STMicroelectronics M48T86 User Manual

FEAT URES SUMMARY

DROP-IN REPLACEMENT FOR PC
COMPUTER CLOCK/CALENDAR
COUNTS SECONDS, MINUTES, HOURS,
DAYS, DAY OF THE WEE K, DA TE, MO NTH, and YEAR WITH LEAP YEAR COMPENSATION
INTERFACED WITH SOFTWARE AS 128
RAM LOCATIONS: – 14 Bytes of Clock and Control Registers – 114 Bytes of General Purpose RAM
SELECTABLE BUS TIMING (Intel/Motorola)
THREE INTERRUPTS ARE SEPARATELY
SOFTWARE-MASKABL E and TESTABLE – Time-of-Day Alarm (Once/Second to
Once/Day) – Periodic Rates from 122µs to 500ms – End-of-Clock Update Cycle
PROGRAMMABLE SQUA RE WAVE
OUTPUT
10 YEARS OF DATA RETENTION AND
CLOCK OPERATION IN THE ABSENCE O F POWER
SELF-CONTAINED BATTERY AND
CRYSTAL IN THE CAPHAT DIP PACKAG E
PACKAGING INCLUDES A 28-LEAD SOIC
and SNAPHAT separately)
SOIC PACKAGE PROVIDES DIRECT
CONNECTION FOR A SNAPHAT TOP CONTAINS THE BATTERY AND CRYSTAL
PIN AND FUNCTION COMPATIBLE WITH
bq3285/7A and DS12887
®
TOP (to be ordered
M48T86
5.0V PC Real-Ti me Clock

Figure 1. 24-pin PCDIP, CAPHAT™ Package

24
1
PCDIP24 (PC) Battery/Crystal
CAPHAT

Figure 2. 28-pi n S O I C Package

SNAPHAT (SH)
Battery/Crystal
28
1
SOH28 (MH)
1/29April 2004
M48T86
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. 24-pin PCDIP, CAPHAT™ Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. 28-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 3. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 4. 24-pin DIP Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 5. 28-pin SOIC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Signal Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
V
, VSS.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
CC
SQW (Square Wave Output). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
AD0-AD7 (Multiplexed Bi-Directional Address/Data Bus). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
AS (Address Strobe Input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
MOT (Mode Select). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
DS (Data Strobe Input).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
E
(Chip Enable Input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
IRQ
(Interrupt Request Output). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
RST
(Reset Input).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
RCL
(RAM Clear). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
R/W
(READ/WRITE Input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Non-Volatile RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 7. Intel Bus READ AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. Intel Bus WRITE Mode AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 9. M oto rola Bus READ/WRITE Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2. AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
CLOCK OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Time, Calendar, and Alarm Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 10.Address Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Ti me , Calendar, and Alarm Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Periodic Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Alarm Interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Update Cycle Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Oscillator Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3
Update Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Square Wave Output Se lection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Table 4. S quare Wave Frequency/Periodic Interrupt Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2/29
M48T86
Register A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
UIP. Update in Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
OSC0, OSC1, OSC2. Oscillator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
RS3, RS2, RS1, RS0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 5. REGISTER A MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 11.Update Period Timing and UIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Register B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
PIE: Periodic Interrupt Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6
AIE: Alarm Interrupt Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
UIE: Update Ended Interrupt Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
SQWE: Square Wave Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
DM: Data Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
24/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
DSE. Daylight Savings Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Table 6. REGISTER B MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12.Update-ended/Periodic Interrupt Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Register C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
IRQF: Interrupt Request Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
PF: Periodic Interrupt Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
AF: Alarm Flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
UF: Update Ended Interrupt Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
BIT 0 through 3: Unused Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8
Register D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
VRT: Valid Ram And Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
BIT 0 through 6: Unused Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8
Table 7. REGISTER C MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 8. REGISTER D MSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
V
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
CC
Figure 13.Supply Voltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 9. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 10.Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14.AC Testing Load Circuit (No IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 15.AC Testing Load Circuit (with IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 11.Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12.DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 16.Power Down/Up Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 13.Power Down/Up Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 14. Power Down/Up Trip Points DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 17.PCDIP24 – 24-pin Plastic DIP, battery CAPHAT, Package Outline . . . . . . . . . . . . . . . . 23
3/29
M48T86
Table 15. PCDIP24 – 24-pin Plastic DIP, battery CAPHAT, Package Mechanical Data. . . . . . . . . 23
Figure 18.SOH28 – 28-lead Plastic Small Outline, 4-socket SNAPHAT, Package Outline. . . . . . . 24
Table 16. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Pack. Mech. Data24
Figure 19.SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline . . . . . . . 25
Table 17. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data. . . . 25
Figure 20.SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline . . . . . . 26
Table 18. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data. . . 26
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 19.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 20.SNAPHAT Battery Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 21.Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4/29

SUMMARY DESCRIPTIO N

The M48T86 is an industry standard Real Time Clock (RTC). The M48T86 is com posed of a lithi­um energy source, quartz crystal, write protection circuitry, and a 128-byte RAM array. This provides the user with a complete subsystem packaged in either a 24-pin DIP CAPHAT™ or 28-pin SNAPHAT
®
SOIC. Functions available to the user include a non-volatile time-of-day clock, alarm in­terrupts, a one-hundred-year clock with program­mable interrupts, square wave output, and 128 bytes of non-volatile static RAM.
The 24-pin, 600mil DIP CAPHAT houses the M48T86 silicon with a quartz crystal and a long-life lithium button cell in a single package.
The 28-pin, 330mil SOIC provides sockets with gold plated contacts at bot h ends for direct con­nection to a separate SNAPHAT
®
housing con-

