STMicroelectronics STD2NK70Z, STD2NK70Z-1 User Guide

STD2NK70Z - STD2NK70Z-1

N-CHANNEL 700 V - 6 Ω - 1.6 A DPAK/IPAK

Zener-Protected SuperMESH™ MOSFET

Table 1: General Features

Figure 1: Package

TYPE

VDSS

RDS(on)

ID

Pw

STD2NK70Z

700 V

7 Ω

1.6 A

45 W

STD2NK70Z-1

700 V

7 Ω

1.6 A

45 W

TYPICAL RDS(on) = 6 Ω

EXTREMELY HIGH dv/dt CAPABILITY

ESD IMPROVED CAPABILITY

100% AVALANCHE TESTED

NEW HIGH VOLTAGE BENCHMARK

GATE CHARGE MINIMIZED

DESCRIPTION

The SuperMESH™ series is obtained through an extreme optimization of ST’s well established strip-based PowerMESH™ layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding application. Such series complements ST full range of high vltage MOSFETs including revolutionary MDmesh™ products.

APPLICATIONS

SINGLE-ENDED SMPS IN MONITORS, COMPUTER AND INDUSTRIAL APPLICATION

WELDING EQUIPMENT

FLYBACK CONFIGURATION FOR BATTERY CHARGER

 

3

1

3

2

 

1

DPAK

IPAK

 

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

Sales Type

Marking

Package

Packaging

 

 

 

 

STD2NK70ZT4

D2NK70Z

DPAK

TAPE & REEL

 

 

 

 

STD2NK70Z-1

D2NK70Z

IPAK

TUBE

 

 

 

 

Rev. 2

January 2005

1/12

STD2NK70Z - STD2NK70Z-1

Table 3: Absolute Maximum ratings

Symbol

Parameter

Value

Unit

 

 

 

 

VDS

Drain-source Voltage (VGS = 0)

700

V

VDGR

Drain-gate Voltage (RGS = 20 KΩ)

700

V

VGS

Gatesource Voltage

± 30

V

 

 

 

 

ID

Drain Current (continuous) at TC = 25°C

1.6

A

ID

Drain Current (continuous) at TC = 100°C

1

A

IDM(*)

Drain Current (pulsed)

6.4

A

PTOT

Total Dissipation at TC = 25°C

45

W

 

Derating Factor

0.36

W/°C

 

 

 

 

VESD(G-S)

Gate source ESD (HBM-C = 100pF, R = 1.5 KΩ)

2000

V

 

 

 

 

dv/dt (1)

Peak Diode Recovery voltage slope

4.5

V/ns

 

 

 

 

Tstg

Storage Temperature

-55 to 150

°C

 

 

Tj

Max. Operating Junction Temperature

 

 

(*) Pulse width limited by safe operating area

(1) ISD 1.6 A, di/dt 200 A/µs, VDD V(BR)DSS

Table 4: Thermal Data

Rthj-case

Thermal Resistance Junction-case Max

2.78

°C/W

 

 

 

 

Rthj-amb

Thermal Resistance Junction-ambient Max

100

°C/W

Tl

Maximum Lead Temperature For Soldering Purpose

300

°C

Table 5: Avalanche Characteristics

Symbol

Parameter

Max Value

Unit

 

 

 

 

IAR

Avalanche Current, Repetitive or Not-Repetitive

1.6

A

 

(pulse width limited by Tj max)

 

 

EAS

Single Pulse Avalanche Energy

110

mJ

 

(starting Tj = 25 °C, ID = IAR, VDD = 50 V)

 

 

Table 6: Gate-Source Zener Diode

Symbol

Parameter

Test Condition

Min.

Typ.

Max

Unit

 

 

 

 

 

 

 

BVGSO

Gate-Source Breakdown

Igs= ± 1mA (Open Drain)

30

 

 

A

 

Voltage

 

 

 

 

 

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device’s ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device’s integrity. These integrated Zener diodes thus avoid the usage of external components.

