ST MICROELECTRONICS STM32F072CBT6 Datasheet

STM32F072x8 STM32F072xB
LQFP100 14x14 mm
LQFP64 10x10 mm
LQFP48 7x7 mm
UFQFPN48
7x7 mm
UFBGA100
7x7 mm
UFBGA64
5x5 mm
WLCSP49
3.3x3.1 mm
Arm®-based 32-bit MCU, up to 128 KB Flash, crystal-less USB
FS 2.0, CAN, 12 timers, ADC, DAC & comm. interfaces, 2.0 - 3.6 V
Datasheet - production data
Core: Arm® 32-bit Cortex®-M0 CPU, frequency up to 48 MHz
Memories – 64 to 128 Kbytes of Flash memory – 16 Kbytes of SRAM with HW parity
CRC calculation unit
Reset and power management
– Digital and I/O supply: V – Analog supply: V – Selected I/Os: V
DDA
DDIO2
– Power-on/Power down reset (POR/PDR) – Programmable voltage detector (PVD) – Low power modes: Sleep, Stop, Standby –V
supply for RTC and backup registers
BAT
Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x6 PLL option – Internal 40 kHz RC oscillator – Internal 48 MHz oscillator with automatic
trimming based on ext. synchronization
Up to 87 fast I/Os – All mappable on external interrupt vectors – Up to 68 I/Os with 5V tolerant capability
and 19 with independent supply V
7-channel DMA controller
One 12-bit, 1.0 µs ADC (up to 16 channels)
– Conversion range: 0 to 3.6 V – Separate analog supply: 2.4 V to 3.6 V
One 12-bit D/A converter (with 2 channels)
2 fast low-power analog comparators with
programmable input and output
Up to 24 capacitive sensing channels for touchkey, linear and rotary touch sensors
= 2.0 V to 3.6 V
DD
= VDD to 3.6 V
= 1.65 V to 3.6 V
DDIO2
FBGA
Calendar RTC with alarm and periodic wakeup from Stop/Standby
12 timers – One 16-bit advanced-control timer for
six-channel PWM output
– One 32-bit and seven 16-bit timers, with up
to four IC/OC, OCN, usable for IR control
decoding or DAC control – Independent and system watchdog timers – SysTick timer
Communication interfaces
2
–2 I
C interfaces supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink, one supporting SMBus/PMBus and wakeup
– 4 USARTs supporting master synchronous
SPI and modem control, two with ISO7816 interface, LIN, IrDA, auto baud rate detection and wakeup feature
– 2 SPIs (18 Mbit/s) with 4 to 16
programmable bit frames, and with I
2
S
interface multiplexed
– CAN interface – USB 2.0 full-speed interface, able to run
from internal 48 MHz oscillator and with BCD and LPM support
HDMI CEC wakeup on header reception
Serial wire debug (SWD)
96-bit unique ID
All packages ECOPACK
Reference Part number
STM32F072x8 STM32F072xB

Table 1. Device summary

STM32F072C8, STM32F072R8, STM32F072V8, STM32F072CB, STM32F072RB, STM32F072VB
®
2
September 2019 DS9826 Rev 6 1/128
This is information on a product in full production.
www.st.com
Contents STM32F072x8 STM32F072xB
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Arm®-Cortex®-M0 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14
3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17
3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 18
3.10 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.2 Internal voltage reference (V
3.10.3 V
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
BAT
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
REFINT
3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.12 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.13 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17) . . . . . . . . . . . . . . . . . 22
3.14.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.14.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Contents
3.14.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23
3.16 Inter-integrated circuit interface (I
2
C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 25
3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I
2
S) . 26
3.19 High-definition multimedia interface (HDMI) - consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.20 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.21 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.22 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.23 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 54
6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 54
6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
DS9826 Rev 6 3/128
4
Contents STM32F072x8 STM32F072xB
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.17 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.18 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.20 V
6.3.21 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.22 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
BAT
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.1 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3 UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.5 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
7.6 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
7.7 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.8.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.8.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 121
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4/128 DS9826 Rev 6
STM32F072x8 STM32F072xB List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F072x8/xB family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . 11
Table 3. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 5. Capacitive sensing GPIOs available on STM32F072x8/xB devices. . . . . . . . . . . . . . . . . . 20
Table 6. Number of capacitive sensing channels available
on STM32F072x8/xB devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 7. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 8. Comparison of I Table 9. STM32F072x8/xB I
Table 10. STM32F072x8/xB USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 11. STM32F072x8/xB SPI/I
Table 12. Peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 13. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. STM32F072x8/xB pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 15. Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 44
Table 16. Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 45
Table 17. Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 46
Table 18. Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 46
Table 19. Alternate functions selected through GPIOE_AFR registers for port E . . . . . . . . . . . . . . . 47
Table 20. Alternate functions available on port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 21. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 22. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 23. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 24. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 25. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 26. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 27. Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 28. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 29. Typical and maximum current consumption from V Table 30. Typical and maximum current consumption from the V
Table 31. Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 59
Table 32. Typical and maximum current consumption from the V Table 33. Typical current consumption, code executing from Flash memory,
running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 34. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 35. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 36. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 37. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 38. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 39. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 40. LSE oscillator characteristics (f
Table 41. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 42. HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 43. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 44. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 45. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 46. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2
C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2
C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2
S implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
supply at VDD = 3.6 V . . . . . . . . . . 56
DD
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
LSE
supply . . . . . . . . . . . . . . . . . 58
DDA
supply. . . . . . . . . . . . . . . . . . . 60
BAT
DS9826 Rev 6 5/128
6
List of tables STM32F072x8 STM32F072xB
Table 47. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 48. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 49. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 50. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 51. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 52. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 53. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 54. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 55. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 56. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 57. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 58. R
max for f
AIN
= 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ADC
Table 59. ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 60. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 61. Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 62. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 63. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
BAT
Table 64. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 65. IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 66. WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 67. I
Table 68. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Table 69. I
2
C analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2
S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 70. USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 71. UFBGA100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 72. UFBGA100 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 73. LQPF100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 74. UFBGA64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 75. UFBGA64 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 76. LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 77. WLCSP49 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 78. LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 79. UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 80. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 81. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6/128 DS9826 Rev 6
STM32F072x8 STM32F072xB List of figures
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3. STM32F072xB memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 4. UFBGA100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 5. LQFP100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 6. UFBGA64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 7. LQFP64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 8. LQFP48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 9. UFQFPN48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 10. WLCSP49 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 11. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 13. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 16. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 17. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 19. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 71
Figure 20. HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 21. HSI48 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 22. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 24. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 25. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 26. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 27. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 28. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 29. Maximum V
Figure 30. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 31. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 32. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 33. I Figure 34. I
2
S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2
S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 35. UFBGA100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 36. Recommended footprint for UFBGA100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 37. UFBGA100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 38. LQFP100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 39. Recommended footprint for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 40. LQFP100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 41. UFBGA64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 42. Recommended footprint for UFBGA64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 43. UFBGA64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 44. LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 45. Recommended footprint for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 46. LQFP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 47. WLCSP49 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 48. WLCSP49 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
scaler startup time from power down . . . . . . . . . . . . . . . . . . . . . . . . . . 91
REFINT
DS9826 Rev 6 7/128
8
List of figures STM32F072x8 STM32F072xB
Figure 49. LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 50. Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 51. LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 52. UFQFPN48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 53. Recommended footprint for UFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 54. UFQFPN48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 55. LQFP64 P
max versus TA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
D
8/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Introduction

1 Introduction

This datasheet provides characteristics and ordering information of the STM32F072x8/xB microcontrollers.
This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website
www.st.com.
For information on the Arm Technical Reference Manual, available from the www.arm.com website.
®(a)
Cortex®-M0 core, please refer to the Arm® Cortex®-M0
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
DS9826 Rev 6 9/128
27
Description STM32F072x8 STM32F072xB

2 Description

The STM32F072x8/xB microcontrollers incorporate the high-performance Arm®Cortex®-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 128 extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (two I USB Full-speed device (crystal-less), one CAN, one 12-bit ADC, one 12-bit DAC with two channels, seven 16-bit timers, one 32-bit timer and an advanced-control PWM timer.
The STM32F072x8/xB microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.
The STM32F072x8/xB microcontrollers include devices in seven different packages ranging from 48 pins to 100 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.
These features make the STM32F072x8/xB microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.
Kbytes of Flash memory and 16 Kbytes of SRAM), and an
2
Cs, two SPI/I2S, one HDMI CEC and four USARTs), one
10/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Description

Table 2. STM32F072x8/xB family device features and peripheral counts

Peripheral STM32F072Cx STM32F072Rx STM32F072Vx
Flash memory (Kbyte) 64 128 64 128 64 128
SRAM (Kbyte) 16
Timers
Advanced
control
General
purpose
Basic 2 (16-bit)
2S](1)
SPI [I
2
C2
I
1 (16-bit)
5 (16-bit) 1 (32-bit)
2 [2]
Comm.
interfaces
USART 4
CAN 1
USB 1
CEC 1
12-bit ADC
(number of channels)
1
(10 ext. + 3 int.)
12-bit DAC
(number of channels)
Analog comparator 2
GPIOs 37 51 87
Capacitive sensing
channels
17 18 24
Max. CPU frequency 48 MHz
Operating voltage 2.0 to 3.6 V
Operating temperature
Packages
1. The SPI interface can be used either in SPI mode or in I2S audio mode.
Ambient operating temperature: -40°C to 85°C / -40°C to 105°C
Junction temperature: -40°C to 105°C / -40°C to 125°C
LQFP48
UFQFPN48
WLCSP49
LQFP64
UFBGA64
1
(16 ext. + 3 int.)
1
(2)
LQFP100
UFBGA100
DS9826 Rev 6 11/128
27
Description STM32F072x8 STM32F072xB
MSv31404V4
Power domain of analog blocks :
V
BAT
V
DDIO2
4 channels 3 compl. channels BRK, ETR input as AF
@ V
DD
@ V
DDA
System and peripheral
clocks
PA[15:0]
PB[15:0]
PC[15:0]
PF[10:9], PF6
PF[3:0]
8 groups of
4 channels
SYNC
87 AF
MOSI/SD
MISO/MCK
SCK/CK
NSS/WS as AF
@ V
DDA
V
DDA
V
SSA
SWCLK
SWDIO
as AF
16x
AD input
OSC_IN OSC_OUT
V
BAT
= 1.65 to 3.6 V
OSC32_IN OSC32_OUT
3 TAMPER-RTC (ALARM OUT)
@ V
BAT
SYNC
MOSI/SD
MISO/MCK
SCK/CK
NSS/WS as AF
HSI14
HSI
LSI
HSI48
PLLCLK
V
DD
IR_OUT as AF
1 channel 1 compl, BRK as AF
1 channel 1 compl, BRK as AF
1 channel as AF
4 ch., ETR as AF
4 ch., ETR as AF
GP DMA
7 channels
CORTEX-M0 CPU
f
MAX
= 48 MHz
Serial Wire
Debug
NVIC
Touch
Sensing
Controller
PAD
Analog
switches
EXT. IT WKUP
SPI1/I2S1
SPI2/I2S2
SYSCFG IF
DBGMCU
Window WDG
APB
AHB
CRC
RESET & CLOCK
CONTROL
Power
Controller
XTAL OSC
4-32 MHz
Ind. Window WDG
SRAM 16 KB
Temp. sensor
IF
12-bit ADC
RTC
Backup
reg
RTC interface
CRS
RC 14 MHz
RC 8 MHz
RC 40 kHz
PLL
RC 48MHz
AHB decoder
XTAL32 kHz
SRAM
controller
Bus matrix
Flash
memory
interface
Flash GPL
up to 128 KB
32-bit
Obl
V
DD
2 channels 1 compl, BRK as AF
RX, TX,CTS, RTS, CK as AF
RX, TX,CTS, RTS, CK as AF
RX, TX,CTS, RTS, CK as AF
RX, TX,CTS, RTS, CK as AF
SCL, SDA (20 mA FM+) as AF
SCL, SDA, SMBA (20 mA FM+) as AF
CEC as AF
I2C1
I2C2
12-bit DAC
12-bit DAC
IF
DAC_OUT1
DAC_OUT2
@ V
DDA
TIMER 6
TIMER 7
GP comparator 1
GP comparator 2
INPUT +
INPUT -
OUTPUT
as AF
@ V
DDA
GPIO port F
GPIO port E
GPIO port D
GPIO port C
GPIO port B
GPIO port A
PD[15:0]
PE[15:0]
V
DDA
SUPPLY
SUPERVISION
POWER
@ V
DDA
@ V
DD
V
DD18
POR
Reset
Int
V
DD
= 2 to 3.6 V
V
SS
NRST V
DDA
V
SSA
V
DDIO2
OKIN
V
DD
PVD
POR/PDR
VOLT.REG
3.3 V to 1.8 V
USART4
USART3
USART2
USART1
HDMI-CEC
TIMER 17
TIMER 16
TIMER 15
TIMER 14
TIMER 3
TIMER 2 32-bit
PWM TIMER 1
TX, RX as AF
D+, D-
@ V
DDIO2
BxCAN
USB PHY
USB
SRAM 768B
SRAM 256B

Figure 1. Block diagram

12/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Functional overview

3 Functional overview

Figure 1 shows the general block diagram of the STM32F072x8/xB devices.

3.1 Arm®-Cortex®-M0 core

The Arm® Cortex®-M0 is a generation of Arm 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
The Arm® Cortex®-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an Arm core, with memory sizes usually associated with 8- and 16-bit devices.
The STM32F072x8/xB devices embed Arm core and are compatible with all Arm tools and software.

3.2 Memories

The device has the following features:
16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications.
The non-volatile memory is divided into two arrays:
64 to 128 Kbytes of embedded Flash memory for programs and data
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:
Level 0: no readout protection
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
Level 2: chip readout protection, debug features (Arm
and boot in RAM selection disabled

3.3 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:
boot from User Flash memory
boot from System Memory
boot from embedded SRAM
®
Cortex®-M0 serial wire)
The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15, or PA9/PA10 or I DFU interface.
DS9826 Rev 6 13/128
2
C on pins PB6/PB7 or through the USB
27
Functional overview STM32F072x8 STM32F072xB

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link­time and stored at a given memory location.

3.5 Power management

3.5.1 Power supply schemes

VDD = V
= 2.0 to 3.6 V: external power supply for I/Os (V
DDIO1
regulator. It is provided externally through VDD pins.
V
= from VDD to 3.6 V: external analog power supply for ADC, DAC, Reset blocks,
DDA
RCs and PLL (minimum voltage to be applied to V are used). It is provided externally through VDDA pin. The V always greater or equal to the V
V
= 1.65 to 3.6 V: external power supply for marked I/Os. V
DDIO2
externally through the VDDIO2 pin. The V from V V
DDIO2
(V
REFINT
DD
or V
, but it must not be provided without a valid supply on VDD. The
DDA
supply is monitored and compared with the internal reference voltage
). When the V
DDIO2
are disabled by hardware. The output of this comparator is connected to EXTI line 31 and it can be used to generate an interrupt. Refer to the pinout diagrams or tables for concerned I/Os list.
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
BAT
backup registers (through power switch) when V
For more details on how to connect power pins, refer to Figure 13: Power supply scheme.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, V
POR/PDR
The POR monitors only the VDD supply voltage. During the startup phase it is required
The PDR monitors both the V
The device features an embedded programmable voltage detector (PVD) that monitors the V
DD
when V
, without the need for an external reset circuit.
that V
should arrive first and be greater than or equal to VDD.
DDA
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V equal to V
DD
.
power supply and compares it to the V
drops below the V
DD
PVD
) and the internal
DDIO1
is 2.4 V when the ADC or DAC
DDA
voltage level and must be established first.
DD
voltage level is completely independent
DDIO2
voltage level must be
DDA
is provided
DDIO2
is below this threshold, all the I/Os supplied from this rail
is not present.
DD
and V
DD
threshold and/or when VDD is higher than the V
supply voltages, however the V
DDA
is higher than or
DDA
threshold. An interrupt can be generated
PVD
DDA
power
PVD
14/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Functional overview
threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.5.3 Voltage regulator

The regulator has two operating modes and it is always enabled after reset.
Main (MR) is used in normal operating mode (Run).
Low power (LPR) can be used in Stop mode where the power demand is reduced.
In Standby mode, it is put in power down mode. In this mode, the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost).

3.5.4 Low-power modes

The STM32F072x8/xB microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.
Stop mode
Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, the PVD output, RTC, I2C1, USART1, USART2, USB, COMPx, V
The CEC, USART1, USART2 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as to get clock for processing incoming data. If this is used when the voltage regulator is put in low power mode, the regulator is first switched to normal mode before the clock is provided to the given peripheral.
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs.
supply comparator or the CEC.
DDIO2
Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches
DS9826 Rev 6 15/128
27
Functional overview STM32F072x8 STM32F072xB
MSv31418V2
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
IWDG
PLLMUL
MCO
Main clock
output
PLLCLK
HSI
HSE
PLLCLK
ADC asynchronous clock input
LSE
LSI
HSI
HSE
RTC
PLLSRC
SW
MCO
RTCCLK
RTCSEL
SYSCLK
TIM1,2,3,6,7, 14,15,16,17
FLITFCLK
Flash memory programming interface
HSI14
HSI14
LSE
I2C1
USART1
LSE
HSI
SYSCLK
PCLK
SYSCLK
HSI
PCLK
I2S1/SPI1 I2S2/SPI2
CEC
APB peripherals
LSI
LSE
PREDIV
HSI48
PLLNODIV
MCOPRE
TIM14
LSE
HSE
SYNC
CSS
Trim
Legend
white
clock tree control element clock line control line
black
clock tree element
/32
4-32 MHz
HSE OSC
/1,/2,/4,
/8,/16
/1,/2
14 MHz RC
HSI14
/1,/2,…
…/512
8 MHz
HSI RC
/1,/2,..
../16
32.768 kHz LSE OSC
40 kHz LSI RC
PLL
x2,x3,..
...x16
48 MHz HSI RC
x1, x2
/1,/2,/4,..
../128
USARTxSW
PPRE
PPREHPRE
CECSW
/244
I2C1SW
SYSCLK
CRS
HSI
HSI48
HSI48
HSI48
HSI
SYNCSRC
USART2
HCLK
AHB, core, memory, DMA, Cortex FCLK free-run clock
Cortex system timer
/8
USB
HSI48
USBSW
LSE
USB SOF
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Figure 2. Clock tree

16/128 DS9826 Rev 6
Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.
STM32F072x8 STM32F072xB Functional overview
Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization.

