ST MICROELECTRONICS ST 24C01 MN Datasheet

M24C16, M24C08
M24C04, M24C02, M24C01
16Kbit, 8Kbit, 4Kbit, 2Kbit and 1Kbit Serial I²C Bus EEPROM

FEATURES SUMMARY

Two-Wire I²C Serial Interface
Supports 400kHz Protocol
Single Supply Voltage:
Write Control Input
BYTE and PAGE WRITE (up to 16 Bytes)
RANDOM and SEQUENTIAL READ Modes
Self-Timed Programming Cycle
Automatic Address Incrementing
Enhanced ESD/Latch-Up Protection
More than 1 Million Erase/Write Cycles
More than 40-Year Data Retention
Packages
ECOPACK® (RoHS compliant)

Table 1. Product List

Reference Part Number
M24C16-W
M24C16
M24C16-R M24C08-W
M24C08
M24C08-R M24C04-W
M24C04
M24C04-R M24C02-W
M24C02
M24C02-R M24C01-W
M24C01
M24C01-R

Figure 1. Packages

PDIP8 (BN)
SO8 (MN)
150 mil width
TSSOP8 (DW)
169 mil width
TSSOP8 (DS)
3x3mm² body size (MSOP)
UFDFPN8 (MB)
2x3mm² (MLP)
1/28January 2006
M24C16, M24C08, M24C04, M24C02, M24C01
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 1. Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. 8-Pin Package Connections (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Serial Data (SDA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chip Enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 4. Device Select Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Write Control (WC
Supply voltage (V
Operating supply voltage V
Internal Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Power-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5. Maximum RP Value versus Bus Parasitic Capacitance (C) for an I²C Bus . . . . . . . . . . . 6
Figure 6. I²C Bus Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Device Select Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
CC
CC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DEVICE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Start Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Stop Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Acknowledge Bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Memory Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 7. Write Mode Sequences with WC
=1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 9
Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 8. Write Mode Sequences with WC
=0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 9. Write Cycle Polling Flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Minimizing System Delays by Polling On ACK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 10.Read Mode Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Read Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Random Address Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Sequential Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Acknowledge in Read Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2/28
M24C16, M24C08, M24C04, M24C02, M24C01
INITIAL DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 5. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 6. Operating Conditions (M24Cxx-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 7. Operating Conditions (M24Cxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 8. DC Characteristics (M24Cxx-W, Device Grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 9. DC Characteristics (M24Cxx-W, Device Grade 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 10. DC Characteristics (M24Cxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 11. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 11.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 12. Input Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 13. AC Characteristics (M24Cxx-W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 14. AC Characteristics (M24Cxx-R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 12.AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 13.PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . 21
Table 15. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data . . . . . . . . . . 21
Figure 14.SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . .22
Table 16. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width,
Package Mechanical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 15.UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm²,
Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 17. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm²,
Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 16.TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 24
Table 18. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . 24
Figure 17.TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size,
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 19. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size,
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 20. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 21. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3/28
M24C16, M24C08, M24C04, M24C02, M24C01

SUMMARY DESCRIPTION

These I²C-compatible electrically erasable pro­grammable memory (EEPROM) devices are orga­nized as 2048/1024/512/256/128 x 8 (M24C16, M24C08, M24C04, M24C02 and M24C01).
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
ECOPACK® packages are Lead-free and RoHS compliant.
ECOPACK is an ST trademark. ECOPACK speci­fications are available at: www.st.com.

Figure 2. Logic Diagram

V
CC
3
E0-E2 SDA
SCL
WC
M24Cxx
V
SS
AI02033
I²C uses a two-wire serial interface, comprising a bi-directional data line and a clock line. The devic­es carry a built-in 4-bit Device Type Identifier code (1010) in accordance with the I²C bus definition.
The device behaves as a slave in the I²C protocol, with all memory operations synchronized by the serial clock. Read and Write operations are initiat­ed by a Start condition, generate d by the bus mas­ter. The Start condition is followed by a Device Select Code and Read/Write
bit (RW) (as de­scribed in Table 3.), terminated by an acknowl­edge bit.
When writing data to the memory, the device in­serts an acknowledge bit during the 9
th
bit time, following the bus master’s 8-bit transmission. When data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. Data transfers are terminated by a Stop condition after an Ack for Writ e, and afte r a NoAck for Read.

Table 2. Signal Names

E0, E1, E2 Chip Enable SDA Serial Data SCL Serial Clock WC V
CC
V
SS
Write Control Supply Voltage Ground

Figure 3. 8-Pin Package Connections (Top View)

M24Cxx
/2Kb/4Kb/8Kb16Kb
/1Kb
/ E0/ NC/ NCNC / E1/ E1/ NCNC / E2/ E2/ E2NC
Note: 1. NC = Not Connected
2. See PACKAGE MECHANICAL section for package dimensions, and how to identify pin-1.
4/28
/ E0 / E1 / E2
SS
1 2 3 4
V
8
CC
WC
7
SCL
6
SDAV
5
AI02034E

SIGNAL DESCRIPTION

M24C16, M24C08, M24C04, M24C02, M24C01

Serial Clock (SCL)

This input signal is used to strobe all data in and out of the device. In applications where this signal is used by slave devices to synchronize the bus to a slower clock, the bus master must have an open drain output, and a pull-up resistor can be con­nected from Serial Clock (SCL) to V
. (Figure 5.
CC
indicates how the value of the pull-up resistor can be calculated). In most applicat ions, though, this method of synchronization is not employed, and so the pull-up resistor is not necessary, provided that the bus master has a push-pull (rather than open drain) output.

