STMicroelectronics M48T59, M48T59Y, M48T59V User Manual

5.0 or 3.3V, 64 Kbit (8 Kbit x8) TIMEKEEPER® SRAM

FEAT URES SUM MARY

REAL TIME CLOCK, POWER-FAIL CONTROL CIRCUIT, AND BATTERY
FREQUENCY TEST OUTPUT FOR REAL
TIME CLOCK SOFTWARE CALIBRATION
AUTOMATIC POWER-FAIL CHIP
DESELECT AND WRITE PROTECT ION
WRITE PROTECT VOLTAGES
= Power-fail Deselect Voltage):
(V
PFD
M48T59: V
4.5V V
M48T59Y: V
4.2V V
M48T59V*: V
2.7V V
SELF-CONTAINED BATTERY AND
CRYSTAL IN THE CAPHAT™ DIP PACKAGE
PACKAGING INCLUDES A 28-LEAD SOIC
AND SNAPHAT separately)
SOIC PACKAGE PROVIDES DIRECT
CONNECTION FOR A SNAPHAT TOP WHICH CONTAINS THE BATTERY AND CRYSTAL
MICROPROCESSOR POWER-ON RESET
(Valid even during battery back-up mode)
PROGRAMMABLE ALAR M OUTPUT
ACTIVE IN THE BATTERY BACK-UP MODE
BATTERY LOW FLAG
= 4.75 to 5.5V
CC
4.75V
PFD
= 4.5 to 5.5V
CC
4.5V
PFD
= 3.0 to 3.6V
CC
3.0V
PFD
®
TOP (to be ordered
M48T59
M48T59Y, M48 T5 9V *

Figure 1. 28-pin PCDIP, CAPHAT™ Package

28
1
PCDIP28 (PC) Battery/Crystal
CAPHAT

Figure 2. 28-pi n S O I C Package

SNAPHAT (SH)
Battery/Crystal
28
1
SOH28 (MH)
* Contact local ST sales office for availability of 3.3V version.
1/29November 2004
M48T59, M48T59Y, M48T59V*
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. 28-pin PCDIP, CAPHAT™ Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. 28-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. 28-pin SOIC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 5. PCDIP28 CAPHAT Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 7. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. RE A D Mode AC Charac teristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. WRITE Enable Controlled, WRITE Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . .8
Figure 9. Chip Enable Controlled, WRITE Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
CLOCK OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Reading the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Setting the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Stopping and Starting the Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 10.Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 11.Clock Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Setting the Alarm Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 12.Alarm Interrupt Reset Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Table 6. A larm Repeat Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 13.Back-up Mode Alarm Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Power-on Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Programmable Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Battery Low Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Century Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Initial Power-on Defaults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 7. Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
V
Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
CC
Figure 14.Supply Voltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2/29
M48T59, M48T59Y, M48T59V*
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 8. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 9. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 15.AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 10.Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11.DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 16.Power Down/Up Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 12.Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 13.Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 17.PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Outline . . . . . . . . . . . . . . . . 23
Table 14. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Mechanical Data. . . . . . . . . 23
Figure 18.SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Package Outline . . . . . . . . 24
Table 15. SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Pack. Mech. Data . . . . . . . 24
Figure 19.SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline . . . . . . . 25
Table 16. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data. . . . 25
Figure 20.SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline . . . . . . 26
Table 17. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data. . . 26
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 18.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 19.SNAPHAT Battery Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 20.Document Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3/29
M48T59, M48T59Y, M48T59V*

SUMMARY DESCRIPTIO N

The M48T59/Y/V TIMEKEEPER® RAM is an 8 Kb x8 non-volatile static RAM and real time clock. The monolithic chip is available in two spe­cial packages to provid e a highly integrated bat­tery backed-up memory and real time clock solution.
The M48T59/Y/V is a non-volatile pin and function equivalent to any JEDEC standard 8 Kb x8 SRAM. It also easi ly fits into many ROM, EPROM, and EEPROM sockets, providing the non-volatility of PROMs without any requirement for special write timing or limitations on t he number of writes that can be performed.
The 28-pin, 600mil DIP CAPHAT™ houses the M48T59/Y/V silicon with a quartz crystal and a long life lithium button cell in a single package.
The 28-pin, 330mil SOIC provides sockets with gold plated contacts at bot h ends for direct con­nection to a separate SNAPHAT
®
housing con-