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.
The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 7-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.
The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.
DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex priority levels.
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Closely coupled NVIC core interface
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail-chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt latency.
®
-M0) and 4
DS9826 Rev 6 17/128
27
Functional overview STM32F072x8 STM32F072xB

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 87 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage V temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.
Calibration value name Description Memory address
TS_CAL1
TS_CAL2
Table 3. Temperature sensor calibration values
SENSE
TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), V
= 3.3 V (± 10 mV)
DDA
TS ADC raw data acquired at a temperature of 110 °C (± 5 °C), V
= 3.3 V (± 10 mV)
DDA
that varies linearly with
0x1FFF F7B8 - 0x1FFF F7B9
0x1FFF F7C2 - 0x1FFF F7C3
3.10.2 Internal voltage reference (V
The internal voltage reference (V ADC and comparators. V
18/128 DS9826 Rev 6
REFINT
REFINT
) provides a stable (bandgap) voltage output for the
REFINT
is internally connected to the ADC_IN17 input channel. The
)
STM32F072x8 STM32F072xB Functional overview
precise voltage of V
is individually measured for each part by ST during production
REFINT
test and stored in the system memory area. It is accessible in read-only mode.
3.10.3 V
Calibration value name Description Memory address
VREFINT_CAL
battery voltage monitoring
BAT
Table 4. Internal voltage reference calibration values
Raw data acquired at a temperature of 30 °C (± 5 °C), V
= 3.3 V (± 10 mV)
DDA
This embedded hardware feature allows the application to measure the V using the internal ADC channel ADC_IN18. As the V and thus outside the ADC input range, the V
pin is internally connected to a bridge
BAT
divider by 2. As a consequence, the converted digital value is half the V

3.11 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.
This digital Interface supports the following features:
8-bit or 12-bit monotonic output
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channel independent or simultaneous conversions
DMA capability for each channel
External triggers for conversion
0x1FFF F7BA - 0x1FFF F7BB
battery voltage
voltage may be higher than V
BAT
BAT
voltage.
BAT
DDA
,
Six DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger outputs and the DAC interface is generating its own DMA requests.

3.12 Comparators (COMP)

The device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity.
The reference voltage can be one of the following:
External I/O
DAC output pins
Internal reference voltage or submultiple (1/4, 1/2, 3/4).Refer to Table 28: Embedded
internal reference voltage for the value and precision of the internal reference voltage.
DS9826 Rev 6 19/128
27
Functional overview STM32F072x8 STM32F072xB
Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.13 Touch sensing controller (TSC)

The STM32F072x8/xB devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. For operation, one capacitive sensing GPIO in each group is connected to an external capacitor and cannot be used as effective touch sensing channel.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Table 5. Capacitive sensing GPIOs available on STM32F072x8/xB devices

Group
1
2
3
4
Capacitive sensing
signal name
TSC_G1_IO1 PA0
TSC_G1_IO2 PA1 TSC_G5_IO2 PB4
TSC_G1_IO3 PA2 TSC_G5_IO3 PB6
TSC_G1_IO4 PA3 TSC_G5_IO4 PB7
TSC_G2_IO1 PA4
TSC_G2_IO2 PA5 TSC_G6_IO2 PB12
TSC_G2_IO3 PA6 TSC_G6_IO3 PB13
TSC_G2_IO4 PA7 TSC_G6_IO4 PB14
TSC_G3_IO1 PC5
TSC_G3_IO2 PB0 TSC_G7_IO2 PE3
TSC_G3_IO3 PB1 TSC_G7_IO3 PE4
TSC_G3_IO4 PB2 TSC_G7_IO4 PE5
TSC_G4_IO1 PA9
TSC_G4_IO2 PA10 TSC_G8_IO2 PD13
TSC_G4_IO3 PA11 TSC_G8_IO3 PD14
TSC_G4_IO4 PA12 TSC_G8_IO4 PD15
Pin
name
Group
5
6
7
8
Capacitive sensing
signal name
TSC_G5_IO1 PB3
TSC_G6_IO1 PB11
TSC_G7_IO1 PE2
TSC_G8_IO1 PD12
Pin
name
20/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Functional overview
Table 6. Number of capacitive sensing channels available
on STM32F072x8/xB devices
Analog I/O group
STM32F072Vx STM32F072Rx STM32F072Cx
G1 3 3 3
G2 3 3 3
G3 3 3 2
G4 3 3 3
G5 3 3 3
G6 3 3 3
G7 3 0 0
G8 3 0 0
Number of capacitive
sensing channels

3.14 Timers and watchdogs

The STM32F072x8/xB devices include up to six general-purpose timers, two basic timers and an advanced control timer.
Number of capacitive sensing channels
24 18 17
Timer
type
Advanced
control
General
purpose
Basic
Tab le 7 compares the features of the different timers.
Timer
Counter
resolution
TIM1 16-bit
TIM2 32-bit
TIM3 16-bit
TIM14 16-bit Up
TIM15 16-bit Up
TIM16 TIM17
TIM6 TIM7
16-bit Up
16-bit Up

Table 7. Timer feature comparison

Counter
type
Up, down,
up/down
Up, down,
up/down
Up, down,
up/down
Prescaler
factor
integer from
1 to 65536
integer from
1 to 65536
integer from
1 to 65536
integer from
1 to 65536
integer from
1 to 65536
integer from
1 to 65536
integer from
1 to 65536
DMA
request
generation
Yes 4 3
Yes 4 -
Yes 4 -
No 1 -
Yes 2 1
Yes 1 1
Yes - -
Capture/compare
channels
Complementary
outputs
DS9826 Rev 6 21/128
27
Functional overview STM32F072x8 STM32F072xB

3.14.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:
input capture
output compare
PWM generation (edge or center-aligned modes)
one-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17)

There are six synchronizable general-purpose timers embedded in the STM32F072x8/xB devices (see PWM outputs, or as simple time base.
Tabl e 7 for differences). Each general-purpose timer can be used to generate
TIM2, TIM3
STM32F072x8/xB devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.
The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced­control timer via the Timer Link feature for synchronization or event chaining.
TIM2 and TIM3 both have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.
Their counters can be frozen in debug mode.
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.
Its counter can be frozen in debug mode.
TIM15, TIM16 and TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
22/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Functional overview
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate withTIM1 via the Timer Link feature for synchronization or event chaining.
TIM15 can be synchronized with TIM16 and TIM17.
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.
Their counters can be frozen in debug mode.

3.14.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.14.4 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.14.5 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.14.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:
a 24-bit down counter
autoreload capability
maskable system interrupt generation when the counter reaches 0
programmable clock source (HCLK or HCLK/8)

3.15 Real-time clock (RTC) and backup registers

The RTC and the five backup registers are supplied through a switch that takes power either on V registers used to store 20 bytes of user application data when V They are not reset by a system or power reset, or at wake up from Standby mode.
supply when present or through the V
DD
pin. The backup registers are five 32-bit
BAT
power is not present.
DD
DS9826 Rev 6 23/128
27
Functional overview STM32F072x8 STM32F072xB
The RTC is an independent BCD timer/counter. Its main features are the following:
calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
automatic correction for 28, 29 (leap year), 30, and 31 day of the month
programmable alarm with wake up from Stop and Standby mode capability
Periodic wakeup unit with programmable resolution and period.
on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize the RTC with a master clock
digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection
timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection
reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision
The RTC clock sources can be:
a 32.768 kHz external crystal
a resonator or oscillator
the internal low-power RC oscillator (typical frequency of 40 kHz)
the high-speed external clock divided by 32

3.16 Inter-integrated circuit interface (I2C)

Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s) with 20
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters.
Aspect Analog filter Digital filter
Pulse width of
suppressed spikes
Benefits Available in Stop mode
Drawbacks

Table 8. Comparison of I2C analog and digital filters

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
mA output drive on most of the associated I/Os.
50 ns
Variations depending on
temperature, voltage, process
Programmable length from 1 to 15
I2Cx peripheral clocks
–Extra filtering capability vs.
standard requirements
–Stable length
Wakeup from Stop on address
match is not available when digital
filter is enabled.
24/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Functional overview
verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.
The I2C peripherals can be served by the DMA controller.
Refer to Tab le 9 for the differences between I2C1 and I2C2.

Table 9. STM32F072x8/xB I2C implementation

I2C features
7-bit addressing mode X X
10-bit addressing mode X X
Standard mode (up to 100 kbit/s) X X
Fast mode (up to 400 kbit/s) X X
Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os X X
Independent clock X -
SMBus X -
Wakeup from STOP X -
1. X = supported.
(1)
I2C1 I2C2

3.17 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds four universal synchronous/asynchronous receivers/transmitters (USART1, USART2, USART3, USART4) which communicate at speeds of up to 6
They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.
The USART interfaces can be served by the DMA controller.
Table 10. STM32F072x8/xB USART implementation
USART modes/features
Hardware flow control for modem X X
Continuous communication using DMA X X
Multiprocessor communication X X
Synchronous mode X X
Smartcard mode X -
Single-wire half-duplex communication X X
(1)
USART1 and
USART2
Mbit/s.
USART3 and
USART4
DS9826 Rev 6 25/128
27
Functional overview STM32F072x8 STM32F072xB
Table 10. STM32F072x8/xB USART implementation (continued)
USART modes/features
IrDA SIR ENDEC block X -
LIN mode X -
Dual clock domain and wakeup from Stop mode X -
Receiver timeout interrupt X -
Modbus communication X -
Auto baud rate detection X -
Driver Enable X X
1. X = supported.
(1)
USART1 and
USART2
USART3 and
USART4
3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I
Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.
Two standard I2S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four different audio standards can operate as master or slave at half-duplex communication mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, they can output a clock for an external audio component at 256 times the sampling frequency.
2
S)

Table 11. STM32F072x8/xB SPI/I2S implementation

SPI features
(1)
SPI1 and SPI2
Hardware CRC calculation X
Rx/Tx FIFO X
NSS pulse mode X
2
S mode X
I
TI mode X
1. X = supported.

3.19 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory
26/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Functional overview
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception.

3.20 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.21 Universal serial bus (USB)

The STM32F072x8/xB embeds a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up-to 1 KB (the last 256 byte are used for CAN peripheral if enabled) and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal-less operation.

3.22 Clock recovery system (CRS)

The STM32F072x8/xB embeds a special block which allows automatic trimming of the internal 48 operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.
MHz oscillator to guarantee its optimal accuracy over the whole device

3.23 Serial wire debug port (SW-DP)

An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.
DS9826 Rev 6 27/128
27
MS31409V2
AHB2
0
1
2
3
4
5
6
7
0xFFFF FFFF
Peripherals
SRAM
Flash memory
Reserved
System memory
Option Bytes
0xE010 0000
Flash, system
memory or SRAM,
depending on BOOT
configuration
0x0000 0000
0xE000 0000
0xC000 0000
0xA000 0000
0x8000 0000
0x6000 0000
0x4000 0000
0x2000 0000
0x0000 0000
0x0800 0000
0x0802 0000
0x1FFF C800
0x1FFF F800
0x1FFF FFFF
0x0002 0000
Reserved
CODE
APB
APB
Reserved
0x4000 0000
0x4000 8000
0x4001 0000
0x4001 8000
Reserved
0x4002 0000
AHB1
0x4800 0000
Reserved
0x4800 17FF
0x4002 43FF
Cortex-M0 internal
peripherals
Reserved
0x1FFF FC00
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Memory mapping STM32F072x8 STM32F072xB

4 Memory mapping

To the difference of STM32F072xB memory map in Figure 3, the two bottom code memory spaces of STM32F072x8 end at 0x0000 FFFF and 0x0800 FFFF, respectively.

Figure 3. STM32F072xB memory map

28/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Memory mapping

Table 12. Peripheral register boundary addresses

Bus Boundary address Size Peripheral
- 0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved
0x4800 1400 - 0x4800 17FF 1 KB GPIOF
0x4800 1000 - 0x4800 13FF 1 KB GPIOE
0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD
AHB2
0x4800 0800 - 0x4800 0BFF 1 KB GPIOC
0x4800 0400 - 0x4800 07FF 1 KB GPIOB
0x4800 0000 - 0x4800 03FF 1 KB GPIOA
- 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved
0x4002 4000 - 0x4002 43FF 1 KB TSC
0x4002 3400 - 0x4002 3FFF 3 KB Reserved
0x4002 3000 - 0x4002 33FF 1 KB CRC
0x4002 2400 - 0x4002 2FFF 3 KB Reserved
AHB1
0x4002 2000 - 0x4002 23FF 1 KB Flash memory interface
0x4002 1400 - 0x4002 1FFF 3 KB Reserved
0x4002 1000 - 0x4002 13FF 1 KB RCC
0x4002 0400 - 0x4002 0FFF 3 KB Reserved
0x4002 0000 - 0x4002 03FF 1 KB DMA
- 0x4001 8000 - 0x4001 FFFF 32 KB Reserved
0x4001 5C00 - 0x4001 7FFF 9 KB Reserved
0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU
0x4001 4C00 - 0x4001 57FF 3 KB Reserved
0x4001 4800 - 0x4001 4BFF 1 KB TIM17
0x4001 4400 - 0x4001 47FF 1 KB TIM16
0x4001 4000 - 0x4001 43FF 1 KB TIM15
0x4001 3C00 - 0x4001 3FFF 1 KB Reserved
0x4001 3800 - 0x4001 3BFF 1 KB USART1
0x4001 3400 - 0x4001 37FF 1 KB Reserved
APB
0x4001 3000 - 0x4001 33FF 1 KB SPI1/I2S1
0x4001 2C00 - 0x4001 2FFF 1 KB TIM1
0x4001 2800 - 0x4001 2BFF 1 KB Reserved
0x4001 2400 - 0x4001 27FF 1 KB ADC
0x4001 0800 - 0x4001 23FF 7 KB Reserved
0x4001 0400 - 0x4001 07FF 1 KB EXTI
0x4001 0000 - 0x4001 03FF 1 KB SYSCFG + COMP
- 0x4000 8000 - 0x4000 FFFF 32 KB Reserved
DS9826 Rev 6 29/128
30
Memory mapping STM32F072x8 STM32F072xB
Table 12. Peripheral register boundary addresses (continued)
Bus Boundary address Size Peripheral
0x4000 7C00 - 0x4000 7FFF 1 KB Reserved
0x4000 7800 - 0x4000 7BFF 1 KB CEC
0x4000 7400 - 0x4000 77FF 1 KB DAC
0x4000 7000 - 0x4000 73FF 1 KB PWR
0x4000 6C00 - 0x4000 6FFF 1 KB CRS
0x4000 6800 - 0x4000 6BFF 1 KB Reserved
0x4000 6400 - 0x4000 67FF 1 KB BxCAN
0x4000 6000 - 0x4000 63FF 1 KB USB/CAN RAM
0x4000 5C00 - 0x4000 5FFF 1 KB USB
0x4000 5800 - 0x4000 5BFF 1 KB I2C2
0x4000 5400 - 0x4000 57FF 1 KB I2C1
0x4000 5000 - 0x4000 53FF 1 KB Reserved
0x4000 4C00 - 0x4000 4FFF 1 KB USART4
0x4000 4800 - 0x4000 4BFF 1 KB USART3
0x4000 4400 - 0x4000 47FF 1 KB USART2
APB
0x4000 3C00 - 0x4000 43FF 2 KB Reserved
0x4000 3800 - 0x4000 3BFF 1 KB SPI2
0x4000 3400 - 0x4000 37FF 1 KB Reserved
0x4000 3000 - 0x4000 33FF 1 KB IWDG
0x4000 2C00 - 0x4000 2FFF 1 KB WWDG
0x4000 2800 - 0x4000 2BFF 1 KB RTC
0x4000 2400 - 0x4000 27FF 1 KB Reserved
0x4000 2000 - 0x4000 23FF 1 KB TIM14
0x4000 1800 - 0x4000 1FFF 2 KB Reserved
0x4000 1400 - 0x4000 17FF 1 KB TIM7
0x4000 1000 - 0x4000 13FF 1 KB TIM6
0x4000 0800 - 0x4000 0FFF 2 KB Reserved
0x4000 0400 - 0x4000 07FF 1 KB TIM3
0x4000 0000 - 0x4000 03FF 1 KB TIM2
30/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Pinouts and pin descriptions
MSv33167V4
A
B
C
D
E
Top view
F
G
H
I/O supplied from VDDIO2
87654321 1211109
J
K
L
M
PE3
PE4
PC0
PF2
VSSA
PF3
VDDA
PE1
PE5
PE2
PE6
VBAT
PF9
PF10
NRST
PC1
PC3
PA0
PA1
PB8
PE0
PB9
VSS
NC
VDD
PC2
PA2
PA3
PA4
BOOT0
PB7
VDD
PA5
PA6
PA7
PD7
PB6
PB5
PC4
PC5
PB0
PD5
PD6
PB2
PB1
PB4
PD4
PE8
PE7
PB3
PD3
PD2
PD9
PE10
PE9
PA15
PD1
PD0
PD8
PE12
PE11
PA14
PC12
PC11
PC8
PA9
PD15
PD12
PB15
PB10
PE13
PA13
PC10
PF6
PA8
PC7
PD14
PD11
PB14
PB11
PE14
VDDIO2
PA12
PA11
PA10
PC9
PC6
PD13
PD10
PB13
PB12
PE15
VSS
VDD
PC13
PC14-
OSC32_
IN
PC15-
OSC32_
OUT
PF0-
OSC_
IN
PF1-
OSC_
OUT
VSS
UFBGA100