2/12

STD2NK70Z - STD2NK70Z-1

TABLE 7: ELECTRICAL CHARACTERISTICS (TCASE =25°C UNLESS OTHERWISE SPECIFIED)

On /Off

Symbol

 

Parameter

 

Test Conditions

 

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

V(BR)DSS

 

Drain-source Breakdown

 

ID = 1 mA, VGS = 0

700

 

 

V

 

 

Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDSS

 

Zero Gate Voltage

 

VDS = Max Rating

 

 

 

1

µA

 

 

Drain Current (VGS = 0)

 

VDS = Max Rating, TC = 125°C

 

 

 

50

µA

IGSS

 

Gate-body Leakage

 

VGS = ± 20 V

 

 

 

± 10

µA

 

 

Current (VDS = 0)

 

 

 

 

 

 

 

VGS(th)

 

Gate Threshold Voltage

 

VDS = VGS, ID = 50 µA

3

3.75

4.5

V

RDS(on)

 

Static Drain-source On

 

VGS = 10 V, ID = 0.8 A

 

 

6

7

 

 

Resistance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8: Dynamic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

 

Test Conditions

 

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

gfs (1)

 

Forward Transconductance

 

VDS = 15 V,

 

 

1.4

 

S

 

 

 

 

ID = 0.8 A

 

 

 

 

 

Coss eq.(3)

 

Equivalent Output

 

VGS = 0 V, VDS = 0 to 560 V

 

 

17

 

 

 

 

Capacitance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ciss

 

Input Capacitance

 

VDS = 25 V, f = 1 MHz, VGS = 0

 

 

280

 

pF

Coss

 

Output Capacitance

 

 

 

 

35

 

pF

Crss

 

Reverse Transfer

 

 

 

 

6.5

 

pF

 

 

Capacitance

 

 

 

 

 

 

 

td(on)

 

Turn-on Delay Time

 

VDD = 350 V, ID = 0.8 A,

 

 

7

 

ns

tr

 

Rise Time

 

RG = 4.7 Ω, VGS = 10 V

 

 

17

 

ns

td(off)

 

Turn-off-Delay Time

 

(see Figure 17)

 

 

20

 

ns

tf

 

Fall Time

 

 

 

 

35

 

ns

Qg

 

Total Gate Charge

 

VDD = 560 V, ID = 0.8 A,

 

 

11.4

15

nC

Qgs

 

Gate-Source Charge

 

VGS = 10 V

 

 

2

 

nC

Qgd

 

Gate-Drain Charge

 

(see Figure 20)

 

 

6.8

 

nC

Table 9: Source Drain Diode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

 

Test Conditions

 

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

ISD

 

Source-drain Current

 

 

 

 

 

1.6

A

ISDM (2)

 

Source-drain Current (pulsed)

 

 

 

 

 

6.4

A

VSD (1)

 

Forward On Voltage

 

ISD = 1.6 A, VGS = 0

 

 

 

1.6

V

trr

 

Reverse Recovery Time

 

ISD = 1.6, di/dt = 100 A/µs

 

 

334

 

ns

Qrr

 

Reverse Recovery Charge

 

VDD =50 V, Tj = 25°C

 

 

918

 

µC

IRRM

 

Reverse Recovery Current

 

(see Figure 18)

 

 

5.5

 

A

trr

 

Reverse Recovery Time

 

ISD = 1.6, di/dt = 100 A/µs

 

 

350

 

ns

Qrr

 

Reverse Recovery Charge

 

VDD = 50 V, Tj = 150°C

 

 

1050

 

µC

IRRM

 

Reverse Recovery Current

 

(see Figure 18)

 

 

6

 

A

(1)Pulsed: Pulse duration = 300 µs, duty cycle 1.5%

(2)Pulse width limited by safe operating area

(3)Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

3/12

STMicroelectronics STD2NK70Z, STD2NK70Z-1 User Guide

STD2NK70Z - STD2NK70Z-1

Figure 3: Safe Operating Area

Figure 6: Thermal Impedance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Output Characteristics

Figure 7: Transfer Characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Transconductance

Figure 8: Static Drain-source On Resistance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4/12

Loading...
+ 8 hidden pages