Serial Data (SDA)

This bi-directional signal is used to transfer data in or out of the device. It is an open drain output that may be wire-OR’ed with other open drain or open collector signals on the bus. A pull up resistor must be connected from Serial Data (SDA) to V
CC
. (Fig-
ure 5. indicates how the value of the pull-up resis-
tor can be calculated).

Chip Enable (E0, E1, E2)

These input signals are used t o set the va lue that is to be looked for on the three least significant bits (b3, b2, b1) of the 7-bit De vice Select Code. These inputs must be tied to V
or VSS, to establish the
CC
Device Select Code as shown in Figure 4.

Figure 4. Device Select Code

V
CC
M24Cxx
E
i
V
SS
V
CC
M24Cxx
E
i
V
SS
Ai11650
Write Control (WC
). This input signal is useful
for protecting the entire contents of the memory from inadvertent write operations. Write opera­tions are disabled to the entire memory array when Write Control (WC nected, the signal is internally read as V
) is driven High. When uncon-
, and
IL
Write operations are allowed. When Write Control (WC
) is driven High, Device Select and Address bytes are acknowledged, Data bytes are not acknowledged.
Supply voltage (V Operating supply voltage V
CC
)
. Prior to select-
CC
ing the memory and issuing instructions to it, a val­id and stable V
voltage must be applied: this
CC
voltage must be a DC voltage within the specified
(min), VCC(max)] range, as defined in Table
[V
CC
6. and Table 7. In order to secure a stable DC sup-
ply voltage, it is recommended to decouple the
line with a suitable capacitor (usually of the
V
CC
order of 10nF to 100nF) close to the V
CC/VSS
package pins. The V
voltage must remain stable and valid until
CC
the end of the transmission of the instruction and, for a Write instruction, until the completion of the internal write cycle (t
).
W
Internal Device Reset. In order to pr event inad­vertent Write operations during Power-up, a Pow­er On Reset (POR) circuit is included. At Power-up (continuous rise of V spond to any instruction until V
), the device does not re-
CC
has reached the
CC
Power On Reset threshold voltage (this threshold is lower than the minimum V
operating voltage
CC
defined in Table 6. and Table 7.). When V
has passed the POR threshold, the de-
CC
vice is reset and in the Standby Power mode Power-down. At Power-down (where V
creases continuously), as soon as V
drops from
CC
CC
de-
the operating voltage range below the Power On Reset threshold voltage, the device stops re­sponding to any instruction sent to it.
During Power-down, the device must be deselect­ed and in the Standby Power mode (that is there should be no internal Write cycle in progress).
5/28
M24C16, M24C08, M24C04, M24C02, M24C01
Figure 5. Maximum RP Value versus Bus Parasitic Capacita nce (C) for an I²C Bus
V
20
16
12
8
Maximum RP value (k)
4
0
10
Figure 6. I²C Bus Protocol
SCL
fc = 400kHz
100
C (pF)
fc = 100kHz
1000
CC
MASTER
SDA
SCL
R
R
P
P
C
C
AI01665b
SDA
SCL
SDA
SCL
SDA
START
Condition
START
Condition
1 23 7 89
MSB
1 23 7 89
MSB ACK
SDA
Input
SDA
Change
STOP
Condition
ACK
STOP
Condition
AI00792B
6/28
M24C16, M24C08, M24C04, M24C02, M24C01

Table 3. Device Select Code

Device Type Identifier
1
Chip Enable
b7 b6 b5 b4 b3 b2 b1 b0 M24C01 Select Code 1 0 1 0 E2 E1 E0 RW M24C02 Select Code 1 0 1 0 E2 E1 E0 RW M24C04 Select Code 1 0 1 0 E2 E1 A8 RW M24C08 Select Code 1 0 1 0 E2 A9 A8 RW M24C16 Select Code 1 0 1 0 A10 A9 A8 RW
Note: 1. The most significant bit, b7, is sent first.
2. E0, E1 and E2 are compared against the respective external pins on the memory device.
3. A10, A9 and A8 represent most significant bits of the address.
2,3
RW
7/28
M24C16, M24C08, M24C04, M24C02, M24C01

DEVICE OPERATION

The device supports the I²C protocol. This is sum­marized in Figure 6.. Any device that sends data on to the bus is defined to be a transmitter, and any device that reads the data to be a receiver. The device that controls the data transfer is known as the bus master, and the other as the slave de­vice. A data transfer can only be initiated by the bus master, which will also provide the serial clock for synchronization. The M24Cxx device is always a slave in all communication.

Start Condition

Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in the High state. A Start condition must precede any data transfer command. The device continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock (SCL) for a Start condition, and will not respond unless one is given.

