ST MICROELECTRONICS LM 324 AD STM Datasheet

QFN16 3x3
TSSOP14
SO14
LM124, LM224x, LM324x
Low-power quad operational amplifiers
Features
Wide gain bandwidth: 1.3 MHz
Input common mode voltage range includes ground
Large voltage gain: 100 dB
Low input bias current: 20 nA
Low input voltage: 3 mV max.
Low input offset current: 2 nA
Wide power supply range: – Single supply: 3 V to 30 V – Dual supplies: ±1.5 V to ±15 V
Datasheet
Product status link
LM124, LM224x, LM324x
Product reference Part numbers
(1)
LM124
LM224x
LM324x
1. Prefixes: LM1, LM2, and LM3 refer to temperature range
2. Suffix A refers to enhanced Vio performance
3. Suffix W refers to enhanced ESD ratings.
LM124
LM224, LM224A
LM224W
LM324, LM324A,
LM324W
(3)
(3)
Related products
See TSB572 and TSB611, 36 V newer technology devices, which have enhanced accuracy and ESD rating, reduced power consumption, and automotive grade qualification
See LM2902 and LM2902W for automotive grade applications
Description
The LM124, LM224x and LM324x consist of four independent, high gain operational amplifiers with frequency compensation implemented internally. They operate from a single power supply over a wide range of voltages.
Operation from split power supplies is also possible and the low-power supply current drain is independent of the magnitude of the power supply voltage.
(2)
,
DS0985 - Rev 8 - September 2019 For further information contact your local STMicroelectronics sales office.
www.st.com

1 Pin connections and schematic diagram

QFN16 3x3
Inverting input 2
Output 1
Non-inverting input 2
Output 2
Inverting input 1
Non-inverting input 1
-
CC
V
1
2
3
4
8
5
6
7
9
10
11
12
13
14
CC
V
+
Output 3
Output 4
Non-inverting input 4
Inverting input 4
Non-inverting input 3
Inverting input 3
-
+
-
+
-
+
-
+
TSSOP14/SO14
Figure 1. Pin connections (top view)
LM124, LM224x, LM324x
Pin connections and schematic diagram
DS0985 - Rev 8
1. The exposed pads of the QFN16 3x3 can be connected to VCC- or left floating
page 2/22
LM124, LM224x, LM324x
Pin connections and schematic diagram
Figure 2. Schematic diagram (LM224A, LM324A, LM224W, LM324W, one channel)
Figure 3. Schematic diagram (LM124, LM224, LM324, one channel)
DS0985 - Rev 8
page 3/22
LM124, LM224x, LM324x
Absolute maximum ratings and operating conditions

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings
Symbol Parameter Value Unit
V
V
V
P
I
T
T
R
R
ESD
Supply voltage ±16 or 32
CC
Input voltage LM224A, LM324A, LM224W, LM324W
i
Input voltage LM124, LM224, LM324
Differential input voltage
id
Power dissipation: D suffix 400 mW
tot
Output short-circuit duration
Input current
in
Storage temperature range -65 to 150
stg
Maximum junction temperature 150
j
(3)
(1)
(2)
-0.3 to VCC + 0.3
-0.3 to 32
32
Infinite
50 mA
QFN16 3x3 45
Thermal resistance junction to ambient
thja
(4)
TSSOP14 100
SO14 103
QFN16 3x3 14
Thermal resistance junction to case
thjc
TSSOP14 32
SO14 31
LM224A, LM324A 800
HBM: human body model
(5)
LM224W, LM324W 700
LM124, LM224, LM324 250
MM: machine model
(6)
100
CDM: charged device model 1500
V
°C
°C/W
V
1.
Neither of the input voltages must exceed the magnitude of (VCC +) or (VCC -).
2. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as an input diode clamp. In addition to this diode action, there is also an NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the VCC voltage level (or to ground
for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output starts up again for input voltages higher than -0.3 V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short­circuits on all amplifiers. These are typical values given for a single layer board (except for TSSOP which is a two-layer board).
5. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
6. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
DS0985 - Rev 8
page 4/22
LM124, LM224x, LM324x
Absolute maximum ratings and operating conditions
Table 2. Operating conditions
Symbol Parameter Value Unit
Single supply 3 to 30
Dual supply ±1.5 to ±15
0 to VCC - 1.5
0 to VCC -2
LM124 -55 to 125
LM324 0 to 70
V
°CLM224 -40 to 105
V
T
V
Oper
CC
ICM
Supply voltage
Common-mode input voltage range Tamb= 25 °C
Common-mode input voltage range Tmin. ≤ Tamb ≤ Tmax.
Operating temperature range
DS0985 - Rev 8
page 5/22

