ST MICROELECTRONICS LM 324 AD STM Datasheet

QFN16 3x3
TSSOP14
SO14
LM124, LM224x, LM324x
Low-power quad operational amplifiers
Features
Wide gain bandwidth: 1.3 MHz
Input common mode voltage range includes ground
Large voltage gain: 100 dB
Low input bias current: 20 nA
Low input voltage: 3 mV max.
Low input offset current: 2 nA
Wide power supply range: – Single supply: 3 V to 30 V – Dual supplies: ±1.5 V to ±15 V
Datasheet
Product status link
LM124, LM224x, LM324x
Product reference Part numbers
(1)
LM124
LM224x
LM324x
1. Prefixes: LM1, LM2, and LM3 refer to temperature range
2. Suffix A refers to enhanced Vio performance
3. Suffix W refers to enhanced ESD ratings.
LM124
LM224, LM224A
LM224W
LM324, LM324A,
LM324W
(3)
(3)
Related products
See TSB572 and TSB611, 36 V newer technology devices, which have enhanced accuracy and ESD rating, reduced power consumption, and automotive grade qualification
See LM2902 and LM2902W for automotive grade applications
Description
The LM124, LM224x and LM324x consist of four independent, high gain operational amplifiers with frequency compensation implemented internally. They operate from a single power supply over a wide range of voltages.
Operation from split power supplies is also possible and the low-power supply current drain is independent of the magnitude of the power supply voltage.
(2)
,
DS0985 - Rev 8 - September 2019 For further information contact your local STMicroelectronics sales office.
www.st.com

1 Pin connections and schematic diagram

QFN16 3x3
Inverting input 2
Output 1
Non-inverting input 2
Output 2
Inverting input 1
Non-inverting input 1
-
CC
V
1
2
3
4
8
5
6
7
9
10
11
12
13
14
CC
V
+
Output 3
Output 4
Non-inverting input 4
Inverting input 4
Non-inverting input 3
Inverting input 3
-
+
-
+
-
+
-
+
TSSOP14/SO14
Figure 1. Pin connections (top view)
LM124, LM224x, LM324x
Pin connections and schematic diagram
DS0985 - Rev 8
1. The exposed pads of the QFN16 3x3 can be connected to VCC- or left floating
page 2/22
LM124, LM224x, LM324x
Pin connections and schematic diagram
Figure 2. Schematic diagram (LM224A, LM324A, LM224W, LM324W, one channel)
Figure 3. Schematic diagram (LM124, LM224, LM324, one channel)
DS0985 - Rev 8
page 3/22
LM124, LM224x, LM324x
Absolute maximum ratings and operating conditions

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
V
V
V
P
I
T
T
R
R
ESD
Supply voltage ±16 or 32
CC
Input voltage LM224A, LM324A, LM224W, LM324W
i
Input voltage LM124, LM224, LM324
Differential input voltage
id
Power dissipation: D suffix 400 mW
tot
Output short-circuit duration
Input current
in
Storage temperature range -65 to 150
stg
Maximum junction temperature 150
j
(3)
(1)
(2)
-0.3 to VCC + 0.3
-0.3 to 32
32
Infinite
50 mA
QFN16 3x3 45
Thermal resistance junction to ambient
thja
(4)
TSSOP14 100
SO14 103
QFN16 3x3 14
Thermal resistance junction to case
thjc
TSSOP14 32
SO14 31
LM224A, LM324A 800
HBM: human body model
(5)
LM224W, LM324W 700
LM124, LM224, LM324 250
MM: machine model
(6)
100
CDM: charged device model 1500
V
°C
°C/W
V
1.
Neither of the input voltages must exceed the magnitude of (VCC +) or (VCC -).
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as an input diode clamp. In addition to this diode action, there is also an NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the VCC voltage level (or to ground
for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output starts up again for input voltages higher than -0.3 V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short­circuits on all amplifiers. These are typical values given for a single layer board (except for TSSOP which is a two-layer board).
5. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
6. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
DS0985 - Rev 8
page 4/22
LM124, LM224x, LM324x
Absolute maximum ratings and operating conditions
Table 2. Operating conditions
Symbol Parameter Value Unit
Single supply 3 to 30
Dual supply ±1.5 to ±15
0 to VCC - 1.5
0 to VCC -2
LM124 -55 to 125
LM324 0 to 70
V
°CLM224 -40 to 105
V
T
V
Oper
CC
ICM
Supply voltage
Common-mode input voltage range Tamb= 25 °C
Common-mode input voltage range Tmin. ≤ Tamb ≤ Tmax.
Operating temperature range
DS0985 - Rev 8
page 5/22

