STMicroelectronics STM32F479AI, STM32F479AG, STM32F479BI, STM32F479BG, STM32F479II Datasheet

...
STM32F479xx
WLCSP168
UFBGA176 (10 x 10 mm)
TFBGA216 (13 x 13 mm)
LQFP100 (14 × 14 mm) LQFP144 (20 × 20 mm) LQFP176 (24 × 24 mm)
LQFP208 (28 × 28 mm)
UFBGA169 (7 × 7 mm)
Arm®Cortex®-M4 32b MCU+FPU, 225DMIPS, up to 2MB Flash/384+4KB RAM, USB OTG HS/FS,
Ethernet, FMC, dual Quad-SPI, Crypto, Graphical accelerator, Camera IF, LCD-TFT & MIPI DSI
Features
Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution from Flash memory, frequency up to 180 MHz, MPU, 225 DMIPS/1.25 DMIPS/MHz (Dhrystone
2.1), and DSP instructions
Memories
– Up to 2 MB of Flash memory organized into
two banks allowing read-while-write
– Up to 384+4 KB of SRAM including 64 KB of
CCM (core coupled memory) data RAM
– Flexible external memory controller with up
to 32-bit data bus: SRAM, PSRAM, SDRAM/LPSDR, SDRAM, Flash NOR/NAND memories
– Dual-flash mode Quad-SPI interface
Graphics:
– Chrom-ART Accelerator™ (DMA2D),
graphical hardware accelerator enabling enhanced graphical user interface with
minimum CPU load – LCD parallel interface, 8080/6800 modes – LCD TFT controller supporting up to XGA
resolution –MIPI
®
DSI host controller supporting up to
720p 30Hz resolution
Clock, reset and supply management
– 1.7 V to 3.6 V application supply and I/Os – POR, PDR, PVD and BOR – 4-to-26 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC (1%
accuracy) – 32 kHz oscillator for RTC with calibration – Internal 32 kHz RC with calibration
Low power
– Sleep, Stop and Standby modes –V
supply for RTC, 20×32 bit backup
BAT
registers + optional 4 KB backup SRAM
3×12-bit, 2.4 MSPS ADC: up to 24 channels and
7.2 MSPS in triple interleaved mode
2×12-bit D/A convertersGeneral-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
Up to 17 timers: up to twelve 16-bit and two 32-
bit timers up to 180 MHz, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input. 2x watchdogs and SysTick timer
Debug mode
– SWD & JTAG interfaces –Cortex
®
-M4 Trace Macrocell™
Up to 161 I/O ports with interrupt capability
– Up to 157 fast I/Os up to 90 MHz – Up to 159 5 V-tolerant I/Os
Up to 21 communication interfaces
– Up to 3 × I
2
C interfaces (SMBus/PMBus)
– Up to 4 USARTs and 4 UARTs (11.25 Mbit/s,
ISO7816 interface, LIN, IrDA, modem control)
– Up to 6 SPIs (45 Mbits/s), 2 with muxed full-
duplex I
2
S for audio class accuracy via
internal audio PLL or external clock – 1 x SAI (serial audio interface) – 2 × CAN (2.0B Active) –SDIO interface
Advanced connectivity
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY – USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI – Dedicated USB power rail enabling on-chip
PHYs operation throughout the entire MCU
power supply range – 10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
8- to 14-bit parallel camera interface up to
54 Mbytes/s
Cryptographic accelerator
– HW accelerator for AES 128, 192, 256,
Triple DES, HASH (MD5, SHA-1, SHA-2)
and HMAC
True random number generatorCRC calculation unitRTC: subsecond accuracy, hardware calendar96-bit unique ID
Reference Part numbers
STM32F479xx