Figure 3. Logic Diagram Table 1. Signal Names

V
CC
taining the battery and crystal. The unique design allows the SNAPHAT battery package to be mounted on top of the SOIC package after the completion of the surface mount process.
Insertion of the SNAPHAT housing after reflow prevents potential battery and crystal damage due to the high temperatures required for device sur­face-mounting. The SNAPHAT ho using is keyed to prevent reverse insertion.
The SOIC and battery packages are shipped sep­arately in plastic anti-static tubes or in Tape & Reel form.
For the 28-lead SOIC, the battery/crystal package part number is “M4T28-BR12SH” (see Table
20., page 27).
AD0-AD7 Multiplexed Address/Data Bus
E
Chip Enable Input
M48T86
AD0-AD7
R/W
DS
AS RST RCL
MOT
8
E
M48T86
V
SS
SQW IRQ
AI01640
R/W
DS Data Strobe Input
AS Address Strobe Input RST RCL
MOT Bus Type Select Input
SQW Square Wave Output
IRQ
V
CC
V
SS
NC Not Connected Internally
WRITE Enable Input
Reset Input RAM Clear Input
Interrupt Request Output (Open Drain)
Supply Voltage Ground
5/29
M48T86

Figure 4. 24-pi n D I P Connections Figure 5. 28-pi n S O I C C onnections

1
MOT V
2
NC
3
NC
4
AD0
5
AD1
6
AD2 AD3 AD4 AD5 AD6
7 8 9 10
M48T86
11 12 13
V
SS

Figure 6. Block Diagram

24 23 22 21 20 19 18 17 16 15 14
AI01641
CC
SQW NC RCL NC IRQ RST DS NC R/W ASAD7 E
1
MOT V
NC
NC AD0 AD1 AD2 AD3 AD4 AD5 AD6
2 3 4 5 6 7 8 9 10 11
M48T86
12
V
SS
V
SS
13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
AI01642
NCNC
CC
SQW NC RCL NC IRQ RST DS NC R/W ASAD7 E NC
V
CC
V
BAT
DS
R/W
AS
AD0-AD7
OSCILLATOR
E
POWER
SWITCH
AND
WRITE
PROTECT
BUS
INTERFACE
V
CC
POK
/ 8 / 64 / 64
PERIODIC INTERRUPT/SQUARE WAVE SELECTOR
SQUARE WAVE
OUTPUT
REGISTERS A,B,C,D
CLOCK/
CALENDAR
UPDATE
BCD/BINARY INCREMENT
CLOCK CALENDAR,
AND ALARM RAM
STORAGE REGISTERS (114 BYTES)
SQW
IRQ
RST
DOUBLE BUFFERED
RCL
6/29
AI01643

OPERATION

Automatic deselection of the device ensures the
CC
fall
CC
to sta-
data integrity is not compromised s hould V below specified Power-fail Deselect Voltage
) levels (see Figure 16., page 22). The auto-
(V
PFD
matic deselection of the device remains in effect upon power up for a period of 200ms (max ) after
rises above V
V
CC
, provided that the Real
PFD
Time Clock is running and the count-down chain is not reset. This allows sufficient time for V bilize and gives the s ystem clock a wake-up period so that a valid system rese t can be established.
The block diagram in Figure 6., page 6 shows the pin connections and the major internal functions of the M48T86.

Signal Description

, VSS. DC power is provided to the device on
V
CC
these pins.The M48T86 uses a 5V V
CC
.

SQW (Square Wave Output). During normal op­eration (e.g., valid V

), the SQW pin can output a
CC
signal from one of 13 taps. The freque ncy of the SQW pin can be changed by programming Regis­ter A as shown in Table 4., page 14. The SQW sig­nal can be turned on a nd off using the SQWE Bit (Register B; Bit 3). The SQW signal is not avail­able when V
is less than V
CC
PFD
.

AD0-AD7 (Multiplexed Bi-Directional Address/ Data Bus). The M48T86 provides a multiplexed

bus in which address an d data information s hare the same signal path. The bus cycle consists of two stages; first the address is latched, followed by the data. Address/Data multiplexing does not slow
M48T86
the access time of the M48T86, because the bus change from address to data occurs during the in­ternal RAM access time. Addre sses must be valid prior to the falling edge of AS (see Figure
7., page 8), at which time the M48T86 la tches the
address present on AD 0-AD7. Valid W RITE data must be present and held stable during the l atter portion of the R/W a READ cycle, the M4 8T86 output s 8 bits of data during the latter portion of the DS pulse. The READ cycle is terminated and the bus returns to a high impedance state upon a high transition on R/
.

W AS (Address Strobe Inpu t). A positive going

pulse on the Address Strobe (AS) input serves to demultiplex the bus. The falling edge of AS causes the address present on AD0-AD7 to be latched within the M48T86.

MOT (Mode Select). The MOT pin offers the flex­ibility to choose between two bus types (s ee Fig-

ure 9., page 9). When connected to V
bus timing is selected. When conne cted to V left disconnected, Intel bus timing is selected. The pin has an internal pull-down resistance of approx­imately 20KΩ.

DS (Data Strobe Input). The DS pin is also re­ferred to as READ (RD). A f alling edge transition on the Data Strobe (DS) inpu t enables the ou tput during a a READ cycle. This is very similar to an Output Enable (G es.

pulse (see Figure 8., page 9). In
, Motorola
CC
SS
or
) signal on other memory devic-
7/29
M48T86

