3)
Unit
f
ACC
t
su(HSI)
I
DD(HSI)
1. V
2. TBD stands for to be determined.
3. Values based on device characterization, not tested in production.
Frequency 8 MHz
HSI
T
= –40 to 105 °C TBD ±3TBD%
Accuracy of HSI oscillator
HSI
A
= 25°C TBD ±1TBD%
at T
A
HSI oscillator start up time 1 2 µs HSI oscillator power
consumption
= 3.3 V, TA = −40 t o 105 °C unless otherwise specified.
DD
LSI Low Speed Internal RC Oscillator
Table 20. LSI oscillator characteristics
Symbol Parameter Conditions Min Typ
f
t
su(LSI)
I
DD(LSI)
1. V
2. Value based on device characterization, not tested in production.
Frequency 30 60 kHz
LSI
LSI oscillator start up time 85 µs LSI oscillator power
consumption
= 3 V, TA = −40 to 105 °C unless otherwise specified.
DD
(1)
80 100 µA
(2)
Max
Unit
0.65 1.2 µA
37/67
Electrical characteristics STM32F103xx
Wakeup time from low power mode
The wakeup times giv en in Table 21 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:
Stop or Standby mode: the clock source is the RC oscillator
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and V voltage conditions summarized in Table 7.
Table 21. Low-power mode wakeup timings
Symbol Parameter Conditions Typ Max Unit
(2)
t
WUSLEEP
Wakeup from Sleep mode Wakeup on HSI RC clock 0.75 TBD µs Wakeup from Stop mode
(regulator in run mode)
t
WUSTOP
(2)
Wakeup from Stop mode (regulator in low power mode)
(3)
t
WUSTDBY
1. TBD stands for to be determined.
2. The wakeup time from Sleep and Stop mode are measured from the wakeup event to the point in which the user application code reads the first instruction.
3. The wakeup time from Standby mode is measured from the wakeup event to the point in which the device exits from reset.
Wakeup from Standby mode

5.3.8 PLL characteristics

The parameters given in Table 22 are derived from tests performed under ambient temperature and V
Table 22. PLL characteristics
supply voltage conditions summarized in Table 7.
DD
(1)
supply
DD
(1)
HSI RC wakeup tim e = 2 µs 4 TBD
HSI RC wakeup tim e = 2 µs, Regulator wakeup from LP
7TBD
mode time = 5 µs HSI RC wakeup tim e = 2 µs,
Regulator wakeup from power
40 TBD µs
down time = 38 µs
µs
Symbol Parameter Test Conditions
PLL input clock 8.0 MHz
f
PLL_IN
f
PLL_OUT
f
VCO
t
LOCK
t
JITTER
1. TBD stands for to be determined.
2. Data based on device characterization, not tested in production.
PLL input clock duty cycle 40 60 % PLL multiplier output clock 16 72 MHz
VCO frequency range
When PLL operates
(locked) PLL lock time 200 µs Cycle to cycle jitter (+/-3Σ
peak to peak)
V
38/67
Value
Min Typ Max
(2)
32 144 MHz
is stable TBD TBD %
DD
Unit
STM32F103xx Electrical characteristics

5.3.9 Memory characteristics

Flash memory
The characteristics are given at TA = −40 to 105 °C unless otherwise specified.
Table 23. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max
(1)
Unit
t
prog
t
ERASE
t
ME
Word programming time TA = −40 to +105 °C 20 40 µs
Page (1kB) erase time TA = −40 to +105 °C 20 40 ms
Mass erase time TA = −40 to +105 °C 20 40 ms
Read mode
f
= 72 MHz with
HCLK
2 wait states,
= 3.3 V
V
DD
I
DD
Supply current
Write / Erase modes
= 72 MHz,
f
HCLK
VDD = 3.3 V
Pow er-down mode /
HALT,
= 3.0 to 3.6 V
V
DD
1. Values based on characterization and not tested in production.
Table 24. Flash memory endurance and data retention
Symbol Parameter Conditions
N
t
1. Values based on characterization not tested in production.
Endurance
END
Data retention TA = 85 °C 30 Years
RET
Min
(1)
1
20 mA
5mA
50 µA
Value
Unit
Typ Max
10 kcycles
39/67
Electrical characteristics STM32F103xx

