STMicroelectronics M48T58, M48T58Y User Manual

M48T58

M48T58Y

5.0V, 64 Kbit (8 Kb x8) TIMEKEEPER® SRAM

FEATURES SUMMARY

INTEGRATED, ULTRA LOW POWER SRAM, REAL TIME CLOCK, POWER-FAIL CONTROL CIRCUIT AND BATTERY

BYTEWIDE™ RAM-LIKE CLOCK ACCESS

BCD CODED YEAR, MONTH, DAY, DATE, HOURS, MINUTES, AND SECONDS

FREQUENCY TEST OUTPUT FOR REAL TIME CLOCK

AUTOMATIC POWER-FAIL CHIP DESELECT AND WRITE PROTECTION

WRITE PROTECT VOLTAGES (VPFD = Power-fail Deselect Voltage):

M48T58: VCC = 4.75 to 5.5V 4.5V VPFD 4.75V

M48T58Y: VCC = 4.5 to 5.5V 4.2V VPFD 4.5V

SELF-CONTAINED BATTERY and CRYSTAL IN THE CAPHAT™ DIP PACKAGE

PACKAGING INCLUDES A 28-LEAD SOIC AND SNAPHAT® TOP (to be ordered separately)

SOIC PACKAGE PROVIDES DIRECT CONNECTION FOR A SNAPHAT HOUSING CONTAINING THE BATTERY AND CRYSTAL

PIN AND FUNCTION COMPATIBLE WITH JEDEC STANDARD 8 Kb x8 SRAMs

Figure 1. 28-pin PCDIP, CAPHAT™ Package

28

1

PCDIP28 (PC)

Battery/Crystal

CAPHAT

Figure 2. 28-pin SOIC Package

SNAPHAT (SH)

Battery/Crystal

28

1

SOH28 (MH)

April 2004

1/27

M48T58, M48T58Y

TABLE OF CONTENTS

FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 1. 28-pin PCDIP, CAPHAT™ Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. 28-pin SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 3. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 4. DIP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 5. SOIC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 7. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 8. WRITE Enable Controlled, WRITE AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 9. Chip Enable Controlled, WRITE AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Data Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

CLOCK OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Reading the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Setting the Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Stopping and Starting the Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Table 5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 10.Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 11.Clock Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Battery Low Flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Century Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 VCC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 12.Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Table 6. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 7. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 13.AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 8. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Table 9. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2/27

M48T58, M48T58Y

Figure 14.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 10. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 11. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 15.PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Outline . . . . . . . . . . . . . . . . 21 Table 12. PCDIP28 – 28-pin Plastic DIP, battery CAPHAT, Package Mechanical Data. . . . . . . . . 21 Figure 16.SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Package Outline. 22 Table 13. SOH28 – 28-lead Plastic Small Outline, 4-socket battery SNAPHAT, Pack. Mech. Data 22 Figure 17.SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Outline . . . . . . . 23 Table 14. SH – 4-pin SNAPHAT Housing for 48mAh Battery & Crystal, Package Mech. Data. . . . 23 Figure 18.SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Outline . . . . . . 24 Table 15. SH – 4-pin SNAPHAT Housing for 120mAh Battery & Crystal, Package Mech. Data. . . 24

PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 16. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 17. SNAPHAT Battery Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 18. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3/27

M48T58, M48T58Y

SUMMARY DESCRIPTION

The M48T58/Y TIMEKEEPER® RAM is a 8Kb x 8 non-volatile static RAM and real time clock. The monolithic chip is available in two special packages to provide a highly integrated battery backed-up memory and real time clock solution.

The M48T58/Y is a non-volatile pin and function equivalent to any JEDEC standard 8Kb x 8 SRAM. It also easily fits into many ROM, EPROM, and EEPROM sockets, providing the non-volatility of PROMs without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed.

The 28-pin, 600mil DIP CAPHAT™ houses the M48T58/Y silicon with a quartz crystal and a long life lithium button cell in a single package.

The 28-pin, 330mil SOIC provides sockets with gold plated contacts at both ends for direct connection to a separate SNAPHAT® housing containing the battery and crystal. The unique design allows the SNAPHAT battery package to be mounted on top of the SOIC package after the completion of the surface mount process. Insertion of the SNAPHAT housing after reflow prevents potential battery and crystal damage due to the high temperatures required for device surfacemounting. The SNAPHAT housing is keyed to prevent reverse insertion. The SOIC and battery/crystal packages are shipped separately in plastic antistatic tubes or in Tape & Reel form.

For the 28-lead SOIC, the battery/crystal package (e.g., SNAPHAT) part number is “M4T28BR12SH” (see Table 17., page 25).