E (Chip Enable Input). The Chip Enable pin

must be asserted low for a bus cycle in the M48T86 to be accessed. Bus cycles which take place without asserting E
will latch the addresses
present, but no data access will occur.
(Interrupt Request Output) . The IRQ pin is
IRQ
an open drain output that can be used as an inter­rupt input to a processor. The IRQ
output remains low as long as the status bi t causing the i nterrupt is present and the corresponding interrupt-enable bit is set. IRQ whenever Register C is read. The RST
returns to a high impedance state
pin can also be used to clear pending interrupts. The IRQ bus is an open drain output so it requires an exter­nal pull-up resistor to V
RST
(Reset Input). The M48T86 is reset when
the R ST
input is p ulled low. Wit h a vali d VCC ap-
plied and a low on RST
.
CC
, the following event s oc-
cur:
1. Periodic Interrupt Enable (PIE) Bit is cleared to
a zero (Register B; Bit 6);
2. Alarm Interrupt Enable (AIE) Bit is cleared to a
zero (Register B; Bit 5);
3. Update Ended Interrupt Request (UF) Bit is
cleared to a zero (Register C; Bit 4);
4. Interrupt Request (IRQF) Bit is cleared to a
zero (Register C Bit 7);
5. Periodic Interrupt Flag (PF) Bit is cleared to a zero (Register C; Bit 6);
6. The device is not accessible until RST
is re-
turned high;
7. Alarm Interrupt Flag (AF) Bit is cleared to a zero (Register C; Bit 5);
8. The IRQ
pin is in the high impedance state
9. Square Wave Output Enable (SQWE) Bit is cleared to zero (Register B; Bit 3); and
10. Update Ended Interrupt Enable (UIE) is cleared to a zero (Register B; Bit 4).
(RAM Clear). The RCL pin is used to c lear
RCL
all 114 storage bytes, excluding clock and control registers, of the array to FF (hex) value. T he array will be cleared when the RCL
pin is held low for at least 100ms with the osc illator running. Usage of this pin does not affect battery load. This function is applicable only when V
(READ/WRITE Input). T he R/W pin is us ed
R/W
is applie d.
CC
to latch data into the M 48T86 and provides f unc­tionality si mi lar to W
in other memory systems.

Non-Volatile RAM

The 114 general-purpose non-volatile RAM bytes are not dedicated to any special function within the M48T86. They can be used by t he proces sor pro­gram as non-volatile me mory a nd are fully acces­sible during the update cycle.

Figure 7. Intel Bus READ AC Waveform

AS
DS
R/W
tDAS tCS tOD tCH
E
AD0-AD7
tCYC
tASDtASW
tDSL tDSH
tAS tAH tDHR
AI01647
8/29

Figu r e 8 . Intel Bus WRIT E Mode AC Waveform

AS
M48T86
tCYC
tDAS
DS
tDSL tDSH
R/W
tCS
E
tAS tAH
AD0-AD7

Figure 9. Motorola Bus READ/WRITE Mode AC Waveforms

AS
tDAS
DS
tASDtASW
tCYC
tASDtASW
tCH
tDW
tDHW
AI01648
R/W
E
AD0-AD7 (Write)
AD0-AD7 (Read)
tDSL
tRWS
tCS
tAH
tAS tDHW
tAS tOD
tAH
tDSH
tRWH
tCH
tDW
tDHR
AI01649
9/29
M48T86

Table 2. AC Characteristics

Symbol
t
CYC
t
DSL
t
DSH
t
RWH
t
RWS
t
CS
t
CH
t
DHR
t
DHW
t
AS
t
AH
t
DAS
t
ASW
t
ASD
t
OD
t
DW
t
BUC
(2)
t
PI
t
UC
Note: 1. Valid for Ambient Op erating Temp erature: TA = 0 to 70°C; VCC = 4.5 to 5.5V (except where noted).
2. See Table 4., page 14.
Cycle Time 160 ns Pulse Width, Data Strobe Low or R/W High 80 ns Pulse Width, Data Strobe High or R/W Low 55 ns R/W Hold Time 0 ns R/W Setup Time 10 ns Chip Select Setup Time 5 ns Chip Select Hold Time 0 ns READ Data Hold Time 0 25 ns WRITE Data Hold Time 0 ns Address Setup Time 20 ns Address Hold Time 5 ns Delay Time, Data Strobe to Address Strobe Rise 10 ns Pulse Width Address Strobe High 30 ns Delay Time, Address Strobe to Data Strobe Rise 35 ns Output Data Delay Time from Data Strobe Rise 50 ns WRITE Setup Time 30 ns Delay Time before Update Cycle 244 µs
Periodic Interrupt Time interval – Time of Update Cycle 1 µs
Parameter
(1)
Min Typ Max
M48T86
Unit
10/29

CLOCK OPERATIONS

Address Map

The address map of the M48T86 is shown in Fig­ure 10. It consists of 114 bytes of user RAM, 10 bytes of RAM that contain the RTC time, calendar and alarm data, and 4 bytes which are used for control and status. All bytes can be read or written to except for the following:
1. Registers C & D are “Read only.”
2. Bit 7 of Register A is “Read only.” The contents of the four Registers A, B, C, and D
are described in the “Registers” section.

Time, Calendar, and Ala rm Locations

The time and calendar information is obtained by reading the appropriate memory bytes. Th e time, calendar, and alarm regist ers are set or initialized by writing the appropriate RAM bytes. The con­tents of the time, calendar, and alarm bytes can be either Binary or Binary-Coded Decimal (BCD) for­mat. Before writing the internal time, calendar, and alarm register, the SET Bit (Register B; Bit 7) should be written to a logic '1.' This will prevent up­dates from occurring while access is being at­tempted. In addition to writing the time, calenda r, and alarm registers in a selected format (binary or BCD), the Data Mode (DM) Bit (Register B; Bit 2), must be set to the appropriate logic level ('1' signi-
M48T86
fies binary data; '0' signifies Binary Coded Decimal (BCD data). All time, calendar, and alarm bytes must use the same data mode. The SET Bit should be cleared after the Data Mode Bit has been written to allow the Real Time Clock to up­date the time and calendar bytes. Once initialized, the Real Time Clock makes all updates in the se­lected mode. The da ta mode cann ot be changed without reinitializing the ten data bytes. Table
3., page 12 shows the bi nary and BCD formats of
the time, calendar, and alarm locations. The 24/12 Bit (Register B; Bit 1) cannot be changed without reinitializing the hour locations. When the 12-hour format is selected, a logic '1' in the high order bit of the hours byte represents PM. The time, calendar, and alarm bytes are always acc essible because they are double-buffered. Once per second the ten bytes are advanced by one second and checked for an alarm condition. If a READ of the time and calendar data occurs during an update, a problem exists where data such as seconds, minutes, or hours may not correlate. However, the probability of reading incorrect time and calendar data is low. Methods of avoiding possible incorrect time and calendar READs are reviewed later in this text.