Stop Condition

Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and driv­en High. A Stop condition terminates communica­tion between the device and the bus master. A Read command that is followed by NoAck can be followed by a Stop condition to force the device into the Stand-by mode. A Stop condition at the end of a Write command triggers the in ternal Write cycle.

Acknowledge Bit (ACK)

The acknowledge bit is used to indicate a success­ful byte transfer. The bus transmitter, whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits of data. During the
th
clock pulse period, the receiver pulls Serial
9 Data (SDA) Low to acknowledge the receipt of the eight data bits.

Data Input

During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock (SCL).
For correct device operation, Serial Data (SDA) must be stable during the rising edge of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock (SCL) is driv­en Low.

Memory Addressing

To start communication between the bus master and the slave device, the bus master must initiate a Start condition. Following this, the bus master sends the Device Select Code, shown in Table 3. (on Serial Data (SDA), most significant bit first).
The Device Select Code consists of a 4-bit Device Type Identifier, and a 3-bit Chip Enable “Address” (E2, E1, E0). To address the memory ar ray, the 4­bit Device Type Identifier is 1010b.
Each device is given a unique 3-bit code on the Chip Enable (E0, E1, E2) inputs. When the Device Select Code is received, the device only responds if the Chip Enable Address is the same as the val­ue on the Chip Enable (E0, E1, E2) inputs. How­ever, those devices with larger memory capacities (the M24C16, M24C08 and M24C04) need more address bits. E0 is not available for u se on devices that need to use address line A8; E1 is not avail­able for devices that need to use address line A9, and E2 is not available for devices that need to use address line A10 (see Figure 3. and Table 3. for details). Using the E0, E1 and E2 inputs, up to eight M24C02 (or M24C01), four M24C04, two M24C08 or one M24C16 devices can be connect­ed to one I²C bus. In each case, and in the hybrid cases, this gives a total memory capacity of 16 Kbits, 2 KBytes (except where M24C01 devic­es are used).
th
The 8
bit is the Read/Write bit (RW). This bit is
set to 1 for Read and 0 for Write operations. If a match occurs on the Device Select code, the
corresponding device gives an acknowledgment on Serial Data (SDA) during the 9
th
bit time. If the device does not match the Device Select code, it deselects itself from the bus, and goes into St and­by mode.
8/28
M24C16, M24C08, M24C04, M24C02, M24C01

Table 4. Operating Modes

Mode RW bit
Current Address Read 1 X 1 START, Device Select, RW
0X
Random Address Read
1 X reSTART, Device Select, RW Sequential Read 1 X 1 Similar to Current or Random Address Read Byte Write 0 Page Write 0
Note: 1. X = V
IH
or V
.
IL

Figure 7. Write Mode Sequences with WC=1 (data write inhibite d)

WC
Byte Write DEV SEL BYTE ADDR DATA IN
WC
(1)
Bytes Initial Sequence
START, Device Select, RW
1
V
IL
V
IL
ACK ACK NO ACK
1 START, Device Select, RW = 0
16 START, Device Select, RW = 0
= 1 = 0, Address
= 1
R/W
START
WC
ACK ACK NO ACK NO ACK
Page Write DEV SEL BYTE ADDR DATA IN 1 DATA IN 2
R/W
START
WC (cont'd)
NO ACK NO ACK
Page Write (cont'd)
DATA IN N
STOP
STOP
DATA IN 3
AI02803C
9/28
M24C16, M24C08, M24C04, M24C02, M24C01

Write Operations

Following a Start condition the bus master sends a Device Select Code with the Read/Write
) reset to 0. The device acknowledges this, as
(RW
bit
shown in Figure 8., and waits for an addr ess byte . The device responds to the address byte with an acknowledge bit, and then waits for the data byte.
When the bus master generates a Stop condition immediately after the Ack bit (in the “10
th
bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write cycle is triggered. A Stop condition at any other time slot does not trigger t he internal Write cycle.
During the internal Write cycle, Serial Data (SDA) and Serial Clock (SCL) are ignored, and the de­vice does not respond to any requests.

Byte Write

After the Device Select code and the address byte, the bus master sends one data byte. If the ad­dressed location is Write-protected, by Write Con­trol (WC
) being driven High (during the period from the Start condition until the end of the address byte), the device replies to the data byte with NoAck, as shown in Figure 7., and the location is not modified. If, instead, the addressed location is not Write-protected, the device replies with Ack. The bus master terminates the transfer by gener­ating a Stop condition, as shown in Figure 8..

