STMicroelectronics PM6686 Datasheet

PM6686
Dual step-down controller with adjustable voltages, adjustable LDO
and auxiliary charge pump controller for notebook
Features
5.5 V to 28 V input voltage range
1.05 V / 3.3 V outputs or adjustable OUT1 = 0.7 V to 5.5 V and OUT2 = 0.7 V to 2.5 V outputs, ± 1.5% accuracy over valley regulation
Low-side MOSFETs' R
current sensing
DS(on)
and programmable current limit
Constant ON-time control
Frequency selectable
Soft-start internally fixed at 2 ms and soft-stop
Selectable pulse skipping at light loads
Selectable minimum frequency (33 kHz) in
pulse skip mode
Independent Power Good and EN signals
Latched OVP and UVP
Charge pump feedback
Fixed 3.3 V/5.0 V, or adjustable output 0.7 V to
4.5 V, ± 1.5% (LDO): 200 mA
3.3 V reference voltage ± 2.0%: 5 mA
2.0 V reference voltage ± 1.0%: 50 µA
Applications
Notebook computers
Main (3.3 V/5 V), chipset (1.5 V/1.05 V),
DDR1/2/3, graphic cards power supply
PDAs, mobile devices, tablet PC or slates
3-4 cells Li+ battery powered devices
Description
PM6686 is a dual step-down controller specifically designed to provide extremely high efficiency conversion, with lossless current sensing technique. The constant on-time architecture assures fast load transient response and the embedded voltage feed-forward provides nearly constant switching frequency operation. Pulse skipping technique increases efficiency at very light load. Moreover a minimum switching frequency of 33 kHz is selectable to avoid audio noise issues. The PM6686 provides a selectable switching frequency, allowing three different values of switching frequencies for the two switching sections. The output voltages OUT1 and OUT2 can be programmed to regulate
1.5 V/5 V and 1.05 V/3.3 V outputs respectively or can deliver two adjustable output voltages. An optional external charge pump can be monitored. This device embeds a linear regulator that can provide 3.3 V/5 V or an adjustable voltage from
0.7 V to 4.5 V output. The linear regulator provides up to 100 mA output current. LDO can be bypassed with the switching regulator outputs or with an external power supply (switchover function).
VFQFPN-32 5 x 5 mm
When in switchover, the LDO output can source up to 200 mA.