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is e xec uted on the de vice (toggling 2 LEDs through I /O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all de vice pins until
a functional disturbance occurs. This test is complian t with the IEC 1000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is
SS
compliant with the IEC 1000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 25. They are based on the EMS levels and classes
defined in application note AN1709.
Table 25. EMS characteristics
(1)
DD
and
Symbol Parameter Conditions
= 3.3 V, TA = +25 °C,
V
V
FESD
V
EFTB
1. TBD stands for to be determined.
V oltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be applied through 100pF on VDD and V to induce a functional disturbance
SS
pins
DD
f
=48 MHz
HCLK
conforms to IEC 1000-4-2 VDD = 3.3 V, TA = +25 °C,
f
= 48 MHz
HCLK
conforms to IEC 1000-4-4
Level/
Class
TBD
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU sof tware. It should be noted that good EMC performance is highly dependent on the user application and the software in particular .
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
40/67
STM32F103xx Electrical characteristics
Prequalification trials
Most of the common failures (u nexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, ov er the r ange of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverab le errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE J 1752/3 standard which specifies the test board and the pin loading.
Table 26. EMI characteristics
Symbol Parameter Conditions
= 3.3 V, TA = 2 5 °C,
V
DD
S
EMI
Peak level
LQFP100 package compliant with SAE J 1752/3
Monitored
Frequency Band
0.1 to 30 MHz 12 12
130 MHz to 1GHz 23 29
SAE EMI Level 4 4 -
Max vs. [f
8/48 MHz 8/72 MHz
HSE/fHCLK
]
Unit
dBµV30 to 130 MHz 22 19
41/67
Electrical characteristics STM32F103xx

5.3.11 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size is either 3 parts (cumulative mode) or 3 parts × (n + 1) supply pins (non-cumulative mode). The human body model (HBM) can be simulated. The tests are compliant with JESD22­A114A standard. For more details, refer to the application note AN1181.
Table 27. ESD absolute maximum ratings
Symbol Ratings Conditions Maximum value
(1)
(2)
Unit
V
ESD(HBM)
V
ESD(CDM)
1. TBD stands for to be determined.
2. Values based on characterization results, not tested in production.
Electrostatic discharge voltage (human body model)
Electrostatic discharge voltage (charge device model)
= +25 °C
T
A
2000
TBD
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 28. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class T
= +105 °C II level A
A
V
42/67
STM32F103xx Electrical characteristics

5.3.12 I/O port pin characteristics

General input/output characteristics
Unless otherwise specified, the parameters given in Table 29 are derived from tests performed under ambient temperature and V
Table 7.
All unused pins must be held at a fixed voltage, by using the I/O output mode, an external pull-up or pull-down resistor (see Figure 15).
Table 29. I/O static characteristics
Symbol Parameter Conditions Min Typ
V
Input low level voltage
IL
IO TC input high level
(2)
voltage
V
IH
IO FT high level voltage Input low level voltage
V
IL
Input high level voltage
V
IH
IO TC Schmitt trigger voltage hysteresis
V
hys
IO TC Schmitt trigger voltage hysteresis
Input leakage current
I
lkg
(3)
(3)
(2)
(2)
(2)
(2)
(5)
(1)
V
Standard I/Os
5 V tolerant I/Os
supply voltage conditions summarized in
DD
–0.5 0.8
TTL ports
2V
25.5V
–0.5 0.35 V
CMOS ports
0.65 V
DD
200 mV
DD
(4)
SS≤VIN≤VDD
= 5 V
V
IN
5% V
Max Unit
+0.5
DD
DD
VDD+0.5
±1
3
V
V
mV
µA
R
R
1. V
2. Values based on characterization results, and not tested in production.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4. With a minimum of 100 mV.
5. Leakage could be higher than max. if negative current is injected on adjacent pins.
6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable
Weak pull-up equivalent
PU
PD
C
IO
= 3.3 V, TA = −40 t o 105 °C unless otherwise specified.
DD
PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).
(6)