Table 1. Device summary

STM32F479AI, STM32F479AG, STM32F479BI,
STM32F479BG, STM32F479II, STM32F479IG,
STM32F479NI, STM32F479NG, STM32479VG,
STM32479VI, STM32479ZG, STM32479ZI
Jan u ar y 2 021 DS 1111 8 Rev 6 1/ 220
This is information on a product in full production.
www.st.com
Contents STM32F479xx
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1 Compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.1 LQFP176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.2 LQFP208 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.3 UFBGA176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.4 TFBGA216 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Arm® Cortex®-M4 with FPU and embedded Flash and SRAM . . . . . . . . 21
2.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 21
2.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 22
2.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.9 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.11 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.12 DSI Host (DSIHOST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.13 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.14 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 27
2.15 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.16 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.17 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.18 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.19 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.19.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.19.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.20 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.20.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.20.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2/22 0 D S 1111 8 R e v 6
STM32F479xx Contents
2.20.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 35
2.21 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 35
2.22 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.23 V
operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
BAT
2.24 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.24.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.24.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.24.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.24.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.24.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.24.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.25 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.26 Universal synchronous/asynchronous receiver transmitters (USART) . . 40
2.27 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.28 Inter-integrated sound (I
2
S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.29 Serial Audio interface (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.30 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.31 Audio and LCD PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.32 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 42
2.33 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 43
2.34 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.35 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 44
2.36 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 44
2.37 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.38 Cryptographic accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.39 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.40 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.41 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.42 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.43 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.44 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.45 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
DS 1111 8 Rev 6 3/ 2 2 0
5
Contents STM32F479xx
4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2 VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 96
5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 96
5.3.5 Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . 96
5.3.6 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 123
5.3.13 MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.14 MIPI D-PHY PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.15 MIPI D-PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.16 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.17 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3.18 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 132
5.3.19 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.20 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.3.21 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.3.22 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.23 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.24 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4/22 0 D S 1111 8 R e v 6
STM32F479xx Contents
5.3.25 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.3.26 V
5.3.27 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.3.28 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.3.29 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.3.30 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.3.31 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 186
5.3.32 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 187
5.3.33 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 189
5.3.34 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
BAT
6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.2 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.3 WLCSP168 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.4 UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.5 LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.6 UFBGA(176+25) package information . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.7 LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.8 TFBGA216 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.9 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 217
A.1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
DS 1111 8 Rev 6 5/ 2 2 0
5
List of tables STM32F479xx
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F479xx features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 32
Table 4. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 5. Voltage regulator modes in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 6. Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 7. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 8. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 9. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 10. STM32F479xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 11. FMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 12. Alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 13. STM32F479xx register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 14. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Table 15. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 16. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Table 17. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 18. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 95
Table 19. VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 20. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 96
Table 21. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 96
Table 22. Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 23. Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM,
regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table 25. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled), regulator ON . . . . . . . . . . . . . . 101
Table 26. Typical and maximum current consumption in Run mode, code with data
processing running from Flash memory (ART accelerator enabled except prefetch),
regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 27. Typical and maximum current consumption in Sleep mode, regulator ON . . . . . . . . . . . . 103
Table 28. Typical and maximum current consumption in Sleep mode, regulator OFF . . . . . . . . . . . 104
Table 29. Typical and maximum current consumption in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 30. Typical and maximum current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . 106
Table 31. Typical and maximum current consumption in V
Table 32. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 33. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 34. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 35. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 36. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 37. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 38. LSE oscillator characteristics (f
Table 39. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 40. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 41. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 42. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 43. PLLSAI (audio and LCD-TFT PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
LSE
mode. . . . . . . . . . . . . . . . . . . . . . . . 107
BAT
6/22 0 D S 1111 8 R e v 6
STM32F479xx List of tables
Table 44. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 45. MIPI D-PHY characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 46. MIPI D-PHY AC characteristics LP mode and HS/LP transitions . . . . . . . . . . . . . . . . . . . 126
Table 47. DSI-PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 48. DSI regulator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 49. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 50. Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 51. Flash memory programming with V
PP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 52. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 53. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 54. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 55. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 56. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 57. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 58. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Table 59. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 60. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 61. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 62. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 63. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 64. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 65. I
2
S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 66. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 67. USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 68. USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 69. USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 70. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 71. USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 72. Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 73. Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 74. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 75. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 76. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 77. ADC static accuracy at f Table 78. ADC static accuracy at f Table 79. ADC static accuracy at f Table 80. ADC dynamic accuracy at f Table 81. ADC dynamic accuracy at f
= 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
ADC
= 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
ADC
= 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
ADC
= 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 159
ADC
= 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 159
ADC
Table 82. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 83. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 84. V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
BAT
Table 85. internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 86. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 87. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings . . . . . . . . . . . . . . . . 167
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings . . . . . . . . . . 167
Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 168
Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings . . . . . . . . . . 169
Table 92. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 93. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 170
Table 94. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 95. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 172
DS 1111 8 Rev 6 7/ 2 2 0
8
List of tables STM32F479xx
Table 96. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 97. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Table 98. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 177
Table 99. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Table 100. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 101. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Table 102. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Table 103. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Table 104. SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 105. LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Table 106. Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Table 107. Quad-SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 108. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Table 109. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 110. Dynamic characteristics: SD / MMC characteristics, VDD = 2.7 to 3.6 V . . . . . . . . . . . . . 190
Table 111. Dynamic characteristics: SD / MMC characteristics, VDD = 1.71 to 1.9 V . . . . . . . . . . . . 191
Table 112. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Table 113. LQFP100 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 114. LQFP144 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Table 115. WLCSP168 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 116. UFBGA169 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Table 117. UFBGA169 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . 201
Table 118. LQFP176 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 119. UFBGA(176+25) - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 120. UFBGA(176+25) - Recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . 208
Table 121. LQFP208 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Table 122. TFBGA216 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 123. TFBGA216 - Recommended PCB design rules (0.8 mm pitch) . . . . . . . . . . . . . . . . . . . . 213
Table 124. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Table 125. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Table 126. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 217
Table 127. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8/22 0 D S 1111 8 R e v 6
STM32F479xx List of figures
List of figures
Figure 1. Incompatible board design for LQFP176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Incompatible board design for LQFP208 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3. UFBGA176 port-to-terminal assignment differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 4. TFBGA216 port-to-terminal assignment differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 5. STM32F479xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 6. STM32F479xx Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 7. VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 29
Figure 8. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 30
Figure 9. PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 10. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 11. Startup in regulator OFF: slow V
- power-down reset risen after V
Figure 12. Startup in regulator OFF mode: fast V
- power-down reset risen before V
Figure 13. STM32F47x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 14. STM32F47x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 15. STM32F47x WLCSP168 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 16. STM32F47x UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 17. STM32F47x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 18. STM32F47x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 19. STM32F47x LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 20. STM32F47x TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 21. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 22. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 23. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 24. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 25. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 26. External capacitor C Figure 27. Typical V
current consumption
BAT
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
EXT
(RTC ON / backup SRAM ON and LSE in Low drive mode) . . . . . . . . . . . . . . . . . . . . . . 107
Figure 28. Typical V
current consumption
BAT
(RTC ON / backup SRAM ON and LSE in High drive mode) . . . . . . . . . . . . . . . . . . . . . . 108
Figure 29. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 30. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 31. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 32. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 33. ACCHSI vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 34. ACC
versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
LSI
Figure 35. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 36. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 37. MIPI D-PHY HS/LP clock lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 38. MIPI D-PHY HS/LP data lane transition timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 39. FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 40. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 41. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 42. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 43. SPI timing diagram - slave mode and CPHA = 1 Figure 44. SPI timing diagram - master mode
slope
DD
CAP_1 , VCAP_2
slope
DD
CAP_1 , VCAP_2
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
stabilization . . . . . . . . . . . . . . . . . . . . . . . 34
stabilization . . . . . . . . . . . . . . . . . . . . . . 35
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
DS 1111 8 Rev 6 9/ 2 2 0
11
List of figures STM32F479xx
Figure 45. I2S slave timing diagram (Philips protocol) Figure 46. I
2
S master timing diagram (Philips protocol)
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
(1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 47. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 48. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 49. USB OTG full speed timings: definition of data signal rise and fall time . . . . . . . . . . . . . . 151
Figure 50. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 51. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 52. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 53. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 54. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 55. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 56. Power supply and reference decoupling (V Figure 57. Power supply and reference decoupling (V
not connected to V
REF+
connected to V
REF+
). . . . . . . . . . . . . 161
DDA
). . . . . . . . . . . . . . . . 161
DDA
Figure 58. 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 59. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 166
Figure 60. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 168
Figure 61. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 62. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 63. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 64. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Figure 65. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 66. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 67. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Figure 68. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 69. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 180
Figure 70. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 181
Figure 71. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 72. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Figure 73. Quad-SPI SDR timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 74. Quad-SPI DDR timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 75. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 76. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 77. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 78. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 79. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 80. LQFP100 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 81. LQFP100 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 82. LQFP100 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Figure 83. LQFP144 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Figure 84. LQFP144 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 85. LQFP144 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Figure 86. WLCSP168 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Figure 87. UFBGA169 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Figure 88. UFBGA169 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Figure 89. UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Figure 90. LQFP176 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Figure 91. LQFP176 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Figure 92. LQFP176 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Figure 93. UFBGA(176+25) - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Figure 94. UFBGA(176+25) - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Figure 95. LQFP208 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Figure 96. LQFP208 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
10 /22 0 DS 1111 8 Rev 6
STM32F479xx List of figures
Figure 97. LQFP208 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Figure 98. TFBGA216 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Figure 99. TFBGA216 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Figure 100. TFBGA216 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
DS 1111 8 Rev 6 11/ 2 2 0
11
Description STM32F479xx