5 Pinouts and pin descriptions

Figure 4. UFBGA100 package pinout

DS9826 Rev 6 31/128
43
Pinouts and pin descriptions STM32F072x8 STM32F072xB
MSv31410V2
Top view
I/O supplied from VDDIO2
LQFP100
1
2
3
4
5
6
7
8
9
10
11
12
54
53
52
51
62
61
60
59
58
57
56
55
787679
77
84
82
80
878685
83
81
384037
39
28
34
36
41
26
27
33
35
13
14
15
16
32
293031
66
65
64
63
88
919089
17
18
19
20
21
22
23
24
25
464845
47
42
444943
50
71
70
69
68
67
75
74
73
72
93
969594
92
97
100
99
98
VDDIO2 VSS PF6 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12
PA3
VSS
VDD
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS
VDD
PE2 PE3 PE4 PE5 PE6
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PF9
PF10
PF0-OSC_IN
NRST
PC0 PC1 PC2 PC3
PF2
VSSA
PF3
VDDA
PA0 PA1 PA2
PC13
PF1-OSC_OUT
VDD
VSS
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14

Figure 5. LQFP100 package pinout

32/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Pinouts and pin descriptions
MSv39735V1
A
B
C
D
E
Top view
UFBGA64
F
G
H
I/O supplied from VDDIO2
87654321
PC14-
OSC32_
IN
VDDA
PC15-
OSC32_
OUT
PF0-
OSC_
IN
PF1-
OSC_
OUT
PC3
NRST
VSSA
VDD
PC2
PC13
PC1
PA1
PA0
VSS
VBAT
PA4
PA3
PB6
PB9
PB7
PC0
PB8
PA2
PA7
PA6
BOOT0
PB4
PB5
VSS
PA5
VDD
PB1
PC4
PB3
PB0
VDD
VSS
PD2
PC12
PC5
PA10
VDDIO2
VSS
PB2
PA15
PC11
PC6
PB11
PB10
PB15
PA14
PC10
PA9
PA8
PC7
PB14
PB13
PB12
PA13
PA12
PA11
PC9
PC8

Figure 6. UFBGA64 package pinout

DS9826 Rev 6 33/128
43
Pinouts and pin descriptions STM32F072x8 STM32F072xB
MSv31411V2
Top view
LQFP64
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
44
43
42
41
40
39
38
37
514952
50
57
55
53
605958
56
54
222421
23
28
18
20
252627
17
19
13
14
15
16
32
293031
48
47
46
45
61
646362
VBAT
PC14-OSC32_IN
PF0-OSC_IN
NRST
PC0 PC1 PC2 PC3
VSSA
VDDA
PA0 PA1 PA2
VDD
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
VDDIO2 VSS PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12
PC13
VSS
PF1-OSC_OUT
PC15-OSC32_OUT
PA5
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS
VDD
PA6
PA4
VDD
VSS
PA3
I/O supplied from VDDIO2
MSv31412V2
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
VBAT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PF0-OSC_IN
PF1-OSC_OUT
NRST VSSA VDDA
PA0 PA1 PA2
VDDIO2 VSS PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12
PA14
PA15
PB3
PB4
PB5
PB6
PB7
BOOT0
PB8
PB9
VSS
VDD
Top view
LQFP48
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
393740
38
45
43
41
484746
44
42
222421
23
16
18
20
131415
17
19
I/O supplied from VDDIO2

Figure 7. LQFP64 package pinout

Figure 8. LQFP48 package pinout

34/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Pinouts and pin descriptions
MSv32166V2
I/O supplied from VDDIO2
Top view
Exposed pad
E
d
UFQFPN48
484746454443424140
3
4
5
6
7
8
9
131415161718192021
10
11
222324
393837
12
1
2
36
35
34
33
32
31
30
29
28
27
26
25
VBAT
NRST
VSSA
VDDA
PA0
PA1
PC13
PC14-OSC32_IN
PF0-OSC_IN
PF1-OSC_OUT
PC15-OSC32_OUT
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS
VDD
VDDIO2
VSS
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
VSS
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
PA2
MSv32165V4
A
B
C
D
E
54321
Top view
WLCSP49
67
F
G
I/O supplied from VDDIO2
VDDVSS
VBAT
NC
PC14-
OSC32_
IN
PC15-
OSC32_
OUT
PF0-
OSC_
IN
PF1-
OSC_
OUT
BOOT0PB4PB3PA15PA14
VSS VDDIO2 PA13 PB5 PB8
PB9PB6PA12PA10PA11
PC13PB7VSSPA 9PA8
VSSA
PA2PA 3PB10PB12PB15
NRST
PB14 VDD PA7 PA6 PA5 PA0 VDDA
PB13 PB11 PB2 PB1 PB0 PA4 PA1

Figure 9. UFQFPN48 package pinout

xposed pa

Figure 10. WLCSP49 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document
versions.
DS9826 Rev 6 35/128
43
Pinouts and pin descriptions STM32F072x8 STM32F072xB
Pin name
I/O structure
Pin
functions

Table 13. Legend/abbreviations used in the pinout table

Name Abbreviation Definition
Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name
S Supply pin
Pin type
I Input-only pin
I/O Input / output pin
FT 5 V-tolerant I/O
FTf 5 V-tolerant I/O, FM+ capable
TTa 3.3 V-tolerant I/O directly connected to ADC
TC Standard 3.3 V I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes
Alternate functions
Additional
functions
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.
Functions selected through GPIOx_AFR registers
Functions directly selected/enabled through peripheral registers
UFBGA100
Pin numbers
LQFP100
UFBGA64
LQFP64
Table 14. STM32F072x8/xB pin definitions
Pin name
(function upon
reset)
WLCSP49
Pin
type
Notes
Alternate functions
I/O structure
Pin functions
Additional
functions
LQFP48/UFQFPN48
B2 1 - - - - PE2 I/O FT -
A1 2 - - - - PE3 I/O FT -
B1 3 - - - - PE4 I/O FT -
C2 4 - - - - PE5 I/O FT -
D2 5 - - - - PE6 I/O FT - TIM3_CH4
TSC_G7_IO1,
TIM3_ETR
TSC_G7_IO2,
TIM3_CH1
TSC_G7_IO3,
TIM3_CH2
TSC_G7_IO4,
TIM3_CH3
WKUP3,
RTC_TAMP3
E26B21 1B7 VBAT S - - Backup power supply
-
-
-
-
36/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Pinouts and pin descriptions
Table 14. STM32F072x8/xB pin definitions (continued)
UFBGA100
Pin numbers
LQFP100
UFBGA64
Pin name
(function upon
reset)
LQFP64
WLCSP49
Pin
type
I/O structure
Notes
Alternate functions
Pin functions
Additional
functions
LQFP48/UFQFPN48
WKUP2,
RTC_TAMP1,
RTC_TS,
C1 7 A2 2 2 D5 PC13 I/O TC
(1)
(2)
-
RTC_OUT
D1 8 A1 3 3 C7
PC14-
OSC32_IN
I/O TC
(1)
(2)
- OSC32_IN
(PC14)
E1 9 B1 4 4 C6
PC15-
OSC32_OUT
I/O TC
(1)
(2)
- OSC32_OUT
(PC15)
F2 10 - - - - PF9 I/O FT - TIM15_CH1 -
G2 11 - - - PF10 I/O FT - TIM15_CH2 -
F1 12 C1 5 5 D7
PF0-OSC_IN
(PF0)
I/O FT - CRS_ SYNC OSC_IN
G1 13 D1 6 6 D6
H2 14 E1 7 7 E7 NRST I/O RST -
PF1-OSC_OUT
(PF1)
I/O FT - - OSC_OUT
Device reset input / internal reset output
(active low)
H1 15 E3 8 - - PC0 I/O TTa - EVENTOUT ADC_IN10
J2 16 E2 9 - - PC1 I/O TTa - EVENTOUT ADC_IN11
J3 17 F2 10 - - PC2 I/O TTa -
K2 18 G1 11 - - PC3 I/O TTa -
SPI2_MISO, I2S2_MCK,
EVENTOUT
SPI2_MOSI, I2S2_SD,
EVENTOUT
ADC_IN12
ADC_IN13
J1 19 - - - - PF2 I/O FT - EVENTOUT WKUP8
K1 20 F1 12 8 E6 VSSA S - - Analog ground
21 H1 13 9 F7 VDDA S - - Analog power supply
M1
L1 22 - - - - PF3 I/O FT - EVENTOUT
L2 23 G2 14 10 F6 PA0 I/O TTa -
USART2_CTS,
TIM2_CH1_ETR,
COMP1_OUT, TSC_G1_IO1,
USART4_TX
RTC_ TAMP2,
WKUP1,
ADC_IN0,
COMP1_INM6
DS9826 Rev 6 37/128
43
Pinouts and pin descriptions STM32F072x8 STM32F072xB
Table 14. STM32F072x8/xB pin definitions (continued)
Pin numbers
Pin name
(function upon
reset)
LQFP100
UFBGA100
M2 24 H2 15 11 G7 PA1 I/O TTa -
K3 25 F3 16 12 E5 PA2 I/O TTa -
L3 26 G3 17 13 E4 PA3 I/O TTa -
LQFP64
UFBGA64
WLCSP49
LQFP48/UFQFPN48
Pin
type
I/O structure
Pin functions
Notes
Alternate functions
USART2_RTS,
TIM2_CH2, TIM15_CH1N, TSC_G1_IO2,
USART4_RX,
EVENTOUT
USART2_TX,
COMP2_OUT,
TIM2_CH3,
TIM15_CH1,
TSC_G1_IO3
USART2_RX,TIM2_CH4,
TIM15_CH2,
TSC_G1_IO4
Additional
functions
ADC_IN1,
COMP1_INP
ADC_IN2,
COMP2_INM6,
WKUP4
ADC_IN3,
COMP2_INP
D3 27 C2 18 - - VSS S - - Ground
H3 28 D2 19 - - VDD S - - Digital power supply
M3 29 H3 20 14 G6 PA4 I/O TTa -
K4 30 F4 21 15 F5 PA5 I/O TTa -
L4 31 G4 22 16 F4 PA6 I/O TTa -
M4 32 H4 23 17 F3 PA7 I/O TTa -
SPI1_NSS, I2S1_WS,
TIM14_CH1,
TSC_G2_IO1,
USART2_CK
SPI1_SCK, I2S1_CK,
CEC,
TIM2_CH1_ETR,
TSC_G2_IO2
SPI1_MISO, I2S1_MCK,
TIM3_CH1, TIM1_BKIN,
TIM16_CH1, COMP1_OUT, TSC_G2_IO3,
EVENTOUT,
USART3_CTS
SPI1_MOSI, I2S1_SD,
TIM3_CH2, TIM14_CH1,
TIM1_CH1N,
TIM17_CH1, COMP2_OUT, TSC_G2_IO4,
EVENTOUT
COMP1_INM4, COMP2_INM4,
DAC_OUT1
COMP1_INM5, COMP2_INM5,
DAC_OUT2
ADC_IN4,
ADC_IN5,
ADC_IN6
ADC_IN7
38/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Pinouts and pin descriptions
Table 14. STM32F072x8/xB pin definitions (continued)
UFBGA100
Pin numbers
LQFP100
UFBGA64
Pin name
(function upon
reset)
LQFP64
WLCSP49
Pin
type
I/O structure
Notes
Alternate functions
Pin functions
Additional
functions
LQFP48/UFQFPN48
K5 33 H5 24 - - PC4 I/O TTa -
L5 34 H6 25 - - PC5 I/O TTa -
EVENTOUT,
USART3_TX
TSC_G3_IO1,
USART3_RX
ADC_IN14
ADC_IN15,
WKUP5
TIM3_CH3, TIM1_CH2N,
M5 35 F5 26 18 G5 PB0 I/O TTa -
TSC_G3_IO2,
EVENTOUT,
ADC_IN8
USART3_CK
TIM3_CH4,
USART3_RTS,
M6 36 G5 27 19 G4 PB1 I/O TTa -
TIM14_CH1,
ADC_IN9
TIM1_CH3N,
TSC_G3_IO3
L6 37 G6 28 20 G3 PB2 I/O FT - TSC_G3_IO4 -
M7 38 - - - - PE7 I/O FT - TIM1_ETR -
L7 39 - - - - PE8 I/O FT - TIM1_CH1N -
M840---- PE9 I/OFT- TIM1_CH1 -
L8 41 - - - - PE10 I/O FT - TIM1_CH2N -
M942---- PE11 I/OFT- TIM1_CH2 -
L9 43 - - - - PE12 I/O FT -
M10 44 - - - - PE13 I/O FT -
M11 45 - - - - PE14 I/O FT -
M12 46 - - - - PE15 I/O FT -
SPI1_NSS, I2S1_WS,
TIM1_CH3N
SPI1_SCK, I2S1_CK,
TIM1_CH3
SPI1_MISO, I2S1_MCK,
TIM1_CH4
SPI1_MOSI, I2S1_SD,
TIM1_BKIN
-
-
-
-
SPI2_SCK, I2C2_SCL,
L10 47 G7 29 21 E3 PB10 I/O FT -
USART3_TX, CEC,
-
TSC_SYNC, TIM2_CH3
USART3_RX,
TIM2_CH4,
L1148H730 22G2 PB11 I/O FT -
EVENTOUT,
-
TSC_G6_IO1,
I2C2_SDA
F1249D531 23D3 VSS S - - Ground
DS9826 Rev 6 39/128
43
Pinouts and pin descriptions STM32F072x8 STM32F072xB
Table 14. STM32F072x8/xB pin definitions (continued)
UFBGA100
Pin numbers
LQFP100
UFBGA64
Pin name
(function upon
reset)
LQFP64
WLCSP49
Pin
type
I/O structure
Notes
Alternate functions
Pin functions
Additional
LQFP48/UFQFPN48
G12 50 E5 32 24 F2 VDD S - - Digital power supply
TIM1_BKIN,
TIM15_BKIN,
L12 51 H8 33 25 E2 PB12 I/O FT -
SPI2_NSS, I2S2_WS,
USART3_CK,
TSC_G6_IO2,
EVENTOUT
SPI2_SCK, I2S2_CK,
I2C2_SCL,
K12 52 G8 34 26 G1 PB13 I/O FTf -
USART3_CTS,
TIM1_CH1N,
TSC_G6_IO3
SPI2_MISO, I2S2_MCK,
I2C2_SDA,
K11 53 F8 35 27 F1 PB14 I/O FTf -
USART3_RTS,
TIM1_CH2N,
TIM15_CH1,
TSC_G6_IO4
SPI2_MOSI, I2S2_SD,
K10 54 F7 36 28 E1 PB15 I/O FT -
TIM1_CH3N, TIM15_CH1N,
RTC_REFIN
TIM15_CH2
functions
-
-
-
WKUP7,
K9 55 - - - - PD8 I/O FT - USART3_TX -
K8 56 - - - - PD9 I/O FT - USART3_RX -
J12 57 - - - - PD10 I/O FT - USART3_CK -
J11 58 - - - - PD11 I/O FT - USART3_CTS -
J10 59 - - - - PD12 I/O FT -
USART3_RTS,
TSC_G8_IO1
H12 60 - - - - PD13 I/O FT - TSC_G8_IO2 -
H11 61 - - - - PD14 I/O FT - TSC_G8_IO3 -
H10 62 - - - - PD15 I/O FT -
E12 63 F6 37 - - PC6 I/O FT
E1164E738 - - PC7 I/O FT
E1065E839 - - PC8 I/O FT
D1266D840 - - PC9 I/O FT
(3)
(3)
(3)
(3)
TSC_G8_IO4,
CRS_SYNC
TIM3_CH1 -
TIM3_CH2 -
TIM3_CH3 -
TIM3_CH4 -
40/128 DS9826 Rev 6
-
-
STM32F072x8 STM32F072xB Pinouts and pin descriptions
Table 14. STM32F072x8/xB pin definitions (continued)
UFBGA100
Pin numbers
LQFP100
UFBGA64
Pin name
(function upon
reset)
LQFP64
WLCSP49
Pin
type
I/O structure
Notes
Alternate functions
Pin functions
LQFP48/UFQFPN48
USART1_CK,
D1167D741 29D1 PA8 I/O FT
(3)
TIM1_CH1,
EVENTOUT, MCO,
CRS_SYNC
USART1_TX,
D1068C74230D2 PA9 I/O FT
(3)
TIM1_CH2,
TIM15_BKIN,
TSC_G4_IO1
USART1_RX,
C1269C64331C2 PA10 I/O FT
(3)
TIM1_CH3,
TIM17_BKIN,
TSC_G4_IO2
CAN_RX,
USART1_CTS,
B1270C844 32C1 PA11 I/O FT
(3)
TIM1_CH4, COMP1_OUT, TSC_G4_IO3,
EVENTOUT
CAN_TX, USART1_RTS,
TIM1_ETR, COMP2_OUT,
A1271B84533C3 PA12 I/O FT
(3)
TSC_G4_IO4,
EVENTOUT
A1172A84634B3 PA13 I/O FT
C11 73 - - - - PF6 I/O FT
(3)
(4)
(3)
IR_OUT, SWDIO,
USB_NOE
--
F1174D64735B1 VSS S - - Ground
G11 75 E6 48 36 B2 VDDIO2 S - - Digital power supply
(3)
A1076A74937A1 PA14 I/O FT
USART2_TX, SWCLK -
(4)
Additional
functions
-
-
-
USB_DM
USB_DP
-
A9 77 A6 50 38 A2 PA15 I/O FT
B1178B751 - - PC10 I/O FT
DS9826 Rev 6 41/128
SPI1_NSS, I2S1_WS,
(3)
USART2_RX,
USART4_RTS,
TIM2_CH1_ETR,
EVENTOUT
(3)
USART3_TX,
USART4_TX
-
-
43
Pinouts and pin descriptions STM32F072x8 STM32F072xB
Table 14. STM32F072x8/xB pin definitions (continued)
Pin numbers
UFBGA100
LQFP100
LQFP64
UFBGA64
Pin name
(function upon
reset)
WLCSP49
Pin
type
Notes
I/O structure
LQFP48/UFQFPN48
C1079B652 - - PC11 I/O FT
B1080C553 - - PC12 I/O FT
C981---- PD0 I/OFT
B982---- PD1 I/OFT
C8 83 B5 54 - - PD2 I/O FT
(3)
(3)
(3)
(3)
(3)
B884---- PD3 I/OFT-
B785---- PD4 I/OFT-
Pin functions
Alternate functions
USART3_RX,
USART4_RX
USART3_CK,
USART4_CK
SPI2_NSS, I2S2_WS,
CAN_RX
SPI2_SCK, I2S2_CK,
CAN_TX
USART3_RTS,
TIM3_ETR
SPI2_MISO, I2S2_MCK,
USART2_CTS
SPI2_MOSI, I2S2_SD,
USART2_RTS
Additional
functions
-
-
-
-
-
-
-
A6 86 - - - - PD5 I/O FT - USART2_TX -
B6 87 - - - - PD6 I/O FT - USART2_RX -
A5 88 - - - - PD7 I/O FT - USART2_CK -
SPI1_SCK, I2S1_CK,
A8 89 A5 55 39 A3 PB3 I/O FT -
TIM2_CH2, TSC_G5_IO1,
EVENTOUT
SPI1_MISO, I2S1_MCK,
TIM17_BKIN,
A7 90 A4 56 40 A4 PB4 I/O FT -
TIM3_CH1, TSC_G5_IO2,
EVENTOUT
SPI1_MOSI, I2S1_SD,
C5 91 C4 57 41 B4 PB5 I/O FT -
I2C1_SMBA,
TIM16_BKIN,
WKUP6
TIM3_CH2
I2C1_SCL, USART1_TX,
B5 92 D3 58 42 C4 PB6 I/O FTf -
TIM16_CH1N,
TSC_G5_I03
-
-
-
42/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Pinouts and pin descriptions
Table 14. STM32F072x8/xB pin definitions (continued)
UFBGA100
Pin numbers
LQFP100
UFBGA64
Pin name
(function upon
reset)
LQFP64
WLCSP49
Pin
type
I/O structure
Notes
Alternate functions
Pin functions
Additional
functions
LQFP48/UFQFPN48
I2C1_SDA,
USART1_RX,
B4 93 C3 59 43 D4 PB7 I/O FTf -
USART4_CTS,
TIM17_CH1N,
TSC_G5_IO4
A4 94 B4 60 44 A5 BOOT0 I B - Boot memory selection
I2C1_SCL, CEC,
A3 95 B3 61 45 B5 PB8 I/O FTf -
TIM16_CH1, TSC_SYNC,
CAN_RX
SPI2_NSS, I2S2_WS,
I2C1_SDA, IR_OUT,
B3 96 A3 62 46 C5 PB9 I/O FTf -
TIM17_CH1,
EVENTOUT,
CAN_TX
C3 97 - - - - PE0 I/O FT - EVENTOUT, TIM16_CH1 -
A2 98 - - - - PE1 I/O FT - EVENTOUT, TIM17_CH1 -
-
-
-
D3 99 D4 63 47 A6 VSS S - - Ground
C4 100 E4 64 48 A7 VDD S - - Digital power supply
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual.
3. PC6, PC7, PC8, PC9, PA8, PA9, PA10, PA11, PA12, PA13, PF6, PA14, PA15, PC10, PC11, PC12, PD0, PD1 and PD2 I/Os are supplied by VDDIO2.
4. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated.
DS9826 Rev 6 43/128
43
44/128 DS9826 Rev 6