Figure 3. Logic Diagram Table 1. Signal Names

taining the battery and crystal. The unique design allows the SNAPHAT battery package to be mounted on top of the SOIC package after the completion of the surface mount process. Inser­tion of the SNAPHAT housing after reflow pre­vents potential battery and c rystal dam age due to the high temperatures required for device surface­mounting. The SNAPHAT housing is keyed to pre­vent reverse insertion.
The SOIC and battery/crystal packages are shipped separately in plastic anti-static tubes or in Tape & Reel form. For the 2 8-lead SOIC, t he ba t­tery/crystal package (e.g., SNAPHAT) part num­ber is “M4T28-BR12SH” or “M4T32-BR12SH” (see Table 19., page 27).
Caution: Do not place the SNAPHAT battery/crys­tal top in conductive foam, as this will drain the lith­ium button-cell battery.
A0-A12
W
V
CC
13
M48T59
M48T59Y
E
G
M48T59V
V
SS
8
DQ0-DQ7
IRQ/FT RST
AI01380E
A0-A12 Address Inputs DQ0-DQ7 Data Inputs / Outputs
IRQ
RST E G W V
CC
V
SS
/FT
Interrupt / Frequency Test Output (Open Drain)
Reset Output (Open Drain) Chip Enable Output Enable Write Enable Supply Voltage Ground
4/29
M48T59, M48T59Y, M48T59V*

Figure 4. 28-pi n S O I C Co nnections Figure 5. PC DIP 28 CA P H A T Connectio ns

RST V
A12
A7 A6 A5 A4 A3 A2 A1 A0
DQ0
1 2 3 4 5 6 7 8 9 10 11
M48T59Y M48T59V
12
DQ2
SS
13 14

Figure 6. Block Diagram

32,768 Hz CRYSTAL
28 27 26 25 24 23 22 21 20 19 18 17 16 15
AI01382E
OSCILLATOR AND
CLOCK CHAIN
CC
W IRQ/FT A8 A9 A11 G A10 E DQ7 DQ6 DQ5DQ1 DQ4 DQ3V
IRQ/FT
RST V
1
A12
2
A7
3
A6
4
A5
5
A4
6
A3
7
A2
8
A1
9
A0
10
DQ0
11 12
DQ2
13 14
SS
16 x 8 BiPORT SRAM ARRAY
M48T59
M48T59Y
28 27 26 25 24 23 22 21 20 19 18 17 16 15
AI01381D
CC
W IRQ/FT A8 A9 A11 G A10 E DQ7 DQ6 DQ5DQ1 DQ4 DQ3V
A0-A12
LITHIUM
CELL
VOLTAGE SENSE
AND
SWITCHING
CIRCUITRY
CC
RSTV
POWER
V
PFD
8176 x 8
SRAM ARRAY
V
SS
DQ0-DQ7
E W G
AI01383D
5/29
M48T59, M48T59Y, M48T59V*

OPERATION MODES

As Figure 6., page 5 shows, the static memory ar­ray and the quartz-controlled clock oscillator of the M48T59/Y/V are integrated on one silicon chip.
The two circuits are interconnected at the upper eight memory locations to provide user accessible BYTEWIDE™ clock information in t he bytes with addresses 1FF8h-1FFFh. The clock locations contain the century, year, month, date, day, hour, minute, and second in 24 hour BCD format (except for the century). Corrections for 28, 29 (l eap year ­valid until 2100), 30, and 31 day months are made automatically. Byte 1FF8h is the clock control reg­ister. This byte controls user access to the clock information and also stores the clock calibration setting.
The eight clock bytes are not the actual clock counters themselves; they are memory locations

Table 2. Operating Modes

Mode
Deselect WRITE READ READ
Deselect Deselect
Note: X = VIH or VIL; VSO = Battery B ack-up Switc hover Voltage.
1. See Table 13., page 22 for details.
V
V
4.75 to 5.5V
4.5 to 5.5V
3.0 to 3.6V
to V
SO
PFD
V
or or
SO
CC
(min)
(1)
(1)
E G W DQ7-DQ0 Power
V
IH
V
IL
V
IL
V
IL
X X X High Z CMOS Standby X X X High Z Battery Back-up Mode
consisting of BiPORT™ READ/WRITE memory cells. The M48T59/Y/V includes a clock control cir­cuit which updates the clock bytes with current in­formation once per second. The information can be accessed by the user in the same manner as any other location in the static memory array.
The M48T59/Y/V also has its ow n Power-fail De­tect circuit. The control circuitry constantly moni­tors the single 5V/3.3V supply for an out of tolerance condition. When V
is out of tolerance,
CC
the circuit write protects the SRAM, providing a high degree of data security in the midst of unpre­dictable system operation brought on by low V As V Voltage (V
falls below the Battery Back-up Switchover
CC
), the control circuitry connects the
SO
battery which maintains data and cloc k operation until valid power returns.
X X High Z Standby X
V
IL
V
IH
V
IL
V
IH
V
IH
D
IN
D
OUT
High Z Active
Active Active
CC
.
6/29

READ Mode

The M48T59/Y/V is in the READ M ode whenev er
(WRITE Enable) is high and E (Chip Enable) is
W low. The unique address specified by the 13 ad­dress inputs defines which one of the 8,192 bytes of data is to be acces sed . Vali d data w ill be av ail­able at the Data I/O pi ns within Address Access time (t stable, providing that the E are also satisfied. If the E
) after the last address input signal is
AVQV
and G access times
and G access times are
not met, valid data will be available after the latter