1 Description

The STM32F479xx devices are based on the high-performance Arm RISC core operating at a frequency of up to 180 MHz. The Cortex Floating point unit (FPU) single precision which supports all Arm
®(a)
Cortex®-M4 32-bit
®
-M4 core features a
®
single-precision data­processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.
The STM32F479xx devices incorporate high-speed embedded memories (Flash memory up to 2 Mbytes, up to 384 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers, a true random number generator (RNG), and a cryptographic acceleration cell. They also feature standard and advanced communication interfaces:
Up to three I
Six SPIs, two I
2
Cs
2
Ss full duplex. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
Four USARTs plus four UARTs
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the
ULPI)
Two CANs
One SAI serial audio interface
An SDMMC host interface
Ethernet and camera interface
LCD-TFT display controller
Chrom-ART Accelerator™
DSI Host.
Advanced peripherals include an SDMMC interface, a flexible memory control (FMC) interface, a Quad-SPI Flash memory, camera interface for CMOS sensors and a cryptographic acceleration cell. Refer to Ta bl e 2 for the list of peripherals available on each part number.
The STM32F479xx devices operate in the –40 to +105 °C temperature range from a 1.7 to
3.6 V power supply. A dedicated supply input for USB (OTG_FS and OTG_HS) only in full speed mode, is available on all packages.
The supply voltage can drop to 1.7 V (refer to Section 2.19.2). A comprehensive set of power-saving mode allows the design of low-power applications.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
12 /22 0 DS 1111 8 Rev 6
STM32F479xx Description
The STM32F479xx devices are offered in eight packages, ranging from 100 to 216 pins. The set of included peripherals changes with the device chosen, according to Tab le 2.
These features make the STM32F479xx microcontrollers suitable for a wide range of applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Figure 5 shows the general block diagram of the device family.
Peripherals

Table 2. STM32F479xx features and peripheral counts

STM32F479Vx
STM32F479Zx
STM32F479Ax
STM32F479Ix
STM32F479Bx
STM32F479Nx
Flash memory in Kbytes 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048
SRAM in Kbytes
System 384(160+32+128+64)
Backup 4
FMC memory controller Yes
Quad-SPI Yes
Ethernet Yes
Timers
General­purpose
Advanced­control
10
2
Basic 2
Random number generator Yes
2
S 4/2(full duplex)
SPI / I
(1)
6/2(full duplex)
(1)
I2C3
USART/UART 4/3 4/4
Communication interfaces
USB OTG FS Yes
USB OTG HS Yes
CAN 2
SAI 1
SDIO Yes
Camera interface Yes
DS 1111 8 Rev 6 13/ 2 2 0
47
Description STM32F479xx
Table 2. STM32F479xx features and peripheral counts (continued)
Peripherals
STM32F479Vx
STM32F479Zx
STM32F479Ax
STM32F479Ix
STM32F479Bx
STM32F479Nx
MIPI-DSI Host Yes
LCD-TFT Yes
Chrom-ART Accelerator™ (DMA2D)
Yes
Cryptography Yes
GPIOs 71 131 114 131 161 161
12-bit ADC Number of channels
12-bit DAC Number of channels
14 20 24
3
Yes
2
Maximum CPU frequency 180 MHz
Operating voltage 1.7 to 3.6V
Operating temperatures
Package LQFP100 LQFP144
1. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
2. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 2.19.2).
Ambient operating temperature: 40 to 85 °C / 40 to 105 °C
Junction temperature: 40 to 105 °C / 40 to 125 °C
UFBGA169
WLCSP168
(2)
LQFP176
UFBGA176
LQFP208 TFBGA216
14 /22 0 DS 1111 8 Rev 6
STM32F479xx Description