Table 15. Alternate functions selected through GPIOA_AFR registers for port A

Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
PA0 - USART2_CTS TIM2_CH1_ETR TSC_G1_IO1 USART4_TX - - COMP1_OUT
PA1 EVENTOUT USART2_RTS TIM2_CH2 TSC_G1_IO2 USART4_RX TIM15_CH1N - -
PA2 TIM15_CH1 USART2_TX TIM2_CH3 TSC_G1_IO3 - - - COMP2_OUT
PA3 TIM15_CH2 USART2_RX TIM2_CH4 TSC_G1_IO4 - - - -
PA4 SPI1_NSS, I2S1_WS USART2_CK - TSC_G2_IO1 TIM14_CH1 - - -
PA5 SPI1_SCK, I2S1_CK CEC TIM2_CH1_ETR TSC_G2_IO2 - - - -
PA6 SPI1_MISO, I2S1_MCK TIM3_CH1 TIM1_BKIN TSC_G2_IO3 USART3_CTS TIM16_CH1 EVENTOUT COMP1_OUT
PA7 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM1_CH1N TSC_G2_IO4 TIM14_CH1 TIM17_CH1 EVENTOUT COMP2_OUT
PA8 MCO USART1_CK TIM1_CH1 EVENTOUT CRS_SYNC - - -
PA9 TIM15_BKIN USART1_TX TIM1_CH2 TSC_G4_IO1 - - - -
PA10 TIM17_BKIN USART1_RX TIM1_CH3 TSC_G4_IO2 - - - -
PA11 EVENTOUT USART1_CTS TIM1_CH4 TSC_G4_IO3 CAN_RX - - COMP1_OUT
PA12 EVENTOUT USART1_RTS TIM1_ETR TSC_G4_IO4 CAN_TX - - COMP2_OUT
PA13 SWDIO IR_OUT USB_NOE - - - - -
PA14 SWCLK USART2_TX - - - - - -
PA15 SPI1_NSS, I2S1_WS USART2_RX TIM2_CH1_ETR EVENTOUT USART4_RTS - - -
STM32F072x8 STM32F072xB
DS9826 Rev 6 45/128

Table 16. Alternate functions selected through GPIOB_AFR registers for port B

Pin name AF0 AF1 AF2 AF3 AF4 AF5
PB0 EVENTOUT TIM3_CH3 TIM1_CH2N TSC_G3_IO2 USART3_CK -
PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N TSC_G3_IO3 USART3_RTS -
PB2 - - - TSC_G3_IO4 - -
PB3 SPI1_SCK, I2S1_CK EVENTOUT TIM2_CH2 TSC_G5_IO1 - -
PB4 SPI1_MISO, I2S1_MCK TIM3_CH1 EVENTOUT TSC_G5_IO2 - TIM17_BKIN
PB5 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM16_BKIN I2C1_SMBA - -
PB6 USART1_TX I2C1_SCL TIM16_CH1N TSC_G5_IO3 - -
PB7 USART1_RX I2C1_SDA TIM17_CH1N TSC_G5_IO4 USART4_CTS -
PB8 CEC I2C1_SCL TIM16_CH1 TSC_SYNC CAN_RX -
PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT CAN_TX SPI2_NSS, I2S2_WS
PB10 CEC I2C2_SCL TIM2_CH3 TSC_SYNC USART3_TX SPI2_SCK, I2S2_CK
PB11 EVENTOUT I2C2_SDA TIM2_CH4 TSC_G6_IO1 USART3_RX -
PB12 SPI2_NSS, I2S2_WS EVENTOUT TIM1_BKIN TSC_G6_IO2 USART3_CK TIM15_BKIN
PB13 SPI2_SCK, I2S2_CK - TIM1_CH1N TSC_G6_IO3 USART3_CTS I2C2_SCL
PB14 SPI2_MISO, I2S2_MCK TIM15_CH1 TIM1_CH2N TSC_G6_IO4 USART3_RTS I2C2_SDA
PB15 SPI2_MOSI, I2S2_SD TIM15_CH2 TIM1_CH3N TIM15_CH1N - -
STM32F072x8 STM32F072xB
STM32F072x8 STM32F072xB

Table 17. Alternate functions selected through GPIOC_AFR registers for port C

Pin name AF0 AF1
PC0 EVENTOUT -
PC1 EVENTOUT -
PC2 EVENTOUT SPI2_MISO, I2S2_MCK
PC3 EVENTOUT SPI2_MOSI, I2S2_SD
PC4 EVENTOUT USART3_TX
PC5 TSC_G3_IO1 USART3_RX
PC6 TIM3_CH1 -
PC7 TIM3_CH2 -
PC8 TIM3_CH3 -
PC9 TIM3_CH4 -
PC10 USART4_TX USART3_TX
PC11 USART4_RX USART3_RX
PC12 USART4_CK USART3_CK
PC13 - -
PC14 - -
PC15 - -

Table 18. Alternate functions selected through GPIOD_AFR registers for port D

Pin name AF0 AF1
PD0 CAN_RX SPI2_NSS, I2S2_WS
PD1 CAN_TX SPI2_SCK, I2S2_CK
PD2 TIM3_ETR USART3_RTS
PD3 USART2_CTS SPI2_MISO, I2S2_MCK
PD4 USART2_RTS SPI2_MOSI, I2S2_SD
PD5 USART2_TX -
PD6 USART2_RX -
PD7 USART2_CK -
PD8 USART3_TX -
PD9 USART3_RX -
PD10 USART3_CK -
PD11 USART3_CTS -
PD12 USART3_RTS TSC_G8_IO1
PD13 - TSC_G8_IO2
PD14 - TSC_G8_IO3
PD15 CRS_SYNC TSC_G8_IO4
46/128 DS9826 Rev 6
STM32F072x8 STM32F072xB

Table 19. Alternate functions selected through GPIOE_AFR registers for port E

Pin name AF0 AF1
PE0 TIM16_CH1 EVENTOUT
PE1 TIM17_CH1 EVENTOUT
PE2 TIM3_ETR TSC_G7_IO1
PE3 TIM3_CH1 TSC_G7_IO2
PE4 TIM3_CH2 TSC_G7_IO3
PE5 TIM3_CH3 TSC_G7_IO4
PE6 TIM3_CH4 -
PE7 TIM1_ETR -
PE8 TIM1_CH1N -
PE9 TIM1_CH1 -
PE10 TIM1_CH2N -
PE11 TIM1_CH2 -
PE12 TIM1_CH3N SPI1_NSS, I2S1_WS
PE13 TIM1_CH3 SPI1_SCK, I2S1_CK
PE14 TIM1_CH4 SPI1_MISO, I2S1_MCK
PE15 TIM1_BKIN SPI1_MOSI, I2S1_SD

Table 20. Alternate functions available on port F

Pin name AF
PF0 CRS_SYNC
PF1 -
PF2 EVENTOUT
PF3 EVENTOUT
PF6 -
PF9 TIM15_CH1
PF10 TIM15_CH2
DS9826 Rev 6 47/128
47
Electrical characteristics STM32F072x8 STM32F072xB
MS19210V1
MCU pin
C = 50 pF
MS19211V1
MCU pin
V
IN

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3

6.1.2 Typical values

= 25 °C and TA = TAmax (given by
A
).
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = V are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 11.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 12.
Figure 11. Pin loading conditions Figure 12. Pin input voltage
= 3.3 V. Th ey
DDA
48/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
V
DDIO2
V
DD
MSv32190V1
Level shifter
IO
logic
Kernel logic (CPU, Digital & Memories)
Backup circuitry
(LSE, RTC,
Backup registers)
IN
OUT
Regulator
GPIOs
1.65 – 3.6 V
IN
OUT
GPIOs
3 x 100 nF
+1 x 4.7 μF
100 nF
Level shifter
IO
logic
+4.7 μF
V
DDIO2
V
SS
3 x V
SS
3 x V
DD
V
BAT
V
CORE
Power switch
V
DDIO2
V
DDIO1
ADC/ DAC
Analog:
(RCs, PLL, …)
V
REF+
V
REF-
V
DDA
10 nF +1 μF
V
DDA
V
SSA

6.1.6 Power supply scheme

Figure 13. Power supply scheme
Caution: Each power supply pair (V
capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.
DD/VSS
, V
DDA/VSSA
etc.) must be decoupled with filtering ceramic
DS9826 Rev 6 49/128
99
Electrical characteristics STM32F072x8 STM32F072xB
MS31999V2
V
BAT
V
DD
V
DDA
I
DD
I
DDA
I
DD_VBAT
V
DDIO2

6.1.7 Current consumption measurement

Figure 14. Current consumption measurement scheme
50/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Tab le 21: Voltage characteristics,
Tab le 22: Current characteristics and Table 23: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 21. Voltage characteristics

Symbol Ratings Min Max Unit
(1)
V
DD–VSS
V
DDIO2–VSS
V
DDA–VSS
V
DD–VDDA
V
BAT–VSS
(2)
V
IN
External main supply voltage - 0.3 4.0 V
External I/O supply voltage - 0.3 4.0 V
External analog supply voltage - 0.3 4.0 V
Allowed voltage difference for VDD > V
-0.4V
DDA
External backup supply voltage - 0.3 4.0 V
Input voltage on FT and FTf pins V
Input voltage on TTa pins V
- 0.3 V
SS
- 0.3 4.0 V
SS
DDIOx
+ 4.0
(3)
BOOT0 0 9.0 V
Input voltage on any other pin VSS - 0.3 4.0 V
| Variations between different V
|V
DDx
|V
- VSS|
SSx
V
ESD(HBM)
1. All main power (VDD, V supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 22: Current characteristics for the maximum allowed injected current values.
3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V.
Variations between all the different ground pins
Electrostatic discharge voltage (human body model)
) and ground (VSS, V
DDA
power pins - 50 mV
DD
-50mV
see Section 6.3.12: Electrical
sensitivity characteristics
) pins must always be connected to the external power
SSA
V
-
DS9826 Rev 6 51/128
99
Electrical characteristics STM32F072x8 STM32F072xB

Table 22. Current characteristics

Symbol Ratings Max. Unit
(1)
(1)
(1)
(1)
120
-120
100
-100
I
VDD
I
VSS
I
VDD(PIN)
I
VSS(PIN)
Total current into sum of all VDD power lines (source)
Total current out of sum of all VSS ground lines (sink)
Maximum current into each VDD power pin (source)
Maximum current out of each VSS ground pin (sink)
Output current sunk by any I/O and control pin 25
I
IO(PIN)
I
IO(PIN)
Output current source by any I/O and control pin -25
Total output current sunk by sum of all I/Os and control pins
Total output current sourced by sum of all I/Os and control pins
(2)
(2)
80
-80
mA
Total output current sourced by sum of all I/Os supplied by VDDIO2 -40
Injected current on B, FT and FTf pins -5/+0
(3)
I
INJ(PIN)
I
INJ(PIN)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
3. A positive injection is induced by V exceeded. Refer to Table 21: Voltage characteristics for the maximum allowed input voltage values.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
5. On these I/Os, a positive injection is induced by V device. See note
6. When several inputs are submitted to a current injection, the maximum negative injected currents (instantaneous values).
Injected current on TC and RST pin ± 5
Injected current on TTa pins
Total injected current (sum of all I/O and control pins)
> V
IN
DDIOx
(2)
below Table 59: ADC accuracy.
(5)
(6)
while a negative injection is induced by VIN < VSS. I
> V
IN
. Negative injection disturbs the analog performance of the
DDA
I
is the absolute sum of the positive and
INJ(PIN)
INJ(PIN)
(4)
± 5
± 25
must never be

Table 23. Thermal characteristics

Symbol Ratings Value Unit
T
STG
T
J
Storage temperature range –65 to +150 °C
Maximum junction temperature 150 °C
52/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics

