•Wide power supply range:
–Single supply: 3 V to 30 V
–Dual supplies: ±1.5 V to ±15 V
Datasheet
Product status link
LM124, LM224x, LM324x
Product referencePart numbers
(1)
LM124
LM224x
LM324x
1. Prefixes: LM1, LM2, and LM3 refer to
temperature range
2. Suffix A refers to enhanced Vio
performance
3. Suffix W refers to enhanced ESD
ratings.
LM124
LM224, LM224A
LM224W
LM324, LM324A,
LM324W
(3)
(3)
Related products
•See TSB572 and TSB611, 36 V newer technology devices, which have
enhanced accuracy and ESD rating, reduced power consumption, and
automotive grade qualification
•See LM2902 and LM2902W for automotive grade applications
Description
The LM124, LM224x and LM324x consist of four independent, high gain operational
amplifiers with frequency compensation implemented internally. They operate from a
single power supply over a wide range of voltages.
Operation from split power supplies is also possible and the low-power supply current
drain is independent of the magnitude of the power supply voltage.
(2)
,
DS0985 - Rev 8 - September 2019
For further information contact your local STMicroelectronics sales office.
www.st.com
1Pin connections and schematic diagram
QFN16 3x3
Inverting input 2
Output 1
Non-inverting input 2
Output 2
Inverting input 1
Non-inverting input 1
-
CC
V
1
2
3
4
8
5
6
7
9
10
11
12
13
14
CC
V
+
Output 3
Output 4
Non-inverting input 4
Inverting input 4
Non-inverting input 3
Inverting input 3
-
+
-
+
-
+
-
+
TSSOP14/SO14
Figure 1. Pin connections (top view)
LM124, LM224x, LM324x
Pin connections and schematic diagram
DS0985 - Rev 8
1.The exposed pads of the QFN16 3x3 can be connected to VCC- or left floating
page 2/22
LM124, LM224x, LM324x
Pin connections and schematic diagram
Figure 2. Schematic diagram (LM224A, LM324A, LM224W, LM324W, one channel)
Figure 3. Schematic diagram (LM124, LM224, LM324, one channel)
DS0985 - Rev 8
page 3/22
LM124, LM224x, LM324x
Absolute maximum ratings and operating conditions
2Absolute maximum ratings and operating conditions
Table 1. Absolute maximum ratings
SymbolParameterValueUnit
V
V
V
P
I
T
T
R
R
ESD
Supply voltage±16 or 32
CC
Input voltage
LM224A, LM324A, LM224W, LM324W
i
Input voltage
LM124, LM224, LM324
Differential input voltage
id
Power dissipation: D suffix400mW
tot
Output short-circuit duration
Input current
in
Storage temperature range-65 to 150
stg
Maximum junction temperature150
j
(3)
(1)
(2)
-0.3 to VCC + 0.3
-0.3 to 32
32
Infinite
50mA
QFN16 3x345
Thermal resistance junction to ambient
thja
(4)
TSSOP14100
SO14103
QFN16 3x314
Thermal resistance junction to case
thjc
TSSOP1432
SO1431
LM224A, LM324A800
HBM: human body model
(5)
LM224W, LM324W700
LM124, LM224, LM324250
MM: machine model
(6)
100
CDM: charged device model1500
V
°C
°C/W
V
1.
Neither of the input voltages must exceed the magnitude of (VCC +) or (VCC -).
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output
current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result
from simultaneous short-circuits on all amplifiers.
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the
collector-base junction of the input PNP transistor becoming forward biased and thereby acting as an input
diode clamp. In addition to this diode action, there is also an NPN parasitic action on the IC chip. This
transistor action can cause the output voltages of the op amps to go to the VCC voltage level (or to ground
for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal
output starts up again for input voltages higher than -0.3 V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous shortcircuits on all amplifiers. These are typical values given for a single layer board (except for TSSOP which is
a two-layer board).
5. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for
all couples of pin combinations with other pins floating.
6. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins
of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
combinations with other pins floating.
DS0985 - Rev 8
page 4/22
LM124, LM224x, LM324x
Absolute maximum ratings and operating conditions
Table 2. Operating conditions
SymbolParameterValueUnit
Single supply3 to 30
Dual supply±1.5 to ±15
0 to VCC - 1.5
0 to VCC -2
LM124-55 to 125
LM3240 to 70
V
°CLM224-40 to 105
V
T
V
Oper
CC
ICM
Supply voltage
Common-mode input voltage range
Tamb= 25 °C
Common-mode input voltage range
Tmin. ≤ Tamb ≤ Tmax.