1.1 Compatibility throughout the family

STM32F479xx devices are not compatible with other STM32F4xx devices.
Figure 1 and Figure 2 show incompatible board designs, respectively, for LQFP176 and
LQFP208 packages (highlighted pins).
The UFBGA176 and TFBGA216 ballouts are compatible with other STM32F4xx devices, only few IO port pins are substituted, as shown in Figure 3 and Figure 4.
The LQFP100, LQFP144 and UFBGA169 packages are incompatible with other STM32F4xx devices.
DS 1111 8 Rev 6 15/ 2 2 0
47
Description STM32F479xx
MS38294V2
VSS
PI3
PI1
135 134 133
132
PI0
131
VDD
130
VSS
129
VCAP2
128
PA13
127
PA12
126
PA11
125
PA10
124
PA9
123
PA8
122
PC9
121
PC8
120
PC7
119
PC6 VDDUSB
117
VSS
116
PG8
115
PG7
114
PG6
113
PG5
112
PG4
111
PG3
110
PG2
109
VSSDSI
108
DSIHOST_D1N
107
DSIHOST_D1P
106
VDD12DSI
105
DSIHOST_CKN
104
DSIHOST_CKP
103
VSSDSI
102
DSIHOST_D0N
101
DSIHOST_D0P
100
VCAPDSI
99
VDDSI
98
PD15
97
PD14
96
VDD
95
VSS
94
PD13
93
PD12
92
PD11
91
PD10
90
PD9
89
PD8
84 85
86 87
88
STM32F469xx/479xx
LQFP176
PH7
PB12
PB13
PB14
PB15
118
VSS
PI3
PI2
135 134
133
132
PI1 131 PI0 130
PH15 129
PH14 128
PH13 127
VDD 126
VSS 125
VCAP2 124
PA13 123
PA12 122
PA11 121
PA10 120
PA9 119
PA8 118
PC9 117
PC8 116
PC7 115
PC6
114
VDD
113
VSS
112
PG8
111
PG7
110
PG6
109
PG5
108
PG4
107
PG3
106
PG2
105
PD15
104
PD14
103
VDD
102
VSS
101
PD13
100
PD12
99
PD11
98
PD10
97
PD9
96
PD8
95
PB15
94
PB14
93
PB13
92
PB12
91
VDD
90
VSS
89
PH12
84
85
86
87
88
PH8
PH9
PH10
PH11
STM32F4xx
LQFP176
PH7

1.1.1 LQFP176 package

Figure 1. Incompatible board design for LQFP176 package
16 /22 0 DS 1111 8 Rev 6
1. Pins from 85 to 133 are not compatible.
STM32F479xx Description
MS38295V1
138
PC6
PC6
137 VDDUSB
VDD
136
VSS
VSS
135
PG8
PG8
134
PG7
PG7
133
PG6
PG6
132
PG5
PG5
131
PG4
PG4
130
PG3
PG3
129
PG2
PG2
128
VSSDSI
PK2
127
DSIHOST_D1N
PK1
126
DSIHOST_D1P
PK0
125
VDD12DSI
VSS
124
DSIHOST_CKN
VDD
123
DSIHOST_CKP
PJ11
122
VSSDSI
PJ10
121
DSIHOST_D0N
PJ9
120
DSIHOST_D0P
PJ8
119
VCAPDSI
PJ7
118
VDDDSI
PJ6
117
PD15
PD15
116
PD14
PD14
STM32F42x/STM32F43x
LQFP208
STM32F469xx/479xx
LQFP208
138 137 136 135 134 133 132 131 130
129 128
127 126 125 124 123
122 121 120
119
118 117 116

1.1.2 LQFP208 package

Figure 2. Incompatible board design for LQFP208 package
1. Pins from 118 to 128 and pin 137 are not compatible
DS 1111 8 Rev 6 17/ 2 2 0
47
Description STM32F479xx
DSI
HOST_
D0P
DSI
HOST_
D0N
DSI
HOST_
CKN
DSI
HOST_
CKP
VCAP
DSI
VDD DSI
VDD_
USB
VSS DSI
DSI
HOST_
D1P
DSI
HOST_
D1N
VDD12
DSI
NC
MS39403V1
1 2 3 9 10 11 12 13 14 15
APE3PE2
PE1 PE 0 PB 8
PB5
PG1 4 PG1 3 PB 4 P B3 PD7 P C12 PA15 PA 14 PA 13
BPE4PE5
PE6
PB9 PB7
PB6
PG15 PG12 PG11 PG10 PD6 PD0 PC 11 PC10 PA12
C
VBAT
PI7 PI6 PI5
PDR _ON
VDD
PG9 PD5 PD1 PI3 PA11
D
PC13
PI8
PI9 PI4 BOOT0
VSS VSS VSS PD4 PD3 PD2
PI1
PA10
E
PC14
PF0 PI10
PI11
PI0 PA9
FPC15
VSS
VDD
PH2
VSS VCAP2 PC9 PA8
G
PH0
VSS V DD PH 3
VSS VDD PC8 PC7
H
PH1
PF2
PF1
PH4
PG8 PC6
J
NRS T P F3 PH 5
PG7 PG6
K
PF7
PF6
PF4
VDD
VSS
PG5 PG4 PG 3
L
PF10
BYPASS
_REG
PD15 PG2
MVSSAPC0
PF8
PC1 PC2 PC 3
PB2
PG1
VCAP
_1
PH6 PD14 PD13
NVREF-
PA0
PA4
PC4
PF13
PG0 V DD VDD VDD PE 13 P H7 PD1 2 PD 11 PD10
P
PA2 PA6 P A5
PC5
PF12
PF15 PE8 PE9 PE11 PE14 PB12 PB13 PD9 PD8
R
PA3
PB1
PF11 PE7
PE1 2 PE15 PB 10 PB11 PB 14 PB15
VSS
45678
PA1
VDD
VDD
VDD
VDD
VREF+
VDDA
PA7
PB0
PF14
PF10
VSS VSS VSS VSS
VSSVSSVSS VSS VSS
VSSVSSVSS VSS VSS
VSSVSSVSS VSS VSS
VSSVSSVSS VSS VSS
VSS VSS
PF9
PF5
PD1 PI3
PI2
PD2
PI1
PH13
PI0
VSS VCAP2 PC9
VSS VDD PC8
VSS VDD
PG8
PG7
PG5 PG4
PD15
PD14
PH15
PH14
VDD
PH12
PH11
PH8 PH9
PH10
VDD
PD1 PI3
NC
PD2
PI1
DSI
HOST_
D1P
PI0
VSS VCAP2 PC9
VSS VDD PC8
VSS
DSI
VDD_
USB
PG8
PG7
PG5 PG4
PD15
PD14
VDD12
DSI
DSI
HOST_
D1N
VDD
DSI
VCAP
DSI
DSI
HOST_
CKP
DSI
HOST_
D0P
DSI
HOST_
D0N
DSI
HOST_
CKN
VDD
STM32F42xx/3xx
STM32F40xx/41xx
STM32F469xx STM32F479xx