resistor Weak pull-down equivalent
(6)
resistor I/O pin capacitance 5 pF
V
= V
IN
SS
V
= V
IN
DD
30 40 50 k
30 40 50 k
43/67
Electrical characteristics STM32F103xx
Figure 15. Unused I/O pin connection
V
DD
10 k
10 k
STM32F103xx
UNUSED I/O PORT
STM32F103xx
UNUSED I/O PORT
ai14147b
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink +20 mA (with a re laxed V
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:
The sum of the currents sourced by all the I/Os on V
consumption of the MCU sourced on V
I
(see Table 5).
VDD
The sum of the currents sunk by all the I/Os on V
consumption of the MCU sunk on V
I
(see Table 5).
VSS
OL
).
plus the maximum Run
cannot exceed the absolute ma ximum r ating
DD,
cannot exceed the absolute maximum rating
SS
DD,
plus the maximum Run
SS
44/67
STM32F103xx Electrical characteristics
Output voltage levels
Unless otherwise specified, the parameters given in Table 30 are derived from tests performed under ambient temperature and V
Table 7.
Table 30. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
Output low level voltage for an I/O pin
(1)
V
OL
when 8 pins are sunk at same time Output high level voltage for an I/O pin
(2)
V
OH
when 4 pins are sourced at same time Output low level voltage for an I/O pin
(1)
V
OL
when 8 pins are sunk at same time Output high level voltage for an I/O pin
(2)
V
OH
V
V
V
V
OH
when 4 pins are sourced at same time Output low level voltage for an I/O pin
(1)
OL
when 8 pins are sunk at same time Output high level voltage for an I/O pin
(2)
OH
when 4 pins are sourced at same time Output low level voltage for an I/O pin
(1)
OL
when 8 pins are sunk at same time Output high level voltage for an I/O pin
(2)
when 4 pins are sourced at same time
supply voltage conditions summarized in
DD
TTL port
= +8 mA
I
IO
2.7 V < V
< 3.6 V
DD
CMOS port
=+ 8mA
I
IO
2.7 V < V
I
IO
< 3.6 V
DD
= +20 mA
2.7 V < VDD < 3.6 V
= +6 mA
I
IO
2 V < V
< 2.7 V
DD
–0.4
V
DD
2.4
–1.3
V
DD
V
–0.4
DD
0.4
0.4
1.3
0.4
V
V
V
V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 5
and the sum of IIO (I/O ports and control pins) must not exceed I
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 5 and the sum of IIO (I/O ports and control pins) must not exceed I
VSS
.
.
VDD
45/67
Electrical characteristics STM32F103xx
Input/output AC characteristics
The definition and values of input /output AC characteristics are given in Figure 16 and
Table 31, respectively.
Unless otherwise specified, the parameters given in Table 31 are derived from tests performed under ambient temperature and V
Table 7.
Table 31. I/O AC characteristics
(1)
supply voltage conditions summarized in
DD
I/O
(1)
mode
10
01
11
-t
Symbol Parameter Conditions Min Max Unit
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
F
max(IO)out
t
f(IO)out
t
r(IO)out
Maximum frequency Output high to low level f all
(3)
time Output low to high level
rise time
(3)
Maximum frequency Output high to low level f all
(3)
time Output low to high level
rise time
(3)
Maximum frequency
Output high to low level f all
(3)
time
Output low to high level rise time
(3)
(2)
(2)
(2)
CL = 50 pF, V
= 2 V to 3.6 V 2 MHz
DD
125
CL = 50 pF, V
= 2 V to 3.6 V
DD
125
CL = 50 pF, V
= 2 V to 3.6 V 10 MHz
DD
25
CL = 50 pF, V
= 2 V to 3.6 V
DD
25
CL = 30 pF, V
= 50 pF, VDD = 2.7 V to 3.6 V 30 MHz
C
L
= 50 pF, V
C
L
CL = 30 pF, V
= 50 pF, V
C
L
= 50 pF, V
C
L
CL = 30 pF, V
= 50 pF, V
C
L
= 50 pF, V
C
L
= 2.7 V to 3.6 V 50 MHz
DD
= 2 V to 2.7 V 20 MHz
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2 V to 2.7 V 12
DD
= 2.7 V to 3.6 V 5
DD
= 2.7 V to 3.6 V 8
DD
= 2 V to 2.7 V 12
DD
Pulse width of external
EXTIpw
signals detected by the
10 ns
EXTI controller
ns
ns
ns
1. Refer to the Reference user manual UM0306 for a description of GPIO Port configuration register.
2. The maximum frequency is defined in Figure 16.
3. Values based on design simulation and validated on silicon, not tested in production.
46/67
STM32F103xx Electrical characteristics
Figure 16. I/O AC characteristics definition
EXTERNAL
OUTPUT ON 50pF
Maximum frequency is achieved if (tr + tf) £ 2/3)T and if the duty cycle is (45-55%)
t
r(IO)out

