STMicroelectronics STIPQ3M60T-H SLLIMM User Manual

STMicroelectronics STIPQ3M60T-H SLLIMM User Manual

UM2682

User manual

300 W motor control power board based on STIPQ3M60T-H SLLIMM™-nano 2nd series MOSFET IPM

Introduction

The STEVAL-IPMNM3Q is a compact motor drive power board equipped with SLLIMM-nano (small low-loss intelligent molded module) 2nd series based on N-channel Power MOSFET MDmesh™ DM2 fast-recovery diode (STIPQ3M60T-HL). It provides an affordable and easy-to-use solution for driving high power motors in a wide range of applications such as power white goods, air conditioning, compressors, power fans and 3-phase inverters for motor drives in general.

The IPM itself consists of six MOSFETs, three high voltage half-bridge gate driver ICs and a wide range of features like undervoltage lockout, smart shutdown, internal temperature sensor and NTC, overcurrent protection and internal op-amp. The main characteristics of this evaluation board are small size, minimal BOM and high efficiency. It features an interface

circuit (BUS and VCC connectors), bootstrap capacitors, snubber capacitor, hardware short-circuit protection, fault event signal and temperature monitoring. It is designed to work in singleor three-shunt configuration and with triple current sensing options: three dedicated on-board op-amps, op-amps embedded on MCU or single internal IPM op-amp. The Hall/Encoder part completes the circuit.

The system is designed to achieve accurate and fast conditioning of current feedback to satisfy the typical requirements for field oriented control (FOC).

The STEVAL-IPMNM3Q is compatible with ST’s control board based on STM32, providing a complete platform for motor control.

Figure 1. Motor control board based on SLIMM-nano 2nd series - top view

Figure 2. Motor control board based on SLIMM-nano 2nd series - bottom view

UM2682 - Rev 2 - November 2020

www.st.com

For further information contact your local STMicroelectronics sales office.

 

 

 

UM2682

Key features

1Key features

Input voltage: from 125 to 400 VDC

Nominal power: up to 300 W

Allowable maximum power is related to the application conditions and cooling system

Nominal current: up to 1.1 Arms

Input auxiliary voltage: up to 20 VDC

Singleor three-shunt resistors for current sensing (with sensing network)

Three options for current sensing: dedicated external op-amps, internal SLLIMM-nano or via MCU

Overcurrent hardware protection

IPM temperature monitoring and protection

Hall sensor or encoder input

MOSFETs intelligent power module

SLLIMM-nano 2nd series IPM STIPQ3M60T-H - Full molded package

Motor control connector (32 pins) interfacing with ST MCU boards

Universal design for further evaluation with breadboard and testing pins

Very compact size

WEEE compliant

RoHS compliant

UM2682 - Rev 2

page 2/31

 

 

UM2682

Circuit schematics

2Circuit schematics

The full schematics for the SLLIMM-nano card for STIPQ3M60T-H IPM products is shown below. This card consists of an interface circuit (BUS and VCC connectors), bootstrap capacitors, snubber capacitor, short-circuit protection, fault output circuit, temperature monitoring, single-/three-shunt resistors and filters for input signals. It also includes bypass capacitors for VCC and bootstrap capacitors. The capacitors are located very close to the drive IC to avoid malfunction due to noise.

Three current sensing options are provided: three dedicated onboard op-amps, one internal IPM op-amp and the embedded MCU op-amps; selection is performed through three jumpers.

The Hall/Encoder section (powered at 5 V or 3.3 V) completes the circuit.

