STMicroelectronics M48Z129Y, M48Z129V User Manual

5.0V OR 3.3V, 1 Mbit (128 Kb x 8) ZEROPOWER® SRAM

FEAT URES SUMMARY

M48Z129Y*
M48Z129V
POWER-FAIL CONTROL CIRCUIT, AND BATTERY
CONVENTIONAL SRAM OPERATION;
UNLIMITED WRITE CYCLES
10 YEARS OF DATA RETENTION IN THE
ABSENCE OF POWER
MICROPROCESSOR POWER-ON RESET
(RESET VALID EVEN DURING BATTERY BACK-UP MODE)
BATTERY LOW PIN - PROV IDES WARNI NG
OF BATTERY END-OF-LIFE
AUTOMATIC POWER-FAIL CHIP
DESELECT AND WRITE PROTECT ION
WRITE PROTECT VOLTAGES
= Power-fail Deselect Voltage):
(V
PFD
M48Z129Y: V
4.2V V
PFD
M48Z129V: V
2.7V V
SELF-CONTAINED BATTERY IN THE
PFD
= 4.5 to 5.5V
CC
4.5V
= 3.0 to 3.6V
CC
3.0V
CAPHAT™ DIP PACKAGE
PIN AND FUNCTION COMPATIBLE WITH
JEDEC STANDARD 128K x 8 SRAMs

Figure 1. 32-pi n PMDIP Mo du le

32
1
PMDIP32 (PM)
Module
* Contact local ST sales office for availability.
1/16March 2005
M48Z129Y*, M48Z129V
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. 32-pin PMDIP Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 2. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 5. Address Controlled, READ Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Figure 6. Chip Enable or Output Enable Controlled, READ Mode AC Waveforms . . . . . . . . . . . . . 6
Table 3. RE A D Mode AC Charac teristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 7. WRITE Enable Controlled, WRITE Mode AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 8. Chip Enable Controlled, WRITE Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
V
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
CC
Figure 9. Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 6. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 10.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 7. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 8. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 11.Power Down/Up Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 9. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Table 10. Power Down/Up Trip Points DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 12.PMDIP32 – 32-pin Plastic Module DIP, Package Outline . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 11. PMDIP32 – 32-pin Plastic DIP, Package Mechanical Data. . . . . . . . . . . . . . . . . . . . . . . 13
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 12.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
REVISION HISTO RY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2/16
M48Z129Y*, M48Z129V
Table 13.Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3/16
M48Z129Y*, M48Z129V

SUMMARY DESCRIPTION

The M48Z129Y/V ZEROPOWER® SRAM is a 1,048,576 bit non-volatile static RAM organized as 131,072 words by 8 bits. The device combines an internal lithium battery, a CMOS SRAM and a con­trol circuit in a plastic 32-pin DIP Module. The
M48Z129Y/V directly replaces industry standard 128K x 8 SRAM. It also provides the non-volatility of FLASH without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed.

Figure 2. Logic Diagram Table 1. Signal Names

V
CC
17
8
A0-A16 DQ0-DQ7
W RST
M48Z129Y M48Z129V
E
BL
G
V
SS
AI02309
A0-A16 Address Inputs
DQ0-DQ7 Data Inputs / Outputs
E G
W
RST
BL
V
CC
V
SS
Chip Enable Output Enable WRITE Enable Reset Output (Open Drain) Battery Low Output (Open Drain) Supply Voltage Ground

Figure 3. DIP C on ne ctions

1
RST V
2
A16 A14
3
A12
4 5
A7
6
A6
7
A5 A4
8
M48Z129Y
A3 A2 A1 A0
DQ0
M48Z129V
9 10 11 12 13 14
DQ2
15 16
SS
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
AI02310
CC
A15 BL W A13 A8 A9 A11 G A10 E DQ7 DQ6 DQ5DQ1 DQ4 DQ3V
4/16

Figure 4. Block Diagram

M48Z129Y*, M48Z129V
V
CC
A0-A16
E
INTERNAL
BATTERY
VOLTAGE SENSE
AND
SWITCHING
CIRCUITRY
RST V
BL

OPERATION MODES

The M48Z129Y/V also has its own Power-Fail De­tect circuit. This control circuitry constantly moni­tors the supply voltage for an out of tolerance condition. When V write protects the SRAM, providing data security in