5.3.13 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R
Unless otherwise specified, the parameters given in Table 32 are derived from tests performed under ambient temperature and V
Table 7.
Table 32. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
IL(NRST)
V
IH(NRST)
V
hys(NRST)
R
PU
V
F(NRST)
V
NF(NRST)
1. TBD stands for to be determined.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
3. Values guaranteed by design, not tested in production.
(see Table 29).
PU
NRST Input low level voltage –0.5 0.8 NRST Input high level voltage 2 VDD+0.5 NRST Schmitt trigger voltage
hysteresis Weak pull-up equivalent resistor NRST Input filtered pulse NRST Input not filtered pulse
90%
50%
10%
when loaded by 50pF
(1)
(2)
(3)
(3)
10%
50%
90%
t
r(IO)out
T
supply voltage conditions summarized in
DD
ai14131
200
V
IN
= V
SS
30 40 50 k
100 ns
300 µs
V
47/67
Electrical characteristics STM32F103xx
Figure 17. Recommended NRST pin protection
V
External reset circuit
NRST
0.1 µF
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the NRST pin can go below the V
Table 32. Otherwise the reset will not be taken into account by the device.
DD
R
PU
FILTER
Internal Reset
STM32F101xx
max level specified in
IL(NRST)
ai14132b

5.3.14 TIM timer characteristics

Unless otherwise specified, the parameters given in Table 33 are derived from tests performed under ambient temper at ure, f summarized in Table 7.
Refer to Section 5.3.12: I/O port pin characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).
Table 33. TIMx
(1)
characteristics
frequency and VDD supply voltage conditions
PCLKx
Symbol Parameter Conditions Min Max Unit
1
t
res(TIM)
f
EXT
Res
t
COUNTER
Timer resolution time
f
TIMxCLK
Timer external clock frequency on CH1 to CH4
Timer resolution 16 bit
TIM
0 f
TIMxCLK
16-bit counter clock period
= 72 MHz
= 72 MHz
13.9 ns f
TIMxCLK
036MHz
1 65536 when internal clock is selected
f
TIMxCLK
= 72 MHz
0.0139 910 µs
/2
65536 × 65536
t
MAX_COUNT
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.
Maximum possible count
f
TIMxCLK
= 72 MHz
59.6 s
t
TIMxCLK
MHz
t
TIMxCLK
t
TIMxCLK
48/67
STM32F103xx Electrical characteristics

5.3.15 Communications interfaces

I2C interface characteristics
Unless otherwise specified, the parameters given in Table 34 are derived from tests performed under ambient temperature, f summarized in Table 7.
2
The STM32F103xx performance line
2
I
C communication protocol with the following restrictions: the I/O pins SDA and SCL are
I
C interface meets the requirements of the standard
mapped to are not “true” open-drain. Wh en configur ed as open-dr ain, t he PMOS connect ed between the I/O pin and V diode between the I/O pin and V connected to the
2
C
I
bus, it is not possible to po wer o ff the STM3 2F103xx while anot her
is disabled, but is still present. In addition, there is a protection
DD
. As a consequence, when multiple master devices are
DD
master node remains powered on. Otherwise, the STM32F103xx would be powered by the protection diode.
2
The I
C characteristics are described in Table 34. Refer also to Section 5.3.1 2 : I/O po rt pin
characteristics
and SCL)
Table 34. I2C characteristics
Symbol Parameter
for more details on the input/output alternate function characteristics (SDA
.
frequency and VDD supply voltage conditions
PCLK1
Standard mode I
2C(1)
Fast mode I2C
(1)(2)
Min Max Min Max
Unit
2
I
C
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA)
t
r(SCL)
t
f(SDA)
t
f(SCL)
t
h(STA)
t
su(STA)
t
su(STO)
t
w(STO:STA)
C
Values based on standard I
1.
2. f
PCLK1
higher than 4 MHz to achieve the maximum fast mode I The maximum hold time of the Start condition has only to be met if the interface does not stretch the low
3. period of SCL signal.
The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the
4. undefined region of the falling edge of SCL.
SCL clock low time 4.7 1.3 SCL clock high time 4.0 0.6 SDA setup time 250 100 SDA data hold time 0
(3)
SDA and SCL rise time 1000 20 + 0.1C
SDA and SCL fall time 300 20 + 0.1C
(4)
0
900
300
b
300
b
Start condition hold time 4.0 0.6 Repeated Start condition
setup time
4.7 0.6
Stop condition setup time 4.0 0.6 µs Stop to Start condition time
(bus free) Capacitive load for each bus
b
line
2
C protocol requirement, not tested in production.
must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be
4.7 1.3 µs
400 400 pF
2
C frequency.
µs
(3)
ns
µs
49/67
Electrical characteristics STM32F103xx
Figure 18. I2C bus AC waveforms and measurement circuit
V
DD