Page Write

The Page Write mode allows up to 16 bytes to be written in a single Write cycle, provided that they are all located in the same page in the memory: that is, the most significant memory address bits are the same. If more bytes are sent than will fit up to the end of the page, a condition known as ‘roll­over’ occurs. This should be avoided, as data starts to become overwritten in an implementation dependent way.
The bus master sends from 1 to 16 bytes of data, each of which is acknowledged by the device if Write Control (WC tion is Write-protected, by Write Control (WC
) is Low. If the addressed loca-
) be­ing driven High (during th e period from the Start condition until the end of the address byte), the de­vice replies to the data bytes with NoAck, as shown in Figure 7., and the locations are not mod­ified. After each byte is transferred, the internal byte address counter (the 4 least significant ad­dress bits only) is incremented. The transfer is ter­minated by the bus master generating a Stop condition.
10/28
M24C16, M24C08, M24C04, M24C02, M24C01

Figure 8. Write Mode Sequences with WC=0 (data write enabled)

WC
ACK
BYTE WRITE DEV SEL BYTE ADDR
R/W
START
WC
ACK ACK ACK ACK
PAGE WRITE DEV SEL BYTE ADDR
R/W
START
WC (cont'd)
ACKACK
PAGE WRITE (cont'd)
DATA IN N
ACK ACK
DATA IN
DATA IN 1 DATA IN 2
STOP
DATA IN 3
STOP
AI02804B
11/28
M24C16, M24C08, M24C04, M24C02, M24C01

Figure 9. Write Cycle Polling Flowchart using ACK

WRITE Cycle
in Progress
START Condition
DEVICE SELECT
with RW = 0
ACK
NO
Returned
First byte of instruction with RW = 0 already decoded by the device
ReSTART
STOP
YES
Next
Operation is
Addressing the
Memory
DATA for the
WRITE Operation
Continue the
WRITE Operation

Minimizing System Delays by Polling On ACK

During the internal Write cycle, the device discon­nects itself from the bus, and writes a copy of the data from its internal latches to the memory cells. The maximum Write time (t
) is shown in Table
w
13. and Table 14., but the typical time is shorter.
To make use of this, a polling sequence can be used by the bus master.
The sequence, as shown in Figure 9., is:
YESNO
Send Address
and Receive ACK
START
Condition
YESNO
DEVICE SELECT
with RW = 1
Continue the
Random READ Operation
AI01847C
Initial condition: a Write cycle is in progress. – Step 1: the bus master issues a Start condition
followed by a Device Select Code (the first byte of the new instruction).
Step 2: if the device is busy with the internal
Write cycle, no Ack will be returned and the bus master goes back to Step 1. If the device has terminated the internal Write cycle, it responds with an Ack, indicating that the device is ready to receive the second part of the instruction (the first byte of this i nstructi on having been sent during Step 1).
12/28

Figure 10. Read Mode Sequences

M24C16, M24C08, M24C04, M24C02, M24C01

CURRENT ADDRESS READ

RANDOM ADDRESS READ

SEQUENTIAL CURRENT READ
SEQUENTIAL RANDOM READ
ACK
DEV SEL DATA OUT
R/W
START
ACK
DEV SEL * BYTE ADDR
R/W
START
ACK ACK
DEV SEL DATA OUT 1
R/W
START
ACK ACK
DEV SEL * BYTE ADDR
NO ACK
STOP
ACK ACK
DEV SEL * DATA OUT
START
DEV SEL * DATA OUT 1
NO ACK
R/W
ACK NO ACK
DATA OUT N
ACK ACK
STOP
STOP
R/W
START
ACK NO ACK
DATA OUT N
STOP
Note: The seven most significant bits of the Device Select Code of a Random Read (in the 1st and 3rd bytes) must be identical.

Read Operations

Read operations are performed independently of the state of the Write Control (WC
) signal.
START
edges this, and outputs the contents of the ad­dressed byte. The bus master must not acknowledge the byte, and terminates the transf er with a Stop condition.
R/W
AI01942
The device has an internal address counter which is incremented each time a byte is read.
Random Address Read
A dummy Write is first performed to load the ad­dress into this address counter (as shown in Fig-
ure 10.) but without sending a Stop condition.
Then, the bus master sends another Start condi­tion, and repeats the Device Select Code, with the Read/Write
bit (RW) set to 1. The device acknowl-
Current Address Read
For the Current Address Read operation, following a Start condition, the bus master only sends a De­vice Select Code with the Read/Write
bit (RW) set to 1. The device acknowledges this, and outputs the byte addressed by the internal address counter. The counter is then incremented. The bus master terminates the transfer with a Stop condi-
13/28
M24C16, M24C08, M24C04, M24C02, M24C01
tion, as shown in Figure 10., without acknowledg­ing the byte.

Sequential Read

This operation can be used after a Current Ad­dress Read or a Random Address Read. The bus master does acknowledge the data byte output, and sends additional clock pulses so that the de­vice continues to output the next byte in sequence. To terminate the stream of by tes, the bus master must not acknowledge the last byte, and must generate a Stop condition, as shown in Figure 10..
The output data comes from consecutive address­es, with the internal address counter automatica lly incremented after each byte output. After the last memory address, the address counter ‘rolls-over’,
and the device continues to output data from memory address 00h.

Acknowledge in Read Mode

For all Read commands, the device waits, after each byte read, for an acknowledgme nt during the
th
bit time. If the bus master does not drive Serial
9 Data (SDA) Low during this time, the device termi­nates the data transfer and switches to its Stand­by mode.