Table 2. Operating Modes

Mode
Deselect WRITE READ READ
Deselect Deselect
Note: X = VIH or VIL; VSO = Battery B ack-up Switc hover Voltage.
1. See Table 10., page 12 for details.
VSO to V
is out of tolerance, the circuit
CC
V
CC
4.5 to 5.5V or
3.0to 3.6V
(min)
PFD
(1)
V
SO
(1)
E G W DQ0-DQ7 Power
V
IH
V
IL
V
IL
V
IL
X X X High Z CMOS Standby X X X High Z Battery Back-up Mode
X X High Z Standby
X V V
POWER
E
131,072 x 8
SRAM ARRAY
SS
DQ0-DQ7
W
G
the midst of unpredictable system operation. A s
falls, the cont rol circuit ry automaticall y switch-
V
CC
es to the battery, maintaining data until valid power is restored.
V
IL
IL
IH
V
IH
V
IH
D
IN
D
OUT
Active Active
High Z Active
AI03608
5/16
M48Z129Y*, M48Z129V

READ Mode

The M48Z129Y/V is in the READ Mode whenever
(WRITE Enable) is high and E (Chip Enable) is
W low. The unique address specified by the 17 ad­dress inputs defines which one of the 131,072 bytes of dat a is to be acces sed . Vali d data w ill be available at the Data I/O pins within t
AVQV
(Ad­dress Access Time) after the last address input signal is stable, providing the E times are also satisfied. If the E
and G access
and G access
times are not met, valid data will be available after
the latter of the Chip Enable Access Times (t or Output Enable Access Time (t
The state of the eight t hree-state Da ta I/O si gnals is controlled by E ed before t indeterminate state until t puts are changed while E
and G. If the outputs are activat-
, the data lines will be driven to an
AVQV
AVQV
and G remain active, output data will remain valid for t Data Hold Time) but will go indeterminate until the next Address Access.

Figure 5. Address Controlled, READ Mode AC Waveforms

tAVAV
A0-A16
tAVQV
tAXQX
DQ0-DQ7
Note: Chip Enable ( E) and Output Enable (G) = Low, WRITE Enable (W) = High.
DATA VALID
VALID
DATA VALID

Figure 6. Chip Enable or Output Enable Controlled, READ Mode AC Waveforms

ELQV
).
GLQV
. If the Ad dres s In-
(Output
AXQX
AI02324
)
A0-A16
E
G
DQ0-DQ7
tAVAV VALID
tAVQV tAXQX
tELQV
tELQX
tGLQV
tGLQX
DATA OUT
tEHQZ
tGHQZ
AI01197
6/16
M48Z129Y*, M48Z129V

Table 3. READ Mode AC Characteristics

M48Z129Y M48Z129V
Symbol
t
AVAV
t
AVQV
t
ELQV
t
GLQV
t
ELQX
t
GLQX
t
EHQZ
t
GHQZ
t
AXQX
Note: 1. Valid for Ambient Operating Tem perature : TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3. 0 to 3.6V (exc ept where noted ).
2. C
READ Cycle Time 70 85 ns Address Valid to Output Valid 70 85 ns Chip Enable Low to Output Valid 70 85 ns Output Enable Low to Output Valid 35 45 ns
(2)
Chip Enable Low to Output Transition 5 5 ns
(2)
Output Enable Low to Output Transition 3 5 ns
(2)
Chip Enable High to Output Hi-Z 30 40 ns
(2)
Output Enable High to Output Hi-Z 20 25 ns Address Transition to Output Transition 5 5 ns
= 5pF (see Figur e 10., page 11).
L
Parameter
(1)
Min Max Min Max
Unit–70 –85

WRITE Mode

The M48Z129Y/V is in the WRITE Mode whenever
(WRITE Enable) and E (Chip Enable) are ac-
W tive. The start of a WRITE is referenced from the latter occurring falling edge of W terminated by the earlier rising edge of W
or E. A WRIT E is
or E. The addresses must be hel d valid throughout t he cycle. E t
EHAX
or W must return hi gh for a minimum of
from Chip Enable or t
from WRITE En-
WHAX
able prior to the initiation of another READ or WRITE cycle. Data -i n mu st be va l id t the end of WRITE and remain valid for t ward. G
should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on E
will disable the o ut p u t s t
W

Figure 7. WRITE Enable Controlled , WRITE Mode AC Waveform

tAVAV
A0-A16
tAVEL
E
tAVWL
W
tWLQZ
VALID
tAVWH
tWLWH
tWHDX
WLQZ
tWHAX
tWHQX
prior to
DVWH
WHDX
after-
and G a low on
after W falls.
DQ0-DQ7
tDVWH
DATA INPUT
AI02382
7/16
M48Z129Y*, M48Z129V