Figure 10. Address Map

0
14
BYTES
114
BYTES
127
CLOCK AND CONTROL
STATUS REGISTERS
13 14
STORAGE REGISTERS
00
0D 0E
7F
0 1
SECONDS ALARM 2 3
MINUTES ALARM 4 5 6 7
DATE OF MONTH 8 9
10 11 12 13
SECONDS
MINUTES
HOURS
HOURS ALARM
DAY OF WEEK
MONTH
YEAR REGISTER A REGISTER B REGISTER C REGISTER D
BCD OR BINARY FORMAT
AI01650
11/29
M48T86

Table 3. Time, Calendar, and Alarm Formats

Address RTC Bytes
Decimal Binary BCD
0 Seconds 0-59 00-3B 00-59 1 Seconds Alarm 0-59 00-3B 00-59 2 Minutes 0-59 00-3B 00-59 3 Minutes Alarm 0-59 00-3B 00-59
Hours, 12-hrs 1-12
4
Hours, 24-hrs 0-23 00-17 00-23
Range
01-0C AM 81-8C PM
01-12 AM 81-92 PM
5
Hours Alarm, 12-hrs 1-12
Hours Alarm, 24-hrs 0-23 00-17 00-23 6 Day of Week (1 = Sun) 1-7 01-07 01-07 7 Day of Month 1-31 01-1F 01-31 8 Month 1-12 01-0C 01-12 9 Year 0-99 00-63 00-99
01-0C AM 81-8C PM

Interrupts

The RTC plus RAM includes three separate, fully automatic sources of interrupt (alarm, periodic, up­date-in-progress) available to a processor. The alarm interrupt can be programmed to occur at rates from once per second t o once per d ay. The periodic interrupt can be selected from rates of 500ms to 122µ s. The update-ended interrupt c an be used to indicate that an update cycle has com­pleted.
The processor program can select which inter­rupts, if any, are going to be used. Th ree bits in Register B enable the interrupts. Writing a logic '1' to an interrupt-enable bit (Register B; Bit 6 = PI E; Bit 5 = AIE; Bit 4 = UIE) permits an interrupt to be initialized when the event occurs. A '0' in an inter­rupt-enable bit prohibits the IRQ
pin from being as­serted from that interrupt con dition. If an i nterrupt flag is already set when an interrupt is enabled,
is immediately set at an active level, although
IRQ the interrupt initiating the event may have occurred much earlier. As a result, there are cases where the program should clear such earlier initiated in­terrupts before first enabling new interrupts.
When an interrupt event occurs, the related flag bi t (Register C; Bit 6 = PF; Bit 5 = AF; Bit 4 = UF) is set to a logic '1.' These flag bits are set ind epen­dent of the state of the corresponding enable bit in Register B and can be used in a polling mode with­out enabling the correspon ding enable bits. The
interrupt flag bits are status bits which software can interrogate as necessary.
When a flag is set, an in dication is given to soft­ware that an interrupt event has occurred since the flag bit was last read; however, care should be tak­en when using the flag bits as all are cleared each time Register C is read. Double la tchin g is i nclud­ed with Register C so that bits which are set re­main stable throughout the READ cycle. All bits which are set high are cleared when read. Any new interrupts which are pending during the READ cycle are held until after the cycle is completed. One, two, or three bits can be set when reading Register C. Each utilized flag b it should be exam­ined when read to ensure that no interrupts are lost.
The second flag bit usage method is with fu lly en­abled interrupts. When an interrupt flag bit is set and the corresponding enable bit is also set, the
pin is asserted low. IRQ is asserted as long as
IRQ at least one of the three interrupt sources has its flag and enable bits both set. The IR QF Bit (Reg­ister C; Bit 7) is a '1' whenever the IRQ driven low. Determination that the RTC ini tiated an interrupt is accomplished by reading Register C. A logic '1' in the IRQF Bit indicates that one or more interrupts have been initiated by the M48T86. The act of reading Register C clears all active flag bits and the IRQF Bit.
01-12 AM 81-92 PM
pin is being
12/29

Periodic Inte rrup t

The periodic interrupt will cause the IRQ
pin to go to an active state from once every 500ms to once every 122µs. This function is separate from the alarm interrupt which can be output from once per second to once per day. The periodic interrupt rate is selected using the same Reg ister A bits which select the square wave frequency (see Table
4., page 14). Changing the Register A bits affects
both the square wave frequency and the periodic interrupt output. However, each function has a separate enable bit in Register B. The periodic in­terrupt is enabled by the PIE Bit (Register B; Bit 6). The periodic interrupt can be used with software counters to measure inputs, create output inter­vals, or await the next needed software function.

Alarm Interrupt

The alarm interrupt provides the system processor with an interrupt when a match is made between the RTC's hours, minutes, and seconds bytes and the corresponding alarm bytes.
The three alarm bytes can be used in two ways. First, when the alarm time is written in the appro­priate hours, minutes, and seconds alarm loca­tions, the alarm interrupt is initiated at the specified time each day if the Alarm Interrupt Enable Bit (Register B; Bit 5) is high. The second use is to in­sert a “Don't care” state in one or more of the three alarm bytes. The “Don't care” code is any hexa­decimal value from C0 to FF. The two most signif­icant bits of each byte set the “Don't care” condition when at logic '1.' An alarm will be gener­ated each hour when the “Don't c are” is are set in the hours byte. Similarly, an alarm is generated every minute with “Don't care” codes in the hour and minute alarm bytes. The “Don't care” codes in all three alarm bytes create an interrupt every sec­ond.

Update Cycle Interrupt

After each update cycle, the Updat e Cycle Ended Flag Bit (UF) (Register C; Bit 4) is set to a '1.' If the Update Interrupt Enable Bit (UIE) (Register B; Bit
4) is set to a '1,' and the SET Bit (Register B; Bit 7) is a '0,' then an interrupt request is ge nerated at the end of each update cycle.