INITIAL DELIVERY STATE

The device is delivered with all bits in the memory array set to 1 (each byte contains FFh).
14/28

MAXIMUM RATING

M24C16, M24C08, M24C04, M24C02, M24C01
Stressing the device outside the ratings listed in
Table 5. may cause permanent damage to the de-
vice. These are stress ratings only, and operation of the device at these, or any other conditions out­side those indicated in the Oper ating sections of
this specification, is not implied. Exposure to Ab­solute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 5. Absolute Maximum Ratings

Symbol Parameter Min. Max. Unit
T
A
T
STG
T
LEAD
V
IO
V
CC
V
ESD
Note: 1. T
LEAD
2. AEC-Q100-002 (compliant with JEDEC S td JESD22-A114A, C1=100pF, R1=1500, R2=500Ω).
Ambient Operating Temperature –40 130 °C Storage Temperature –65 150 °C PDIP-Specific Lead Temperature during Soldering
260
(1)
Input or Output range –0.50 6.5 V Supply Voltage –0.50 6.5 V
Electrostatic Discharge Voltage (Human Body model)
max must not be applied for more than 10s.
(2)
–4000 4000 V
°C
15/28
M24C16, M24C08, M24C04, M24C02, M24C01

DC AND AC PARAMETERS

This section summarizes the operating an d mea­surement conditions, and the DC and AC charac­teristics of the device. The parameters in the DC and AC Characteristic tables that follow are de­rived from tests performed under the Measure-
ment Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parame­ters.

Table 6. Operating Conditions (M24Cxx-W)

Symbol Parameter Min. Max. Unit
V
CC
Supply Voltage 2.5 5.5 V Ambient Operating Temperature (Device Grade 6) –40 85 °C
T
A
Ambient Operating Temperature (Device Grade 3) –40 125 °C

Table 7. Operating Conditions (M24Cxx-R)

Symbol Parameter Min. Max. Unit
V
CC
T
A
Supply Voltage 1.8 5.5 V Ambient Operating Temperature –40 85 °C

Table 8. DC Characteristics (M24Cxx-W, Device Grade 6)

Symbol Parameter
Input Leakage Current
I
LI
(SCL, SDA, E0, E1,and E2)
I
I
I
CC1
V V
V
Note: 1. The voltage source driving only E0, E1 and E2 inputs must provide an impedance of less than 1kOhm.
Output Leakage Current
LO
Supply Current
CC
Stand-by Supply Current
IL
Input Low Voltage
IH
Input High Voltage
Output Low Voltage
OL
(1)
(1)
(in addition to those in Table 6.)
V
=5V, fc=400kHz (rise/fall time < 30ns)
CC
=2.5V, fc=400kHz (rise/fall time < 30ns)
V
CC
V
= VSS or VCC, for 2.5V < V
IN
IOL = 2.1mA when VCC = 2.5V or
Test Condition
V
= VSS or V
IN
V
= VSS or V
OUT
I
= 3mA when VCC = 5.5V
OL
SDA in Hi-Z
CC,
CC
= < 5.5V
CC
Min. Max. Unit
–0.45
0.7V
0.3V
CC
± 2 µA
± 2 µA
2mA 1mA 1µA
V
CC
VCC+1
V
0.4 V
16/28
M24C16, M24C08, M24C04, M24C02, M24C01

Table 9. DC Characteristics (M24Cxx-W, Device Grade 3)

Symbol Parameter
Input Leakage Current
I
LI
(SCL, SDA, E0, E1,and E2)
I
I
I
CC1
V V
V
Note: 1. The voltage source driving only E0, E1 and E2 inputs must provide an impedance of less than 1kOhm.
Output Leakage Current
LO
Supply Current
CC
Stand-by Supply Current
IL
Input Low Voltage
IH
Input High Voltage Output Low Voltage
OL
(1)
(1)
(in addition to those in Table 6.)
=5V, fC=400kHz (rise/fall time < 30ns)
V
CC
IOL = 2.1mA when VCC = 2.5V or

Table 10. DC Characteristics (M24Cxx-R)

Symbol Parameter
Input Leakage Current
I
LI
(SCL, SDA, E0, E1,and E2) I I
I
CC1
V
V
V
Note: 1. The voltage source driving only E0, E1 and E2 inputs must provide an impedance of less than 1kOhm.
Output Leakage Current
LO
Supply Current
CC
Stand-by Supply Current
IL
Input Low Voltage
IH
Input High Voltage
Output Low Voltage
OL
(1)
(1)
(in addition to those in Table 7.)
V
V
=1.8V, fc=400kHz (rise/fall time < 30ns)
CC
V
IN
Test Condition
V
= VSS or V
IN
V
= VSS or V
OUT
V
=2.5V, fC=400kHz
CC
SDA in Hi-Z
CC,
(rise/fall time < 30ns)
= VSS or VCC, V
V
IN
= VSS or VCC, V
V
IN
I
= 3mA when VCC = 5.5V
OL
CC
CC
Test Condition
V
= VSS or V
= VSS or V
OUT
IN
CC
SDA in Hi-Z
CC,
= VSS or VCC, 1.8V < V
2.5 V ≤ V
1.8 V ≤ V
I
= 0.7 mA, VCC = 1.8 V
OL
< 2.5 V
CC
CC
CC
= 5 V
= 2.5 V
CC
–0.45
0.7V
Min. Max. Unit
< 5.5V
–0.45 –0.45
0.7V
Min. Max. Unit
± 2 µA ± 2 µA
3mA
3mA
A 2µA
CC
0.3V VCC+1
CC
V V
0.4 V
± 2 µA ± 2 µA
0.8 mA 1µA
CC
0.3 V
0.25 V VCC+1
CC
CC
V V
V
0.2 V