6.3 Operating conditions

6.3.1 General operating conditions

Table 24. General operating conditions
Symbol Parameter Conditions Min Max Unit
f
HCLK
f
PCLK
V
V
DDIO2
V
V
V
DD
DDA
BAT
IN
Internal AHB clock frequency - 0 48
MHz
Internal APB clock frequency - 0 48
Standard operating voltage - 2.0 3.6 V
I/O supply voltage
Analog operating voltage (ADC and DAC not used)
Analog operating voltage (ADC and DAC used)
Must not be supplied if V is not present
Must have a potential equal to or higher than V
DD
DD
1.65 3.6 V
V
DD
3.6
2.4 3.6
Backup operating voltage - 1.65 3.6 V
TC and RST I/O –0.3 V
TTa I/O –0.3 V
I/O input voltage
FT and FTf I/O –0.3 5.5
DDIOx
DDA
+0.3
+0.3
(1)
(1)
V
V
BOOT0 0 5.5
UFBGA100 - 364
LQFP100 - 476
Power dissipation at T
P
D
for suffix 6 or T
(2)
suffix 7
A
= 85 °C
A
= 105 °C for
UFBGA64 - 308
LQFP64 - 455
LQFP48 - 370
mW
UFQFPN48 - 625
WLCSP49 - 408
Ambient temperature for the suffix 6 version
A
T
Ambient temperature for the suffix 7 version
Maximum power dissipation –40 85
Low power dissipation
Maximum power dissipation –40 105
Low power dissipation
Suffix 6 version –40 105
T
J Junction temperature range
Suffix 7 version –40 125
1. For operation with a voltage higher than V
is lower, higher PD values are allowed as long as TJ does not exceed T
2. If T
A
3. In low power dissipation state, T
Thermal characteristics).
can be extended to this range as long as TJ does not exceed T
A
+ 0.3 V, the internal pull-up resistor must be disabled.
DDIOx
DS9826 Rev 6 53/128
(3)
(3)
. See Section 7.8: Thermal characteristics.
Jmax
–40 105
–40 125
(see Section 7.8:
Jmax
°C
°C
°C
99
Electrical characteristics STM32F072x8 STM32F072xB

6.3.2 Operating conditions at power-up / power-down

The parameters given in Tab le 25 are derived from tests performed under the ambient temperature condition summarized in Tab le 24.
Symbol Parameter Conditions Min Max Unit
Table 25. Operating conditions at power-up / power-down
t
VDD
t
VDDA
VDD rise time rate
-
V
fall time rate 20
DD
V
rise time rate
DDA
V
fall time rate 20
DDA
-
0
0

6.3.3 Embedded reset and power control block characteristics

The parameters given in Tab le 26 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating
conditions.
V
t
RSTTEMPO
1. The PDR detector monitors VDD and also V monitors only VDD.
2. The product behavior is guaranteed by design down to the minimum V
3. Data based on characterization results, not tested in production.
4. Guaranteed by design, not tested in production.
Table 26. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
POR/PDR
V
PDRhyst
Power on/power down
(1)
reset threshold
Falling edge
Rising edge 1.84
(2)
PDR hysteresis - - 40 - mV
(4)
Reset temporization - 1.50 2.50 4.50 ms
(if kept enabled in the option bytes). The POR detector
DDA
1.80 1.88
(3)
value.
POR/PDR
1.92 2.00 V
1.96
(3)
µs/V
V
Table 27. Programmable voltage detector characteristics
Symbol Parameter Conditions Min Typ Max Unit
V
V
V
V
PVD0
PVD1
PVD2
PVD3
PVD threshold 0
PVD threshold 1
PVD threshold 2
PVD threshold 3
54/128 DS9826 Rev 6
Rising edge 2.1 2.18 2.26 V
Falling edge 2 2.08 2.16 V
Rising edge 2.19 2.28 2.37 V
Falling edge 2.09 2.18 2.27 V
Rising edge 2.28 2.38 2.48 V
Falling edge 2.18 2.28 2.38 V
Rising edge 2.38 2.48 2.58 V
Falling edge 2.28 2.38 2.48 V
STM32F072x8 STM32F072xB Electrical characteristics
Table 27. Programmable voltage detector characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
V
PVD4
V
PVD5
V
PVD6
V
PVD7
V
PVDhyst
I
DD(PVD)
1. Guaranteed by design, not tested in production.
PVD threshold 4
PVD threshold 5
PVD threshold 6
PVD threshold 7
(1)
PVD hysteresis - - 100 - mV
PVD current consumption - - 0.15 0.26

6.3.4 Embedded reference voltage

The parameters given in Tab le 28 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 24: General operating
conditions.
Symbol Parameter Conditions Min Typ Max Unit
Table 28. Embedded internal reference voltage
Rising edge 2.47 2.58 2.69 V
Falling edge 2.37 2.48 2.59 V
Rising edge 2.57 2.68 2.79 V
Falling edge 2.47 2.58 2.69 V
Rising edge 2.66 2.78 2.9 V
Falling edge 2.56 2.68 2.8 V
Rising edge 2.76 2.88 3 V
Falling edge 2.66 2.78 2.9 V
(1)
µA
V
REFINT
t
START
Internal reference voltage –40 °C < TA < +105 °C 1.2 1.23 1.25 V
ADC_IN17 buffer startup time
ADC sampling time when
t
S_vrefint
reading the internal reference voltage
Internal reference voltage
V
REFINT
spread over the temperature range
T
Coeff
1. Guaranteed by design, not tested in production.
Temperature coefficient -

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 14: Current consumption
measurement scheme.
10
100
(1)
(1)
(1)
---10
-
V
= 3 V - -
DDA
4
- 100
(1)
-- µs
(1)
-
µs
mV
ppm/°C
DS9826 Rev 6 55/128
99
Electrical characteristics STM32F072x8 STM32F072xB
All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted to the f
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled f
PCLK
= f
HCLK
The parameters given in Tab le 29 to Ta bl e 31 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Tab le 24: General
operating conditions.
Table 29. Typical and maximum current consumption from VDD supply at VDD = 3.6 V
All peripherals enabled All peripherals disabled
HCLK
frequency:
Symbol
I
DD
Conditions f
Parameter
HSE bypass,
HSE bypass,
HSI clock,
Supply current in Run mode,
code executing from Flash memory
HSI clock,
HCLK
Typ
Max @ T
(1)
A
Max @ T
Typ
(1)
A
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
HSI48 48 MHz 24.3 26.9 27.2 27.9 13.1 14.8 14.9 15.5
48 MHz 24.1 26.8 27.0 27.7 13.0 14.6 14.8 15.4
PLL on
32 MHz 16.0 18.3 18.6 19.2 8.76 9.56 9.73 10.6
24 MHz 12.3 13.7 14.3 14.7 7.36 7.94 8.37 8.81
8 MHz 4.52 5.25 5.28 5.61 2.89 3.17 3.26 3.34
PLL off
1 MHz 1.25 1.39 1.58 1.87 0.93 1.06 1.15 1.34
48 MHz 24.1 27.1 27.6 27.8 12.9 14.7 14.9 15.5
PLL on
32 MHz 16.1 18.2 18.9 19.3 8.82 9.69 9.83 10.7
24 MHz 12.4 14.0 14.4 14.8 7.31 7.92 8.34 8.75
PLL off
8 MHz 4.52 5.25 5.35 5.61 2.87 3.16 3.25 3.33
Unit
mA
56/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
Table 29. Typical and maximum current consumption from VDD supply at VDD = 3.6 V (continued)
All peripherals enabled All peripherals disabled
Symbol
I
DD
Conditions f
Parameter
HSE bypass,
HSE bypass,
HSI clock,
code executing from RAM
Supply current in Run mode,
HSI clock,
HSE bypass,
HSE bypass,
HCLK
Typ
Max @ T
(1)
A
Max @ T
Typ
(1)
A
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
HSI48 48 MHz 23.1 25.4 25.8 26.6 12.8 13.5 13.7 13.9
PLL on
(2)
48 MHz 23.0 25.3
25.7 26.5
32 MHz 15.4 17.3 17.8 18.3 7.96 8.92 9.17 9.73
(2)
12.6 13.3
(2)
13.5 13.8
24 MHz 11.4 12.9 13.5 13.7 6.48 8.04 8.23 8.41
8 MHz 4.21 4.6 4.89 5.25 2.07 2.3 2.35 2.94
PLL off
1 MHz 0.78 0.9 0.92 1.15 0.36 0.48 0.59 0.82
48 MHz 23.1 24.5 25.0 25.2 12.6 13.7 13.9 14.0
PLL on
32 MHz 15.4 17.4 17.7 18.2 8.05 8.85 9.16 9.94
24 MHz 11.5 13.0 13.6 13.9 6.49 8.06 8.21 8.47
PLL off
8 MHz 4.34 4.75 5.03 5.41 2.11 2.36 2.38 2.98
HSI48 48 MHz 15.1 16.6 16.8 17.5 3.08 3.43 3.56 3.61
PLL on
(2)
48 MHz 15.0 16.5
16.7 17.3
32 MHz 9.9 11.4 11.6 11.9 2.0 2.24 2.32 2.49
(2)
2.93 3.28
(2)
3.41 3.46
24 MHz 7.43 8.17 8.71 8.82 1.63 1.82 1.88 1.9
8 MHz 2.83 3.09 3.26 3.66 0.76 0.88 0.91 0.93
PLL off
1 MHz 0.42 0.54 0.55 0.67 0.28 0.39 0.41 0.43
Unit
(2)
mA
(2)
48 MHz 15.0 17.2 17.3 17.9 3.04 3.37 3.41 3.46
HSI clock,
PLL on
Supply current in Sleep mode
HSI clock,
PLL off
1. Data based on characterization results, not tested in production unless otherwise specified.
2. Data based on characterization results and tested in production (using one common test limit for sum of I
32 MHz 9.93 11.3 11.6 11.7 2.11 2.35 2.44 2.65
24 MHz 7.53 8.45 8.87 8.95 1.64 1.83 1.9 1.93
8 MHz 2.95 3.24 3.41 3.8 0.8 0.92 0.94 0.97
DS9826 Rev 6 57/128
DD
and I
DDA
).
99
Electrical characteristics STM32F072x8 STM32F072xB
Symbol
I
DDA
Table 30. Typical and maximum current consumption from the V
V
= 2.4 V V
DDA
Para-
meter
Supply
current in
Run or
Sleep
mode,
code
executing
from
Flash
memory
or RAM
Conditions
(1)
f
HCLK
Max @ T
Typ
(2)
A
Typ
25 °C 85 °C 105 °C 25 °C 85 °C 105 °C
HSI48 48 MHz 311 326 334 343 322 337 345 354
HSE
bypass,
PLL on
HSE
(3)
48 MHz 152 170
178 182
32 MHz 105 121 126 128 113 129 136 138
24 MHz 81.9 95.9 99.5 101 88.7 102 107 108
8 MHz 2.7 3.8 4.3 4.6 3.6 4.7 5.2 5.5
(3)
165 184
bypass,
PLL off
1 MHz 2.7 3.8 4.3 4.6 3.6 4.7 5.2 5.5
48 MHz 223 244 255 260 245 265 279 284
HSI clock,
PLL on
32 MHz 176 195 203 206 193 212 221 224
24 MHz 154 171 178 181 168 185 192 195
supply
DDA
DDA
Max @ T
(3)
= 3.6 V
A
196 200
(2)
Unit
(3)
µA
HSI clock,
PLL off
1. Current consumption from the V in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I the frequency.
2. Data based on characterization results, not tested in production unless otherwise specified.
3. Data based on characterization results and tested in production (using one common test limit for sum of I
8 MHz 74.2 83.4 86.4 87.3 83.4 92.5 95.3 96.6
supply is independent of whether the digital peripherals are enabled or disabled, being
DDA
is independent from
DDA
DD
and I
DDA
).
58/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
Table 31. Typical and maximum consumption in Stop and Standby modes
TA =
85 °C
(1)
TA =
105 °C
Unit
Sym-
bol
Para-
meter
Conditions
Typ @V
DD
(V
DD
= V
)Max
DDA
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V
=
T
A
25 °C
I
DD
Supply current in Stop mode
Supply current in Standby mode
Regulator in run mode, all oscillators OFF
Regulator in low­power mode, all oscillators OFF
LSI ON and IWDG ON
LSI OFF and IWDG OFF
15.4 15.5 15.6 15.7 15.8 15.9 23
3.2 3.3 3.4 3.5 3.6 3.7 8
0.8 1.0 1.1 1.2 1.3 1.4 - - -
0.6 0.7 0.9 0.9 1.0 1.1 2.1
(2)
(2)
(2)
2.6 3.1
Regulator in
Supply
run mode, all oscillators OFF
2.1 2.2 2.3 2.5 2.6 2.8 3.5
(2)
3.6 4.6
current in Stop mode
Regulator in low-power mode, all
2.1 2.2 2.3 2.5 2.6 2.8 3.5
(2)
3.6 4.6
oscillators
monitoring ON
OFF
DDA
LSI ON and
V
IWDG ON
LSI OFF and IWDG OFF
Regulator in run mode, all oscillators OFF
2.5 2.7 2.8 3.0 3.2 3.5 - - -
(2)
1.9 2.1 2.2 2.3 2.5 2.6 3.5
3.6 4.6
1.3 1.3 1.4 1.4 1.5 1.5 - - -
I
DDA
Supply current in Standby mode
Supply current in Stop mode
Regulator in low-power mode, all
1.3 1.3 1.4 1.4 1.5 1.5 - - ­oscillators OFF
monitoring OFF
DDA
Supply current in Standby mode
1. Data based on characterization results, not tested in production unless otherwise specified.
2. Data based on characterization results and tested in production (using one common test limit for sum of I
LSI ON and
V
IWDG ON
LSI OFF and IWDG OFF
1.7 1.8 1.9 2.0 2.1 2.2 - - -
1.2 1.2 1.2 1.3 1.3 1.4 - - -
49 68
33 51
and I
DD
(2)
(2)
(2)
(2)
(2)
(2)
DDA
µA
).
DS9826 Rev 6 59/128
99
Electrical characteristics STM32F072x8 STM32F072xB
Table 32. Typical and maximum current consumption from the V
Symbol Parameter Conditions
1.8 V
1.65 V
LSE & RTC ON; “Xtal mode”: lower driving
RTC
I
DD_VBAT
1. Data based on characterization results, not tested in production.
domain supply current
capability; LSEDRV[1:0] = '00'
LSE & RTC ON; “Xtal mode” higher driving capability; LSEDRV[1:0] = '11'
0.5 0.6 0.7 0.8 1.1 1.2 1.3 1.7 2.3
0.8 0.9 1.1 1.2 1.4 1.6 1.7 2.1 2.8
Typical current consumption
The MCU is placed under the following conditions:
VDD = V
All I/O pins are in analog input configuration
The Flash memory access time is adjusted to f
0 wait state and Prefetch OFF from 0 to 24 MHz
1 wait state and Prefetch ON above 24 MHz
When the peripherals are enabled, f
PLL is used for frequencies greater than 8 MHz
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and
500 kHz respectively
DDA
= 3.3 V
Typ @ V
2.4 V
= f
PCLK
BAT
2.7 V
HCLK
HCLK
TA =
3.6 V
25 °C
3.3 V
frequency:
BAT
supply
(1)
Max
TA =
85 °C
TA =
105 °C
Unit
µA
60/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
Table 33. Typical current consumption, code executing from Flash memory,
running from HSE
8 MHz crystal
Symbol Parameter f
48 MHz 24.1 13.5 14.6 3.5
36 MHz 18.3 10.5 11.1 2.9
32 MHz 16.5 9.6 10.0 2.7
24 MHz 12.9 7.6 7.8 2.2
Current
DD
consumption
from V
I
16 MHz 8.9 5.3 5.5 1.7
DD
supply
500 kHz 1.3 1.2 1.2 1.0
48 MHz 163.3
36 MHz 124.3
32 MHz 111.9
24 MHz 87.1
I
DDA
Current
consumption
from V
16 MHz 62.5
DDA
supply
HCLK
Typical consumption in
Run mode
Peripherals
enabled
Peripherals
disabled
Typical consumption in
Sleep mode
Peripherals
enabled
Peripherals
disabled
8 MHz 4.8 3.1 3.1 1.2
4 MHz 3.1 2.1 2.2 1.1
2 MHz 2.1 1.6 1.6 1.0
1 MHz 1.6 1.3 1.4 1.0
8 MHz 2.5
4 MHz 2.5
2 MHz 2.5
1 MHz 2.5
Unit
mA
A
500 kHz 2.5
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in
For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt
DS9826 Rev 6 61/128
Tab le 53: I/O static characteristics.
99
Electrical characteristics STM32F072x8 STM32F072xB
I
SW
V
DDIOxfSW
C××=
trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Tab le 35: Peripheral current consumption), the I/Os used by an application also contribute
to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
V
f
C is the total capacitance seen by the I/O pin: C = C
is the I/O supply voltage
DDIOx
is the I/O switching frequency
SW
INT
+ C
EXT
+ C
S
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.
62/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
Table 34. Switching output I/O current consumption
Symbol Parameter Conditions
V
DDIOx
C =C
V
DDIOx
C
EXT
C = C
INT
V
DDIOx
C
EXT
C = C
INT
= 3.3 V
INT
= 3.3 V
= 0 pF
+ C
EXT
= 3.3 V
= 10 pF
+ C
EXT
(1)
+ C
+ C
frequency (fSW)
S
S
I/O toggling
4 MHz 0.07
8 MHz 0.15
16 MHz 0.31
24 MHz 0.53
48 MHz 0.92
4 MHz 0.18
8 MHz 0.37
16 MHz 0.76
24 MHz 1.39
48 MHz 2.188
4 MHz 0.32
8 MHz 0.64
16 MHz 1.25
24 MHz 2.23
Typ U n it
I
SW
1. CS = 7 pF (estimated value).
I/O current
consumption
V
C
C = C
V
C
C = C
V
C
C = C
V
C
C = C
DDIOx
EXT
INT
DDIOx
EXT
INT
DDIOx
EXT
INT
C = C
DDIOx
EXT
INT
C = C
= 3.3 V
= 22 pF
+ C
EXT
= 3.3 V
= 33 pF
+ C
EXT
= 3.3 V
= 47 pF
+ C
EXT
int
= 2.4 V
= 47 pF
+ C
EXT
int
+ C
+ C
+ C
+ C
48 MHz 4.442
mA
4 MHz 0.49
8 MHz 0.94
S
16 MHz 2.38
24 MHz 3.99
4 MHz 0.64
8 MHz 1.25
S
16 MHz 3.24
24 MHz 5.02
4 MHz 0.81
8 MHz 1.7
S
16 MHz 3.67
4 MHz 0.66
8 MHz 1.43
S
16 MHz 2.45
24 MHz 4.97
DS9826 Rev 6 63/128
99
Electrical characteristics STM32F072x8 STM32F072xB
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Tabl e 35. The MCU is placed under the following conditions:
All I/O pins are in analog mode
All peripherals are disabled unless otherwise mentioned
The given value is calculated by measuring the current consumption
with all peripherals clocked off
with only one peripheral clocked on
Ambient operating temperature and supply voltage conditions summarized in Table 21:
Voltage characteristics
The power consumption of the digital part of the on-chip peripherals is given in
Table 35. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 35. Peripheral current consumption
Peripheral Typical consumption at 25 °C Unit
BusMatrix
CRC 1.6
DMA 5.7
(1)
2.2
AHB
Flash memory interface 13.0
GPIOA 8.2
GPIOB 8.5
GPIOC 2.3
GPIOD 1.9
GPIOE 2.2
GPIOF 1.2
SRAM 0.9
TSC 5.0
All AHB peripherals 52.6
µA/MHz
64/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
Table 35. Peripheral current consumption (continued)
Peripheral Typical consumption at 25 °C Unit
(3)
(3)
(2)
2.8
4.1
4.7
APB-Bridge
ADC
CAN 12.4
CEC 1.5
CRS 0.8
DAC
DEBUG (MCU debug feature) 0.1
I2C1 3.9
I2C2 4.0
PWR 1.3
SPI1 8.7
SPI2 8.5
SYSCFG & COMP 1.7
TIM1 14.9
TIM2 15.5
APB
TIM3 11.4
TIM6 2.5
TIM7 2.3
TIM14 5.3
TIM15 9.1
TIM16 6.6
TIM17 6.8
USART1 17.0
USART2 16.7
USART3 5.4
USART4 5.4
USB 7.2
WWDG 1.4
All APB peripherals 182
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus.
3. The power consumption of the analog part (I included. Refer to the tables of characteristics in the subsequent sections.
) of peripherals such as ADC, DAC, Comparators, is not
DDA
µA/MHz
DS9826 Rev 6 65/128
99
Electrical characteristics STM32F072x8 STM32F072xB