Oscillator Control Bits

When the M48T86 is shipped f rom the f actory the internal oscillator is turned off. This feature pre­vents the lithium energy cell from being dis­charged until it is installed in a system. A pattern of
M48T86
“010” in Bits 4-6 of Register A will turn the oscillator on and enable the countdow n chain. A pattern of “11X” will turn the oscillator on, but holds the countdown chain of the oscillator in reset. All other combinations of Bits 4-6 keep the oscillator off.

Update Cycle

The M48T86 executes an up date cycle once per second regardless of the SET Bit (Reg ister B; Bit
7). When the SET Bit is asserted, the user copy of the double buffered time, calendar, and alarm bytes is frozen and will not update as the time in­crements. However, the time countdown chain continues to update the internal copy of the buffer. This feature allows accurate time to be main­tained, independent of reading and writing the time, calendar, and alarm buffers. This also guar­antees that the time and calendar in formation will be consistent. The update cycle also compares each alarm byte with the corresponding time byte and issues an alarm if a m atch or if a “Don't c are” code is present in all three positions.
There are three methods of accessing the real time clo ck tha t wil l avo id a ny po ssib ilit y of obta in­ing inconsistent time and calendar data. The first method uses the update-ended interrupt. If en­abled, an interrupt occurs after every update cycle which indicates that over 999ms are available to read valid time and date information. If this inter­rupt is used, the IRQF Bit (Register C; Bit 7) should be cleared before leaving the interrupt routine.
A second method uses the Update-In-Progress (UIP) Bit (Register A; Bit 7) to determine if the up­date cycle is in progress. The UIP Bit will pulse once per second. After the UIP Bit goes high, the update transfer occurs 244µs later. If a low is read on the UIP Bit, the user has at least 244µs before the time/calendar data will be changed. Therefore, the user should avoid interrupt service routines that would cause the time needed to read valid time/calendar data to exceed 244µs.
The third method uses a periodic interrupt to deter­mine if an update cycle is in progress. The UIP Bit is set high between the setting of the PF Bit (Reg­ister C; Bit 6). Periodic interrupts that occur at a rate greater than t formation to be reached at each occurrence of the periodic interrupt.The READs should be complet­ed within 1/(t
PL/2
read during the update cycle.
allow valid time and date in-
BUC
+ t
) to ensure that data is not
BUC
13/29
M48T86

Square Wave Output Selec tion

Thirteen of the 15 divider taps are made available to a 1-of-15 selector, as sho wn in the block dia­gram of Figure 6., page 6. The purpose of select­ing a divider tap is to generate a square wave output signal on the SQW pin. The RS3-RS0 bits in Register A establish the square wave output fre­quency. These frequencies are listed in Table

Table 4. Square Wave Frequency/Pe riodi c Interrup t Ra te

Register A Bits Square Wave Periodic Interrupt
RS3 RS2 RS1 RS0 Frequency Units Period Units
0000None None 0 0 0 1 256 Hz 3.90625 ms 0 0 1 0 128 Hz 7.8125 ms 0 0 1 1 8.192 kHz 122.070 us 0 1 0 0 4.096 kHz 244.141 us 0 1 0 1 2.048 kHz 488.281 us 0 1 1 0 1.024 kHz 976.5625 us
4., page 14. The SQW frequency selection shares
the 1-of-15 selector with the periodic interrupt gen­erator. Once the frequency is selecte d, the ou tput of the SQW pin can be turned on and off under program control with the Square Wave Enabled (SQWE) Bit.
0 1 1 1 512 Hz 1.953125 ms 1 0 0 0 256 Hz 3.90625 ms 1 0 0 1 128 Hz 7.8125 ms 1 0 1 0 64 Hz 15.625 ms 1 0 1 1 32 Hz 31.25 ms 1 1 0 0 16 Hz 62.5 ms 11018Hz125ms 11104Hz250ms 11112Hz500ms
14/29
Register A UIP. Update in Progress. The Update in
Progress (UIP) Bit is a status flag that can be mon­itored. When the UIP Bit is '1,' the update transfer will soon occur (see Figure 11). When UIP is a '0,' the update transfer will not occur for at least 244µs. The time, calendar, and alarm information in RAM is fully availa ble for acce ss whe n the U IP Bit is '0.' The UIP Bit is “Read only” and is not a f­fected by RST
. Writing the SET Bit in Register B to a '1' inhibits any update transfer and clears the UIP Status Bit.
OSC0, OSC1, OSC2. Oscillator Control. These three bits are used to control the oscillator and re­set the countdown chain. A pattern of “010” en­ables operation by turning on the oscillator and enabling the divider chain. A pattern of 11X turns the oscillator on, but keeps t he frequency d ivider disabled. When “010” is written, the first update begins after 500ms.
RS3, RS2, RS1, RS0. These four rate-selection bits select one of the 1 3 taps on the 15-stage di­vider or disable the divider output. The tap sel ect­ed may be used to generate an output square wave (SQW pin) and/or a periodic interrupt. The user may do one of the following:
1. Enable the interrupt with the PIE Bit; or
2. Enable the SQW output with the SQWE Bit; or
3. Enable both at the same time and same rate; or
4. Enable neither.
Table 4., p age 14 lists the periodic interrupt rates
and the square wave frequencies that may be cho­sen with the RS Bits. These four READ/WRITE bits are not affected by RST
.