Figure 7. READ Mode AC Waveforms

M48T59, M48T59Y, M48T59V*
of the Chip Enable Access time (t Enable Access time (t
GLQV
).
The state of the eight t hree-state Da ta I/O si gnals is controlled by E ed before t indeterminate state until t puts are changed while E
and G. If the outputs are activat-
, the data lines will be driven to an
AVQV
AVQV
and G remain active, output dat a will re main valid for Ou tput D ata H old time (t
) but will go indeterminate until the next
AXQX
Addr e ss Access.
tAVAV
ELQV
. If the Ad dres s In-
) or Output
A0-A12
tAVQV tAXQX
tELQV
E
tELQX
tGLQV
G
tGLQX
DQ0-DQ7
Note: W RITE Enable (W) = High.
VALID
tEHQZ
tGHQZ
VALID
AI01385

Table 3. READ Mode AC Characteristics

M48T59/Y/V
Symbol
t
AVAV
t
AVQV
t
ELQV
t
GLQV
t
ELQX
t
GLQX
t
EHQZ
t
GHQZ
t
AXQX
Note: 1. Valid for Ambient Operating Temperat ure: TA = 0 to 70°C; VCC = 4.5 to 5.5V, 4.7 5 to 5.5V, or 3.0 to 3.6V (except where noted) .
2. C
3. C
READ Cycle Time 70 ns
(2)
Address Valid to Output Valid 70 ns
(2)
Chip Enable Low to Output Valid 70 ns
(2)
Output Enable Low to Output Valid 35 ns
(3)
Chip Enable Low to Output Transition 5 ns
(3)
Output Enable Low to Output Transition 5 ns
(3)
Chip Enable High to Output Hi-Z 25 ns
(3)
Output Enable High to Output Hi-Z 25 ns
(2)
Address Transition to Output Transition 10 ns
= 100pF (see Figure 15 .,page 20).
L
= 5pF (see Figure 15., page 20).
L
Parameter
(1)
Unit–70
Min Max
7/29
M48T59, M48T59Y, M48T59V*

WRITE Mode

The M48T59/Y/V is in the WRITE Mode whenever
and E are low. The start of a WRITE is refer-
W enced from the latter occurring falling edge of W
. A WRITE is terminated by the earlier rising
E edge of W throughout the cycle. E a minimum of t
or E. The addresses must be held valid
or W must return high for
from Chip Enable or t
EHAX
or
WHAX
from WRITE Enable prior to the initiation of anoth-

Figure 8. WRITE Enable Controlled, WRITE Mode AC Waveforms

er READ or WRITE cycle. Data-in must be valid t for t
prior to the end of WRITE and remain valid
DVWH
afterward. G should be kept high during
WHDX
WRITE cycles to avoid bus contention; however, if the output bus has b een activated by a low on E and G a low on W will disable the outputs t
falls .
ter W
tAVAV
WLQZ
af-
A0-A12
tAVEL
E
tAVWL
W
tWLQZ
DQ0-DQ7
VALID
tAVWH
tWLWH
DATA INPUT
tDVWH

Figure 9. Chip Enable Controlled, WRITE Mode AC Waveforms

tAVAV
A0-A12
tAVEL
VALID
tAVEH
tELEH
tWHAX
tWHQX
tWHDX
AI01386
tEHAX
8/29
E
W
DQ0-DQ7
tAVWL
tDVEH
tEHDX
DATA INPUT
AI01387B
M48T59, M48T59Y, M48T59V*

Table 4. WRITE Mode AC Characteristics

M48T59/Y/V
Symbol
Parameter
(1)
Min Max
t
AVAV
t
AVWL
t
AVEL
t
WLWH
t
ELEH
t
WHAX
t
EHAX
t
DVWH
t
DVEH
t
WHDX
t
EHDX
(2,3)
t
WLQZ
t
AVWH
t
AVEH
(2,3)
t
WHQX
Note: 1. Valid for Ambient Operating Temperat ure: TA = 0 to 70°C; VCC = 4.5 to 5.5V, 4.7 5 to 5.5V, or 3.0 to 3.6V (except where noted) .
= 5pF (see Figure 15., page 20).
2. C
L
3. If E
WRITE Cycle Time 70 ns Address Valid to WRITE Enable Low 0 ns Address Valid to Chip Enable Low 0 ns WRITE Enable Pulse Width 50 ns Chip Enable Low to Chip Enable High 55 ns WRITE Enable High to Address Transition 0 ns Chip Enable High to Address Transition 0 ns Input Valid to WRITE Enable High 30 ns Input Valid to Chip Enable High 30 ns WRITE Enable High to Input Transition 5 ns Chip Enable High to Input Transition 5 ns
WRITE Enable Low to Output Hi-Z 25 ns Address Valid to WRITE Enable High 60 ns
Address Valid to Chip Enable High 60 ns WRITE Enable High to Output Transition 5 ns
goes low simultaneously with W going low , t he outputs remai n in the high impedance state.
Unit–70
9/29
Loading...
+ 20 hidden pages