6.3.6 Wakeup time from low-power mode

The wakeup times given in Table 36 are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture.
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0).
All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in
Table 36. Low-power mode wakeup timings
Symbol Parameter Conditions
Tab le 24: General operating conditions.
Typ @VDD = VDDA
Max Unit
= 2.0 V = 2.4 V = 2.7 V = 3 V = 3.3 V
t
WUSTOP
t
WUSTANDBY
t
WUSLEEP
Wakeup from Stop mode
Wakeup from Standby mode
Wakeup from Sleep mode
Regulator in run mode
Regulator in low power mode
- 60.4 55.6 53.5 52 51 -
- 4 SYSCLK cycles -
3.23.12.92.92.85
7.05.85.24.94.69

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 15: High-speed external clock
source AC timing diagram.
Symbol Parameter
f
HSE_ext
V
HSEH
V
HSEL
t
w(HSEH)
t
w(HSEL)
t
r(HSE)
t
f(HSE)
Table 37. High-speed external user clock characteristics
(1)
User external clock source frequency - 8 32 MHz
OSC_IN input pin high level voltage 0.7 V
OSC_IN input pin low level voltage V
OSC_IN high or low time 15 - -
OSC_IN rise or fall time - - 20
µs
Min Typ Max Unit
DDIOx
SS
-V
- 0.3 V
DDIOx
DDIOx
V
ns
66/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
MS19215V2
V
LSEH
t
f(LSE)
90%
10%
T
LSE
t
t
r(LSE)
V
LSEL
t
w(LSEH)
t
w(LSEL)
1. Guaranteed by design, not tested in production.
Figure 15. High-speed external clock source AC timing diagram
t
w(HSEH)
V
HSEH
V
HSEL
90%
10%
t
r(HSE)
T
HSE
t
f(HSE)
t
w(HSEL)
t
MS19214V2
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 16.
Symbol Parameter
f
LSE_ext
V
LSEH
V
LSEL
t
w(LSEH)
t
w(LSEL)
t
r(LSE)
t
f(LSE)
1. Guaranteed by design, not tested in production.
Table 38. Low-speed external user clock characteristics
(1)
User external clock source frequency - 32.768 1000 kHz
OSC32_IN input pin high level voltage 0.7 V
OSC32_IN input pin low level voltage V
OSC32_IN high or low time 450 - -
OSC32_IN rise or fall time - - 50
Min Typ Max Unit
DDIOx
SS
-V
- 0.3 V
DDIOx
DDIOx
V
ns
Figure 16. Low-speed external clock source AC timing diagram
DS9826 Rev 6 67/128
99
Electrical characteristics STM32F072x8 STM32F072xB
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Symbol Parameter Conditions
Table 39. HSE oscillator characteristics
(1)
Min
Table 39. In the
(2)
Typ M a x
(2)
Unit
f
OSC_IN
R
Oscillator frequency - 4 8 32 MHz
Feedback resistor - - 200 - k
F
During startup
V
= 3.3 V,
DD
Rm = 30 ,
(3)
--8.5
-0.4-
CL = 10 pF@8 MHz
V
= 3.3 V,
DD
Rm = 45 ,
-0.5-
CL = 10 pF@8 MHz
V
= 3.3 V,
I
DD
HSE current consumption
DD
Rm = 30 ,
-0.8-
CL = 5 pF@32 MHz
V
= 3.3 V,
DD
Rm = 30 ,
-1-
CL = 10 pF@32 MHz
V
= 3.3 V,
DD
Rm = 30 ,
-1.5-
CL = 20 pF@32 MHz
g
t
SU(HSE)
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design, not tested in production.
3. This consumption level occurs during the first 2/3 of the t
4. t
SU(HSE)
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer
Oscillator transconductance Startup 10 - - mA/V
m
(4)
Startup time VDD is stabilized - 2 - ms
startup time
SU(HSE)
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
mA
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5
pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see
Figure 17). CL1 and C
are usually the
L2
same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C
and CL2. PCB and MCU pin capacitance must be included (10 pF
L1
can be used as a rough estimate of the combined pin and board capacitance) when sizing C
and CL2.
L1
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
68/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
MS19876V1
(1)
OSC_IN
OSC_OUT
R
F
Bias
controlled
gain
f
HSE
R
EXT
8 MHz
resonator
Resonator with integrated capacitors
C
L1
C
L2
Figure 17. Typical application with an 8 MHz crystal
1. R
value depends on the crystal characteristics.
EXT
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
Table 40. LSE oscillator characteristics (f
Symbol Parameter Conditions
low drive capability - 0.5 0.9
I
DD
g
LSE current consumption
m
Oscillator
transconductance
medium-low drive capability - - 1
medium-high drive capability - - 1.3
high drive capability - - 1.6
low drive capability 5 - -
medium-low drive capability 8 - -
medium-high drive capability 15 - -
(1)
Tabl e 40. In the application, the
= 32.768 kHz)
LSE
(2)
Min
Typ Ma x
(2)
Unit
µA
µA/V
t
SU(LSE)
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3. t
SU(LSE)
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
high drive capability 25 - -
(3)
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
Startup time V
is stabilized - 2 - s
DDIOx
DS9826 Rev 6 69/128
99
Electrical characteristics STM32F072x8 STM32F072xB
MS30253V2
OSC32_IN
OSC32_OUT
Drive
programmable
amplifier
f
LSE
32.768 kHz resonator
Resonator with integrated capacitors
C
L1
C
L2
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 18. Typical application with a 32.768 kHz crystal
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.

6.3.8 Internal clock source characteristics

The parameters given in Tab le 41 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24: General operating
conditions. The provided curves are characterization results, not tested in production.
70/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
MS30985V4
T [ºC]
A
MAX
MIN
-40 -20 0 20 40 60 80 100 120
4%
3%
2%
1%
0%
-1%
-2%
-3%
-4%
High-speed internal (HSI) RC oscillator
Table 41. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1)
f
HSI
Frequency - - 8 - MHz
TRIM HSI user trimming step - - - 1
DuCy
ACC
(HSI)
HSI
Duty cycle - 45
= -40 to 105°C -2.8
T
A
= -10 to 85°C -1.9
T
A
Accuracy of the HSI oscillator
TA = 0 to 85°C -1.9
TA = 0 to 70°C -1.3
TA = 0 to 55°C -1
TA = 25°C
t
su(HSI)
I
DDA(HSI)
1. V
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
4. Factory calibrated, parts not soldered.
= 3.3 V, TA = -40 to 105°C unless otherwise specified.
DDA
HSI oscillator startup time - 1
HSI oscillator power consumption
(4)
- - 80 100
(2)
(3)
(3)
(3)
(3)
(3)
-55
-3.8
-2.3
-2
-2
-2
-1 - 1
(2)
-2
Figure 19. HSI oscillator accuracy characterization results for soldered parts
(2)
(3)
(3)
(3)
(2)
(2)
(3)
(3)
(2)
%
%
%
µs
µA
DS9826 Rev 6 71/128
99
Electrical characteristics STM32F072x8 STM32F072xB
MS30986V2
-5%
-4%
-
3%
-
2%
-
1%
0%
1%
2%
3%
4%
5%
-40 -20 0 20 40 60 80 100 120
MAX
MIN
T [°C]
A
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)
Table 42. HSI14 oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1)
f
HSI14
Frequency - - 14 - MHz
TRIM HSI14 user-trimming step - - - 1
DuCy
(HSI14)
Duty cycle - 45
TA = –40 to 105 °C –4.2
= –10 to 85 °C –3.2
T
ACC
t
su(HSI14)
I
DDA(HSI14)
1. V
DDA
HSI14
Accuracy of the HSI14 oscillator (factory calibrated)
HSI14 oscillator startup time - 1
HSI14 oscillator power consumption
= 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
A
T
= 0 to 70 °C –2.5
A
= 25 °C –1 - 1 %
T
A
--100150
(2)
(3)
(3)
(3)
(2)
Figure 20. HSI14 oscillator accuracy characterization results
(2)
-55
-5.1
-3.1
-2.3
-2
(2)
(3)
(3)
(3)
(2)
(2)
%
%
%
%
%
µs
µA
72/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
MS34206V1
-5%
-4%
-
3%
-
2%
-
1%
0%
1%
2%
3%
4%
5%
-40 -20 0 20 40 60 80 100 120
MAX
MIN
T [°C]
A
High-speed internal 48 MHz (HSI48) RC oscillator
Table 43. HSI48 oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1)
f
HSI48
Frequency - - 48 - MHz
TRIM HSI48 user-trimming step - 0.09
DuCy
(HSI48)
Duty cycle - 45
TA = –40 to 105 °C -4.9
= –10 to 85 °C -4.1
T
ACC
t
su(HSI48)
I
DDA(HSI48)
1. V
DDA
HSI48
Accuracy of the HSI48 oscillator (factory calibrated)
HSI48 oscillator startup time - - - 6
HSI48 oscillator power consumption
= 3.3 V, TA = –40 to 105 °C unless otherwise specified.
A
T
= 0 to 70 °C -3.8
A
= 25 °C -2.8 - 2.9 %
T
A
- - 312 350
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
Figure 21. HSI48 oscillator accuracy characterization results
(2)
(2)
(3)
(3)
(3)
0.14 0.2
-55
-4.7
-3.7
-3.4
(2)
(2)
(3)
(3)
(3)
(2)
(2)
%
%
%
%
%
µs
µA
DS9826 Rev 6 73/128
99
Electrical characteristics STM32F072x8 STM32F072xB
Low-speed internal (LSI) RC oscillator
Table 44. LSI oscillator characteristics
Symbol Parameter Min Typ Max Unit
(1)
f
LSI
t
su(LSI)
I
DDA(LSI)
1. V
DDA
2. Guaranteed by design, not tested in production.
Frequency 30 40 50 kHz
(2)
LSI oscillator startup time - - 85 µs
(2)
LSI oscillator power consumption - 0.75 1.2 µA
= 3.3 V, TA = –40 to 105 °C unless otherwise specified.

6.3.9 PLL characteristics

The parameters given in Tab le 45 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 24: General operating
conditions.
Symbol Parameter
f
PLL_IN
f
PLL_OUT
t
LOCK
Jitter
PLL
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by f
2. Guaranteed by design, not tested in production.
PLL input clock
PLL input clock duty cycle 40
PLL multiplier output clock 16
PLL lock time - - 200
Cycle-to-cycle jitter - - 300
PLL_OUT
Table 45. PLL characteristics
(1)
.
Value
Min Typ Max
(2)
1
(2)
(2)
8.0 24
-60
-48MHz
(2)
(2)
(2)
(2)
Unit
MHz
%
µs
ps

6.3.10 Memory characteristics

Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max
t
t
ERASE
1. Guaranteed by design, not tested in production.
16-bit programming time TA = - 40 to +105 °C 40 53.5 60 µs
prog
Page (2 KB) erase time TA = - 40 to +105 °C 20 - 40 ms
Mass erase time TA = - 40 to +105 °C 20 - 40 ms
t
ME
I
Supply current
DD
74/128 DS9826 Rev 6
Table 46. Flash memory characteristics
Write mode - - 10 mA
Erase mode - - 12 mA
(1)
Unit
STM32F072x8 STM32F072xB Electrical characteristics
Table 47. Flash memory endurance and data retention
Symbol Parameter Conditions Min
N
END
t
RET
1. Data based on characterization results, not tested in production.
2. Cycling performed over the whole temperature range.
Endurance TA = –40 to +105 °C
Data retention

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is
SS
compliant with the IEC 61000-4-4 standard.
1 kcycle
10 kcycle
(2)
at TA = 85 °C
(2)
at TA = 105 °C 10
(2)
at TA = 55 °C 20
10
30
(1)
kcycle
DD
Unit
Yea r1 kcycle
and
A device reset allows normal operations to be resumed.
The test results are given in Tab le 48. They are based on the EMS levels and classes defined in application note AN1709.
Symbol Parameter Conditions
V
FESD
Voltage limits to be applied on any I/O pin to induce a functional disturbance
Fast transient voltage burst limits to be
V
EFTB
applied through 100 pF on VDD and V pins to induce a functional disturbance
Table 48. EMS characteristics
= 3.3 V, LQFP100, TA = +25 °C,
V
DD
f
= 48 MHz,
HCLK
conforming to IEC 61000-4-2
V
= 3.3 V, LQFP100, TA = +25°C,
DD
f
SS
= 48 MHz,
HCLK
conforming to IEC 61000-4-4
Level/ Class
2B
4B
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.
DS9826 Rev 6 75/128
99
Electrical characteristics STM32F072x8 STM32F072xB
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (for example control registers)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC
61967-2 standard which specifies the test board and the pin loading.
Table 49. EMI characteristics
Symbol Parameter Conditions
= 3.6 V, TA = 25 °C,
V
DD
S
EMI
Peak level
LQFP100 package compliant with IEC 61967-2

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the standards stated in the following table.
Monitored
frequency band
0.1 to 30 MHz -2
130 MHz to 1 GHz 17
EMI Level 4 -
Max vs. [f
HSE/fHCLK
8/48 MHz
]
Unit
dBµV30 to 130 MHz 27
76/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
Symbol Ratings Conditions Packages Class
V
ESD(HBM)
V
ESD(CDM)
1. Data based on characterization results, not tested in production.
Electrostatic discharge voltage (human body model)
Electrostatic discharge voltage (charge device model)
Table 50. ESD absolute maximum ratings
TA = +25 °C, conforming to ANSI/ESDA/JEDEC JS-001
TA = +25 °C, conforming to ANSI/ESDA/JEDEC JS-002
All 2 2000 V
WLCSP49 C1 250
All others C2a 500
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply overvoltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Symbol Parameter Conditions Class
LU Static latch-up class T
Table 51. Electrical sensitivities
= +105 °C conforming to JESD78A II level A
A
Maximum
(1)
value
Unit
V

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below VSS or above V product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 oscillator frequency deviation).
The characterization results are given in Tab le 52.
Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.
(for standard, 3.3 V-capable I/O pins) should be avoided during normal
DDIOx
µA/+0 µA range) or other functional failure (for example reset occurrence or
DS9826 Rev 6 77/128
99
Electrical characteristics STM32F072x8 STM32F072xB
Table 52. I/O current injection susceptibility
Symbol Description
Injected current on BOOT0 and PF1 pins –0 NA
Injected current on PC0 pin –0 +5
I
Injected current on PA11 and PA12 pins with induced
INJ
leakage current on adjacent pins less than -1 mA
Injected current on all other FT and FTf pins –5 NA
Injected current on all other TTa, TC and RST pins –5 +5