UM2682 - Rev 2

page 3/31

 

 

<![if ! IE]>

<![endif]>2 Rev- UM2682

<![if ! IE]>

<![endif]>4/31 page

2.1Schematic diagrams

Input

DC_bus _volta ge

J 1

 

 

 

 

 

 

 

 

 

C1

1

 

+

 

 

 

 

2

 

 

 

330u/400V

INP UT-dc

 

 

 

 

 

 

 

 

 

STEVAL-IPMNntmp decoder

t

 

 

 

 

G

 

 

 

 

 

M

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RC1

 

 

 

 

 

0 RC2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 RC3

 

 

 

 

 

 

0 RC4

 

 

m

5

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 RC8

 

 

 

 

 

 

0 RC9

 

 

p

 

 

 

 

N

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 RC13

 

 

 

 

 

0 RC14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. STEVAL-IPMNM3Q board schematic (1 of 5)

+Bus

 

 

 

 

 

3.3V

 

 

 

 

 

 

R1

 

 

R5

 

 

 

470K

 

 

 

U1D

 

 

3.3V

 

1k0

<![if ! IE]>

<![endif]>4

 

R2

D1

 

12

+

14

1.65V

 

13

-

470K

 

 

TS V994

 

 

 

+ C3

R6

<![if ! IE]>

<![endif]>11

+ C4

 

Bus _volta ge

47u/35V

1k0

 

47u/35V

 

 

 

R3

120R

 

 

 

 

 

R4

C2

 

 

 

 

 

7k5

10n

 

 

 

 

 

 

2

 

 

 

 

3

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 RC5

 

 

 

 

 

 

0 RC6

 

 

 

 

 

 

0 RC7

 

 

 

7

 

 

 

 

 

 

8

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 RC10

 

 

 

 

 

 

0 RC11

 

 

 

 

 

 

0 RC12

 

 

<![if ! IE]>

<![endif]>UM2682

<![if ! IE]>

<![endif]>diagrams Schematic

<![if ! IE]>

<![endif]>UM2682 2 Rev-

<![if ! IE]>

<![endif]>5/31 page

Figure 4. STEVAL-IPMNM3Q board schematic (2 of 5)

E1

<![if ! IE]>

<![endif]>3

S W1

2Curre nt_A

Control Conne ctor

<![if ! IE]>

<![endif]>1

Curre nt_A_a mp

 

 

 

 

J 2

 

 

 

EM_S TOP

1

2

 

 

 

 

 

 

 

 

3

4

 

 

 

 

P WM-A-H

 

 

 

 

5

6

 

 

 

 

P WM-A-L

 

 

 

 

7

8

 

E2

 

 

P WM-B-H

 

 

 

9

10

 

 

 

 

P WM-B-L

 

 

 

 

11

12

 

<![if ! IE]>

<![endif]>3

S W2

 

P WM-C-H

 

 

13

14

 

 

 

P WM-C-L

Bus _volta ge

 

 

 

15

16

 

 

Curre nt_B

 

 

 

2

 

17

18

 

 

 

 

 

19

20

 

 

 

 

NTC_bypa s s _re la y

21

22

 

<![if ! IE]>

<![endif]>1

 

 

23

24

 

 

 

 

 

 

 

 

+5V

25

26

NTC

 

 

 

27

28

 

 

 

 

3.3V

Curre nt_B_a mp

 

 

P WM_Vre f

29

30

 

 

31

32

 

 

 

 

M_pha s e _A

 

 

 

 

33

34

 

 

 

 

M_pha s e _B

M_pha s e _C

 

 

 

 

 

E3

 

 

 

 

 

 

<![if ! IE]>

<![endif]>3

S W3

2Curre nt_C

<![if ! IE]>

<![endif]>1

Curre nt_C_a mp

J 3

pha s e _C

3

2 pha s e _B

1

pha s e _A

Motor Output

<![if ! IE]>

<![endif]>UM2682

<![if ! IE]>

<![endif]>diagrams Schematic

<![if ! IE]>

<![endif]>2 Rev- UM2682

<![if ! IE]>

<![endif]>6/31 page

Figure 5. STEVAL-IPMNM3Q board schematic (3 of 5)