Table 11. AC Measurement Conditions

Symbol Parameter Min. Max. Unit
C
L
Load Capacitance 100 pF Input Rise and Fall Times 50 ns
to 0.8V
Input Levels Input and Output Timing Reference Lev els
0.2V
0.3V
CC
to 0.7V
CC
CC
CC
V V
17/28
M24C16, M24C08, M24C04, M24C02, M24C01

Figure 11. AC Measurement I/O Waveform

Table 12. Input Parameters

Symbol
C
IN
C
IN
Z
WCL
Z
WCH
t
NS
Note: 1. TA = 25°C, f = 400kHz
2. Sampl ed only, not 100% tested.
Input Capacitance (SDA) 8 pF Input Capacitance (other pins) 6 pF WC Input Impedance WC Input Impedance Pulse width ignored
(Input Filter on SCL and SDA)
Parameter
Input Levels
0.8V
CC
0.2V
CC
1,2
Input and Output
Timing Reference Levels
0.7V
CC
0.3V
CC
AI00825B
Test Condition Min. Max. Unit
V
V
IN
< 0.3 V
IN
> 0.7V
CC
15 70 k
500 k
Single glitch 100 ns
18/28
M24C16, M24C08, M24C04, M24C02, M24C01

Table 13. AC Characteristics (M24Cxx-W)

Test conditions specified in Table 6. and Table 11.
Symbol Alt. Parameter Min. Max. Unit
f
C
t
CHCL
t
CLCH
t
DL1DL2
t
DXCX
t
CLDX
t
CLQX
3
t
CLQV
1
t
CHDX
t
DLCL
t
CHDH
t
DHDL
4
t
W
Note: 1. For a reSTART condition, or following a Write cycle.
2. Sampl ed only, not 100% tested.
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.
4. Prev iou s de vic es beari n g the proc es s l ett er “L ” in t he pack age mar kin g gu ara nt ee a max i mum wri te t ime of 10 ms. Fo r mo re inf or ­mation about these devices and their device id entification, pl ease ask your ST Sales Office fo r Process Chang e Notices PCN MPG/ EE/0061 and 0062 (PCEE0061 and PCEE0062).
f
SCL
t
HIGH
t
LOW
2
t
t
SU:DAT
t
HD:DAT
t
DH
t
AA
t
SU:STA
t
HD:STA
t
SU:STO
t
BUF
t
WR
Clock Frequency 400 kHz Clock Pulse Width High 600 ns Clock Pulse Width Low 1300 ns SDA Fall Time 20 300 ns
F
Data In Set Up Time 100 ns Data In Hold Time 0 ns Data Out Hold Time 200 ns Clock Low to Next Data Valid (Access Time) 200 900 ns
Start Condition Set Up Time 600 ns Start Condition Hold Time 600 ns Stop Condition Set Up Time 600 ns Time between Stop Condition and Next Start Condition 1300 ns Write Time 5 ms

Table 14. AC Characteristics (M24Cxx-R)

Test conditions specified in Table 7. and Table 10.
Symbol Alt. Parameter
f
C
t
CHCL
t
CLCH
t
DL1DL2
t
DXCX
t
CLDX
t
CLQX
3
t
CLQV
1
t
CHDX
t
DLCL
t
CHDH
t
DHDL
t
W
Note: 1. For a reSTART condition, or following a Write cycle.
2. Sampl ed only, not 100% tested.
3. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.
4. This is preliminary information.
f
SCL
t
HIGH
t
LOW
2
t
t
SU:DAT
t
HD:DAT
t
DH
t
AA
t
SU:STA
t
HD:STA
t
SU:STO
t
BUF
t
WR
Clock Frequency 400 kHz Clock Pulse Width High 600 ns Clock Pulse Width Low 1300 ns SDA Fall Time 20 300 ns
F
Data In Set Up Time 100 ns Data In Hold Time 0 ns Data Out Hold Time 200 ns Clock Low to Next Data Valid (Access Time) 200 900 ns
Start Condition Set Up Time 600 ns Start Condition Hold Time 600 ns Stop Condition Set Up Time 600 ns Time between Stop Condition and Next Start Condition 1300 ns Write Time 10 ms
Min.
4
Max.
4
Unit
19/28
M24C16, M24C08, M24C04, M24C02, M24C01

Figure 12. AC Waveforms

SCL
SDA In
SCL
SDA In
SCL
tCHCL
tDLCL
tCHDX
START
Condition
tCHDH
STOP
Condition
tCLQV tCLQX
SDA
Input
tCLCH
SDA
Change
tW
Write Cycle
tDXCXtCLDX
tCHDH tDHDL
tCHDX
START
Condition
STOP
Condition
START
Condition
SDA Out
Data Valid
AI00795C
20/28
M24C16, M24C08, M24C04, M24C02, M24C01