Table 1. Device summary

July 2009 Doc ID 15281 Rev 4 1/50
Order codes Package Packaging
PM6686
Tr ay
VFQFPN-32L 5 x 5 mm
PM6686TR Tape and reel
www.st.com
50
Contents PM6686
Contents
1 Simplified application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6 Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1 Screen shots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.1 Switching sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.1.1 Output voltage set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.1.2 Constant on time control (COT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1.3 PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.1.4 SKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1.5 Non audible SKIP (NA SKIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.1.6 Gate drivers and logic supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.7 Current sensing and current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.1.8 Soft-start and soft-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9 Monitoring and protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2 Undervoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.3 PVCC monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2/50 Doc ID 15281 Rev 4
PM6686 Contents
9.4 Linear regulator section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
9.5 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.6 Voltage references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.7 General device fault management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.7.1 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.1 External components selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.1.1 Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.1.2 Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.1.3 Output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.1.4 MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11 Diode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.1 Freewheeling diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.2 Charge pump diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11.3 Other important components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.3.1 VIN filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.3.2 PVCC and VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.3.3 VREF2 and VREF3 capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.3.4 LDO output capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.3.5 Bootstrap circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
12 PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Doc ID 15281 Rev 4 3/50
List of figures PM6686
List of figures
Figure 1. Simplified application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Pin connection (through top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. Efficiency vs load OUT1 = 5 V, TON = VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. Efficiency vs load OUT2 = 3.3 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5. Efficiency vs load OUT1 = 1.5 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 6. Efficiency vs load OUT2 = 1.05 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 7. Load regulationOUT1 = 5 V, TON = VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 8. Load regulationOUT2 = 3.3 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. Load regulation OUT1 = 1.5 V, TON = VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 10. Load regulation OUT2 = 1.05 V, TON = VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 11. Switching frequency vs load OUT1 = 5 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12. Switching frequency vs load OUT2 = 3.3 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 13. Section 1 line regulation OUT1 = 5 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 14. Section 2 line regulation OUT2 = 3.3 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 15. Section 1 line regulation OUT1 = 1,5 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 16. Section 2 line regulation OUT2 = 1,05 V, TON = VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 17. Stand-by mode input battery current vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 18. Shut-down mode input battery current vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 19. PWM no load input currents vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 20. SKIP no load input currents vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 21. NA SKIP no load input currents vs input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 22. VREF3 load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 23. VREF2 load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 24. LDO = 3,3 V load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 25. LDO = 5 V load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 26. OUT1 soft-start no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 27. OUT2 soft-start no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 28. OUT1 soft-start 8 A constant current load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 29. OUT2 soft-start loaded 8 A constant current load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 30. OUT1 soft-end, no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 31. OUT2 soft-end, no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 32. OUT1 soft-start, EN2 = VREF2 no loads applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 33. OUT2 soft-start, EN1=VREF2 no loads applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 34. soft-end, EN2 = VREF2 no loads applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 35. soft-end, EN1=VREF2 no loads applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 36. Load transient 0-5 A 2 A/µs OUT1 = 5 V PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 37. Load transient 0-5 A 2 A/µs OUT1 = 5 V SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 38. Load transient 0-5 A 2 A/ µs OUT1 = 1,5 V PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 39. Load transient 0-5 A 2 A/ µs OUT1 = 1,5 V SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 40. Load transient 0-5 A 2 A/µs OUT2 = 3.3 V PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 41. Load transient 0-5 A 2 A/µs OUT2 = 3.3 V SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 42. Load transient 0-5 A 2 A/ µs OUT2 = 1,05 V PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 43. Load transient 0-5 A 2 A/ µs OUT2 = 1,05 V SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 44. Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 45. Resistor divider to configure the output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 46. Constant on time block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 47. Inductor current and output voltage in PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 48. Inductor current and output voltage in SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4/50 Doc ID 15281 Rev 4
PM6686 List of figures
Figure 49. Inductor current and output voltage in NA SKIP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 50. Internal supply diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 51. Current waveforms in current limit conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 52. Current limit circuit block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 53. VOUT2 behavior if EN2 is connected to VREF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 54. Charge pump application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 55. VIN pin filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 56. VCC and PVCC filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 57. Bootstrap circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 58. Current paths, ground connection and driver traces layout . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 59. Package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Doc ID 15281 Rev 4 5/50
Simplified application schematic PM6686

1 Simplified application schematic

Figure 1. Simplified application schematic

62%&
06##
62%&2%&
3'.$
"//4
('!4%
0(!3%
,'!4%
),)-
/54
&"
,$/?37
#0?&"
0'
0'
3+)0
3'.$

06##
0-
%.


2%&
6##
6).
5
6).
6##
62%&
%.
4/.
"//4
('!4%
0(!3%
,'!4%
),)-
0'.$
'.$
/54
2%&). 
,$/2%&) .
%.?,$/
62%&
2%&






3'.$


6##

,$/
3'.$
62%&
0!$
3'.$

0'.$
0'.$
3'.$
06##


0'.$
0'.$
0'.$
6).

0'.$
0'.$
0'.$
3'.$

6##
6##
3'.$
0'.$
3'.$
0'.$











3'.$
!-V
6/50 Doc ID 15281 Rev 4
PM6686 Pin settings

2 Pin settings

2.1 Connections

Figure 2. Pin connection (through top view)