Table 5. REGISTER A MSB

BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0
UIP OSC2 OSC1 OSC0 RS3 RS2 RS1 RS0
M48T86

Figure 11. Upd a te Pe rio d Ti m in g and UIP

UIP
UPDATE PERIOD (1sec)
tBUC tUC
AI01651
15/29
M48T86
Register B SET. When the SE T Bit i s a '0, ' the update trans-
fer functions normally by advancing the counts once per second. When the SET Bit is written to a '1,' any update transfer is inhibited and the pro­gram may initialize the time and calendar bytes without an update occurring. READ cycles can be executed in a similar manner. SET is a READ/ WRITE bit which is not modified by RST functions of the M48T86.
PIE: Perio dic Interrupt Enable. The Periodic In­terrupt Enable Bit (PIE) is a READ/WRITE bit which allows the Periodic Interrupt Flag (PF) Bit in Register C to cause the IRQ
pin to be driven low (see Figure 12., page 17 for the relationship be- tween PIE and UIE). When the PIE Bit is set to '1,' periodic interrupts are generated by driving the
pin low at a rate specified by the RS3-RS0
IRQ bits of Register A. A '0' in the PIE Bit blocks the
output from being driven by a periodic inter-
IRQ rupt, but the Periodic Flag (PF) Bit is still set at the periodic rate. PIE is not modified by any internal M48T86 functions, but is cleared to '0' on RST
AIE: Alarm Interrupt Enable. The Alarm Inter­rupt Enable (AIE) Bit is a READ/WRITE bit which, when set to a '1,' permits the Alarm Flag (AF) Bit in Register C to assert IRQ
. An alarm interrupt oc­curs for each second that the three time bytes equal the three alarm bytes including a “Don't care” alarm code of binary 1XXXXXXX. When the AIE Bit is set to '0,' the AF Bit does not initiate the
signal. The RST pin clears AIE to '0.' The in-
IRQ ternal functions of the M48T86 do not affect the AIE Bit.
or internal
.
UIE: Update Ended Interrupt Enable. The Up­date Ended Interrupt Enable (UIE) Bit is a READ/ WRITE bit which enables the Update End Flag (UF) Bit in Register C to assert IRQ low on the RST
pin or the SET Bit going high
. A trans ition
clears the UIE Bit. SQWE: Square Wave Enable. When the Square
Wave Enable (SQWE) Bit is s et to a '1,' a square wave signal is driven out on the SQW pin. The fre­quency is determined by the rate-selection bits RS3-RS0. When the SQWE Bit is set to '0,' the SQW pin is held low. The SQWE Bit is cleared by the RST
pin. SQWE is a READ/WRITE bit.
DM: Data Mode. The Data Mode (DM) Bit indi­cates whether time and calendar information are in binary or BCD format. The DM Bit is set by the pro­gram to the appropriate format and can be read as required. This bit is not modified by internal func­tion or RST
. A '1' in DM signifies binary data and a
'0' specifies Binary Coded Decimal (BCD) data.

24/12

The 24/12 Control Bit establishes the format of the hours byte. A '1' indicates the 24-hour mode and a '0' indicates the 12-hour m ode. This bit is RE AD/ WRITE and is not affected by internal functions or
.
RST

DSE. Daylight Savings Enable

The Daylight Savings Enable (DSE) Bit is a READ/ WRITE bit which enables two special updates when set to a '1.' On the first Sunda y in April, the time increments from 1:59:59AM to 3:00:00 A M. On the last Sunday in October, when the time reaches 1:59:59 AM, it changes to 1:00:00 AM. These special updates do not occur when the DSE Bit is a '0.' This bit is not affected by internal func­tions or RST
.

Table 6. REGISTER B MSB

BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 SET PIE AIE UIE SQWE DM 24/12 DSE
16/29

Figure 12. Update-ended/Periodic Interrupt Relationship

UPDATE PERIOD (1sec)
UIP
M48T86
PF
UF
tPI
tPI tPI
tBUC tUC
AI01652B
17/29
M48T86
Register C IRQF: Interrupt Request Flag. The Interrupt Re-
quest Flag (IRQF) Bit is s et to a '1' when one or more of the following are true:
PF = PIE = 1 AF = AIE = 1 UF = UIE = 1 (e.g., IRQF = PF*PIE+AF*AIE+UF*UIE) PF: Periodic Interrupt Flag. The Periodic Inter-
rupt Flag (PF) is a “Read only” bit which is set to a '1' when an edge is detected on the selected tap of the divider chain. The RS3-RS0 bits establish the periodic rate. PF is set to a '1' independent of the state of the PIE Bit. Th e IRQ will set th e IRQF Bit. Th e PF Bit is clea red by a
or a software READ of Register C.
RST AF: Alarm Flag. A '1 ' in the AF (Alarm Interrupt
Flag) Bit indicates that the current time has matched the alarm time. If the AIE Bit is also a '1,' the I RQ IRQF Bit. A RST
pin will go low and a '1' will appear in the
or a READ of Register C will clear
AF.
signal is active and
UF: Update Ended Interrupt Flag. The Update Ended Interrupt Flag (UF) Bit is set after each up­date cycle. When the UIE Bit is set to a '1,' the '1' in the UF Bit causes the IRQF Bit to be a '1.' This will assert t he IRQ Register C or a RST
pin. UF is cleared by reading
.
BIT 0 throug h 3: Unused Bits. Bit 3 through Bit 0 are unused. These bits always read '0' and can­not be written.
Register D VRT: Valid Ram A nd Time. T he Valid RAM and
Time (VRT) Bit is set to the '1' s tate by STMicro­electronics prior to shipment. This bit is not writ­able and should always be a '1' when read. If a '0' is ever present, an exhausted internal lithium cell is indicated and both the contents of the RTC data and RAM data are questionable. This bit is unaf­fected by RST
.
BIT 0 throug h 6: Unused Bits. The remaining bits of Register D are not usable. They cannot be written and when read, they will always read '0.'