3 Electrical characteristics

LM124, LM224x, LM324x
Electrical characteristics
Table 3. VCC + = 5 V, VCC - = ground, Vo = 1.4 V, T
= 25 °C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
V
io
T
amb
= 25 °C
2 3
LM224A, LM324A,
LM224W,
T
≤ T
min
amb
≤ T
max
5
LM324W
V
io
LM124, LM224,
LM324
Input offset voltage
(1)
T
= 25 °C
amb
T
≤ T
amb
≤ T
max
min
LM124
LM224
2 5
LM324 2 7
LM124
LM224
mV
7
LM324 9
T
I
io
I
ib
A
vd
SVR
Input offset current
Input bias current
(2)
Large signal voltage gain, VCC += 15 V, RL = 2 kΩ, Vo = 1.4 V to 11.4 V
Supply voltage rejection ratio, Rs ≤ 10 kΩ,
VCC += 5 V to 30 V
= 25 °C
amb
T
≤ T
amb
≤ T
amb
≤ T
amb
≤ T
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
max
max
max
max
50 100
25
65 110
65
min
T
T
min
T
T
min
T
T
min
2 20
40
nA
20 100
200
V/mV
dB
I
CC
V
icm
CMR
I
source
I
sink
T
= 25 °C, VCC = 5V
amb
T
= 25 °C, VCC = 30 V
Supply current, all amps, no load
Input common mode voltage range
Common mode rejection ratio, Rs ≤ 10 kΩ
(3)
amb
T
≤ T
min
amb
T
≤ T
min
amb
VCC = 30 V, T
VCC = 30 V, T
T
amb
T
≤ T
min
≤ T
≤ T
min
= 25 °C
amb
, VCC = 5 V
max
, VCC = 30 V
max
= 25 °C
amb
≤ T
amb
≤ T
max
Output current source, Vid = 1 V VCC = 15 V, Vo = 2 V
VCC = 15 V, Vo = 2 V
Output sink current, Vid = -1 V
VCC = 15 V, Vo = 0.2 V
≤ T
max
0.7 1.2
1.5 3 mA
0.8 1.2
1.5 3
0 28.5
V
0 28
70 80
dB
60
20 40 70
mA
10 20
12 50 µA
DS0985 - Rev 8
page 6/22
LM124, LM224x, LM324x
Electrical characteristics
Symbol Parameter Min. Typ. Max. Unit
T
High level output voltage, VCC = 30 V, RL = 2 kΩ
V
High level output voltage, VCC = 30 V,
OH
RL = 10 kΩ
High level output voltage, VCC = 5 V, RL = 2 kΩ
V
Low level output voltage, RL = 10 kΩ
OL
SR Slew rate
= 25 °C
amb
T
≤ T
amb
≤ T
amb
≤ T
amb
≤ T
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
max
max
max
max
min
T
T
min
T
T
min
T
T
min
VCC = 15 V, Vi = 0.5 to 3 V,
RL = 2 kΩ, CL = 100 pF, unity gain
26 27
26
27 28
V
27
3.5
3
5 20
mV
20
0.4 V/µs
GBP Gain bandwidth product
THD Total harmonic distortion
e
Equivalent input noise voltage
n
DV
DI
Vo1/V
1.
Vo = 1.4 V, Rs = 0 Ω, 5 V < VCC + < 30 V, 0 < Vic < VCC + - 1.5 V
Input offset voltage drift 7 30 µV/°C
io
Input offset current drift 10 200 pA/°C
io
Channel separation
o2
(4)
VCC = 30 V, f = 100 kHz,
Vin=10 mV, RL = 2 kΩ, CL=100 pF
f = 1kHz, Av = 20 dB, RL = 2 kΩ,
Vo = 2 Vpp, CL = 100 pF, VCC=30 V
f = 1 kHz, Rs = 100 Ω, VCC = 30 V
1 kHz ≤ f ≤ 20 kHZ 120 kHz
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no load change on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is (VCC +) - 1.5 V, but either or both inputs can go to 32 V without damage.
4. Due to the proximity of external components, ensure that there is no coupling originating from stray capacitance between these external parts. Typically, this can be detected at higher frequencies because this type of capacitance increases.
1.3 MHz
0.015 %
40 nV/√Hz
DS0985 - Rev 8
page 7/22

