ST MICROELECTRONICS L 4962 TUBE Datasheet

Page 1
1.5APOWER SWITCHING REGULATOR
1.5AOUTPUTCURRENT
5.1VTO 40V OUTPUTVOLTAGERANGE PRECISE(± 2%)ON-CHIP REFERENCE HIGHSWITCHINGFREQUENCY VERYHIGH EFFICIENCY (UPTO90%) VERYFEW EXTERNALCOMPONENTS SOFTSTART INTERNALLIMITINGCURRENT THERMAL SHUTDOWN
DESCRIPTION
The L4962is a monolithicpowerswitchingregula­tor delivering1.5Aat a voltagevariable from 5V to 40Vin stepdown configuration.
Featuresof the device include current limiting, soft start,thermal protection and 0 to100% dutycycle for continuousoperating mode.
L4962
POWERDIP
(12 +2 + 2)
ORDERING NUMBERS : L4962/A(12+2+2Powerdip)
L4962E/A (Heptawatt) L4962EH/A (Horizontal
TheL4962ismountedina16-leadPowerdipplastic packageandHeptawattpackageand requiresvery few external components.
Efficient operation at switching frequencies up to 150KHz allows a reduction in the size and costof externalfilter components.
HEPTAWATT
Heptawatt)
BLOCK DIAGRAM
March 1996
Pin X = Powerdip Pin (X) = Heptawatt
1/15
Page 2
L4962
ABSOLUTEMAXIMUM RATINGS
Symbol Parameter Value Unit
Inputvoltage 50 V
7
Inputto output voltage difference 50 V Negativeoutput DC voltage -1 V
2
V
7-V2
V
V
Output peak voltage at t = 0.1µs; f =100KHz -5 V
V
11,V15
V
P
T
j,Tstg
I I
Voltageat pin 11,15 5.5 V Voltageat pin 10 7 V
10
Pin 11 sink current 1 mA
11
Pin 14 sourcecurrent 20 mA
14
Power dissipation atT
tot
Junctionand storage temperature -40 to 150 °C
PIN CONNECTION (Top view)
90°C (Powerdip)
pins
T
90°C (Heptawatt)
case
4.3 15
W W
THERMAL DATA
Symbol Parameter Heptawatt Powerdip
R
th j-case
R
th j-pins
R
th j-amb
* Obtained with the GND pins soldered to printed circuit with minimized copperarea.
Thermal resistancejunction-case max 4°C/W ­Thermal resistancejunction-pins max - 14°C/W Thermal resistancejunction-ambient max 50°C/W 80°C/W*
PIN FUNCTIONS
HEPTAWATT POWERDIP NAME
1 7 SUPPLYVOLTAGE Unregulated voltage input. An internal regulator powers
the internal logic.
2 10 FEEDBACK INPUT The feedbackterminal of the regulationloop.Theoutput
is connected directly to this terminal for 5.1V operation; it is connected via adivider for higher voltages.
3 11 FREQUENCY
COMPENSATION
A series RC network connected between this terminal and ground determines the regulation loop gain characteristics.
2/15
FUNCTION
Page 3
PIN FUNCTIONS (cont’d)
L4962
HEPTAWATT POWERDIP NAME
FUNCTION
4 4, 5, 12,13 GROUND Common groundterminal.
5 14 OSCILLATOR A parallel RC network connected to this terminal
determines the switching frequency. This pin must be connected to pin 7 input when the internal oscillator is used.
6 15 SOFT START Soft start time constant. A capacitor is connected
between this terminaland ground to define the soft start time constant. This capacitor also determines the average short circuitoutput current.
7 2 OUTPUT Regulator output.
1, 3,6,
N.C.