t
w(SCKL)
r(SCK)
4.7k
t
PCLK1
4.7k
2
C bus
I
START
SDA
t
f(SDA)
SCL
t
w(SCKH)
Measurement points are done at CMOS levels: 0.3V
1.
Table 35. SCL frequency (f
t
h(STA)
f
SCL
t
r(SDA)
(kHz)
t
400 TBD 300 TBD
V
DD
t
h(SDA)
f(SCK)
and 0.7VDD.
DD
STM32F103xx
SDA SCL
t
su(STA)
100
100
su(SDA)
t
= 36 MHz.,VDD = 3.3 V)
START REPEATED
STOP
(1)(2)(3)
I2C_CCR value
R
= 4.7 k
P
t
su(STO)
START
t
su(STA:STO)
ai14149b
200 TBD 100 TBD
50 TBD 20 TBD
1. TBD = to be determined.
= External pull-up resistance, f
2. R
P
3. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.
= I2C speed,
SCL
50/67
STM32F103xx Electrical characteristics
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 36 are derived from tests performed under ambient temper at ure, f summarized in Table 7.
Refer to Section 5.3.12: I/O port pin characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 36. SPI charact eristics
Symbol Parameter Conditions Min Max Unit
(1)
frequency and VDD supply voltage conditions
PCLKx
f
SCK
1/t
c(SCK)
t
r(SCK)
t
f(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
t
a(SO)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
SPI clock frequency
Master mode TBD TBD
Slave mode 0 TBD
SPI clock rise and fall time
(2)
NSS setup time Slave mode 0
(2)
NSS hold time Slave mode 0
(2)
SCK high and low
(2)
time
(2)
Data input setup time
(2)
Capacitive load: C=50 pF TBD
Master mode, f
PCLK
= TBD,
presc = TBD
Master mode TBD
Slave mode TBD
Master mode TBD
(2)
Data input hold time
(2)
Data output access
(2)(4)
time Data output disable
(2)(5)
time
(2)(1)
Data output valid time
Slave mode (after enable edge) TBD
Slave mode TBD
Master mode, f
Slave mode, f
= TBD TBD
PCLK
= TBD TBD
PCLK
Slave mode TBD TBD
Slave mode, f
= TBD TBD TBD
PCLK
Slave mode TBD TBD
f
= TBD TBD
PCLK
Master mode (after enable
(2)(1)
Data output valid time
(2)
Data output hold time
(2)
Slave mode (after enable edge) TBD
Master mode (after enable
edge)
= TBD TBD TBD
f
PCLK
edge)
MHz
TBD
(3)
(3)
ns
TBD
TBD
1. TBD = to be determined.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Depends on f
4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
. For example, if f
PCLK
= 8MHz, then t
PCLK
PCLK
= 1/f
=125 ns and t
PLCLK
v(MO)
= 255 ns.
51/67
Electrical characteristics STM32F103xx
Figure 19. SPI timing diagram - slave mode and CPHA = 0
NSS input
t
CPHA=0 CPOL=0
CPHA=0 CPOL=1
SCK Input
SU(NSS)
t
w(SCKH)
t
w(SCKL)
t
c(SCK)
t
h(NSS)
t
v(SO)
MSB O UT
MSB IN
t
h(SI)
MISO
OUT PU T
MOSI
INPUT
t
a(SO)
t
su(SI)
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7V
t
h(SO)
BIT6 OUT
BIT1 IN
.
DD
Figure 20. SPI timing diagram - slave mode and CPHA = 1
NSS input
CPHA=1 CPOL=0
CPHA=1 CPOL=1
SCK Input
MISO
OUT PU T
MOSI
INPUT
t
SU(NSS)
t
w(SCKH)
t
w(SCKL)
t
a(SO)
t
su(SI)
MSB O UT
MSB IN
t
v(SO)
t
h(SI)
t
c(SCK)
BIT6 OUT
BIT1 IN
1)
t
h(SO)
t
r(SCK)
t
f(SCK) LSB OUT
LSB IN
t
h(NSS)
t
r(SCK)
t
f(SCK)
LSB IN
t
dis(SO)
t
dis(SO)
LSB OUT
ai14134
52/67
ai14135
STM32F103xx Electrical characteristics
Figure 21. SPI timing diagram - master mode
High
NSS input
t
c(SCK)
CPHA=0 CPOL=0
CPHA=0 CPOL=1
SCK Input
CPHA=1 CPOL=0
CPHA=1 CPOL=1
SCK Input
MISO
INPUT
MOSI
OUTUT
t
su(MI)
t
w(SCKH)
t
w(SCKL)
MSBIN
MSB OUT
t
v(MO)
t
h(MI)
BIT6 IN
BIT1 OUT
t
h(MO)
t
r(SCK)
t
f(SCK)
LSB IN
LSB OUT
ai14136
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7V
DD
.
USB characteristics
The USB interface is USB-IF certified (Full Speed).
Table 37. USB DC electrical characteristics
Symbol Parameter Conditions Min.
Input levels
V
V
CM
V
Output levels
V
V
OH
1. All the voltages are measured from the local ground potential. R
2.
L
Differential input sensitivity I(USBDP, USBDM) 0.2
DI
Differential common mode range
Single ended receiver
SE
threshold
Static output level low RL of 1.5 kΩ to 3.6 V
OL
Includes V
range 0.8 2.5
DI
Static output level high RL of 15 kΩ to V
is the load connected on the USB drivers
SS
(2)
(2)
(1)
Max.
1.3 2.0
0.3
2.8 3.6
(1)
Unit
V
V
53/67
Electrical characteristics STM32F103xx
Figure 22. USB timings: definition of data signal rise and fall time
Crossover
(1)
(1)
points
t
r
CL = 50 pF
420ns
ai14137
CL = 50 pF 4 20 ns
f
90 110 %
Differential
Data Lines
V
CRS
V
SS
Table 38. USB: Full speed electrical characteristics
t
f
Symbol Parameter Conditions Min Max Unit
Driver characteristics
t
r
t
f
t
rfm
V
CRS
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
1. Specification - Chapter 7 (version 2.0).
Output signal crossover voltage 1.3 2.0 V
Rise time Fall Time
Rise/ fall time matching tr/t