1.1.3 UFBGA176 package

Figure 3. UFBGA176 port-to-terminal assignment differences
18 /22 0 DS 1111 8 Rev 6
1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.
STM32F479xx Description
MSv39404V1
123 4 5678 9101112131415
A
PG14
PE1
PE0
PB8
PB5
PB4
PB3
PD7
PC12 PA15
PA14 PA13
B
PE5 PE6 PG13 PB9
PB7
PB6
PG15
PG11 PJ13
PJ12 PD6
PD0
PC11 PC10
PA12
C
VBAT PI8
PI4
PK7 PK6 PK5
PG12
PG10 PJ14 PD5
PD1
PI3
PI2
PA11
D
PC13 PF0 PI5 PI7 PI10 PI6 PK4 PK3 PG9 PJ15 PD4 PD2 PH15 PI1 PA10
E
PC14 PF1 PI12 PI9 BOOT0 VDD
VDD
VDD VDD
VCAP2
PH13
PH14 PI0 PA 9
F
PC15 VSS PI11
VDD
PC9
PA8
G
PH0
PF2
PI13
PI15
VDD
PC8 PC7
H
PH1 PI14
PH4
VSS PG8
PC6
J
NRST PF4 PH5
PH3
VSS
VDD
PG7
PG6
K
PF7
PF6
PF5
PH2
VDD
VSS
VSS VSS VSS VSS VDD
PD15
PB13
PD10
L
PF10
PC3
BYPASS
-REG
PB12
PD9 PD8
M
VSSA
PG1
PD12 PD13 PG3 PG2 PJ5 PH12
N
VREF- PA1
PA0
PA4
PC4
PF13
PG0 PJ3
PE8
PD11 PG5
PG4
PH7
PH9
PH11
VREF+
PA2
PA6 PA5 PC5 PF14 PJ2 PF11 PE9
PE11
PE14
PB10 PH6 PH8 PH10
PA3 PA7 PB1
PB0 PJ0
PJ1
PE7 PE10 PE12
PE15 PE13
PB11 PB14
PB15
PF3
P
R
VDDA
PDR
ON
PE4
PE3
PE2
VDD
VDD
VSS
VSS
VSS
VSS VSS VSS VSS VSS
VSS
VDD
PJ4PF15
VDD VDD VDD VCAP1 PD14
VDD
PF8
PF9
PC0
PC1 PC2 PB2 PF12
VDD
VSS
PD3
STM32F42xx/3xx
STM32F40xx/41xx
STM32F469xx STM32F479xx
VDD
VDD
PD15
VDD
VDD
VDD
PD15
VDD
VDD
DSI
DSI
HOST_
CKP
VDDD
USB
VSS DSI
VDD12
DSI
DSI
HOST_
CKN
DSI
HOST_
D0P
VCAP
DSI
DSI
HOST_
D0N
DSI
HOST_
D1P
DSI
HOST_
D1N
PJ8
VDD
PJ11
PK0
PJ10
PJ7
PJ6
PJ9
PK1
PL2
VDD