<![if ! IE]>

<![endif]>UM2682

<![if ! IE]>

<![endif]>diagrams Schematic

<![if ! IE]>

<![endif]>UM2682 2 Rev-

1.65V

C22

10n

R21 1k0

E1

C24

100p

R23 1k0

1.65V

C28

10n

R30 1k0

E3

C30

100p

R32 1k0

<![if ! IE]>

<![endif]>7/31 page

R20

1k9

 

<![if ! IE]>

<![endif]>4

3

+

2

-

 

<![if ! IE]>

<![endif]>11

R24

1k9

R28

1k9

 

<![if ! IE]>

<![endif]>4

5

+

6

-

 

<![if ! IE]>

<![endif]>11

R33

1k9

Figure 6. STEVAL-IPMNM3Q board schematic (4 of 5)

3.3V

C21

<![if ! IE]>

<![endif]>+

 

 

 

 

 

 

 

4.7u 50V

C23

 

 

 

 

 

 

 

 

 

 

 

 

 

U1A

100n

 

 

 

 

 

 

 

 

TP 24

 

 

 

 

 

 

R22

 

 

 

 

 

 

 

 

 

 

 

1

 

 

Curre nt_A_a mp

 

 

 

 

 

 

 

 

 

 

 

 

 

1k

C25

 

 

 

 

TS V994

 

330p

 

na no OP +

 

 

 

 

 

 

 

 

 

 

 

 

1.65V

 

 

 

<![if ! IE]>

<![endif]>4

 

 

 

 

C26

 

10

+

 

 

 

 

10n

R25

9

-

 

 

 

 

 

1k9

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>11

 

 

 

R26

1k0

 

 

 

 

 

 

E2

 

 

 

 

 

 

 

 

C27

 

 

 

 

 

 

 

100p

 

 

 

 

 

 

R27

1k0

 

 

 

 

 

 

 

 

na no OP -

 

 

 

 

 

3.3V

 

R29

 

 

 

 

 

 

 

1k9

 

 

U1B

 

 

TP 26

 

 

 

 

 

 

R31

 

 

 

 

 

 

 

 

 

 

 

7

 

 

Curre nt_C_a mp

 

 

 

 

 

 

 

 

 

 

 

1k

C31

 

 

 

 

 

 

 

 

 

 

 

TS V994

 

330p

 

 

 

 

3.3V

U1C

8

TS V994

<![if ! IE]>

<![endif]>1

S W17

2

<![if ! IE]>

<![endif]>3

na no OP OUT

3.3V

D10

TP 25

R43

Curre nt_B_a mp

1k

C29

330p

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>UM2682

<![if ! IE]>

<![endif]>diagrams Schematic

<![if ! IE]>

<![endif]>2 Rev - UM2682

<![if ! IE]>

<![endif]>8/31 page

Figure 7. STEVAL-IPMNM3Q board schematic (5 of 5)

3.3V

 

<![if ! IE]>

<![endif]>3

S W9

 

 

 

 

 

 

 

C32

 

2

Hall/Encoder

 

 

 

 

 

100n

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>1

 

S W10

R34

R35

R36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4k7

4k7

4k7

 

 

 

+5V

 

 

R37

2k4

 

 

 

 

 

 

 

 

 

 

 

 

 

M_pha s e _A

 

 

 

S W11

 

 

 

 

 

C33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100n

 

 

 

 

 

 

 

 

 

 

 

 

R38

2k4

 

 

 

 

 

 

 

 

S W12

 

 

 

 

 

M_pha s e _B

 

 

 

 

 

 

 

 

 

 

J 5

1

 

 

 

 

 

 

 

H1/A+

1

 

 

 

 

 

 

 

2

R39

2k4

 

 

 

 

 

H2/B+

2

 

 

 

 

 

3

 

 

 

 

 

 

M_pha s e _C

H3/Z+

3

 

 

 

 

 

 

4

 

 

 

 

 

 

+3.3/5V

4

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

GND

5

 