5.3.16 CAN (controller area network) interface

Refer to I/O port characteristics for more details on the input/output alternate function char­acteristics (CANTX and CANRX).

5.3.17 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Table 39 are derived from tests performed under ambient temperature, f conditions summarized in Table 7.
Note: It is recommended to perform a calibration after each power-up.
Table 39. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
V
f
f
V
ADC power supply 2.4V 3.6V V
DDA
Positive reference voltage 2.0
REF+
ADC clock frequency 0.6 14 MHz
ADC
f
Sampling rate TBD 0.05 1 MHz
S
External trigger frequency f
TRIG
Conversion voltage range
AIN
(2)
(1)
frequency and V
PCLK2
= 14 MHz
ADC
supply voltage
DDA
V
SSA
V
DDA
823 kHz
17 1/f
V
DDA
V
ADC
V
54/67
STM32F103xx Electrical characteristics
Table 39. ADC characteristics
(1)
(continued)
Symbol Parameter Conditions Min Typ Max Unit
R
C
R
C
t
t
STAB
External input impedance
AIN
External capacitor on analog
AIN
input Negative input leakage current
I
lkg
on analog pins Sampling switch resistance 1 k
ADC
Internal sample and hold
ADC
capacitor
V
< V
| I
SS,
| < 400 µA
IN
IN
on adjacent analog pin
(2)(3)
TBD
56µA
5.9 µs
Calibration time f
CAL
t
Injection conversion latency f
lat
t
Sampling time f
S
= 14MHz
ADC
= 14 MHz
ADC
= 14 MHz 0.107 17.1 µs
ADC
83 1/f
Power-up time 0 0 1 µs
5pF
0.214 µs 31/f
118µs
t
CONV
T otal conversion time (including sampling time)
f
ADC
= 14 MHz
14 (1.5 for sampling +12.5 for successive
1/f
approximation)
1. TBD = to be determined.
), C
2. Depending on the input signal variation (f allow the use of a larger serial resistor (R
3. During the sample time the input capacitance C source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t the conversion result. Values for the sample clock tS depend on programming.
Table 40. ADC accuracy (f
After the end of the sample time tS, changes of the analog input voltage have no effect on
S.
(1)
3.3 V)
PCLK2
AIN AIN
= 14 MHz, f
can be increased for stabilization time and reduced to
AIN
). It is valid for all f
(5 max) can be charged/discharged by the external
AIN
ADC
frequencies ≤ 14 MHz.
ADC
= 14 MHz, R
AIN
<10 kΩ, V
DDA
=
k
pF
ADC
ADC
ADC
Symbol Parameter Conditions Typ Max Unit
(2)
(2)
(2)
INJ(PIN)
and ΣI
3TBD 1TBD 2TBD 3TBD 2TBD
in Section 5.3.12 does not
INJ(PIN)
LSB
| Total unadjusted error
|E
T
|E
| Offset error
O
|Gain Error
|E
G
| Differential linearity error
|E
D
|E
| Integral linearity error
L
1. TBD = to be determined.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non­robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I affect the ADC accuracy.
(2)
(2)
55/67
Electrical characteristics STM32F103xx
Figure 23. ADC accuracy characteristics
E
G
1023 1022 1021
V
1LSB
IDEAL
7 6 5
E
4 3 2 1
O
0
1234567
V
SSA
DDAVSSA
--------------------------- ------------- -=
1024
E
1LSB
T
IDEAL
(2)
(3)
(1)
E
L
E
D
1021 10221023 1024
(1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
E
=Total Unadjusted Error: maximum deviation
T
between the actual and the ideal transfer curves.
=Offset Error: deviation between th e fir st actual
E
O
transition and the first ideal one.
=Gain Error: deviation between the last ideal
E
G
transition and the last actual one.
=Differential Linearity Error: maximum deviation
E
D
between actual steps and the ideal one.
=Integral Linearity Error: maximum deviation
E
L
between any actual transition and the end point correlation line.
V
DDA
ai14395
Figure 24. Typical connection diagram using the ADC
V
DD
V
T
R
AIN
AINx
0.6V R
ADC
12-bit A/D conversion
V
V
AIN
(1)
C
AIN
0.6V
T
IL±1mA
STM32F103xx
C
ADC
1. Refer to Table 39 for the values of R
2. C
PARASITIC
PCB layout quality) plus the pad capacitance (3 pF). A high C accuracy. To remedy this, f
must be added to C
ADC
AIN
should be reduced.
ADC
and C
ADC
.
. It represents the capacitance of the PCB (dependent on soldering and
PARASITIC
ai14150
value will downgrade conversion
56/67
STM32F103xx Electrical characteristics
General PCB design guidelines
Po wer supply decoupling should be performed as shown in Figure 25 or Figure 26, depending on whether V ceramic (good quality). They should be placed them as close as possible to the chip.
is connected to V
REF+
or not. The 10 nF capacitors should be
DDA
Figure 25. Power supply and reference decoupling (V
STM32F103xx
V
REF+
(see note 1)
1. V
REF+
and V
1 µF // 10 nF
1 µF // 10 nF
inputs are available only on 100-pin packages.
REF–
V
DDA
V
SSA/VREF+
Figure 26. Power supply and reference decoupling (V
STM32F103xx
not connected to V
REF+
(see note 1)
connected to V
REF+
ai14388
DDA
DDA
)
)
1. V
REF+
and V
1 µF // 10 nF
inputs are available only on 100-pin packages.
REF–
57/67
V
REF+/VDDA
(See note 1)
V
REF–/VSSA
(See note 1)
ai14389
Electrical characteristics STM32F103xx