Figure 8. Chip Enable Controlled, WRITE Mode AC Waveforms

tAVAV
A0-A16
tAVEL
E
tAVWL
W
DQ0-DQ7
VALID
tAVEH
tWLWH
tELEH
tDVEH
tEHAX
tEHDX
DATA INPUT
AI03611

Table 4. WRITE Mode AC Characteristics

M48Z129Y M48Z129V
Symbol
t
AVAV
t
AVWL
t
AVEL
t
WLWH
t
ELEH
t
WHAX
t
EHAX
t
DVWH
t
DVEH
t
WHDX
t
EHDX
(2,3)
t
WLQZ
t
AVWH
t
AVEH
t
WHQX
Note: 1. Valid for Ambient Operating Tem perature : TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3. 0 to 3.6V (exc ept where noted ).
2. C
3. If E
WRITE Cycle Time 70 85 ns Address Valid to WRITE Enable Low 0 0 ns Address Valid to Chip Enable Low 0 0 ns WRITE Enable Pulse Width 55 65 ns Chip Enable Low to Chip Enable High 55 75 ns WRITE Enable High to Address Transition 5 5 ns Chip Enable High to Address Transition 15 15 ns Input Valid to WRITE Enable High 30 35 ns Input Valid to Chip Enable High 30 35 ns WRITE Enable High to Input Transition 0 0 ns Chip Enable High to Input Transition 10 15 ns WRITE Enable Low to Output Hi-Z 25 30 ns Address Valid to WRITE Enable High 65 75 ns Address Valid to Chip Enable High 65 75 ns
(2,3)
WRITE Enable High to Output Transition 5 5 ns
= 5pF (see Figur e 10., page 11).
L
goes low simultaneously with W going low, the outputs remai n in the high impedance stat e.
Parameter
(1)
Min Max Min Max
Unit–70 –85
8/16

Data Retention Mode

M48Z129Y*, M48Z129V
With valid V
applied, the M48Z129Y/V operates
CC
as a conventional BYTEWIDE™ static RAM. Should the supply voltage decay, the RAM will au­tomatically deselect, write protecting itself when
falls between V
V
CC
(max), V
PFD
PFD
(min) win­dow. All outputs become high impedance and all inputs are treated as “Don’t care”.
Note: A power failure during a W RITE cycle may corrupt data at the current addressed location, but does not jeopardize the rest of the RAM’s content. At voltages below V in a write protected state, provided the V time is not less than t spond to transient noise s pi kes on V
(min), the memory will be
PFD
that cr os s
CC
CC
. The M48Z129Y/V may re-
F
fall
into the deselect window during the time the de­vice is sampling V
. Therefore, decoupling of the
CC
power supply lines is recommended. When V
drops below VSO, the control circuit
CC
switches power to the internal b attery, preserving data. The internal energy source will maintain data in the M48Z129Y/V f or an accumulated pe riod of at least 10 years at room temperature. As system power rises above V
, the battery is disconnect-
SO
ed, and the power supply is switched to external
. Deselect continues for t
V
CC
PFD
(max).
es V
REC
after V
CC
reach-
For more information on Battery Storage Life refer to the Application Note AN1012.
In addition to transients that are caused by normal SRAM operation, power cycling can generate neg­ative voltage spikes on V below V
by as much as one volt. These negative
SS
that drive it to values
CC
spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, it is recommended to con­nect a schottky diode from V connected to V
, anode to VSS). Schottky diode
CC
to VSS (cathode
CC
1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount.

Figure 9. Supply Voltage Protection

V
CC
V
CC
0.1µF DEVICE
Noise And Negative Going Transients
V
CC
I
transients, including those produced by output
CC
switching, can produce voltage fluctuations, re­sulting in spikes on the V
bus. These transients
CC
can be reduced if capacitors are used to store en­ergy which stabilizes the V
bus. The energy
CC
stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic by­pass capacitor value of 0.1µF (as shown in Figure
9.) is recommended in order to provide the needed
filtering.
V
SS
AI02169
9/16
M48Z129Y*, M48Z129V

MAXIMUM RA T ING

Stressing the device above the rating l isted in t he “Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicat-
not implied. Exposure to Absol ute Max imum Ra t­ing conditions for extended periods may affect de­vice reliability. Refer also to the STMicroelectronics SURE Program and other rel­evant quality documents.
ed in the Operating sections of this specification is