0-

2.2 Pin descriptions

Table 2. Pin descriptions

Pin Function
1VREF2
2TON
3 VCC Controller supply voltage input. Bypass to GND with a 1 μF capacitor.
4EN_LDO
5VREF3
6VIN
!-V
Internal 2 V high accuracy voltage reference. It can deliver 50 μA. Loading VREF2 can affect FB and output accuracy. Bypass to GND with a 100 nF capacitor.
Frequency selection pin. It provides a selectable switching frequency, allowing three different values of switching frequencies for the switching sections.
Enable input for the linear regulator. The LDO is enabled if EN_LDO is > 1.6 V and is disabled if EN_LDO < 1 V.
Internal 3.3 V high accuracy voltage reference. It can deliver 5 mA if bypassed to GND with a 10 nF capacitor. If not used, it can be left floating.
Device supply voltage pin. VIN is used in the on-time generators of the two switching controllers. VIN is also used to power the linear regulator when the switchover function is not active. Connect VIN to the battery input and bypass with a 1 µF capacitor.
Doc ID 15281 Rev 4 7/50
Pin settings PM6686
Table 2. Pin descriptions (continued)
Pin Function
Linear regulator output. It can provide up to 100 mA peak current. The LDO regulates at 5 V If LDOREFIN is connected to GND. When the LDO is set at 5 V and LDO_SW is within 5 V switchover threshold, the internal regulator shuts down and the LDO output pin is connected to LDO_SW through a
7LDO
8 LDOREFIN
9LDO_SW
10 OUT1
0.8 Ω switch. The LDO regulates at 3.3 V if LDOREFIN is connected to VCC. When the LDO is set at 3.3 V and LDO_SW is within 3.3 V switchover threshold, the internal regulator shuts down and the LDO output pin is connected to LDO_SW through a 1.1 Ω switch. Bypass LDO output to GND with a minimum of 4.7 µF ceramic capacitor.
Feedback of the adjustable linear regulator. Connect LDOREFIN to GND for fixed 5 V operation. Connect LDOREFIN to VCC for fixed 3.3 V operation. LDOREFIN can be used to program LDO output voltage from 0.7 V to 4.5 V: LDO output is two times the voltage of LDOREFIN. The switchover function is disabled in adjustable mode.
Source of the switchover connection. LDO_SW is the switchover source voltage for the LDO when LDOREFIN is connected to GND or VCC. Connect LDO_SW to 5 V if LDOREFIN is tied to GND. Connect LDO_SW to
3.3 V if LDOREFIN is tied to VCC.
Output voltage sense for the switching section 1.This pin must be directly connected to the output voltage of the switching section. It provides also the feedback for the switching section 1 when FB1 is tied to GND/VCC.
Feedback input for the switching section 1: – If this pin is connected to GND, OUT1 operates at 5 V
11 FB1
– If this pin is connected to VCC, OUT1 operates at 1.5 V – This pin is connected to a resistive voltage-divider from OUT1 to GND to
adjust the output voltage from 0.7 V to 5.5 V.
12 ILIM1
Positive current sense input for the switching section 1. It is possible to set a threshold voltage that is compared with 1/10
th
of the GND-PHASE1 drop
during the off time.
Power Good output signal for the section 1. This pin is an open drain output
13 PG1
and It is pulled down when the output of the switching section 1 is out of +/- 10% of its nominal value.
Enable input for the switching section 1. – If EN1 < 0.8 V the switching section OUT1 is turned off and all faults are
14 EN1
cleared. – If EN1 > 2.4 V the switching section OUT1 is turned on. – If EN1 is connected to VREF2, the switching section OUT1 turns on after
the switching section OUT2 reaches regulation.
15 HGATE1 High-side gate driver output for section 1.
16 PHASE1
17 BOOT1
Switch node connection and return path for the high-side driver for the section 1.It is also used as positive and negative current sense input.
Bootstrap capacitor connection for the switching section 1. It supplies the high-side gate driver.
18 LGATE1 Low-side gate driver output for the section 1.
19 PVCC
5 V low-side gate drivers supply voltage input. Bypass to PGND with a 1 μF capacitor.
8/50 Doc ID 15281 Rev 4
PM6686 Pin settings
Table 2. Pin descriptions (continued)
Pin Function
The CP_FB is used to monitor the optional external 14 V charge pump. Connect a resistive voltage-divider from 14 V charge pump output to GND. If
20 CP_FB
21 GND
22 PGND
23 LGATE2 Low-side gate driver output for the section 2.
24 BOOT2
25 PHASE2
26 HGATE2 High-side gate driver output for section 2.
27 EN2
28 PG2
29 SKIP
30 OUT2
31 ILIM2
32 REFIN2
CP_FB drops below the threshold voltage, the device performs a no audible skip cycle. This charges the charge pump output (driven by LGATE1). Leave CP_FB floating if the charge pump feedback is not needed.
Signal ground reference for internal logic circuitry and LDO. It must be connected to the signal ground plan of the power supply and to the exposed pad. The signal ground plan and the power ground plan must be connected together in one point near the PGND pin.
Power ground. This pin must be connected to the power ground plan of the power supply.
Bootstrap capacitor connection for the switching section 2. It supplies the high-side gate driver.
Switch node connection and return path for the high-side driver for the section 2. It is also used as positive and negative current sense input.
Enable input for the switching section 2. – If EN2 < 0.8 V the switching section OUT2 is turned off and all faults are
cleared. – If EN2 > 2.4 V the switching section OUT2 is turned on. If EN2 is connected to VREF2, the switching section OUT2 turns on after
the switching section OUT1 reaches regulation.
Power Good output signal for the section 2. This pin is an open drain output and It is pulled down when the output of the switching section 2 is out of + 14% / - 10% of its nominal value.
Pulse skipping mode control input. – If the pin is connected to VCC the PWM mode is enabled. – If the pin is connected to GND, the pulse skip mode is enabled. – If the pin is connected to VREF2 (or floating) the pulse skip mode is
enabled but and the switching frequency is kept higher than 33 kHz (No-
audible pulse skip mode).
Output voltage sense for the switching section 2.This pin must be directly connected to the output voltage of the switching section. It provides also the feedback for the switching section 2 when REFIN2 is tied to VREF3/VCC.
Positive current sense input for the switching section 2. It is possible to set a threshold voltage that is compared with 1/10
th
of the GND-PHASE2 drop
during the off time.
Feedback input for the switching section 2: – If this pin is connected to VCC, OUT2 operates at 3.3 V – If this pin is connected to VREF3, OUT2 operates at 1.05 V – If this pin is connected to an external reference from 0.7 V to 2.5 V, OUT2
works in tracking with this reference. Bypass REFIN2 to GND with a 100
nF capacitor.
Doc ID 15281 Rev 4 9/50
Electrical data PM6686