5.3.18 Temperature sensor characteristics

Table 41. TS characteristics
Symbol Parameter Conditions Min Typ Max Unit
T
L
V
linearity with temperature
SENSE
±1.5
°C
Avg_Slope Average slope 4.478 mV/°C
V
25
t
START
V o ltage at 25 °C 1.4 V Startup time 4 10 µs
58/67
STM32F103xx Package characteristics

6 Package characteristics

Figure 27. LFBGA100 - low profile fine pitch ball grid array package outline

Seating plane
C
A2 A4 A3 A1 A
e
Bottom view
D D1
F
F
e
b
(100 balls)
eee
CA
M
fff
CM
B
K
J H G
F
E D C
B
A
12345678910
A1 corner index area
(see note 5)

Table 42. LFBGA100 - low p rofile fine pitch ball grid ar ray package mechan ic al data

mm inches
Dim.
Min Typ Max Min Typ Max
ddd
C
A
E
E1
B
ai14396
A 1.700 0.067 A1 0.270 0.011 A2 1.085 0.043 A3 0.30 0.012 A4 0.80 0.031 b 0.45 0.50 0.55 0.018 0.020 0.022 D 9.85 10.00 10.15 0.388 0.394 0.40 D1 7.20 0.283 E 9.85 10.00 10.15 0.388 0.394 0.40 E1 7.20 0.283 e 0.80 0.031 F 1.40 0.055 ddd 0.12 0.005 eee 0.15 0.006 fff 0.08 0.003 N (number of balls) 100
59/67
Package characteristics STM32F103xx

Figure 28. Recommended PCB design rules (0.80/0.75 mm pitch BGA)

Dpad 0.37 mm Dsm Solder paste 0.37 mm aperture diameter
– Non solder mask defined pads are recommended – 4 to 6 mils screen print
Dpad
Dsm
0.52 mm typ. (depends on solder mask registration tolerance
60/67
STM32F103xx Package characteristics
Figure 29. LQFP100 – 100-pin low-profile quad flat package outline
A
A
2
A1
b
e
D1
D
E
E
1
L
1
L
h
ai14397
Table 43. LQFP100 – 100-pin low-profile quad flat package mechanical data
mm inches
Dim.
Min Typ Max Min Typ Max
A 1.60 0.063 A1 0.05 0.15 0.002 0.006 A2 1.35 1.40 1.45 0.053 0.055 0.057
b 0.17 0.22 0.27 0.007 0.009 0.011
C 0.09 0.20 0.004 0.008 D 16.00 0.630
D1 14.00 0.551
E 16.00 0.630 E1 14.00 0.551
e 0.50 0.020
θ 3.5° 3.5°
L 0.45 0.60 0.75 0.018 0.024 0.030
c
L1 1.00 0.039
Number of pins
N 100
61/67
Package characteristics STM32F103xx
Figure 30. LQFP64 – 64 pin low-profile quad flat package outline
D1
D
E1
E
A
A2
A1
b
e
L1
L
ai14398
Table 44. LQFP64 – 64 pin low-profile quad flat package mechanical data
mm inches
Dim.
Min Typ Max Min Typ Max
A 1.60 0.063 A1 0.05 0.15 0.002 0.006 A2 1.35 1.40 1.45 0.053 0.055 0.057
b 0.17 0.22 0.27 0.007 0.009 0.011
c 0.09 0.20 0.004 0.008
D 12.00 0.472
D1 10.00 0.394
E 12.00 0.472 E1 10.00 0.394
e 0.50 0.020
c
θ 3.5° 3.5°
L 0.45 0.60 0.75 0.018 0.024 0.030 L1 1.00 0.039
N64
62/67
Number of pins
STM32F103xx Package characteristics
Figure 31. LQFP48 – 48 pin low-profile quad flat package outline
D
D1
b
EE1
Table 45. LQFP48 – 48 pin low-profile quad flat package mechanical data
e
L1
mm inches
A
A2
A1
c
L
ai14399
(1)
Dim.
Min Typ Max Min Typ Max
A 1.60 0.063 A1 0.05 0.15 0.002 0.006 A2 1.35 1.40 1.45 0.053 0.055 0.057
b 0.17 0.22 0.27 0.007 0.009 0.011
C 0.09 0.20 0.004 0.008 D 9.00 0.354
D1 7.00 0.276
E 9.00 0.354 E1 7.00 0.276
e 0.50 0.020
θ 3.5° 3.5°
L 0.45 0.60 0.75 0.018 0.024 0.030 L1 1.00 0.039
Number of pins
N48
1. Values in inches are converted from mm and rounded to 3 decimal digits.
63/67
Package characteristics STM32F103xx