Table 5. Absolute Maximum Ratings

Symbol Parameter Value Unit
T
A
T
STG
(1)
T
SLD
V
IO
V
CC
I
O
P
D
Note: 1. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).
No preheat above 150°C , or di rect exposure to IR reflow (or IR preheat ) al l owed, to avoi d damaging the Lithium bat tery.
CAUTION: Negative undershoots bel ow –0.3V are not al l owed on any pin whi l e i n the Batter y Back-up mode.
Ambient Operating Temperature 0 to 70 °C Storage Temperat ure (VCC Off, Oscillator Off)
Lead Solder Temperature for 10 seconds 260 °C Input or Output Voltages –0.3 to 7 V Supply Voltage –0.3 to 7 V
Output Current 20 mA Power Dissipation 1 W
–40 to 85 °C

DC AND AC PARAMETERS

This section summarizes the operating and mea­surement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Meas ure-

Table 6. Operating and AC Measurement Conditions

Parameter M48Z129Y M48Z129V Unit
Supply Voltage (V Ambient Operating Temperature (T Load Capacitance (C Input Rise and Fall Times 5 5ns Input Pulse Voltages 0 to 3 0 to 3 V Input and Output Timing Ref. Voltages 1.5 1.5 V
Note: Output Hi-Z is defined as the poi nt where dat a i s no longer driven.
CC
)
)
A
)
L
ment Conditions listed in t he relevant tables. De­signers should check that the operating conditions in their projects match the measurement condi­tions when using the quoted parameters.
4.5 to 5.5 3.0 to 3.6 V 0 to 70 0 to 70 °C
100 50 pF
10/16

Figure 10. AC Testing Load Circuit

M48Z129Y*, M48Z129V
DEVICE UNDER
TEST
CL includes JIG capacitance
Note: 1. 50pF for M 48Z 129V (3.3 V ).
650
CL = 100pF or 50pF
(1)
1.75V
AI03630

Table 7. Capacitance

Symbol
C
IN
C
IO
Note: 1. Effec tive capacit ance measured with power supply at 5V; sampled only, not 100 % te sted.
2. At 25°C, f = 1MHz.
3. Outputs deselect ed.
Input Capacitance 10 pF
(3)
Input / Output Capacitance 10 pF
Parameter
(1,2)
Min Max Unit

Table 8. DC Characteristics

M48Z129Y M48Z129V
IN
V
V
IH
CC
(1)
Min Max Min Max
±1 ±1 µA
CC
±1 ±1 µA
74mA 43mA
V
CC
+ 0.3
2.2
0.4 0.4 V
2.4 2.2 V
VCC + 0.3
Sym Parameter
I
LI
I
LO
I
CC
I
CC1
I
CC2
V V
V
OL
V
OH
Note: 1. Valid for Ambient Operating Tem perature : TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3. 0 to 3.6V (exc ept where noted ).
2. Outputs deselect ed.
Input Leakage Current
(2)
Output Leakage Current Supply Current Outputs open 95 50 mA Supply Current (Standby) TTL
Supply Current (Standby) CMOS Input Low Voltage –0.3 0.8 –0.3 0.6 V
IL
Input High Voltage 2.2
IH
Output Low Voltage Output High Voltage
Test Condition
0V V
0V V
OUT
E
= V
E
= VCC – 0.2V
I
= 2.1mA
OL
I
= –1mA
OH
Unit–70 –85
V
11/16
M48Z129Y*, M48Z129V

Figure 11. Power Down/Up Mode AC Waveforms

V
CC
V
(max)
PFD
V
(min)
PFD
VSO
E
OUTPUTS
RST
tF
tFB
tWPT
RECOGNIZED
VALID VALID
(PER CONTROL INPUT) (PER CONTROL INPUT)
tDR
tRB
DON'T CARE
HIGH-Z
tR
tREC
RECOGNIZED