1.1.4 TFBGA216 package

Figure 4. TFBGA216 port-to-terminal assignment differences
1. The highlighted pins are substituted with dedicated DSI IO pins on STM32F469xx/479xx devices.
DS 1111 8 Rev 6 19/ 2 2 0
47
Description STM32F479xx
MS38297V1
USART 2MBpsGPIO PORT A
AHB/APB2
USART 2MBps
EXT IT. WKUP
168 AF
PA[15:0]
USART 2MBps
GPIO PORT B
PB[15:0]
USART 2MBps
TIMER 1 / PWM
4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4]ETR),
BKIN as AF
USART 2MBpsTIMER 8 / PWM
USART 2MBps
GPIO PORT C
PC[15:0]
USART 2MBps
USART 1
RX, TX, SCK,
CTS, RTS as AF
USART 2MBpsGPIO PORT D
PD[15:0]
USART 2MBpsGPIO PORT E
PE[15:0]
USART 2MBps
GPIO PORT F
PF[15:0]
USART 2MBpsGPIO PORT G
PG[15:0]
USART 2MBps
SPI1/I2S
APB 2 60 M H z
8 analog inputs common
to the 3 ADCs
8 analog inputs common
to the ADC1 & 2
V
DDREF_ADC
8 analog inputs to ADC3
4 Channels, ETR as AF
TIM2
TIM3
TIM4
4 Channels
TIM5
RX, TX, SCK,
USART2
RX, TX, SCK
USART3
RX, TX as AF
UART4
RX, TX as AF
UART5
MOSI, MISO, SCK
NSS/WS, MCK as AF
SPI2/I2S
MOSI, MISO, SCK
SPI3/I2S
NSS/WS, MCK as AF
SCL, SDA, SMBA as AF
I2C1/SMBUS
SCL, SDA, SMBA as AF
I2C2/SMBUS
TX, RX
bxCAN1
TX, RX
bxCAN2
DAC1 as AF
DAC1
DAC2 as AF
DAC2
ITF
TIMER6
TIMER7
WWDG
4KB BKPRAM
RTC_TAMP1 RTC_TAMP2 RTC_OUT RTC_REFIN RTC_TS
OSC32_IN OSC32_OUT
OSCIN OSCOUT
VDDA, VSSA, NRST
USART 2MBpsUSART 6
RX, TX, SCK,
CTS, RTS as AF
smcard
irDA
smcard
irDA
smcard
irDA
smcard irDA
16b
16b
32b
16b
16b
32b
16b
16b
CTS, RTS as AF
CTS, RTS as AF
SDIO / MMC
D[7:0]
CMD, CK as AF
VBAT = 1.8 to 3.6 V
DMA1
AHB/APB1
DMA2
SCL, SDA, SMBA as AF
I2C3/SMBUS
USART 2MBpsGPIO PORT H
PH[15:0]
JTAG & SW
ARM
Cortex M4
180 MHz
I-BUS
S-BUS
D-BUS
NVICETM
MPUFPU
JTRST, JTDI,
JTCK/SWCLK
JTDO/SWD, JTDO
TRACECK
TRACED(3:0)
USB
DMA/
FIFO
OTG HS
D+, D-
VDDUSB = 3.0 to 3.6 V
ULPI : CLK, D(7:0),
DIR, STP, NXT
SCL/SDA, INT, ID, VBUS
GP-DMA2
8 Streams
FIFO
GP-DMA1
8 Streams
FIFO
Flash 1MB
ACCEL/
CACHE
SRAM1 160KB
SRAM2 32KB
EXT MEM CTRL (FMC)
SRAM, PSRAM, NOR Flash
NAND Flash, SDRAM
CLK, NE[3:0], A[23:0], D[31:0], NOE, NWEN, NBL[3:0], SDCLKE[1:0], SDNE[1:0], NRAS, NCAS, NADV, NWAIT, INTR
CAMERA
HSYNC, VSYNC PIXCK, D(13:0)
ITF
USB
PHY
OTG FS
D+, D-, VDDUSB = 3.0 to 3.6 V, SCL, SDA, INT, ID, VBUS
FIFO
PHY
FIFO
USART 2MBps
TEMP SENSOR
ADC1
ADC2
ADC 3
IF
IF
@VDDA
@VDDA
POR/PDR/
SUPPLY
SUPERVISION
PVD
Reset
Int
POR
XTAL OSC
4-26MHz
XTAL 32kHz
MANAGT
RTC
RC HS
RC LS
Standbyinterface
IWDG
@VBAT
@VDDA
AWU
RESET&
CLOCK
CTRL
PLL1,2,3
@VDDA @VDD
Backup Register
AHB2 180MHz
LS
LS
2 Channels as AF
TIM12
1 Channels as AF
TIM13
1 CH as AF
TIM14
16b
16b
16b
USART 2MBpsTIMER 9
2 channels as AF
USART 2MBps
TIMER10
1 channel as AF
16b
16b
USART 2MBps
TIMER11
1 channel as AF
16b
BOR
FIFO
UART7
UART8
USART 2MBpsSPI 4
SD, SCK, FS MCLK as AF
CRC
USART 2MBps
SAI 1
Dig. Filter
FIFO
QuadSPI
CLK, BK1_NCS, BK2_NCS, D[7:0]
USART 2MBps
SPI6
FIFO
Flash 1MB
SRAM3 128KB
3DES,
AES256
HASH
FIFO
FIFO
RNG
AHB2 180 MHz
4 Channels, ETR as AF
4 Channels, ETR as AF
USART 2MBpsGPIO PORT I
PI[15:0]
USART 2MBpsGPIO PORT J
PJ[15:0]
USART 2MBpsGPIO PORT K
PK[7:0]
AHB1 180 MHz
HCLKx
PCLKx
USART 2MBps
SPI5
MOSI, MISO, SCK,
NSS as AF
MOSI, MISO, SCK,
NSS as AF
MOSI, MISO, SCK,
NSS as AF
MOSI, MISO, SCK,
NSS as AF
CCM data RAM 64 KB
LCD-TFT
FIFO
DMA-2D
FIFO
DSI Host
DSI
PHI
DSIHOST_D0 P/N DSIHOST_D1 P/N
DSIHOST_CK P/N
VDD12DSI, VDDSI, VSSDSI
VCAPDSI
DSIHOST_TE
4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4]ETR),
BKIN as AF
RX, TX as AF
RX, TX as AF
AHB BUS MATRIX
APB1 45 MHz
APB2 90 MHz
Figure 5. STM32F479xx block diagram
20 /22 0 DS 1111 8 Rev 6
1. The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to APB1 are clocked from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
STM32F479xx Functional overview

2 Functional overview

2.1 Arm® Cortex®-M4 with FPU and embedded Flash and SRAM

The Arm® Cortex®-M4 with FPU processor is the latest generation of Arm® processors for embedded systems, developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.
The Arm code-efficiency, delivering the high-performance expected from an Arm memory size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions that allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.
The STM32F47x line is compatible with all Arm
Figure 5 shows the general block diagram of the STM32F47x line.
Note: Cortex
®
Cortex®-M4 with FPU core is a 32-bit RISC processor that features exceptional
®
tools and software.
®
-M4 with FPU core is binary compatible with the Cortex®-M3 core.
®
core in the

2.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator optimized for STM32 industry-standard
®
Arm
Cortex®-M4 with FPU processors. It balances the inherent performance advantage of the Arm the processor to wait for the Flash memory at higher frequencies.
To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 180 MHz.
®
Cortex®-M4 with FPU over Flash memory technologies, which normally require
®
benchmark, the

2.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 Gbytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real­time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
DS 1111 8 Rev 6 21/ 2 2 0
47
Functional overview STM32F479xx

2.4 Embedded Flash memory

The devices embed a Flash memory of up to 2 Mbytes available for storing programs and data.