4 Electrical characteristic curves

24
21
18
15
9
12
6
3
0
IB (nA)
(°C)
5 25 45 65 85 105 125-55
-35 -15
TEMPERATURE
OUTPUT CURRENT (mA)
LM124, LM224x, LM324x
Electrical characteristic curves
Figure 4. Input bias current vs. temperature
Figure 6. Input voltage range Figure 7. Supply current vs. supply voltage
Figure 5. Output current limitation
Figure 8. Gain bandwidth product vs. temperature Figure 9. Common-mode rejection ratio
DS0985 - Rev 8
page 8/22
LM124, LM224x, LM324x
Electrical characteristic curves
Figure 10. Open loop frequency response Figure 11. Large signal frequency response
Figure 12. Voltage follower pulse response Figure 13. Output characteristics (current sinking)
Figure 14. Voltage follower pulse response (small signal) Figure 15. Output characteristics (current sourcing)
DS0985 - Rev 8
page 9/22
0 1 0 2 0 3 0
P OS IT IV E SU PPLY V OLTAGE ( V)
VOLT
AGE GAIN (dB)
160
120
80
40
L
R = 20k
L
R = 2k
LM124, LM224x, LM324x
Electrical characteristic curves
Figure 16. Input current vs. supply voltage Figure 17. Large signal voltage gain vs. temperature
Figure 18. Power supply and common mode rejection
ratio vs. temperature
Figure 19. Voltage gain vs. supply voltage
DS0985 - Rev 8
page 10/22