Table 9. Power Down/Up AC Characteristics

Symbol
(2)
t
F
(3)
t
FB
t
R
t
RB
t
WPT
t
REC
Note: 1. Valid for Ambient Operating Tem perature : TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3. 0 to 3.6V (exc ept where noted ).
2. V es V
3. V
V
(max) to V
PFD
V
(min) to VSS VCC Fall Time
PFD
V
(min) to V
PFD
VSS to V
PFD
(min) VCC Fall Time
PFD
(max) VCC Rise Time
PFD
(min) VCC Rise Time
Write Protect Time
V
(max) to RST High
PFD
(max) to V
PFD
(min).
PFD
(min) to VSS fall time of less than tFB may cause corruption of RAM data.
PFD
(min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after VCC pass-
PFD
Parameter
(1)
Min Max Unit
300 µs
M48Z129Y 10 M48Z129V 150
10 µs
s M48Z129Y 40 150 M48Z129V 40 250
40 200 ms
AI03610
µs
µs

Table 10. Power Down/Up Trip Points DC Characteristics

Symbol
V
PFD
V
SO
t
DR
Note: 1. All voltages referenced to VSS.
2. Valid for Ambien t Operating Tem perature : T
3. At 25°C, V
Power-fail Deselect Voltage
Battery Back-up Switchover Voltage
(3)
Expected Data Retention Time 10 YEARS
= 0V.
CC
12/16
Parameter
(1,2)
M48Z129Y 4.2 4.35 4.5 V M48Z129V 2.7 2.9 3.0 V M48Z129Y 3.0 V M48Z129V 2.45 V
= 0 to 70°C; VCC = 4.5 to 5.5V or 3. 0 to 3.6V (exc ept where noted ).
A
Min Typ Max Unit

PACKAG E MECHANICAL INFORMATION

Figure 12. PMDIP32 – 32-pin Plastic Module DIP, Package Outline

M48Z129Y*, M48Z129V
A1AL
S
B
e1
eA
e3
D
N
E
1
Note: Drawing is not to scale.
PMDIP

Table 11. PMDIP32 – 32-pin Plastic DIP, Package Mechanical Data

Symb
Typ Min Max Typ Min Max
A 9.27 9.52 0.365 0.375
A1 0.38 0.015
B 0.43 0.59 0.017 0.023 C 0.20 0.33 0.008 0.013
mm inches
C
D 42.42 43.18 1.670 1.700
E 18.03 18.80 0.710 0.740 e1 2.29 2.79 0.090 0.110 e3 34.29 41.91 1.350 1.650 eA 14.99 16.00 0.590 0.630
L 3.05 3.81 0.120 0.150 S 1.91 2.79 0.075 0.110 N32 32
13/16
M48Z129Y*, M48Z129V

PART NUMBERING

Table 12. Ordering Information Scheme

Example: M48Z 129Y –70 PM 1 TR
Device Type
M48Z
Supply Voltage and Write Protect Voltage
(1)
129Y
= VCC = 4.5 to 5.5V; 4.2V ≤ V
129V = V
Speed
–70 = 70ns (M48Z129Y) –85 = 85ns (M48Z129V)
= 3.0 to 3.6V; 2.7V ≤ V
CC
PFD
PFD
3.0V
4.5V
Package
PM = PMDIP32
Temperature Range
1 = 0 to 70°C
Shipping Method
blank = Tubes TR = Tape & Reel
Note: 1. Conta ct Local Sales O ffice
For other options, or for more information on any aspect of this device, please contact the ST Sales Office nearest you.
14/16
M48Z129Y*, M48Z129V

REVISION HISTORY

Table 13. Document Revision History

Date Version Revision Details
December 1999 1.0 First Issue
30-Mar-00 2.0 From Preliminary Data to Data Sheet
t
20-Jun-00 2.1 14-Sep-01 3.0 Reformatted; Temperature information added to tables (Table 7, 8, 3, 4, 9, 10)
29-May-02 3.1 Add countries to disclaimer
02-Apr-03 4.0 v2.2 template applied; test condition updated (Table 10)
18-Feb-05 5.0 Reformatted; IR reflow update (Table 5)
changed for M48Z129Y (Table 3)
GLQX
15/16
M48Z129Y*, M48Z129V
Information furnished is believed to be accurate and reliable. However, STMicroelectronics a ssumes no responsibility fo r the c onsequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authori zed for use as crit i cal components in life support devices or systems w i th out express written approval of STMicroelectro nics.
The ST logo is a registered tra demark of STMi croelectronics.
All other nam es are the property of their respective owners
© 2005 STMi croelectro ni cs - All rights reserved
Australi a - Belgium - Brazil - Canad a - China - Czech Republic - F i nl and - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - M al ta - Morocco - Singapore - Spain - Swede n - S wi tzerland - United Kingdom - United States of Am eri ca
STMicroelectronics group of com panies
www.st.com
16/16
Loading...