Figure 3. Logic Diagram

 

VCC

13

8

A0-A12

DQ0-DQ7

W

M48T58

E1 M48T58Y FT

E2

G

VSS

AI01374B

4/27

Table 1. Signal Names

A0-A12

Address Inputs

 

 

DQ0-DQ7

Data Inputs / Outputs

 

 

 

 

 

 

 

 

FT

Frequency Test Output (Open

 

Drain)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chip Enable 1

 

E1

 

 

 

 

 

E2

Chip Enable 2

 

 

 

 

 

 

 

 

 

 

 

Output Enable

 

 

G

 

 

 

 

 

 

 

 

 

 

 

 

WRITE Enable

 

 

W

 

 

 

VCC

Supply Voltage

 

 

VSS

Ground

STMicroelectronics M48T58, M48T58Y User Manual

M48T58, M48T58Y

Figure 4. DIP Connections

FT

1

 

28

VCC

A12

2

 

27

W

 

A7

3

 

26

E2

A6

4

 

25

A8

A5

5

 

24

A9

A4

6

 

23

A11

A3

7

 

22

 

 

 

 

M48T58

G

A2

8

M48T58Y

21

A10

A1

9

 

20

 

 

 

E1

 

A0

10

 

19

DQ7

DQ0

11

 

18

DQ6

DQ1

12

 

17

DQ5

DQ2

13

 

16

DQ4

VSS

14

 

15

DQ3

 

 

AI01375B

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. SOIC Connections

FT

 

 

 

 

VCC

1

 

28

 

A12

2

 

27

 

W

 

A7

3

 

26

 

E2

A6

4

 

25

 

A8

A5

5

 

24

 

A9

A4

6

 

23

 

A11

A3

7

 

22

 

 

 

 

 

M48T58Y

 

G

A2

8

 

21

 

A10

A1

9

 

20

 

 

 

 

 

E1

 

A0

10

 

19

 

DQ7

DQ0

11

 

18

 

DQ6

DQ1

12

 

17

 

DQ5

DQ2

13

 

16

 

DQ4

VSS

14

 

15

 

DQ3

 

 

AI01376B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Block Diagram

FT

 

 

OSCILLATOR AND

8 x 8 BiPORT

 

CLOCK CHAIN

 

SRAM ARRAY

 

 

 

32,768 Hz

 

 

CRYSTAL

 

A0-A12

 

POWER

 

 

8184 x 8

DQ0-DQ7

 

 

LITHIUM

SRAM ARRAY

 

 

 

CELL

 

E1

VOLTAGE SENSE

VPFD

E2

AND

W

SWITCHING

 

CIRCUITRY

 

G

 

 

VCC

VSS

AI01377C

5/27

M48T58, M48T58Y

OPERATION MODES

As Figure 6., page 5 shows, the static memory array and the quartz controlled clock oscillator of the M48T58/Y are integrated on one silicon chip. The two circuits are interconnected at the upper eight memory locations to provide user accessible BYTEWIDE™ clock information in the bytes with addresses 1FF8h-1FFFh. The clock locations contain the century, year, month, date, day, hour, minute, and second in 24 hour BCD format (except for the century). Corrections for 28, 29 (leap year - valid until 2100), 30, and 31 day months are made automatically. Byte 1FF8h is the clock control register. This byte controls user access to the clock information and also stores the clock calibration setting.

The eight clock bytes are not the actual clock counters themselves; they are memory locations

Table 2. Operating Modes

consisting of BiPORT™ READ/write memory cells. The M48T58/Y includes a clock control circuit which updates the clock bytes with current information once per second. The information can be accessed by the user in the same manner as any other location in the static memory array.

The M48T58/Y also has its own Power-fail Detect circuit. The control circuitry constantly monitors the single 5V supply for an out-of-tolerance condition. When VCC is out of tolerance, the circuit write protects the SRAM, providing a high degree of data security in the midst of unpredictable system operation brought on by low VCC. As VCC falls below the Battery Back-up Switchover Voltage (VSO), the control circuitry connects the battery which maintains data and clock operation until valid power returns.

 

VCC

 

 

 

 

 

 

 

 

 

 

 

 

Mode

 

E1

E2

 

G

 

W

DQ0-DQ7

Power

Deselect

 

VIH

X

 

X

 

X

High Z

Standby

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deselect

4.75 to 5.5V

 

X

VIL

 

X

 

X

High Z

Standby

 

 

 

 

 

 

 

 

 

 

 

 

 

WRITE

VIL

VIH

 

X

VIL

DIN

Active

or

 

 

4.5 to 5.5V

 

 

 

 

 

 

 

 

 

 

 

 

READ

VIL

VIH

VIL

VIH

DOUT

Active

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

READ

 

VIL

VIH

VIH

VIH

High Z

Active

Deselect

VSO to VPFD (min)(1)

 

X

X

 

X

 

X

High Z

CMOS Standby

Deselect

VSO(1)

 

X

X

 

X

 

X

High Z

Battery Back-up Mode

Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage.