Table 7. REGISTER C MSB

BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0
IRQFPFAFUF0000

Table 8. REGISTER D MSB

BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 VRT0000000
18/29
M48T86

VCC Noise And Negative Going Transients

transients, including those produced by output
I
CC
switching, can produce voltage fluctuations, re­sulting in spikes on the V
bus. These transients
CC
can be reduced if capacitors are used to store en­ergy which stabilizes the V
bus. The energy
CC
stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic by­pass capacitor value of 0.1µF (as shown in Figure
13) is recommended in order to provide the need-
ed filtering. In addition to transients that are caused by normal
SRAM operation, power cycling can generate neg­ative voltage spikes on V below V
by as much as one volt. These negative
SS
that drive it to values
CC
spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, it is recommended to con­nect a schottky diode from V connected to V
, anode to VSS). Schottky diode
CC
to VSS (cathode
CC
1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount.

Figure 13. Supply Voltage Protection

V
CC
V
CC
0.1µF DEVICE
V
SS
AI02169
19/29
M48T86

MAXIMUM RA T ING

Stressing the device above the rating listed in the “Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicat­ed in the Operating sections of this specification is

Table 9. Absolute Maximum Ratings

Symbol Parameter Value Unit
T
A
T
STG
(1,2,3)
T
SLD
V
IO
V
CC
P
D
Note: 1. For DIP package: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer
than 30 seconds).
2. For S O package, standard (SnPb) lead finish: Reflow at peak t em perature of 225°C (tota l thermal budg et not to exceed 180°C for between 90 to 15 0 s e c o nds).
3. For S O package , Lead-free (Pb-free) lead finish: Reflow at peak tempera tu re of 260°C (total thermal budget not to exceed 245°C for greater than 30 seconds).
CAUTION: Nega tive undershoot s below –0.3V are not allowed on any pin whil e i n the Battery Ba ck -up mode. CAUTION: Do NOT wave s ol d er SOIC to av oid damag i n g S NA PHAT socket s.
Ambient Operating Temperature 0 to 70 °C Storage Temperature (VCC Off, Oscillator Off)
Lead Solder Temperature for 10 seconds 260 °C Input or Output Voltages –0.3 to 7.0 V
Supply Voltage –0.3 to 7.0 V Power Dissipation 1 W
not implied. Exposure to Absol ute Max imum Ra t­ing conditions for extended periods may affect de­vice reliability. Refer also to the STMicroelectronics SURE Program and other rel­evant quality documents.
–40 to 85 °C
20/29

DC AND AC PARAMETERS

This section summarizes the operating and mea­surement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Meas ure-

Table 10. Operating and AC Measurement Conditions

Parameter M48T86 Unit
ment Conditions listed in t he relevant tables. De­signers should check that the operating conditions in their projects match the measurement condi­tions when using the quoted parameters.
M48T86
Supply Voltage (V Ambient Operating Temperature (T Load Capacitance (C
CC
)
)
A
)
L
4.5 to 5.5 V 0 to 70 °C
100 pF Input Rise and Fall Times 5ns Input Pulse Voltages 0 to 3 V Input and Output Timing Ref. Voltages 1.5 V
Note: O utput Hi-Z is def i ned as the poin t where data is no l onger driven.

Figure 14. AC Te st i ng Load Circuit (No IRQ ) Figure 15. AC Testing Load Circuit (with IRQ)

FOR ALL OUTPUTS EXCEPT IRQ
510
5V
960
IRQ
50pF
5V
1.15k
130pF
AI01644

Table 11. Capacitance

Symbol
C
IN
C
IO
Note: 1. Effec tive capacitance measured with powe r supply at 5V; sam pl ed only, not 100% tested.
2. At 25°C, f = 1MHz.
3. Outputs deselect ed.
Input Capacitance 7 pF
(3)
Input / Output Capacitance 5 pF
Parameter
(1,2)
Min Max Unit
AI01645
21/29
M48T86

Table 12. DC Characteristics

IN
V
V
CC
CC
(1)
Min Max Unit
2.4 V
Symbol Parameter
I
LI
I
LO
I
CC
V V
Input Leakage Current
(2)
Output Leakage Current Supply Current Outputs open 15 mA Input Low Voltage –0.3 0.8 V
IL
Input High Voltage 2.2
IH
Output Low Voltage
V
OL
V
OH
Note: 1. Valid for Ambient Op erating Temp erature: TA = 0 to 70°C; VCC = 4.5 to 5.5V (except where noted).
2. Outputs deselect ed.
Output Low Voltage (IRQ Output High Voltage
)
Test Condition
0V V
0V V
OUT
= 4mA
I
OL
= 0.5mA
I
OL
I
= –1mA
OH

Figure 16. Power Down/Up Mode AC Waveforms

V
CC
4.5V V
PFD
VSO
±1 µA ±1 µA
V
+ 0.3
CC
0.4 V
0.4 V
V
tF tR
E

Table 13. Power Down/Up Mode AC Characteristics

Symbol
(2)
t
F
t
R
t
rec
Note: 1. Valid for Ambient Op erating Temp erature: TA = 0 to 70°C; VCC = 4.5 to 5.5V (except where noted).
2. V
VCC Fall Time VCC Rise Time
V
to E High
PFD
fall time of less than tF may res ul t in desel e c tion/w ri te prot ection no t occurr i n g until 200µs after VCC passes V
CC
Parameter
(1)
Min Max Unit
300 µs 100 µs
20 200 ms

Table 14. Power Down/Up Trip Points DC Characteristics

Symbol
V
PFD
V
SO
(3)
t
DR
Note: 1. Valid for Ambient Op erating Temp erature: TA = 0 to 70°C; VCC = 4.5 to 5.5V (except where noted).
2. All voltages referenced to V
3. At 25°C, V
Power-fail Deselect Voltage 4.0 4.35 V Battery Back-up Switchover Voltage 3.0 V
Expected Data Retention Time 10 YEARS
= 0V.
CC
Parameter
.
SS
(1,2)
Min Typ Max Unit
trec
AI01646
PFD
.
22/29