2.5 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.6 Embedded SRAM

All devices embed:
Up to 384Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)
data RAM
RAM is accessed (read/write) at CPU clock speed with 0 wait states.
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or V
BAT mode.

2.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, QUADSPI, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.
22 /22 0 DS 1111 8 Rev 6
STM32F479xx Functional overview
ARM
Cortex-M4
GP
DMA1
GP
DMA2
MAC
Ethernet
USB OTG
HS
Bus matrix-S
ICODE
DCODE
ACCEL
Flash
memory
SRAM1
160 Kbyte
SRAM2
32 Kbyte
AHB2
peripherals
AHB1
peripherals
FMC external
MemCtl
I-bus
D-bus
S-bus
DMA_PI
DMA_MEM1
DMA_MEM2
DMA_P2
ETHERNET_M
USB_HS_M
MS33862V1
CCM data RAM
64-Kbyte
APB1
APB2
SRAM3
128 Kbyte
LCD-TFT
Chrom ART Accelerator(DMA2D)
LCD-TFT_M
DMA2D
QuadSPI

Figure 6. STM32F479xx Multi-AHB matrix

2.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.
DS 1111 8 Rev 6 23/ 2 2 0
47
Functional overview STM32F479xx
The DMA can be used with the main peripherals:
SPI and I
2
I
C
USART
General-purpose, basic and advanced-control timers TIMx
DAC
SDIO
Camera interface (DCMI)
ADC
SAI1
QUADSPI.
2
S

2.9 Flexible memory controller (FMC)

The Flexible memory controller (FMC) includes three memory controllers:
The NOR/PSRAM memory controller
The NAND/memory controller
The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller
The main features of the FMC controller are the following:
Interface with static-memory mapped devices including:
Static random access memory (SRAM)
NOR Flash memory/OneNAND Flash memory
PSRAM
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories
8-,16-,32-bit data bus width
Independent Chip Select control for each memory bank
Independent configuration for each memory bank
Write FIFO
Read FIFO for SDRAM controller
The Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is
HCLK/2.
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
24 /22 0 DS 1111 8 Rev 6
STM32F479xx Functional overview

2.10 Quad-SPI memory interface (QUADSPI)

All STM32F479xx devices embed a Quad-SPI memory interface, which is a specialized communication interface targeting Single, Dual, Quad or Dual-flash SPI memories. It can work in direct mode through registers, external flash status register polling mode and memory mapped mode. Up to 256 Mbytes external Flash memory are mapped, supporting 8, 16 and 32-bit access. Code execution is supported.
The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate.

2.11 LCD-TFT controller

The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue) and delivers all signals to interface directly to a broad range of LCD and TFT panels up to XGA (1024x768) resolution with the following features:
2 displays layers with dedicated FIFO (64x32-bit)
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer
Up to 8 Input color formats selectable per layer
Flexible blending between two layers using alpha value (per pixel or constant)
Flexible programmable parameters for each layer
Color keying (transparency color)
Up to 4 programmable interrupt events.

2.12 DSI Host (DSIHOST)

The DSI Host is a dedicated peripheral for interfacing with MIPI DSI compliant displays. It includes a dedicated video interface internally connected to the LTDC and a generic APB interface that can be used to transmit information to the display.
These interfaces are as follows:
LTDC interface:
Used to transmit information in Video Mode, in which the transfers from the host
processor to the peripheral take the form of a real-time pixel stream (DPI).
Through a customized for mode, this interface can be used to transmit information
in full bandwidth in the Adapted Command Mode (DBI).
APB slave interface:
Allows the transmission of generic information in Command mode, and follows a
proprietary register interface.
Can operate concurrently with either LTDC interface in either Video Mode or
Adapted Command Mode.
Video mode pattern generator:
Allows the transmission of horizontal/vertical color bar and D-PHY BER testing
pattern without any kind of stimuli.
DS 1111 8 Rev 6 25/ 2 2 0
47
Functional overview STM32F479xx
The DSI Host main features:
Compliant with MIPI
Interface with MIPI
Supports all commands defined in the MIPI
Transmission of all Command mode packets through the APB interface
Transmission of commands in low-power and high-speed during Video Mode
Supports up to two D-PHY data lanes
Bidirectional communication and escape mode support through data lane 0
Supports non-continuous clock in D-PHY clock lane for additional power saving
Supports Ultra Low-Power mode with PLL disabled
ECC and Checksum capabilities
Support for End of Transmission Packet (EoTp)
Fault recovery schemes
3D transmission support
Configurable selection of system interfaces:
AMBA APB for control and optional support for Generic and DCS commands
Video Mode interface through LTDC
Adapted Command Mode interface through LTDC
Independently programmable Virtual Channel ID in
Video Mode
Adapted Command Mode
APB Slave
Alliance standards
D-PHY
Alliance specification for DCS:
Video Mode interfaces features
LTDC interface color coding mappings into 24-bit interface:
16-bit RGB, configurations 1, 2, and 3
18-bit RGB, configurations 1 and 2
24-bit RGB
Programmable polarity of all LTDC interface signals
Maximum resolution is limited by available DSI physical link bandwidth:
Number of lanes: 2
Maximum speed per lane: 500 Mbps
Adapted interface features
Support for sending large amounts of data through the memory_write_start (WMS) and
memory_write_continue (WMC) DCS commands
LTDC interface color coding mappings into 24-bit interface:
16-bit RGB, configurations 1, 2, and 3
18-bit RGB, configurations 1 and 2
24-bit RGB
26 /22 0 DS 1111 8 Rev 6
STM32F479xx Functional overview
Video mode pattern generator
Vertical and horizontal color bar generation without LTDC stimuli
BER pattern without LTDC stimuli

2.13 Chrom-ART Accelerator™ (DMA2D)

The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit blitting, row data copy and pixel format conversion. It supports the following functions:
Rectangle filling with a fixed color
Rectangle copy
Rectangle copy with pixel format conversion
Rectangle composition with blending and pixel format conversion.
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp direct color. It embeds dedicated memory to store color lookup tables.
An interrupt can be generated when an operation is complete or at a programmed watermark.
All the operations are fully automatized and are running independently from the CPU or the DMAs.