6.3.14 I/O port characteristics

General input/output characteristics
Unless otherwise specified, the parameters given in Tab le 53 are derived from tests performed under the conditions summarized in Table 24: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0).
Functional
susceptibility
Negative injection
–5 NA
Unit
Positive
injection
mA
Table 53. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
(1)
TC and TTa I/O - - 0.3 V
FT and FTf I/O - - 0.475 V
Low level input
V
IL
voltage
High level input
V
IH
voltage
V
Schmitt trigger
hys
hysteresis
BOOT0 - - 0.3 V
All I/Os except BOOT0 pin
TC and TTa I/O 0.445 V
FT and FTf I/O 0.5 V
BOOT0 0.2 V
All I/Os except BOOT0 pin
TC and TTa I/O - 200
BOOT0 - 300
--0.3 V
(1)
DDIOx
DDIOx
DDIOx
0.7 V
+0.398
+0.2
+0.95
DDIOx
(1)
(1)
--
--
--
--
(1)
(1)
(1)
DDIOx
DDIOx
DDIOx
+0.07
–0.3
DDIOx
-
-
-
–0.2
(1)
(1)
V
V
mVFT and FTf I/O - 100
78/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
Table 53. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
TC, FT and FTf I/O TTa in digital mode
V
V
SS
IN
V
DDIOx
TTa in digital mode
I
lkg
Input leakage
(2)
current
V
DDIOx
V
IN
V
DDA
TTa in analog mode V
V
IN
V
DDA
SS
FT and FTf I/O V
DDIOx
V
IN
5 V
Weak pull-up
R
equivalent resistor
PU
(3)
VIN = V
SS
Weak pull-down
R
1. Data based on design simulation only. Not tested in production.
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 52:
3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
equivalent
PD
C
IO
I/O current injection susceptibility.
PMOS/NMOS contribution to the series resistance is minimal (~10% order).
(3)
resistor
I/O pin capacitance - - 5 - pF
VIN = - V
DDIOx
--± 0.1
--1 µA
--± 0.2
--10
25 40 55 k
25 40 55 k
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in
Figure 22 for standard I/Os, and in Figure 23 for
5 V-tolerant I/Os. The following curves are design simulation results, not tested in production.
DS9826 Rev 6 79/128
99
Electrical characteristics STM32F072x8 STM32F072xB
MSv32130V4
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
0
0.5
1
1.5
2
2.5
3
TESTED RANGE
TESTED RANGE
V
IHmin
= 0.7 V
DDIOx
(CMOS standard requirement)
V
ILmax
= 0.3 V
DDIOx
(CMOS standard requirement)
UNDEFINED INPUT RANGE
V
IHmin
= 0.445 V
DDIOx
+ 0.398
V
ILmax
= 0.3 V
DDIOx
+ 0.07
V
IN
(V)
V
DDIOx
(V)
TTL standard requirement
TTL standard requirement
MSv32131V4
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
0
0.5
1
1.5
2
2.5
3
TESTED RANGE
TESTED RANGE
V
IHmin
= 0.7 V
DDIOx
(CMOS standard requirement)
V
ILmax
= 0.3 V
DDIOx
(CMOS standard requirement)
UNDEFINED INPUT RANGE
V
IHmin
= 0.5 V
DDIOx
+ 0.2
V
ILmax
= 0.475 V
DDIOx
- 0.2
V
IN
(V)
V
DDIOx
(V)
TTL standard requirement
TTL standard requirement
Figure 22. TC and TTa I/O input characteristics
Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics
80/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20
mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in
The sum of the currents sourced by all the I/Os on V consumption of the MCU sourced on V
I
(see Table 21: Voltage characteristics).
VDD
The sum of the currents sunk by all the I/Os on V the MCU sunk on V
, cannot exceed the absolute maximum rating I
SS
Section 6.2:
, plus the maximum
, cannot exceed the absolute maximum rating
DD
DDIOx
, plus the maximum consumption of
SS
VSS
(see
Table 21: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in
Tab le 24: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or
TC unless otherwise specified).
Table 54. Output voltage characteristics
(1)
Symbol Parameter Conditions Min Max Unit
V
OL
Output low level voltage for an I/O pin CMOS port
(2)
-0.4
|IIO| = 8 mA
V
OH
V
OL
Output high level voltage for an I/O pin V
Output low level voltage for an I/O pin TTL port
V
DDIOx
2.7 V
(2)
–0.4 -
DDIOx
-0.4
|IIO| = 8 mA
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
V
OH
V
OLFm+
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 21:
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always
respect the absolute maximum ratings
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. Data based on characterization results. Not tested in production.
4. Data based on characterization results. Not tested in production.
Output high level voltage for an I/O pin 2.4 -
(3)
Output low level voltage for an I/O pin
(3)
Output high level voltage for an I/O pin V
(3)
Output low level voltage for an I/O pin
(3)
Output high level voltage for an I/O pin V
(4)
Output low level voltage for an I/O pin
(4)
Output high level voltage for an I/O pin V
Output low level voltage for an FTf I/O pin in
(3)
Fm+ mode
.
I
IO
2.7 V
V
DDIOx
|I
| = 20 mA
IO
V
2.7 V
DDIOx
|I
| = 6 mA
IO
V
2 V
DDIOx
| = 4 mA
|I
IO
|I
| = 20 mA
IO
2.7 V
V
DDIOx
|I
| = 10 mA - 0.4 V
IO
DDIOx
DDIOx
DDIOx
-1.3
–1.3 -
-0.4
–0.4 -
-0.4V
–0.4 - V
-0.4V
V
V
V
V
DS9826 Rev 6 81/128
99
Electrical characteristics STM32F072x8 STM32F072xB
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 24 and
Tab le 55, respectively. Unless otherwise specified, the parameters given are derived from
tests performed under the ambient temperature and supply voltage conditions summarized in
Tab le 24: General operating conditions.
Table 55. I/O AC characteristics
(1)(2)
OSPEEDRy
[1:0] value
x0
01
11
Symbol Parameter Conditions Min Max Unit
(1)
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
Maximum frequency
Output fall time - 125
(3)
CL = 50 pF, V
DDIOx
2 V
Output rise time - 125
Maximum frequency
Output fall time - 125
(3)
CL = 50 pF, V
DDIOx
< 2 V
Output rise time - 125
Maximum frequency
Output fall time - 25
(3)
CL = 50 pF, V
DDIOx
2 V
Output rise time - 25
Maximum frequency
Output fall time - 62.5
(3)
CL = 50 pF, V
DDIOx
< 2 V
Output rise time - 62.5
Maximum frequency
Output fall time
Output rise time
(3)
CL = 30 pF, V
C
= 50 pF, V
L
= 50 pF, 2 V  V
C
L
= 50 pF, V
C
L
= 30 pF, V
C
L
= 50 pF, V
C
L
= 50 pF, 2 V  V
C
L
C
= 50 pF, V
L
= 30 pF, V
C
L
= 50 pF, V
C
L
C
= 50 pF, 2 V  V
L
= 50 pF, V
C
L
2.7 V - 50
DDIOx
2.7 V - 30
DDIOx
< 2.7 V - 20
DDIOx
< 2 V - 10
DDIOx
2.7 V - 5
DDIOx
2.7 V - 8
DDIOx
< 2.7 V - 12
DDIOx
< 2 V - 25
DDIOx
2.7 V - 5
DDIOx
2.7 V - 8
DDIOx
< 2.7 V - 12
DDIOx
< 2 V - 25
DDIOx
-2MHz
-1MHz
-10MHz
-4MHz
ns
ns
ns
ns
MHz
ns
82/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
MS32132V3
T
10%
50%
90%
10%
50%
90%
Maximum frequency is achieved if (t + t ) ≤
when loaded by C (see the table I/O AC characteristics definition)
rf
r(IO)out
t
f(IO)out
t
L
2 3
T and if the duty cycle is (45-55%)
(1)(2)
(continued)
DDIOx
DDIOx
-2MHz
2 V
-0.5MHz
< 2 V
OSPEEDRy
[1:0] value
Fm+
configuration
(4)
Table 55. I/O AC characteristics
Symbol Parameter Conditions Min Max Unit
(1)
f
max(IO)out
t
f(IO)out
t
r(IO)out
f
max(IO)out
t
f(IO)out
t
r(IO)out
Maximum frequency
Output fall time - 12
Output rise time - 34
Maximum frequency
Output fall time - 16
Output rise time - 44
(3)
CL = 50 pF, V
(3)
CL = 50 pF, V
Pulse width of external
-t
EXTIpw
signals detected by the
-10-ns
EXTI controller
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.
2. Guaranteed by design, not tested in production.
3. The maximum frequency is defined in Figure 24.
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.
Figure 24. I/O AC characteristics definition
ns
ns

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull­up resistor, R
Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in
Tab le 24: General operating conditions.
Symbol Parameter Conditions Min Typ Max Unit
V
IL(NRST)
V
IH(NRST)
NRST input low level voltage - - - 0.3 VDD+0.07
NRST input high level voltage - 0.445 VDD+0.398
.
PU
Table 56. NRST pin characteristics
(1)
(1)
--
V
DS9826 Rev 6 83/128
99
Electrical characteristics STM32F072x8 STM32F072xB
MS19878V3
R
PU
V
DD
Internal reset
External
reset circuit
(1)
NRST
(2)
Filter
0.1 μF
Table 56. NRST pin characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
V
hys(NRST)
R
PU
V
F(NRST)
V
NF(NRST)
1. Data based on design simulation only. Not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).
3. Data based on design simulation only. Not tested in production.
NRST Schmitt trigger voltage hysteresis
Weak pull-up equivalent
(2)
resistor
NRST input filtered pulse - - - 100
NRST input not filtered pulse
--200-mV
VIN = V
2.7 < V
2.0 < V
SS
< 3.6 300
DD
< 3.6 500
DD
25 40 55 k
(3)
(3)
--
--
(1)
Figure 25. Recommended NRST pin protection
ns
ns
1. The external capacitor protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the V
Table 56: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Tab le 57 are derived from tests performed under the conditions summarized in Table 24: General operating conditions.
Note: It is recommended to perform a calibration after each power-up.
Symbol Parameter Conditions Min Typ
V
DDA
I
DDA (ADC)
f
ADC
(2)
f
S
84/128 DS9826 Rev 6
Analog supply voltage for ADC ON
Current consumption of the ADC
(1)
ADC clock frequency - 0.6 - 14 MHz
Sampling rate 12-bit resolution 0.043 - 1 MHz
Table 57. ADC characteristics
- 2.4 - 3.6 V
V
= 3.3 V - 0.9 - mA
DDA
max level specified in
IL(NRST)
Max Unit
STM32F072x8 STM32F072xB Electrical characteristics
Table 57. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ
f
= 14 MHz,
f
TRIG
(2)
External trigger frequency
ADC
12-bit resolution
--823kHz
12-bit resolution - - 17 1/f
R
C
t
CAL
R
V
AIN
AIN
ADC
ADC
(2)
(2)(3)
Conversion voltage range - 0 - V
External input impedance
Sampling switch
(2)
resistance
Internal sample and hold
(2)
capacitor
Calibration time
See Equation 1 and
Table 58 for details
--50k
---1k
---8pF
f
= 14 MHz 5.9 µs
ADC
-831/f
1.5 ADC
W
LATENCY
ADC_DR register ready
(2)(4)
latency
ADC clock = HSI14
ADC clock = PCLK/2 - 4.5 -
cycles + 2
f
cycles
PCLK
ADC clock = PCLK/4 - 8.5 -
f
t
latr
Jitter
t
t
STAB
t
CONV
S
(2)
ADC
(2)
= f
ADC
Trigger conversion latency
f
ADC
f
= f
ADC
ADC jitter on trigger conversion
Sampling time
(2)
Stabilization time - 14 1/f
f
Total conversion time
(2)
12-bit resolution
(including sampling time)
12-bit resolution
/2 = 14 MHz 0.196 µs
PCLK
= f
f
ADC
PCLK
= f
f
ADC
= f
HSI14
f
ADC
f
= 14 MHz 0.107 - 17.1 µs
ADC
/2 5.5 1/f
PCLK
/4 = 12 MHz 0.219 µs
/4 10.5 1/f
PCLK
= 14 MHz 0.179 - 0.250 µs
= f
HSI14
-1-1/f
- 1.5 - 239.5 1/f
= 14 MHz,
ADC
1-1s
14 to 252 (t
S
successive approximation)
for sampling +12.5 for
-
Max Unit
DDA
1.5 ADC
cycles + 3
cycles
f
PCLK
f
PCLK
cycle
f
PCLK
cycle
PCLK
PCLK
HSI14
1/f
ADC
V
ADC
-
ADC
ADC
ADC
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on I on IDD should be taken into account.
2. Guaranteed by design, not tested in production.
3. Specified value includes only ADC timing. It does not include the latency of the register access.
4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.
and 60 µA
DDA
DS9826 Rev 6 85/128
99
Electrical characteristics STM32F072x8 STM32F072xB
R
AIN
T
S
f
ADCCADC
2
N2+
()ln××
---------------------------------------------------------------- R
ADC
<
Equation 1: R
max formula
AIN
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Ts (cycles) tS (µs) R
1.5 0.11 0.4
7.5 0.54 5.9
13.5 0.96 11.4
28.52.0425.2
41.52.9637.2
55.5 3.96 50
71.5 5.11 NA
239.5 17.1 NA
1. Guaranteed by design, not tested in production.
Table 58. R
max for f
AIN
= 14 MHz
ADC
max (k)
AIN
(1)
Table 59. ADC accuracy
(1)(2)(3)
Symbol Parameter Test conditions Typ Max
ET Total unadjusted error
= 48 MHz,
EO Offset error ±1 ±1.5
EG Gain error ±0.5 ±1.5
ED Differential linearity error ±0.7 ±1
f
PCLK
f
= 14 MHz, R
ADC
= 3 V to 3.6 V
V
DDA
TA = 25 °C
< 10 k
AIN
±1.3 ±2
EL Integral linearity error ±0.8 ±1.5
ET Total unadjusted error
= 48 MHz,
EO Offset error ±1.9 ±2.8
EG Gain error ±2.8 ±3
ED Differential linearity error ±0.7 ±1.3
f
PCLK
= 14 MHz, R
f
ADC
V
= 2.7 V to 3.6 V
DDA
= - 40 to 105 °C
T
A
< 10 k
AIN
±3.3 ±4
EL Integral linearity error ±1.2 ±1.7
ET Total unadjusted error
= 48 MHz,
EO Offset error ±1.9 ±2.8
EG Gain error ±2.8 ±3
ED Differential linearity error ±0.7 ±1.3
f
PCLK
= 14 MHz, R
f
ADC
V
= 2.4 V to 3.6 V
DDA
= 25 °C
T
A
< 10 k
AIN
±3.3 ±4
EL Integral linearity error ±1.2 ±1.7
(4)
Unit
LSB
LSB
LSB
1. ADC DC accuracy values are measured after internal calibration.
86/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
ET = total unajusted error: maximum deviation between the actual and ideal transfer curves.
E
O
= offset error: maximum deviation between the first actual transition and the first ideal one.
E
G
= gain error: deviation between the last ideal transition and the last actual one.
ED = differential linearity error: maximum
deviation between actual steps and the ideal ones.
E
L
= integral linearity error: maximum deviation between any actual transition and the end point correlation line.
(1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line
4095
4094
4093
7
6
5
4
3
2
1
0
23456
1
7 4093
4094 4095
4096
V
DDA
V
SSA
EO
ET
EL
EG
ED
1 LSB IDEAL
(1)
(3)
(2)
MS19880V2
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I accuracy.
3. Better performance may be achieved in restricted V
, frequency and temperature ranges.
DDA
INJ(PIN)
and I
in Section 6.3.14 does not affect the ADC
INJ(PIN)
4. Data based on characterization results, not tested in production.
Figure 26. ADC accuracy characteristics
Figure 27. Typical connection diagram using the ADC
V
DDA
V
T
(1)
AIN
R
V
AIN
1. Refer to Table 57: ADC characteristics for the values of R
2. C
pad capacitance (roughly 7 pF). A high C this, f
represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
parasitic
should be reduced.
ADC
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 13: Power supply
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
AINx
I
L
C
parasitic
(2)
V
T
value will downgrade conversion accuracy. To remedy
parasitic
±1 μA
AIN
, R
DS9826 Rev 6 87/128
Sample and hold ADC
R
ADC
and C
ADC
ADC
converter
converter
ADC
C
.
12-bit
MS33900V2
99
Electrical characteristics STM32F072x8 STM32F072xB