 

 

S W13

S W14

S W15

 

 

 

 

 

 

 

 

 

C34

 

 

 

 

 

 

Encode r/Ha ll

100n

 

 

 

 

 

 

 

 

 

 

C35

C36

C37

 

 

 

 

 

 

 

10p

10p

10p

R40

R41

R42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4k7

4k7

4k7

3.3V

 

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>3

S W16

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>1

 

 

 

 

 

 

 

 

+5V

 

 

 

 

 

 

 

 

 

<![if ! IE]>

<![endif]>UM2682

<![if ! IE]>

<![endif]>diagrams Schematic

UM2682

Main characteristics

3Main characteristics

The board is designed for a 125 VDC to 400 VDC supply voltage.

An appropriate bulk capacitor for the power level of the application must be mounted at the dedicated position on the board.

The SLLIMM-nano integrates six MOSFET switches and high voltage gate drivers. Thanks to this integrated module, the system offers power inversion in a simple and compact design that requires less PCB area and increases reliability.

The board offers the added flexibility of being able to operate in singleor three-shunt configuration by modifying solder bridge jumper settings (see Section 4.3.4 Singleor three-shunt selection).

Figure 8. STEVAL-IPMNM3Q architecture

UM2682 - Rev 2

page 9/31

 

 

UM2682

Filters and key parameters

4Filters and key parameters

4.1Input signals

The input signals (LINx and HINx) to drive the internal MOSFETs are active high. A 375 kΩ (typ.) pull-down resistor is built-in for each input signal. To prevent input signal oscillation, an RC filter is added on each input as close as possible to the IPM. The filter is designed using a time constant of 10 ns (1 kΩ and 10 pF).

4.2Bootstrap capacitor

 

In the 3-phase inverter, the emitters of the low side MOSFETs are connected to the negative DC bus (VDC-)

 

as common reference ground, which allows all low side gate drivers to share the same power supply, while the

 

emitter of the high side MOSFETs is alternatively connected to the positive (VDC+) and negative (VDC-) DC bus

 

during running conditions.

 

A bootstrap method is a simple and cheap solution to supply the high voltage section. This function is normally

 

accomplished by a high voltage fast recovery diode. The SLLIMM-nano MOSFET-based family includes a

 

patented integrated structure that replaces the external diode with a high voltage DMOS functioning as a diode

 

with series resistor. An internal charge pump provides the DMOS driving voltage.

 

The value of the CBOOT capacitor should be calculated according to the application requirements.

 

Figure 9. CBOOT graph selection shows the behavior of CBOOT (calculated) versus switching frequency (fsw),

 

with different values of ΔVCBOOT for a continuous sinusoidal modulation and a duty cycle δ = 50%.

Note:

This curve is taken from application note AN5244 (available on www.st.com); calculations are based on the

 

STIPN2M50x-Hy device, which represents the worst case scenario for this kind of calculation.

 

The boot capacitor must be two or three times larger than the CBOOT calculated in the graph.

 

For this design, a value of 2.2 μF was selected.

 

Figure 9. CBOOT graph selection

<![if ! IE]>

<![endif]>CBOOT Calculated (µF)

5

STIPN2M50x-Hy

δ=50%

4

3

ΔVCBOOT=0.1V

2

ΔVCBOOT=0.3V

ΔVCBOOT=0.5V

1

0

0

5

10

15

20

fsw (kHz)

GADG221020181007IG

4.3Overcurrent protection

The SLLIMM-nano MOSFET-based integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference VREF (540 mV typ.) connected to the inverting input, while the non-inverting input on the CIN pin can be connected to an external shunt resistor to implement the overcurrent protection function.

When the comparator triggers, the device enters the shutdown state.

The comparator output is connected to the SD pin in order to send the fault message to the MCU.

UM2682 - Rev 2

page 10/31

 

 

Loading...
+ 21 hidden pages