1. See Table 11., page 20 for details.

6/27

M48T58, M48T58Y

READ Mode

The M48T58/Y is in the READ Mode whenever W (WRITE Enable) is high, E1 (Chip Enable 1) is low, and E2 (Chip Enable 2) is high. The unique address specified by the 13 Address Inputs defines which one of the 8,192 bytes of data is to be accessed. Valid data will be available at the Data I/O

pins within Address Access time (tAVQV) after the last address input signal is stable, providing that

the E1, E2, and G access times are also satisfied. If the E1, E2 and G access times are not met, valid data will be available after the latter of the Chip En-

able Access times (tE1LQV or tE2HQV) or Output Enable Access time (tGLQV).

The state of the eight three-state Data I/O signals is controlled by E1, E2 and G. If the outputs are ac-

tivated before tAVQV, the data lines will be driven to an indeterminate state until tAVQV. If the Address

Inputs are changed while E1, E2 and G remain active, output data will remain valid for Output Data

Hold time (tAXQX) but will go indeterminate until the next Address Access.

Figure 7. READ Mode AC Waveforms

A0-A12

 

 

 

 

tAVAV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VALID

 

 

 

 

 

 

 

 

 

 

 

tAVQV

 

 

 

 

tAXQX

 

 

 

 

 

 

 

 

 

tE1LQV

 

 

 

 

tE1HQZ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tE1LQX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E2

 

 

tE2HQV

 

 

 

 

tE2LQZ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tE2HQX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tGLQV

 

tGHQZ

 

 

 

 

 

 

 

 

 

G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tGLQX

 

 

 

 

 

DQ0-DQ7

 

VALID

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AI00962

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: WRITE Enable

 

= High.

 

 

 

 

 

(W)

 

 

 

 

 

7/27

M48T58, M48T58Y

Table 3. READ Mode AC Characteristics

Symbol

 

Parameter(1)

 

 

M48T58/Y

Unit

 

 

 

 

 

 

 

Min

 

Max

 

 

 

 

 

 

 

 

 

 

 

 

tAVAV

READ Cycle Time

70

 

 

ns

tAVQV

Address Valid to Output Valid

 

 

70

ns

tE1LQV

Chip Enable 1 Low to Output Valid

 

 

70

ns

 

 

 

 

 

 

tE2HQV

Chip Enable 2 High to Output Valid

 

 

70

ns

tGLQV

Output Enable Low to Output Valid

 

 

35

ns

 

 

 

 

 

 

 

tE1LQX(2)

Chip Enable 1

Low to Output Transition

5

 

 

ns

tE2HQX(2)

Chip Enable 2

High to Output Transition

5

 

 

ns

 

 

 

 

 

 

tGLQX(2)

Output Enable Low to Output Transition

5

 

 

ns

tE1HQZ(2)

Chip Enable 1

High to Output Hi-Z

 

 

25

ns

tE2LQZ(2)

Chip Enable 2

Low to Output Hi-Z

 

 

25

ns

 

 

 

 

 

 

tGHQZ(2)

Output Enable High to Output Hi-Z

 

 

25

ns

tAXQX

Address Transition to Output Transition

10

 

 

ns

Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V or 4.5 to 5.5V (except where noted). 2. CL = 5pF.

8/27

M48T58, M48T58Y

WRITE Mode

The M48T58/Y is in the WRITE Mode whenever W and E1 are low and E2 is high. The start of a WRITE is referenced from the latter occurring falling edge of W or E1, or the rising edge of E2. A WRITE is terminated by the earlier rising edge of W or E1, or the falling edge of E2. The addresses must be held valid throughout the cycle. E1 or W

must return high or E2 low for a minimum of tE1HAX or tE2LAX from Chip Enable or tWHAX from WRITE

Enable prior to the initiation of another READ or

WRITE cycle. Data-in must be valid tDVWH prior to the end of WRITE and remain valid for tWHDX afterward. G should be kept high during WRITE cy-

cles to avoid bus contention; although, if the output bus has been activated by a low on E1 and G and a high on E2, a low on W will disable the outputs tWLQZ after W falls.

Figure 8. WRITE Enable Controlled, WRITE AC Waveform

 

tAVAV

A0-A12

VALID

 

tAVWH

tAVE1L

tWHAX

E1

 

tAVE2H

 

E2

 

 

tWLWH

tAVWL

 

W

 

tWLQZ

tWHQX

 

tWHDX

DQ0-DQ7

DATA INPUT

tDVWH

AI00963

9/27

Loading...
+ 18 hidden pages