5 Typical single-supply applications

1/4
LM124A
~
0
2V
PP
R
10 kΩ
L
C
o
e
o
R
6.2 kΩ
B
R
100 kΩ
f
R1
10 kΩ
C
I
e
I
V
CC
R2
100 kΩ
C1
10µF
R3
100 kΩ
A = -
R R1
V
f
=- 10)
V
(As shown
A
R3
100 kΩ
e
O
R1
100 kΩ
e
1
1/4
LM124A
R7
100 kΩ
R6
100 kΩ
R5
100 kΩ
e
2
R2
2 kΩ
Gain adjust
R4
100 kΩ
1/4
LM124A
1/4
LM124A
If R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + ] (e2 - e1)
As shown eo = 101 (e2 - e1)
2R1 R2
1/4
LM124A
~
0
2 V
PP
R
10 kΩ
L
C
o
e
o
R
6.2 kΩ
B
C1
0.1 µF
e
I
V
CC
(
= 11)
V
A = 1 +
R2 R1
V
R1
100 kΩ R21 MΩ
C
I
R3
1 MΩ
R4
100 kΩ
R5
100 kΩ
C2
10
µF
as shown A
1/4
LM124A
e
O
e
4
e
3
e
2
e
1
100 kΩ
100 kΩ
100 kΩ
100 kΩ
100 kΩ
100 kΩ
eo = e1 + e2 - e3 - e4 where (e1 + e2) (e3 + e4) to keep eo 0 V≥≥
R1
10 kΩ
R2
1 MΩ
1/4
LM124A
10 kΩ
e
I
e
O
+5 V
e
O
(V
)
(mV)
0
A
V
=1 +
R2 R1
101)
A
V
(as shown
=
I
B
2N 929
0.00
1 µF
I
B
3R
3 MΩ
I
B
e
o
I
B
e
I
1/4
LM124A
Z
o
Z
I
C
1 µF
2I
B
R
1 MΩ
2I
B
*
1/4
LM124A
1/4
LM124A
Input current compensation
*Polycarbonate or polyethylene
LM124, LM224x, LM324x
Typical single-supply applications
Figure 20. AC coupled inverting amplifier
Figure 22. AC coupled non inverting amplifier
Figure 21. High input Z adjustable gain DC
instrumentation amplifier
Figure 23. DC summing amplifier
DS0985 - Rev 8
Figure 24. Non-inverting DC gain
Figure 25. Low drift peak detector
page 11/22
R3
10 kΩ
1/4
LM124A
e
1
e
O
R8
100 kΩ
R7
100 kΩ
C3
10µF
V
CC
R5
470 kΩ
C2
330 pF
R4
10 MΩ
R6
470 kΩ
R1
100 kΩ
C1
330 pF
1/4
LM124A
1/4
LM124A
Fo = 1 kHz Q = 50 Av = 100 (40 dB)
1/4
LM124A
R1
100 kΩ
R2
100 kΩ
R4
100 kΩ
R3
100 kΩ
+V2
+V1
V
o
1/4
LM124A
Vo = (1 + ) (V2 - V1)
As shown Vo = 2 * (V2 - V1)
R4 R3
For
R
1
R
2
=
R
4
R
3
CMRR depends on the following resistor ration match
1/4
LM124A
I
B
2N 929
0.001µF
I
B
3 MΩ
I
B
e
o
I
I
e
I
I
B
I
B
1.5 MΩ
1/4
LM124A
Aux. amplifier for input current compensation
LM124, LM224x, LM324x
Typical single-supply applications
Figure 26. Active bandpass filter
Figure 27. High input Z, DC differential amplifier
Figure 28. Using symmetrical amplifiers to reduce input current (general concept)
DS0985 - Rev 8
page 12/22

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 QFN16 3x3 package information

Figure 29. QFN16 3x3 package outline
LM124, LM224x, LM324x
Package information
DS0985 - Rev 8
page 13/22
LM124, LM224x, LM324x
QFN16 3x3 package information
Table 4. QFN16 3x3 mechanical data
Dimensions
Ref.
Min. Typ. Max. Min. Typ. Max.
A 0.80 0.90 1.00 0.031 0.035 0.039
A1 0 0.05 0 0.002
A3 0.20 0.008
b 0.18 0.30 0.007 0.012
D 2.90 3.00 3.10 0.114 0.118 0.122
D2 1.50 1.80 0.059 0.071
E 2.90 3.00 3.10 0.114 0.118 0.122
E2 1.50 1.80 0.059 0.071
e 0.50 0.020
L 0.30 0.50 0.012 0.020
Millimeters Inches
Figure 30. QFN16 3x3 recommended footprint
DS0985 - Rev 8
page 14/22
6.2 TSSOP14 package information
aaa
Figure 31. TSSOP14 package outline
LM124, LM224x, LM324x
TSSOP14 package information
Table 5. TSSOP14 package mechanical data
Dimensions
Ref.
Min. Typ. Max. Min. Typ. Max.
A 1.20 0.047
A1 0.05 0.15 0.002 0.004 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.0089
D 4.90 5.00 5.10 0.193 0.197 0.201
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.176
e 0.65 0.0256
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
k
aaa 0.10 0.004
Millimeters Inches
DS0985 - Rev 8
page 15/22
6.3 SO14 package information
LM124, LM224x, LM324x
SO14 package information
Figure 32. SO14 package outline
Table 6. SO14 package mechanical data
Dimensions
Ref.
Min. Typ. Max. Min. Typ. Max.
A 1.35 1.75 0.05 0.068
A1 0.10 0.25 0.004 0.009
A2 1.10 1.65 0.04 0.06
B 0.33 0.51 0.01 0.02
C 0.19 0.25 0.007 0.009
D 8.55 8.75 0.33 0.34
E 3.80 4.0 0.15 0.15
e 1.27 0.05
H 5.80 6.20 0.22 0.24
h 0.25 0.50 0.009 0.02
L 0.40 1.27 0.015 0.05
k 8° (max.)
ddd 0.10 0.004
Millimeters Inches
1.75 0.069
DS0985 - Rev 8
page 16/22