3 Electrical data

3.1 Maximum rating

Table 3. Absolute maximum ratings

Parameter Value Unit
VIN to PGND -0.3 to 38 V
PHASEx to PGND -0.3 to 38 V
BOOTx to PHASEx -0.3 to 6 V
PVCC to PGND -0.3 to 6 V
HGATEx to PHASEx -0.3 to BOOTx +0.3 V
LGATEx, CP_FB to PGND -0.3 to PVCC +0.3 V
VCC, ENx, SKIP, PGx, LDO, REFIN2, OUTx, VREF3, LDOREFIN, LDO_SW, TON to GND
FB1, ILIMx to GND -0.3 to VCC+0.3 V
EN_LDO to GND -0.3 to 7 V
-0.3 to 6 V
VREF2 to GND -0.3 to VREF3+0.3 V
PGND to GND -0.3 to +0.3 V
Power dissipation at T
Maximum withstanding voltage range test condition: CDF-AEC­Q100-002- “human body model” acceptance criteria: “normal performance”

3.2 Thermal data

Table 4. Thermal data

Symbol Parameter Value Unit
R
thJA
T
J
T
STG
Operating ambient temperature range -40 to 85 °C
T
A
Thermal resistance junction to ambient 35 °C/W
Junction operating temperature range -40 to 125 °C
Storage temperature range -50 to 150 °C
= 25 °C 2 W
A
±1250 V
10/50 Doc ID 15281 Rev 4
PM6686 Recommended operating conditions

4 Recommended operating conditions

Table 5. Recommended operating conditions

Val ue
Symbol Parameter
Min Typ Max
VIN Input voltage range, LDO = 5 V in regulation 5.5 - 28 V
VCC VCC operative voltage range 4.5 - 5.5 V
REFIN2
REFIN2 voltage range with OUT2 in adjustable mode, VIN = 5.5 V to 28 V
0.7 - 2.5 V
OUT1 OUT1 output voltage range 0.70 - 5.50 V
ILIM ILIM voltage range 0.2 - 2 V
Unit
LDOREFIN
LDO DC output current
(switchover function
enabled)
LDO DC output current
(switchover function
disabled)
LDOREFIN setting with LDO = 2 x LDOREFIN (adjustable mode)
VIN = 5.5 V to 28 V, LDO_SW = 5 V, LDOREFIN = GND
VIN = 5.5 V to 28 V, LDO_SW = 3.3 V, LDOREFIN = VCC
VIN = 5.5 V to 28 V, LDO_SW = 0 V, LDOREFIN = GND, VCC
0.35 - 2.25 V
- 200 mA
- 100 mA
- 100 mA
Doc ID 15281 Rev 4 11/50
Electrical characteristics PM6686