PACKAGE MECHANICAL

Figure 13. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Outline
b2
A2
A1AL
be
D
8
E1
1
Note: Drawing is not to scale.
E
c
eA eB
PDIP-B
Table 15. PDIP8 – 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data
Symbol
Typ. Min. Max. Typ. Min. Max.
A 5.33 0.210 A1 0.38 0.015 A2 3.30 2.92 4.95 0.130 0.115 0.195
b 0.46 0.36 0.56 0.018 0.014 0.022 b2 1.52 1.14 1.78 0.060 0.045 0.070
c 0.25 0.20 0.36 0.010 0.008 0.014
D 9.27 9.02 10.16 0.365 0.355 0.400
E 7.87 7.62 8.26 0.310 0.300 0.325 E1 6.35 6.10 7.11 0.250 0.240 0.280
e2.54––0.100–– eA 7.62 0.300 – eB 10.92 0.430
L 3.30 2.92 3.81 0.130 0.115 0.150
millimeters inches
21/28
M24C16, M24C08, M24C04, M24C02, M24C01
Figure 14. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Outline
h x 45˚
A2
B
e
D
8
1
Note: 1. Drawing is not to scale.
2. The ‘1’ that appears in the top vie w of the package shows the position of pin 1 and the ‘N’ indicat es the total number of pins.
A
ddd
E
H
C
LA1 α
SO-A
Table 16. SO8 narrow – 8 lead Plastic Small Outline, 150 mils body width, Package Mechanical Data
Symbol
Typ Min Max Typ Min Max
A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.004 0.010 A2 1.10 1.65 0.043 0.065
B 0.33 0.51 0.013 0.020
C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197
ddd 0.10 0.004
E 3.80 4.00 0.150 0.157
e1.27– –0.050– –
H 5.80 6.20 0.228 0.244
h 0.25 0.50 0.010 0.020
L 0.40 0.90 0.016 0.035
α
N (number of
pins)
millimeters inches
88
22/28
M24C16, M24C08, M24C04, M24C02, M24C01
Figure 15. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Outline
e
D
b
L3
E
A
D2
ddd
A1
Note: 1. Drawing is not to scale.
2. The central pad (the area E2 by D2 in the above illustration) is pulled, internally, to VSS. It must not be allowed to be connected to any other voltage or signal line on the PCB, for example during the soldering process.
3. The circle in the top view of the package indicates the position of pin 1.
L1
E2
L
UFDFPN-01
Table 17. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm², Data
Symbol
Typ. Min. Max. Typ. Min. Max.
A 0.55 0.50 0.60 0.022 0.020 0.024
A1 0.00 0.05 0.000 0.002
b 0.25 0.20 0.30 0.010 0.008 0.012
D 2.00 0.079
D2 1.55 1.65 0.061 0.065
ddd 0.05 0.002
E 3.00 0.118
E2 0.15 0.25 0.006 0.010
e0.50– –0.020– –
L 0.45 0.40 0.50 0.018 0.016 0.020 L1 0.15 0.006 L3 0.30 0.012
N (number of
pins)
millimeters inches
88
23/28
M24C16, M24C08, M24C04, M24C02, M24C01
Figure 16. TSSOP8 – 8 lead Thin Shrink Small Outline, Package Outline
D
8
1
CP
Note: 1. Drawing is not to scale.
2. The circle in the top view of the package indicates the position of pin 1.
5
EE1
4
α
A2A
A1
eb
L
L1
TSSOP8AM
Table 18. TSSOP8 – 8 lead Thin Shrink Small Outline, Packa ge Mechanical Data
Symbol
Typ. Min. Max. Typ. Min. Max.
A 1.200 0.0472 A1 0.050 0.150 0.0020 0.0059 A2 1.000 0.800 1.050 0.0394 0.0315 0.0413
b 0.190 0.300 0.0075 0.0118
c 0 .090 0.200 0.0035 0.0079
CP 0.100 0.0039
D 3.000 2.900 3.100 0.1181 0.1142 0.1220
e 0.650 0.0256
E 6.400 6.200 6.600 0.2520 0.2441 0.2598 E1 4.400 4.300 4.500 0.1732 0.1693 0.1772
L 0.600 0.450 0.750 0.0236 0.0177 0.0295 L1 1.000 0.0394
α
millimeters inches
c
24/28
M24C16, M24C08, M24C04, M24C02, M24C01
Figure 17. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Package Outline
D
8
1
CP
Note: 1. Drawing is not to scale.
2. The circle in the top view of the package indicates the position of pin 1.
5
EE1
4
A2A
A1
eb
L
L1
TSSOP8BM
c
α
Table 19. TSSOP8 3x3mm² – 8 lead Thin Shrink Small Outline, 3x3mm² body size, Mechanical Data
Symbol
Typ. Min. Max. Typ. Min. Max.
A 1.100 0.0433 A1 0.050 0.150 0.0020 0.0059 A2 0.850 0.750 0.950 0.0335 0.0295 0.0374
b 0.250 0.400 0.0098 0.0157
c 0 .130 0.230 0.0051 0.0091
D 3.000 2.900 3.100 0.1181 0.1142 0.1220
E 4.900 4.650 5.150 0.1929 0.1831 0.2028 E1 3.000 2.900 3.100 0.1181 0.1142 0.1220
e 0.650 0.0256
CP 0.100 0.0039
L 0.550 0.400 0.700 0.0217 0.0157 0.0276 L1 0.950 0.0374
α
millimeters inches
25/28
M24C16, M24C08, M24C04, M24C02, M24C01