7 Ordering information

LM124, LM224x, LM324x
Ordering information
Table 7. Order codes
Order code Temperature range ESD (HBM, CDM)
LM124DT -55 °C to 125 °C 250 V, 1.5 kV 5 mV
LM224ADT
LM224APT TSSOP14
LM224DT
LM224PT TSSOP14
LM224QT QFN16 3x3 K425
LM224WDT 700 V, 1.5 kV
LM324ADT
LM324APT TSSOP14
LM324AWDT
LM324AWPT TSSOP14
LM324WDT SO14
LM324WPT TSSOP14
LM324DT
LM324PT TSSOP14
LM324QT QFN16 3x3 K427
-40 °C to 105 °C
0 °C to 70 °C
800 V, 1.5 kV 3 mV 224A
250 V, 1.5 kV 5 mV
800 V, 1.5 kV 324A
700 V, 1.5 kV
250 V, 1.5 kV 5 mV
Vio max. @ 25 °C
3 mV
Package Marking
SO14
SO14
SO14
SO14
SO14
224W
324AW
324W
124
224
324
DS0985 - Rev 8
page 17/22

Revision history

Date Revision Changes
1-Mar-2001 1 First release
1-Feb-2005 2
1-Jun-2005 3 ESD protection inserted in Table 2 on page 4.
25-Sep-2006 4 Editorial update.
22-Aug-2013 5
06-Dec-2013 6 Table 2: Absolute maximum ratings: updated ESD data for HBM and MM.
10-Jun-2016 7
09-Sep-2019 8
LM124, LM224x, LM324x
Table 8. Document revision history
Added explanation of Vid and Vi limits in Table 2 on page 4.
Updated macromodel.
Removed DIP package and all information pertaining to it Table 1: Device summary: Removed order codes LM224AN, LM224AD, LM324AN, and LM324AD;
updated packaging. Table 2: Absolute maximum ratings: removed N suffix power dissipation data; updated footnotes 5
and 6. Renamed Figure 3, Figure 4, Figure 6, Figure 7, Figure 16, Figure 17, Figure 18, and Figure 19. Updated axes titles of Figure 4, Figure 5, Figure 7, and Figure 17. Removed duplicate figures. Removed Section 5: Macromodels
LM124, LM224, LM324 and LM224W, LM324W datasheets merged with LM224A, LM324A datasheet. The following sections were reworked: Features, Description, Section 1: "Pin connections and schematic diagram", Section 2: "Absolute maximum ratings and operating conditions", and Section 3: "Electrical characteristics". The following sections were added: Related products and Section 7: "Ordering information". Packaged silhouettes, pin connections, and mechanical data were standardized and updated.
Updated cover page, Section 2 Absolute maximum ratings and operating conditions and
Table 3. VCC + = 5 V, VCC - = ground, Vo = 1.4 V, T
Updated Figure 2. Schematic diagram (LM224A, LM324A, LM224W, LM324W, one channel) and
Figure 3. Schematic diagram (LM124, LM224, LM324, one channel).
= 25 °C (unless otherwise specified).
amb
DS0985 - Rev 8
page 18/22
LM124, LM224x, LM324x
Contents
Contents
1 Pin connections and schematic diagram ...........................................2
2 Absolute maximum ratings and operating conditions ..............................4
3 Electrical characteristics...........................................................6
4 Electrical characteristic curves ....................................................8
5 Typical single-supply applications ................................................11
6 Package information..............................................................13
6.1 QFN16 3x3 package information.................................................13
6.2 TSSOP14 package information ..................................................14
6.3 SO14 package information......................................................15
7 Ordering information .............................................................17
Revision history .......................................................................18
DS0985 - Rev 8
page 19/22
LM124, LM224x, LM324x
List of tables
List of tables
Table 1. Absolute maximum ratings .............................................................4
Table 2. Operating conditions .................................................................5
Table 3. VCC + = 5 V, VCC - = ground, Vo = 1.4 V, T
Table 4. QFN16 3x3 mechanical data ...........................................................14
Table 5. TSSOP14 package mechanical data ..................................................... 15