6.1 Thermal characteristics

The avera ge chip-ju nction temp era ture , TJ, in degrees Celsius, ma y be calculat ed using the following equation:
T
= TA + (PD x ΘJA) (1)
J
Where:
T
Θ
P
P
P Most of the time for the application P
may be significant if the device is configured to drive continuously external modules and/or memories.
is the Ambient Temperature in ° C,
A
is the Package Junction-to-Ambient Thermal Resistance, in °C/W,
JA
is the sum of P
D
is the product of I
INT
represents the Power Dissipation on Input and Output Pins;
I/O
INT
and P
and VDD, expressed in Watts. This is the Chip Internal Power.
DD
I/O (PD
I/O< PINT
= P
INT
+ P
I/O
),
and can be neglected. On the other han d, P
I/O
An approximate relationship between P
P
= K / (TJ + 273 °C) (2)
D
and TJ (if P
D
is neglected) is given by:
I/O
Therefore (solving equations 1 and 2):
K = P
x (TA + 273°C) + ΘJA x P
D
2
D
(3) where: K is a constant for the particular part, which may be determined from equation (3) by
measuring P may be obtained by solving equations (1) and (2) iteratively for any value of T

Table 46. Thermal characteristics

Symbol Parameter Value Unit
Θ
JA
(at equilibrium) for a known TA. Using this value of K, the values of PD and TJ
D
Thermal resistance junction-ambient
LFBGA100 - 10 x 10 mm / 0.5 mm pitch
Thermal resistance junction-ambient
LQFP100 - 14 x 14 mm / 0.5 mm pitch
Thermal Resistance Junction-Ambient
LQFP64 - 10 x 10 mm / 0.5 mm pitch
Thermal resistance junction-ambient
LQFP48 - 7 x 7 mm / 0.5 mm pitch
41
46
45
55
.
A
°C/W
64/67
STM32F103xx Order codes

7 Order codes

Table 47. Order codes

Flash program
Part number
STM32F103C6T6 32 10 STM32F103C8T6 64 20 STM32F103R6T6 32 10
STM32F103RBT6 128 20 STM32F103V8T6 64 20 STM32F103VBT6 128 20 STM32F103V8H6 64 20
STM32F103VBH6 128 20
memory
Kbytes

7.1 Future family enhancements

Further developments of the STM32F103xx performance line will see an expansion of the current options. Larger packages will soon be available with up to 512KB Flash, 64KB SRAM and with extended features such as EMI support, SDIO, I2S, DA C and additional timers and USARTS.
SRAM
memory
Kbytes
Package
LQFP48
LQFP64STM32F103R8T6 64 20
LQFP100
LFBGA100
65/67
Revision history STM32F103xx

8 Revision history

Table 48. Document revision history
Date Revision Changes
01-jun-2007 1 Initial release.
Flash memory size modified in Note 5, Note 4, Note 6, Note 7 and BGA100 pins added to Table 3: Pin definitions. Figure 5: STM32F103xx
performance line BGA100 ballout added.
20-Jul-2007 2
changed to T
T
HSE
timing diagram. V
SU(LSE)
changed to t
t
characteristics. I characteristics.
Sample size modified and machine model removed in Electrostatic
discharge (ESD).
Number of parts modified and standard reference updated in Static
latch-up. 25 °C and 85 °C conditions removed and class name modified
in Table 28: Electrical sensitivities. R added to Table 29: I/O static characteristics. R added to Table 32: NRST pin cha racteristics.
2
Figure 18: I
C bus AC waveforms and measurement circuit and
Figure 17: Recommended NRST pin protection corrected.
Notes removed below Table 7, Table 32, Table 37.
typical values changed in T able 11: Maximum current consumption in
I
DD
Run and Sleep modes. Table 33: TIMx characteristics modified.
, V
t
STAB
REF+
value, t
In Table 24: Flash memory endurance and data retention, typical endurance and data retention for T = 25 °C removed.
changed to V
V
BG
voltage. Document title changed. Controller area network (CAN) section
modified.
Figure 9: Power supply scheme modified. Features on page 1 list optimized. Small text changes.
in Figure 12: Low-speed external clock source AC
LSE
ranged modified in Power supply schemes.
BAT
in Table 17: HSE 4-16 MHz oscillator
SU(HSE)
max value added to Table 19: HSI oscillator
DD(HSI)
and RPD min and max values
PU
and f
lat
REFINT
added to Table 39: ADC characteristics.
TRIG
= 85 °C added, data retention for TA
A
in Table 10: Embedded inte rnal reference
min and max values
PU
66/67
STM32F103xx
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sal e. Purchasers are solely res ponsibl e fo r the c hoic e, se lecti on an d use o f the S T prod ucts and s ervi ces d escr ibed he rein , and ST as sumes no
liability whatsoever relati ng to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third pa rty p ro duc ts or se rv ices it sh all n ot be deem ed a lice ns e gr ant by ST fo r t he use of su ch thi r d party products or services, or any intellectua l property c ontained the rein or consi dered as a warr anty coverin g the use in any manner whats oever of suc h third party products or servi ces or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICUL AR PURPOS E (AND THEIR EQUIVALE NTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJ URY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST fo r the ST pro duct or serv ice describe d herein and shall not cr eate or exten d in any manne r whatsoever , any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document su persedes and replaces all info rmation previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of compan ie s
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
67/67
Loading...