5 Electrical characteristics

VIN = 12 V, no load on LDO, OUT1, OUT2, VREF3, and VREF2. EN2 = EN1 = VCC, LDO_SW = 5 V, PVCC = 5 V, EN_LDO = 5 V, T

Table 6. Electrical characteristics

Symbol Parameter Test condition Min Typ Max Unit
Switching controller output accuracy
= 25 °C unless otherwise specified)
J
OUT2 Output voltage
OUT1 Output voltage
FB1
Feedback accuracy with OUT1 in adjustable mode
REFIN2 Accuracy referred to REFIN2
Current limit and zero crossing comparator
ILIM ILIM bias current T
Positive current limit threshold
Zero crossing current threshold
VIN = 5.5 V to 28 V, REFIN2 = VCC, SKIP = VCC
VIN = 5.5 V to 28 V, REFIN2 = VREF3, SKIP = VCC
VIN = 5.5 V to 28 V, FB1 = VCC, SKIP = VCC
VIN = 5.5 V to 28 V, FB1 = GND, SKIP = VCC
3.25 3.330 3.397 V
1.038 1.05 1.062 V
1.482 1.500 1.518 V
4.975 5.050 5.125 V
VIN = 5.5 V to 28 V, SKIP = VCC 0.693 0.700 0.707 V
REFIN2 = 0.7 V to 2.5 V, SKIP = VCC
= +25 °C. 4.5 5 5.5 µA
A
-1 1 %
Adjustable, VILIM = 0.5 V, GND-PHASE 35 50 65 mV
Adjustable, VILIM = 1 V or VCC, GND­PHASE
85 100 115 mV
Adjustable, VILIM = 2 V, GND-PHASE 180 200 220 mV
SKIP = GND, VREF2, or OPEN, GND­PHASE
-1 +11 mV
Switching frequency
OUT1 = 5.125 V
On-time pulse width
OUT2 = 3.368 V TON = GND 0.477 0.561 0.655
Minimum Off-time 350 472
No-audible skip mode operating frequency
SKIP = VREF2(or OPEN) 25 33 kHz
Soft-start and soft-end
Soft-start ramp time 2 4 ms
12/50 Doc ID 15281 Rev 4
TON = GND or
VREF2
0.908 1.068 1.228
TON = VCC 1.815 2.135 2.455
TON = VCC or
VREF2
0.796 0.936 1.076
µs
PM6686 Electrical characteristics
Table 6. Electrical characteristics (continued)
Symbol Parameter Test condition Min Typ Max Unit
Linear regulator and reference
LDO LDO output voltage
LDO_SW = GND, 5.5 V < VIN < 28 V, LDOREFIN < 0.3 V, 0 < ILDO < 100 mA
LDO_SW = GND, 5.5 V < VIN < 28 V, LDOREFIN = VREF3,
4.925 5.000 5.075 V
3.250 3.300 3.350 V
0 < ILDO < 100 mA
LDO accuracy in adjustable mode
LDO short circuit current (linear regulator enabled)
LDO_SW LDO_SW switch on threshold
LDO_SW LDO_SW hysteresis
VIN = 5.5 V to 28 V, LDOREFIN = 0.35 V to 2.25 V, no load
-2.5 +2.5 %
LDO = 4.3 V, LDO_SW = GND 260 320 380 mA
LDO = 5 V, rising edge of LDO_SW, LDOREFIN = GND
LDO = 5 V, falling edge of LDO_SW, LDOREFIN = GND
4.64 4.75 4.84 V
200 400 mV
LDO = 5 V, rising edge of LDO_SW,
LDO_SW switch resistance
LDOREFIN = GND,
0.81 1.275 Ω
output current = 200 mA
VREF3 output voltage No load 3.235 3.300 3.365 V
VREF3
VREF3 current limit VREF3 = GND 22 30 mA
VREF2 VREF2 output voltage No load 1.980 2.000 2.02 V
VREF2 load regulation 0 < Load < 50 μA6mV
VREF2 sink current VREF2 > 2.030 V 10 µA
Fault management
VIN shutdown current EN1 and EN2 low, EN_LDO low 49 70 µA
VIN standby current