PACKAG E MECHANICA L INFORMATION

Figure 17. PCDIP24 – 24-pin Plastic DIP, battery CAPHAT, Package Outline

A2
M48T86
B1 B
A1AL
e1
C
eA
e3
D
N
E
1
Note: D rawing is not to scale.
PCDIP

Table 15. PCDIP24 – 24-pin Plastic DIP, battery CAPHAT, Package Mechanical Data

Symb
Typ Min Max Typ Min Max
A 8.89 9.65 0.3500 0.3799 A1 0.38 0.76 0.0150 0.0299 A2 8.36 8.89 0.3291 0.3500
B 0.38 053 0.0150 0.0209
mm inches
B1 1.14 1.78 0.0449 0.0701
C 0.20 0.31 0.0079 0.0122
D 34.29 34.80 1.3500 1.3701
E 17.83 18.34 0.7020 0.7220 e1 2.29 2.79 0.0902 0.1098 e3 25.15 30.73 0.9902 1.2098 eA 15.24 16.00 0.6000 0.6299
L 3.05 3.81 0.1201 0.1500
N24 24
23/29
M48T86

Figure 18. SOH28 – 28-lead Plastic Small Outline, 4-socket SNAPHAT, Package Outli ne

A2
A
C
Be
eB
CP
D
N
E
H
LA1 α
1
SOH-A
Note: D rawing is not to scale.

Table 16. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Pack. Mech. Data

Symb
Typ Min Max Typ Min Max
mm inches
A 3.05 0.1201 A1 0.05 0.36 0.0020 0.0142 A2 2.34 2.69 0.0921 0.1059
B 0.36 0.51 0.0142 0.0201
C 0.15 0.32 0.0059 0.0126
D 17.71 18.49 0.6972 0.7280
E 8.23 8.89 0.3240 0.3500
e1.27– –0.0500– – eB 3.20 3.61 0.1260 0.1421
H 11.51 12.70 0.4531 0.5000
L 0.41 1.27 0.0161 0.0500
α
N 28 28
CP 0.10 0.0039
24/29

Figure 19. SH – 4-pin SNAPHAT Ho u sing for 48mAh Battery & Cr ystal, Package Outline

M48T86
eA
D
A1
A
B
eB
A3
L
E
SH
Note: D rawing is not to scale.

Table 17. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Cry st al, Pack age Mech. Data

Symb
Typ Min Max Typ Min Max
mm inches
A2
A 9.78 0.3850 A1 6.73 7.24 0.2650 0.2850 A2 6.48 6.99 0.2551 0.2752 A3 0.38 0.0150
B 0.46 0.56 0.0181 0.0220
D 21.21 21.84 0.8350 0.8598
E 14.22 14.99 0.5598 0.5902 eA 15.55 15.95 0.6122 0.6280 eB 3.20 3.61 0.1260 0.1421
L 2.03 2.29 0.0799 0.0902
25/29
M48T86

Figure 20. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline

eA
D
A1
A
B
eB
A3
L
E
SHTK-A
Note: D rawing is not to scale.

Table 18. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data

Symb
Typ Min Max Typ Min Max
mm inches
A2
A 10.54 0.415 A1 8.00 8.51 0.315 .0335 A2 7.24 8.00 0.285 0.315 A3 0.38 0.015
B 0.46 0.56 0.018 0.022
D 21.21 21.84 0.835 0.860
E 17.27 18.03 0.680 .0710 eA 15.55 15.95 0.612 0.628 eB 3.20 3.61 0.126 0.142
L 2.03 2.29 0.080 0.090
26/29
M48T86

PART NUMBERING

Table 19. Ordering Information Scheme

Example: M48T 86 MH 1 E
Device Type
M48T
Supply Voltage and Write Protect Voltage
86 = V
Package
PC = PCDIP24 MH
Temperature Rang e
1 = 0 to 70°C
= 4.5 to 5.5V; V
CC
(1)
= SOH28
= 4.2 to 4.5V
PFD
Shipping Method For SOH28:
blank = Tubes (Not for New Design - Use E) E = Lead-free Package (ECO PACK F = Lead-free Package (ECO PACK
®
), Tubes
®
), Tape & Reel
TR = Tape & Reel (Not for New Design - Use F)
For PCDIP28:
blank = Tubes
Note: 1. The SOI C package (SOH28) requires the S NA P HAT® battery/cry stal package which is ordered separately unde r the part number
“M4T28- BR 12SH” in plasti c tube or “M4T28-BR12SH T R” in Tape & Reel form (see Tabl e 20).
Caution: Do not place the SNAPHAT battery package “M4TXX-BR12SH” in conductive foam as it will drain the lithium button-cell bat­tery.
For other options, or for more information on any aspect of this device, please contact the ST Sales Office nearest you.

Table 20. SNAPHAT Battery Table

Part Number Description Package
M4T28-BR12SH Lithium Battery (48mAh) SNAPHAT SH M4T32-BR12SH Lithium Battery (120mAh) SNAPHAT SH
27/29
M48T86

REVISION HISTORY

Table 21. Document Revision History

Date Rev. # Revision Details
March 1999 1.0 First Issue
04-May-00 1.1 Page layou t changed
31-Jul-01 2.0 Reformatted; temp/voltage info. added to tables (Table 12, 2, 13, 14)
20-May-02 2.1 Modify reflow time and temperature footnotes (Table 9)
01-Apr-03 3.0 v2.2 template applied; test condition updated (Table 14) 02-Apr-04 4.0 Reformatted; update Lead-free package information (Table 9, 19)
28/29
M48T86
Information furnished is believed to be accurate and reliable. However, STMicroelectronics a ssumes no responsibility fo r the c onsequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authori zed for use as criti cal component s in life support devices or sys tems without ex press written approval of STMicroelect ronics.
The ST logo is a registered trademark of STMi croelectronics.
All other na m es are the property of their respective ow ners.
© 2004 STMi croelectroni cs - All rights reserved
Australi a - B elgium - Braz i l - Canada - China - Czech Republ i c - Finland - France - Germany -
Hong Kong - India - Israel - It al y - Japan - Malays i a - Malta - Morocco - Singapor e -
STMicroelectroni cs GROUP OF COMPANIES
Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
29/29
Loading...