3 Electrical characteristics

LM124, LM224x, LM324x
Electrical characteristics
Table 3. VCC + = 5 V, VCC - = ground, Vo = 1.4 V, T
= 25 °C (unless otherwise specified)
amb
Symbol Parameter Min. Typ. Max. Unit
V
io
T
amb
= 25 °C
2 3
LM224A, LM324A,
LM224W,
T
≤ T
min
amb
≤ T
max
5
LM324W
V
io
LM124, LM224,
LM324
Input offset voltage
(1)
T
= 25 °C
amb
T
≤ T
amb
≤ T
max
min
LM124
LM224
2 5
LM324 2 7
LM124
LM224
mV
7
LM324 9
T
I
io
I
ib
A
vd
SVR
Input offset current
Input bias current
(2)
Large signal voltage gain, VCC += 15 V, RL = 2 kΩ, Vo = 1.4 V to 11.4 V
Supply voltage rejection ratio, Rs ≤ 10 kΩ,
VCC += 5 V to 30 V
= 25 °C
amb
T
≤ T
amb
≤ T
amb
≤ T
amb
≤ T
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
max
max
max
max
50 100
25
65 110
65
min
T
T
min
T
T
min
T
T
min
2 20
40
nA
20 100
200
V/mV
dB
I
CC
V
icm
CMR
I
source
I
sink
T
= 25 °C, VCC = 5V
amb
T
= 25 °C, VCC = 30 V
Supply current, all amps, no load
Input common mode voltage range
Common mode rejection ratio, Rs ≤ 10 kΩ
(3)
amb
T
≤ T
min
amb
T
≤ T
min
amb
VCC = 30 V, T
VCC = 30 V, T
T
amb
T
≤ T
min
≤ T
≤ T
min
= 25 °C
amb
, VCC = 5 V
max
, VCC = 30 V
max
= 25 °C
amb
≤ T
amb
≤ T
max
Output current source, Vid = 1 V VCC = 15 V, Vo = 2 V
VCC = 15 V, Vo = 2 V
Output sink current, Vid = -1 V
VCC = 15 V, Vo = 0.2 V
≤ T
max
0.7 1.2
1.5 3 mA
0.8 1.2
1.5 3
0 28.5
V
0 28
70 80
dB
60
20 40 70
mA
10 20
12 50 µA
DS0985 - Rev 8
page 6/22
LM124, LM224x, LM324x
Electrical characteristics
Symbol Parameter Min. Typ. Max. Unit
T
High level output voltage, VCC = 30 V, RL = 2 kΩ
V
High level output voltage, VCC = 30 V,
OH
RL = 10 kΩ
High level output voltage, VCC = 5 V, RL = 2 kΩ
V
Low level output voltage, RL = 10 kΩ
OL
SR Slew rate
= 25 °C
amb
T
≤ T
amb
≤ T
amb
≤ T
amb
≤ T
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
= 25 °C
≤ T
amb
max
max
max
max
min
T
T
min
T
T
min
T
T
min
VCC = 15 V, Vi = 0.5 to 3 V,
RL = 2 kΩ, CL = 100 pF, unity gain
26 27
26
27 28
V
27
3.5
3
5 20
mV
20
0.4 V/µs
GBP Gain bandwidth product
THD Total harmonic distortion
e
Equivalent input noise voltage
n
DV
DI
Vo1/V
1.
Vo = 1.4 V, Rs = 0 Ω, 5 V < VCC + < 30 V, 0 < Vic < VCC + - 1.5 V
Input offset voltage drift 7 30 µV/°C
io
Input offset current drift 10 200 pA/°C
io
Channel separation
o2
(4)
VCC = 30 V, f = 100 kHz,
Vin=10 mV, RL = 2 kΩ, CL=100 pF
f = 1kHz, Av = 20 dB, RL = 2 kΩ,
Vo = 2 Vpp, CL = 100 pF, VCC=30 V
f = 1 kHz, Rs = 100 Ω, VCC = 30 V
1 kHz ≤ f ≤ 20 kHZ 120 kHz
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no load change on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is (VCC +) - 1.5 V, but either or both inputs can go to 32 V without damage.
4. Due to the proximity of external components, ensure that there is no coupling originating from stray capacitance between these external parts. Typically, this can be detected at higher frequencies because this type of capacitance increases.
1.3 MHz
0.015 %
40 nV/√Hz
DS0985 - Rev 8
page 7/22
Loading...
+ 15 hidden pages