PART NUMBERING

Table 20. Ordering Information Scheme

Example: M24C16 W DW 3 T P /W
Device T ype
2
M24 = I
Device Function
16 = 16 Kbit (2048 x 8) 08 = 8 Kbit (1024 x 8) 04 = 4 Kbit (512 x 8) 02 = 2 Kbit (256 x 8) 01 = 1 Kbit (128 x 8)
Operating Voltage
W R = V
Package
BN = PDIP8 MN = SO8 (150 mil width) MB = UDFDFPN8 (MLP8) DW = TSSOP8 (169 mil width) DS = TSSOP8 (3x3mm² body size, MSOP8)
C serial access EEPROM
= VCC = 2.5 to 5.5V (400 kHz)
= 1.8 to 5.5V (400 kHz)
CC
Device Grade
6 = Industrial temperature range, –40 to 85 °C. Device tested with standard test flow
3 = Device tested with High Reliability Certified Flow Automotive temperature range (–40 to 125 °C)
Option
T = Tape and Reel Packing
Plating Technology
blank = Standard SnPb plating P or G = ECOPACK® (RoHS compliant)
Process
/W or /S = F6SP36%
Note: 1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment. The High Reliability Cer-
2
tified Flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy.
2. Used only for Device Grade 3.
For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST Sales Of­fice.
1
.
The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.
26/28
M24C16, M24C08, M24C04, M24C02, M24C01

REVISION HISTORY

Table 21. Document Revision History

Date Version Description of Revision
10-Dec-1999 2.4
18-Apr-2000 2.5 Labelling change to Fig-2D, correction of values for ‘E’ and main caption for Tab-13
05-May-2000 2.6 Extra labelling to Fig-2D
23-Nov-2000 3.0
19-Feb-2001 3.1
20-Apr-2001 3.2 Revision of DC and AC characteristics for the -S series 08-Oct-2001 3.3 Ball numbers added to the SBGA connections and package mechanical illustrations
09-Nov-2001 3.4
30-Jul-2002 3.5
04-Feb-2003 3.6 Document title spelt out more fully. “W”-marked devices with tw=5ms added.
05-May-2003 3.7
07-Oct-2003 4.0
17-Mar-2004 5.0
7-Oct-2005 6.0
17-Jan-2006 7.0
TSSOP8 Turned-Die package removed (p 2 and order information) Lead temperature added for TSSOP8 in table 2
SBGA package information removed to an annex document
-R range changed to being the -S range, and the new -R range added SBGA package information put back in this document
Lead Soldering Temperature in the Absolute Maximum Ratings table amended Write Cycle Polling Flow Chart using ACK illustration updated References to PSDIP changed to PDIP and Package Mechanical data updated Wording brought in to line with standard glossary
Specification of Test Condition for Leakage Currents in the DC Characteristics table improved
Document reformatted using new template. SBGA5 package removed TSSOP8 (3x3mm² body size) package (MSOP8) added. -L voltage range added
-R voltage range upgraded to 400kHz working, and no longer preliminary data. 5V voltage range at temperature range 3 (-xx3) no longer preliminary data.
-S voltage range removed. -Wxx3 voltage+temp ranged added as preliminary data. Table of contents, and Pb-free options added. Minor wording changes in Summary
Description, Power-On Reset, Memory Addressing, Read Operations. V
-0.45V. t MLP package added. Absolute Maximum Ratings for V
(max) value for -R voltage range corrected.
W
(min) and VCC(min) changed.
IO
(min) improved to
IL
Soldering temperature information clarified for RoHS compliant devices. Device grade information clarified. Process identification letter “G” information added. 2.2-5.5V range is removed, and 4.5-5.5V range is now Not f or New Design
Product List summary table added. AEC-Q100-002 compliance. Device Grade informaton clarified. Updated Device internal reset section, Figure 4., Figure 5., Table 14. and Table
20. Added Ecopack® information. Updated tW=5ms for the M24Cxx-W.
Pin numbers removed from silhouettes (see Figure 1., Packages). Internal Device Reset paragraph moved to below Supply voltage (V
SIGNAL DESCRIPTION. Test conditions for V
). Supply voltage (VCC) added below
CC
updated in Table 8. and Table 9. SO8N
OL
package specifications updated (see Table 16.) New definition of I
over the whole VCC range (see Tables 8, 9 and 10).
CC1
27/28
M24C16, M24C08, M24C04, M24C02, M24C01
Information furnished is believe d to be accura te and re liable. Howev er, STMi croelec tronics assumes n o resp onsibil ity for t he consequences of use of such information nor f or any infringement of pa tents or other rights of third parties which may re sult from its use. N o license is granted
by implication or otherwise und er an y pa ten t or patent rights of STMicroelectr on ics . Sp ec ific ations mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2006 STMicroelectronics - All rights reserved
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
STMicroelectronics group of companies
www.st.com
28/28
Loading...