Operating power consumption (VCC and VIN pins consumption)
EN1 and EN2 low, EN_LDO high, LDOREFIN = GND
Switching regulators on, FB1 = SKIP = GND, REFIN2 = VCC, LDOREFIN = GND, OUT1 = LDO_SW = 5.3V, OUT2 = 3.5 V
132 180 µA
4,3 6,5 mW
Rising edge of PVCC 4.33 V
PVCC UVLO threshold
Falling edge of PVCC 4 V
Referred to FB1 nominal regulation point +11 %
Overvoltage trip threshold
Referred to REFIN2 nominal regulation point. worst case:REFIN2 = 0.7 V
+14 %
PG threshold Lower threshold -13 -10 -7 %
PG low voltage ISink = 4 mA 159 235 405 mV
PG leakage current PG = 5 V 1 µA
Doc ID 15281 Rev 4 13/50
Electrical characteristics PM6686
Table 6. Electrical characteristics (continued)
Symbol Parameter Test condition Min Typ Max Unit
Output undervoltage shutdown threshold
Inputs and outputs
FB1 FB1 logic level
REFIN2 REFIN2 logic level
LDOREFIN LDOREFIN logic level
SKIP SKIP logic level
TON TON logic level
EN1,2 EN level
Referred to FB1, REFIN2 nominal regulation point
67 70 73 %
fixed OUT1 = 5 V 0.528 V
fixed OUT1 = 1.5 V 4.1 V
fixed OUT2 = 1.05 V, VCC = 5 V
fixed OUT 2= 3.3 V, VCC = 5 V
VREF3
VCC-
0.838
fixed LDO = 5 V 0.4 V
fixed LDO = 3.3 V 2.43 V
Pulse skip mode 0.8 V
No audible skip mode (VREF2 or floating)
VREF2 V
PWM mode 2.4 V
Low level 0.8 V
Middle level
VREF2
High level 2.4 V
Switching regulators off level 0.8 V
Delay start level
VREF2 V
Switching regulators on level 2.4 V
V
V
V
EN_LDO EN_LDO level
Input leakage current FB1 = 0.7 V -1 +1 µA
Internal bootstrap diode
Diode forward voltage PVCC = -BOOT, Idiode = 10 mA 0.2 V
Diode Leakage current BOOT= 30 V, PHASE = 28 V, PVCC = 5 V 500 nA
High-side and low-side gate drivers
HGATE driver on-resistance
LGATE driver on-resistance
Linear regulator off level 0.905 1.00 1.050 V
Linear regulator on level 1.500 1.6 1.650 V
REFIN2 = 2.5 V 12
HGATEx high state (pull-up) Isource = 100 mA
HGATEx low state (pull-down) Isink = 100 mA
LGATEx high state (pull-up) Isource = 100 mA
LGATEx low state (pull-down) Isink = 100 mA
1.8
1.3 1.9
1.3
0.6 0.8
Ω
14/50 Doc ID 15281 Rev 4
PM6686 Typical operating characteristics

6 Typical operating characteristics

(TON = VCC (200 / 300 kHz), SKIP = GND (skip mode), LDOREFIN = SGND (LDO = 5 V), LDO_SW = OUT1, PVCC connected to LDO, V load unless specified). Measures performed on the demonstration kit (PM6686_SYSTEM and PM6686_CHIPSET)
Efficiency traces: Green: VIN = 7 V, red: VIN = 12 V, blue: VIN = 19 V.
= 12 V, EN1-EN2-EN_LDO are high, no
IN
Figure 3. Efficiency vs load
OUT1 = 5 V, T
= VCC
ON
Figure 5. Efficiency vs load
OUT1 = 1.5 V, T
ON
= VCC
Figure 4. Efficiency vs load
OUT2 = 3.3 V, TON = VCC
Figure 6. Efficiency vs load
OUT2 = 1.05 V, TON = VCC
A-PWM B-SKIP A-NASKIP
A-PWM B-SKIP A-NASKIP
Doc ID 15281 Rev 4 15/50
Loading...
+ 35 hidden pages