2.14 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 93 maskable interrupt channels plus the 16 interrupt lines of the Cortex M4 with FPU core.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved on interrupt entry, and restored on interrupt exit,
with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt latency.

2.15 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 159 GPIOs can be connected to the 16 external interrupt lines.
®
-
DS 1111 8 Rev 6 27/ 2 2 0
47
Functional overview STM32F479xx

2.16 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.
The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio class performance. In this case, the I frequencies from 8 kHz to 192 kHz.

2.17 Boot modes

At startup, boot pins are used to select one out of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial interface. Refer to application note AN2606 for details.

2.18 Power supply schemes

VDD = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through V
Note: V
V
DD/VDDA
Section 2.19.2). Refer to Ta bl e 3 to identify the packages supporting this option.
V
V
, V
SSA
blocks, RCs and PLL. V
BAT
= 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset
DDA
minimum value of 1.7 V is obtained when the internal reset is OFF (refer to
DDA
and V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when V
can be connected either to VDD or an external independent power supply (3.0
DDUSB
to 3.6 V) for USB transceivers. For example, when device is powered at 1.8V, an independent power supply 3.3 V can be connected to V it is independent from V
DDUSB
. When the V
or V
DD
first to disappear.
2
S master clock can generate all standard sampling
pins.
DD
must be connected to VDD and VSS, respectively.
SSA
is not present.
DD
is connected to a separated power supply,
DDUSB
but it must be the last supply to be provided and the
DDA
28 /22 0 DS 1111 8 Rev 6
STM32F479xx Functional overview
MS37590V1
V
DDUSB_MIN
V
DD_MIN
time
V
DDUSB_MAX
USB functional area
VDD=V
DDA
USB non functional area
V
DDUSB
Power-on
Power-down
Operating mode
USB non functional area
The following conditions must be respected:
During power-on phase (V
V
DD
During power-down phase (VDD < V
V
DD
–V
rising and falling time rate specifications must be respected.
DDUSB
In operating mode phase, V
< V
DD
DDUSB
DD_MIN
DD_MIN
), V
), V
should be always lower than
DDUSB
should be always lower than
DDUSB
could be lower or higher than VDD:
– If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by
V
are operating between V
DDUSB
DDUSB_MIN
and V
DDUSB_MAX
.The V
DDUSB
supplies both USB transceivers (USB OTG_HS and USB OTG_FS).
– If only one USB transceiver is used in the application, the GPIOs associated to
the other USB transceiver are still supplied by V
DDUSB
.
– If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered
by V
are operating between V
DDUSB
DD_MIN
and V
DD_MAX
.
– If USB (USB OTG_HS/OTG_FS) is not used and the associated GPIOs
powered by V (V
must not be floating).
DDUSB
are not used, then V
DDUSB
should be tied to VSS or VDD
DDUSB
Figure 7. V
connected to an external independent power supply
DDUSB
The DSI (Display Serial Interface) sub-system uses several power supply pins that are independent from the other supply pins:
VDDDSI is an independent DSI power supply dedicated for DSI Regulator and MIPI
D-PHY. This supply must be connected to global VDD.
VCAPDSI pin is the output of DSI Regulator (1.2 V), which must be connected
externally to VDD12DSI.
VDD12DSI pin is used to supply the MIPI D-PHY, and to supply clock and data lanes
pins. An external capacitor of 2.2 µF must be connected on VDD12DSI pin.
VSSDSI pin is an isolated supply ground used for DSI sub-system.
If DSI functionality is not used at all, then:
VDDDSI pin must be connected to global VDD.
DS 1111 8 Rev 6 29/ 2 2 0
47
Functional overview STM32F479xx
PDR_ON
STM32F479xx
VSS
PDR not active : 1.7 V < VDD < 3.6 V
VBAT
VDD
Application reset
signal (optional)
MSv36589V1
VCAPDSI pin must be connected externally to VDD12DSI but the external
capacitor is no more needed.
VSSDSI pin must be grounded.

2.19 Power supply supervisor

2.19.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On other packages the power supply supervisor is always enabled.
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when V V
POR/PDR
or V
, without the need for an external reset circuit.
BOR
The device also features an embedded programmable voltage detector (PVD) that monitors the V
DD/VDDA
generated when V higher than the V
power supply and compares it to the V
DD/VDDA
PVD
drops below the V
threshold. The interrupt service routine can then generate a warning
threshold and/or when VDD/V
PVD
message and/or put the MCU into a safe state. The PVD is enabled by software.
is below a specified threshold,
DD
threshold. An interrupt can be
PVD
DDA
is

2.19.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.
An external power supply supervisor should monitor V the device in reset mode as long as V connected to VSS, as shown in Figure 8.
Figure 8. Power supply supervisor interconnection with internal reset OFF
is below a specified threshold. PDR_ON must be
DD
and NRST and should maintain
DD
30 /22 0 DS 1111 8 Rev 6
Loading...
+ 190 hidden pages