6.3.17 DAC electrical specifications

Table 60. DAC characteristics
Symbol Parameter Min Typ Max Unit Comments
Analog supply voltage for DAC ON
Resistive load with buffer
(1)
ON
2.4 - 3.6 V -
5- - k Load connected to V
25 - - k Load connected to V
R
V
DDA
LOAD
When the buffer is OFF, the
R
O
buffer OFF
-- 15 k
Impedance output with
(1)
Minimum resistive load between DAC_OUT and V
SS
1% accuracy is 1.5 M
Maximum capacitive load at DAC_OUT pin (when the buffer
C
LOAD
(1)
Capacitive load - - 50 pF
is ON).
DAC_OUT
(1)
min
Lower DAC_OUT voltage with buffer ON
0.2 - - V
It gives the maximum output excursion of the DAC.
It corresponds to 12-bit input code (0x0E0) to (0xF1C) at
DAC_OUT
max
DAC_OUT
min
DAC_OUT
max
I
DDA
Higher DAC_OUT voltage
(1)
with buffer ON
Lower DAC_OUT voltage
(1)
with buffer OFF
Higher DAC_OUT voltage
(1)
with buffer OFF
DAC DC current
(1)
consumption in quiescent
(2)
mode
V
--V
– 0.2 V
DDA
DDA
(0xEAB) at V
-0.5 - mV It gives the maximum output
excursion of the DAC.
--V
-- 600 µA
-- 700 µA
– 1LSB V
DDA
With no load, middle code (0x800) on the input
With no load, worst code (0xF1C) on the input
= 3.6 V and (0x155) and
= 2.4 V
DDA
SSA
DDA
to have a
-- ±0.5 LSB
-- ±2 LSB
-- ±1 LSB
-- ±4 LSB
DNL
INL
Differential non linearity
(3)
Difference between two consecutive code-1LSB)
Integral non linearity (difference between measured value at Code i
(3)
and the value at Code i on a line drawn between Code 0 and last Code 1023)
-- ±10 mV -
-- ±3 LSB
Offset
Offset error (difference between
(3)
measured value at Code (0x800) and the ideal value = V
DDA
/2)
-- ±12LSB
88/128 DS9826 Rev 6
Given for the DAC in 10-bit configuration
Given for the DAC in 12-bit configuration
Given for the DAC in 10-bit configuration
Given for the DAC in 12-bit configuration
Given for the DAC in 10-bit at V
= 3.6 V
DDA
Given for the DAC in 12-bit at
= 3.6 V
V
DDA
STM32F072x8 STM32F072xB Electrical characteristics
Table 60. DAC characteristics (continued)
Symbol Parameter Min Typ Max Unit Comments
Gain error
(3)
Gain error - - ±0.5 %
Given for the DAC in 12-bit configuration
Settling time (full scale: for a 10-bit input code transition
t
SETTLING
(3)
highest input codes when
-3 4 µsC
LOAD
50 pF, R
LOAD
5 k
between the lowest and the
DAC_OUT reaches final value ±1LSB
Max frequency for a correct
Update
rate
DAC_OUT change when
(3)
small variation in the input
-- 1 MS/sC
LOAD
50 pF, R
LOAD
5 k
code (from code i to i+1LSB)
t
WAKEUP
PSRR+
Wakeup time from off state
(3)
(Setting the ENx bit in the DAC Control register)
Power supply rejection ratio
(1)
(to V
) (static DC
DDA
-6.5 10 µs
- –67 –40 dB No R
C
LOAD
50 pF, R
LOAD
5 k
input code between lowest and highest possible ones.
LOAD
, C
LOAD
= 50 pF
measurement
1. Guaranteed by design, not tested in production.
2. The DAC is in “quiescent mode” when it keeps the value steady on the output so no dynamic consumption is involved.
3. Data based on characterization results, not tested in production.
Figure 28. 12-bit buffered / non-buffered DAC
Buffered/Non-buffered DAC
(1)
Buffer
RL
12-bit digital to analog converter
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.
DAC_OUTx
CL
MS39009V1
DS9826 Rev 6 89/128
99
Electrical characteristics STM32F072x8 STM32F072xB

6.3.18 Comparator characteristics

Table 61. Comparator characteristics
Symbol Parameter Conditions Min
(1)
Typ Max
(1)
Unit
dV
V
DDA
V
V
SC
t
S_SC
t
START
t
D
V
offset
offset
Analog supply voltage - V
IN
Comparator input voltage range
V
REFINT
scaler offset
voltage
V
REFINT
scaler startup
First V power on
scaler activation after device
REFINT
-0-V
- - ±5 ±10 mV
time from power down
-3.6 V
DD
--
1000
DDA
(2)
-
ms
Next activations - - 0.2
Comparator startup time
Startup time to reach propagation delay specification
--6s
Ultra-low power mode - 2 4.5
Propagation delay for 200 mV step with 100 mV overdrive
Medium power mode - 0.3 0.6
V
2.7 V - 50 100
High speed mode
DDA
< 2.7 V - 100 240
V
DDA
µsLow power mode - 0.7 1.5
ns
Ultra-low power mode - 2 7
Propagation delay for full range step with 100 mV overdrive
Medium power mode - 0.3 1.2
2.7 V - 90 180
V
High speed mode
DDA
< 2.7 V - 110 300
V
DDA
µsLow power mode - 0.7 2.1
ns
Comparator offset error - - ±4 ±10 mV
Offset error
/dT
temperature coefficient
--18-µV/°C
Ultra-low power mode - 1.2 1.5
I
DD(COMP)
COMP current consumption
Low power mode - 3 5
Medium power mode - 10 15
High speed mode - 75 100
90/128 DS9826 Rev 6
µA
STM32F072x8 STM32F072xB Electrical characteristics
1
10
100
1000
-40 -20 0 20 40 60 80 100
t
S_SC(max)
(ms)
Temperature (°C)
2.0V ≤ V
DDA
< 2.4V
2.4V ≤ V
DDA
< 3.0V
3.0V ≤ V
DDA
< 3.6V
Table 61. Comparator characteristics (continued)
Symbol Parameter Conditions Min
(1)
Typ Max
(1)
Unit
No hysteresis (COMPxHYST[1:0]=00)
Low hysteresis (COMPxHYST[1:0]=01)
V
hys
Comparator hysteresis
Medium hysteresis (COMPxHYST[1:0]=10)
High hysteresis (COMPxHYST[1:0]=11)
1. Data based on characterization results, not tested in production.
2. For more details and conditions see Figure 29: Maximum V
Figure 29. Maximum V
REFINT
REFINT
--0-
High speed mode 3
All other power modes
510
High speed mode 7
All other power modes
919
High speed mode 18
All other power modes
scaler startup time from power down.
19 40
13
8
26
15
49
31
scaler startup time from power down
mV
DS9826 Rev 6 91/128
99
Electrical characteristics STM32F072x8 STM32F072xB

6.3.19 Temperature sensor characteristics

Table 62. TS characteristics
Symbol Parameter Min Typ Max Unit
(1)
T
L
Avg_Slope
V
30
t
START
t
S_temp
1. Guaranteed by design, not tested in production.
2. Measured at V
Temperature sensor calibration values.
6.3.20 V
V
(1)
Average slope 4.0 4.3 4.6 mV/°C
Voltage at 30 °C (± 5 °C)
(1)
ADC_IN16 buffer startup time - - 10 µs
ADC sampling time when reading the
(1)
temperature
DDA
BAT
linearity with temperature - ± 1 ± 2 °C
SENSE
(2)
1.34 1.43 1.52 V
4--µs
= 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3:
monitoring characteristics
Table 63. V
monitoring characteristics
BAT
Symbol Parameter Min Typ Max Unit
R Resistor bridge for V
Q
(1)
Er
(1)
t
S_vbat
1. Guaranteed by design, not tested in production.
Ratio on V
BAT
Error on Q –1 - +1 %
ADC sampling time when reading the V
BAT
measurement - 2 - -
BAT
-2 x 50- k
4--µs

6.3.21 Timer characteristics

The parameters given in the following tables are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).
Symbol Parameter Conditions Min Typ Max Unit
t
res(TIM)
Timer resolution time
Timer external clock
f
EXT
frequency on CH1 to CH4
16-bit timer maximum period
t
MAX_COUNT
32-bit counter maximum period
92/128 DS9826 Rev 6
Table 64. TIMx characteristics
f
f
TIMxCLK
f
f
= 48 MHz - 20.8 - ns
TIMxCLK
= 48 MHz - 24 - MHz
= 48 MHz - 1365 - µs
TIMxCLK
= 48 MHz - 89.48 - s
TIMxCLK
--1-
--
f
TIMxCLK
--
--
/2
16
2
32
2
t
TIMxCLK
-MHz
t
-
TIMxCLK
t
-
TIMxCLK
STM32F072x8 STM32F072xB Electrical characteristics
Prescaler divider PR[2:0] bits
/16 2 0.4 1638.4
/32 3 0.8 3276.8
/64 4 1.6 6553.6
/128 5 3.2 13107.2
/256 6 or 7 6.4 26214.4
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Prescaler WDGTB Min timeout value Max timeout value Unit
1 0 0.0853 5.4613
2 1 0.1706 10.9226
4 2 0.3413 21.8453
Table 65. IWDG min/max timeout period at 40 kHz (LSI)
Min timeout RL[11:0]=
0x000
/4 0 0.1 409.6
/8 1 0.2 819.2
Max timeout RL[11:0]=
Table 66. WWDG min/max timeout value at 48 MHz (PCLK)
0xFFF
(1)
Unit
ms
ms
8 3 0.6826 43.6906

6.3.22 Communication interfaces

I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for:
Standard-mode (Sm): with a bit rate up to 100 kbit/s
Fast-mode (Fm): with a bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V support Fm+ low level output current maximum requirement. Refer to
port characteristics for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:
is disabled, but is still present. Only FTf I/O pins
DDIOx
Section 6.3.14: I/O
DS9826 Rev 6 93/128
99
Electrical characteristics STM32F072x8 STM32F072xB
Table 67. I2C analog filter characteristics
(1)
Symbol Parameter Min Max Unit
t
AF
1. Guaranteed by design, not tested in production.
2. Spikes with widths below t
3. Spikes with widths above t
Maximum width of spikes that are suppressed by the analog filter
are filtered.
AF(min)
are not filtered
AF(max)
50
(2)
260
(3)
ns
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Tab le 68 for SPI or in Ta bl e 69 for I2S are derived from tests performed under the ambient temperature, f supply voltage conditions summarized in
Tabl e 24: General operating conditions.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 68. SPI characteristics
Symbol Parameter Conditions Min Max Unit
f
SCK
1/t
c(SCK)
t
r(SCK)
t
f(SCK)
t
su(NSS)
t
h(NSS)
t
w(SCKH)
t
w(SCKL)
t
su(MI)
t
su(SI)
t
h(MI)
t
h(SI)
(2)
t
a(SO)
(3)
t
dis(SO)
t
v(SO)
t
v(MO)
t
h(SO)
t
h(MO)
DuCy(SCK)
SPI clock frequency
SPI clock rise and fall time
NSS setup time Slave mode 4Tpclk -
NSS hold time Slave mode 2Tpclk + 10 -
SCK high and low time
Data input setup time
Data input hold time
Data output access time Slave mode, f
Data output disable time Slave mode 0 18
Data output valid time Slave mode (after enable edge) - 22.5
Data output valid time Master mode (after enable edge) - 6
Data output hold time
SPI slave input clock duty cycle
Master mode - 18
Slave mode - 18
Capacitive load: C = 15 pF - 6 ns
Master mode, f
= 36 MHz,
PCLK
presc = 4
Master mode 4 -
Slave mode 5 -
Master mode 4 -
Slave mode 5 -
= 20 MHz 0 3Tpclk
PCLK
Slave mode (after enable edge) 11.5 -
Master mode (after enable edge) 2 -
Slave mode 25 75 %
(1)
Tpclk/2 -2 Tpclk/2 + 1
frequency and
PCLKx
MHz
ns
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z
94/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
MSv41658V1
NSS input
CPHA=0 CPOL=0
SCK input
CPHA=0 CPOL=1
MISO output
MOSI input
t
su(SI)
t
h(SI)
t
w(SCKL)
t
w(SCKH)
t
c(SCK)
t
r(SCK)
t
h(NSS)
t
dis(SO)
t
su(NSS)
t
a(SO)
t
v(SO)
Next bits IN
Last bit OUT
First bit IN
First bit OUT Next bits OUT
t
h(SO)
t
f(SCK)
Last bit IN
MSv41659V1
NSS input
CPHA=1 CPOL=0
SCK input
CPHA=1 CPOL=1
MISO output
MOSI input
t
su(SI)
t
h(SI)
t
w(SCKL)
t
w(SCKH)
t
su(NSS)
t
c(SCK)
t
a(SO)
t
v(SO)
First bit OUT Next bits OUT
Next bits IN
Last bit OUT
t
h(SO)
t
r(SCK)
t
f(SCK)
t
h(NSS)
t
dis(SO)
First bit IN Last bit IN
Figure 30. SPI timing diagram - slave mode and CPHA = 0
Figure 31. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 V
DS9826 Rev 6 95/128
DD
.
99
Electrical characteristics STM32F072x8 STM32F072xB
Figure 32. SPI timing diagram - master mode
High
NSS input
t
c(SCK)
CPHA=0 CPOL=0
CPHA=0 CPOL=1
SCK Output
CPHA=1 CPOL=0
CPHA=1 CPOL=1
SCK Output
t
t
MISO
INP U T
MOSI
OUTPUT
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 V
su(MI)
w(SCKH)
t
w(SCKL)
MSB IN
MSB OUT
t
v(MO)
t
h(MI)
BIT6 IN
B I T1 OUT
t
h(MO)
.
DD
t
r(SCK)
t
f(SCK)
LSB IN
LSB OUT
ai14136c
Table 69. I2S characteristics
(1)
Symbol Parameter Conditions Min Max Unit
f
CK
1/t
c(CK)
t
r(CK)
t
f(CK)
t
w(CKH)
t
w(CKL)
t
v(WS)
t
h(WS)
t
su(WS)
t
h(WS)
DuCy(SCK)
Master mode (data: 16 bits, Audio
I2S clock frequency
frequency = 48 kHz)
Slave mode 0 6.5
I2S clock rise time
I2S clock fall time - 12
Capacitive load C
I2S clock high time
I2S clock low time 312 -
Master f
PCLK
frequency = 48 kHz
= 15 pF
L
= 16 MHz, audio
WS valid time Master mode 2 -
WS hold time Master mode 2 -
WS setup time Slave mode 7 -
WS hold time Slave mode 0 -
2
I
S slave input clock duty
cycle
Slave mode 25 75 %
1.597 1.601
-10
306 -
MHz
ns
96/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
MSv39721V1
CK Input
CPOL = 0
CPOL = 1
tc(CK)
WS input
SDtransmit
SDreceive
tw(CKH)
tw(CKL)
tsu(WS)
tv(SD_ST) th(SD_ST)
th(WS)
tsu(SD_SR) th(SD_SR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit
LSB receive(2)
LSB transmit(2)
Table 69. I2S characteristics
(1)
(continued)
Symbol Parameter Conditions Min Max Unit
t
su(SD_MR)
t
su(SD_SR)
t
h(SD_MR)
t
h(SD_SR)
t
v(SD_MT)
t
v(SD_ST)
t
h(SD_MT)
t
h(SD_ST)
1. Data based on design simulation and/or characterization results, not tested in production.
2. Depends on f
Data input setup time
(2)
Data input hold time
(2)
(2)
Data output valid time
(2)
Data output hold time
. For example, if f
PCLK
PCLK
Master receiver 6 -
Slave receiver 2 -
Master receiver 4 -
Slave receiver 0.5 -
Master transmitter - 4
Slave transmitter - 20
Master transmitter 0 -
Slave transmitter 13 -
= 8 MHz, then T
PCLK
= 1/f
PLCLK
= 125 ns.
Figure 33. I2S slave timing diagram (Philips protocol)
ns
1. Measurement points are done at CMOS levels: 0.3 × V
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.
DS9826 Rev 6 97/128
DDIOx
and 0.7 × V
DDIOx
.
99
Electrical characteristics STM32F072x8 STM32F072xB
MSv39720V1
CK output
CPOL = 0
CPOL = 1
tc(CK)
WS output
SDreceive
SDtransmit
tw(CKH)
tw(CKL)
tsu(SD_MR)
tv(SD_MT) th(SD_MT)
th(WS)
th(SD_MR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
tf(CK)
tr(CK)
tv(WS)
LSB receive(2)
LSB transmit(2)
10%
90%
Figure 34. I2S master timing diagram (Philips protocol)
1. Data based on characterization results, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.
98/128 DS9826 Rev 6
STM32F072x8 STM32F072xB Electrical characteristics
USB characteristics
The STM32F072x8/xB USB interface is fully compliant with the USB specification version
2.0 and is USB-IF certified (for Full-speed device operation).
Symbol Parameter Conditions Min. Typ Max. Unit
Table 70. USB electrical characteristics
V
DDIO2
t
STARTUP
R
PUI
USB transceiver operating voltage
(2)
USB transceiver startup time - - - 1.0 µs
Embedded USB_DP pull-up value during idle
-3.0
- 1.1 1.26 1.5
(1)
-3.6V
k
R
PUR
Z
DRV
1. The STM32F072x8/xB USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V voltage range.
2. Guaranteed by design, not tested in production.
3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver.
Embedded USB_DP pull-up value during reception
(2)
Output driver impedance
(3)
- 2.0 2.26 2.6
Driving high and low
28 40 44
CAN (controller area network) interface
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).
DS9826 Rev 6 99/128
99
Package information STM32F072x8 STM32F072xB
A0C2_ME_V5
Seating plane
A1
e
Z
Z
D
M
Øb (100 balls)
A
E
TOP VIEWBOTTOM VIEW
112
A1 ball
identifier
e
A
A2
Y
X
Z
ddd Z
D1
E1
eee
ZYX
fffØØ
M M
Z
A3
A4
A1 ball
index area

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: ECOPACK® is an ST trademark.

7.1 UFBGA100 package information

UFBGA100 is a 100-ball, 7 × 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array package.

Figure 35. UFBGA100 package outline

www.st.com.
1. Drawing is not to scale.
Table 71. UFBGA100 package mechanical data
millimeters inches
Symbol
Min. Typ. Max. Min. Typ. Max.
A - - 0.600 - - 0.0236
A1 - - 0.110 - - 0.0043
A2 - 0.450 - - 0.0177 -
A3 - 0.130 - - 0.0051 0.0094
A4 - 0.320 - - 0.0126 -
100/128 DS9826 Rev 6
(1)
Loading...