Operating temperature range
DS0985 - Rev 8
page 5/22
3Electrical characteristics
LM124, LM224x, LM324x
Electrical characteristics
Table 3. VCC + = 5 V, VCC - = ground, Vo = 1.4 V, T
= 25 °C (unless otherwise specified)
amb
SymbolParameterMin.Typ.Max.Unit
V
io
T
amb
= 25 °C
23
LM224A,
LM324A,
LM224W,
T
≤ T
min
amb
≤ T
max
5
LM324W
V
io
LM124,
LM224,
LM324
Input offset voltage
(1)
T
= 25 °C
amb
T
≤ T
amb
≤ T
max
min
LM124
LM224
25
LM32427
LM124
LM224
mV
7
LM3249
T
I
io
I
ib
A
vd
SVR
Input offset current
Input bias current
(2)
Large signal voltage gain, VCC += 15 V,
RL = 2 kΩ, Vo = 1.4 V to 11.4 V
Supply voltage rejection ratio,
Rs ≤ 10 kΩ,
VCC += 5 V to 30 V
= 25 °C
amb
T
≤ T
amb
≤ T
amb
≤ T
amb
≤ T
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
max
max
max
max
50100
25
65110
65
min
T
T
min
T
T
min
T
T
min
220
40
nA
20100
200
V/mV
dB
I
CC
V
icm
CMR
I
source
I
sink
T
= 25 °C, VCC = 5V
amb
T
= 25 °C, VCC = 30 V
Supply current, all amps, no load
Input common mode voltage range
Common mode rejection ratio,
Rs ≤ 10 kΩ
(3)
amb
T
≤ T
min
amb
T
≤ T
min
amb
VCC = 30 V, T
VCC = 30 V, T
T
amb
T
≤ T
min
≤ T
≤ T
min
= 25 °C
amb
, VCC = 5 V
max
, VCC = 30 V
max
= 25 °C
amb
≤ T
amb
≤ T
max
Output current source, Vid = 1 VVCC = 15 V, Vo = 2 V
VCC = 15 V, Vo = 2 V
Output sink current, Vid = -1 V
VCC = 15 V, Vo = 0.2 V
≤ T
max
0.71.2
1.53
mA
0.81.2
1.53
028.5
V
028
7080
dB
60
204070
mA
1020
1250µA
DS0985 - Rev 8
page 6/22
LM124, LM224x, LM324x
Electrical characteristics
SymbolParameterMin.Typ.Max.Unit
T
High level output voltage, VCC = 30 V,
RL = 2 kΩ
V
High level output voltage, VCC = 30 V,
OH
RL = 10 kΩ
High level output voltage, VCC = 5 V,
RL = 2 kΩ
V
Low level output voltage, RL = 10 kΩ
OL
SRSlew rate
= 25 °C
amb
T
≤ T
amb
≤ T
amb
≤ T
amb
≤ T
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
max
max
max
max
min
T
T
min
T
T
min
T
T
min
VCC = 15 V, Vi = 0.5 to 3 V,
RL = 2 kΩ, CL = 100 pF, unity gain
2627
26
2728
V
27
3.5
3
520
mV
20
0.4V/µs
GBPGain bandwidth product
THDTotal harmonic distortion
e
Equivalent input noise voltage
n
DV
DI
Vo1/V
1.
Vo = 1.4 V, Rs = 0 Ω, 5 V < VCC + < 30 V, 0 < Vic < VCC + - 1.5 V
Input offset voltage drift730µV/°C
io
Input offset current drift10200pA/°C
io
Channel separation
o2
(4)
VCC = 30 V, f = 100 kHz,
Vin=10 mV, RL = 2 kΩ, CL=100 pF
f = 1kHz, Av = 20 dB, RL = 2 kΩ,
Vo = 2 Vpp, CL = 100 pF, VCC=30 V
f = 1 kHz, Rs = 100 Ω, VCC = 30 V
1 kHz ≤ f ≤ 20 kHZ120kHz
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the
state of the output so there is no load change on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more
than 0.3 V. The upper end of the common-mode voltage range is (VCC +) - 1.5 V, but either or both inputs
can go to 32 V without damage.
4. Due to the proximity of external components, ensure that there is no coupling originating from stray
capacitance between these external parts. Typically, this can be detected at higher frequencies because this
type of capacitance increases.
1.3MHz
0.015%
40nV/√Hz
DS0985 - Rev 8
page 7/22
Loading...
+ 15 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.