Table 6. SO14 package mechanical data ........................................................ 16
Table 7. Order codes ......................................................................17
Table 8. Document revision history ............................................................. 18
= 25 °C (unless otherwise specified) ......................6
amb
DS0985 - Rev 8
page 20/22
LM124, LM224x, LM324x
List of figures
List of figures
Figure 1. Pin connections (top view) ............................................................2
Figure 2. Schematic diagram (LM224A, LM324A, LM224W, LM324W, one channel) ...........................3
Figure 3. Schematic diagram (LM124, LM224, LM324, one channel)......................................3
Figure 4. Input bias current vs. temperature .......................................................8
Figure 5. Output current limitation..............................................................8
Figure 6. Input voltage range .................................................................8
Figure 7. Supply current vs. supply voltage .......................................................8
Figure 8. Gain bandwidth product vs. temperature ..................................................8
Figure 9. Common-mode rejection ratio..........................................................8
Figure 10. Open loop frequency response .........................................................9
Figure 11. Large signal frequency response .......................................................9
Figure 12. Voltage follower pulse response ........................................................9
Figure 13. Output characteristics (current sinking) ...................................................9
Figure 14. Voltage follower pulse response (small signal) ..............................................9
Figure 15. Output characteristics (current sourcing) ..................................................9
Figure 16. Input current vs. supply voltage........................................................10
Figure 17. Large signal voltage gain vs. temperature ................................................ 10
Figure 18. Power supply and common mode rejection ratio vs. temperature ................................10
Figure 19. Voltage gain vs. supply voltage........................................................10
Figure 20. AC coupled inverting amplifier ........................................................ 11
Figure 21. High input Z adjustable gain DC instrumentation amplifier ..................................... 11
Figure 22. AC coupled non inverting amplifier ..................................................... 11
Figure 23. DC summing amplifier .............................................................. 11
Figure 24. Non-inverting DC gain .............................................................. 11
Figure 25. Low drift peak detector ............................................................. 11
Figure 26. Active bandpass filter .............................................................. 12
Figure 27. High input Z, DC differential amplifier....................................................12
Figure 28. Using symmetrical amplifiers to reduce input current (general concept) ............................ 12
Figure 29. QFN16 3x3 package outline ..........................................................13
Figure 30. QFN16 3x3 recommended footprint .....................................................14
Figure 31. TSSOP14 package outline ...........................................................15
Figure 32. SO14 package outline .............................................................. 16
DS0985 - Rev 8
page 21/22
LM124, LM224x, LM324x
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2019 STMicroelectronics – All rights reserved
DS0985 - Rev 8
page 22/22
Loading...