8, 9, 16
ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tj=25°C, Vi= 35V, unless otherwise specified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMIC CHARACTERISTICS
V
Output voltage range Vi= 46V Io=1A V
o
V
VV
V
ref
Input voltage range Vo=V
i
Line regulation Vi= 10V to 40V Vo=V
o
Load regulation Vo=V
o
Internal reference voltage
Vi= 9Vto 46V Io= 1A 5 5.1 5.2 V
to 36V Io= 1.5A 9 46 V
ref
ref
(pin 10)
V
ref
T
V
I
om
I
2L
I
SH
Average temperature coefficient of refer.voltage
Dropout voltage Io= 1.5A 1.5 2 V
d
Maximum operatingload current
Current limiting threshold (pin 2)
Input average current Vi= 46V; output short-circuit 15 30 mA
T
=0°C to 125°C
j
I
=1A
o
Vi= 9Vto 46V V
o=Vref
to 36V
Vi= 9Vto 46V
o=Vref
to 36V
V
η Efficiency f = 100KHz V
I
=1A Vo= 12V 80 %
o
SVR Supply voltage ripple
rejection
V
fripple
V
o=Vref
=2V
i
= 100Hz
rms
ref
=1A 15 50 mV
refIo
40 V
Io= 0.5A to 1.5A 8 20 mV
0.4 mV/°C
1.5 A
2 3.3 A
o=Vref
70 %
50 56 dB
Io = 1A
3/15
Page 4
L4962
ELECTRICALCHARACTERISTICS (continued)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
DYNAMICCHARACTERISTICS (cont’d)
f Switching frequency 85 100 115 KHz
f
Voltagestability of switching frequency
V
i
f
Temperature stability of
switching frequency
T
j
Vi= 9V to46V 0.5 %
Tj=0°C to 125°C1%
f
Maximum operating
max
switching frequency
T
Thermal shutdown
sd
junction temperature
DC CHARACTERISTICS
I
-I
Quiescent draincurrent 100% duty cycle
7Q
Output leakage current 0% duty cycle 1 mA
2L
SOFTSTART
I
15SO
I
Source current 100 140 180 µA Sink current 50 70 120 µA
15SI
ERROR AMPLIFIER
V
V
I
High level output voltage V10= 4.7V I11= 100µA 3.5 V
11H
Low level output voltage V10= 5.3V I11= 100µA 0.5 V
11L
Sink output current V10= 5.3V 100 150 µA
11SI
Vo=V
ref
Io= 1A 120 150 KHz
150 °C
30 40 mA
pins 2and 14 open
V
= 46V
i
0% duty cycle 15 20 mA
-I
Source outputcurrent V10= 4.7V 100 150 µA
11SO
I
Input bias current V10= 5.2V 2 10 µA
10
DC openloop gain V11=1Vto3V 46 55 dB
G
v
OSCILLATOR
-I
4/15
Oscillator source current 5 mA
14
Page 5
CIRCUITOPERATION(refertothe block diagram) TheL4962 isamonolithic stepdownswitchingregu-
latorprovidingoutputvoltagesfrom5.1Vto40Vand delivering1.5A.
The regulation loop consists of a sawtoothoscilla­tor, error amplifier, comparator and the output stage.An errorsignalisproducedby comparingthe output voltage with a precise 5.1V on-chip refer­ence (zener zap trimmedto ±2%).
Thiserrorsignalisthencomparedwiththesawtooth signal to generate the fixedfrequency pulse width modulatedpulseswhich drive the output stage.
Thegain and frequencystabilityof theloopcan be adjusted by an external RC network connected to pin 11. Closing the loop directly gives an output voltage of 5.1V. Higher voltages are obtained by inserting a voltage divider.
Outputovercurrentsat switchon are prevented by the soft start function.The error amplifier output is initiallyclamped by the external capacitor Cssand
L4962
allowedtorise,linearly,asthiscapacitoris charged by aconstantcurrentsource.Output overload pro­tection is provided in the form of a current limiter. The load current is sensed by an internal metal resistorconnectedto a comparator. When the load currentexceedsapresetthresholdthis comparator sets a flipflop whichdisablesthe outputstage and dischargesthe soft start capacitor. A second com­parator resets the flipflop when thevoltageacross the soft start capacitorhas fallento 0.4V.
The output stage isthus re-enabledand the output voltagerisesundercontrolof thesoftstart network. If the overload condition is still present the limiter will trigger again when the threshold current is reached.Theaverageshort circuitcurrent is limited to a safevalue by the dead time introduced by the soft start network.Thethermaloverloadcircuit dis­ables circuit operation when the junction tempera­ture reaches about 150°C and has hysteresis to prevent unstable conditions.
Figure1. Softstart waveforms
Figure2. Current limiter waveforms
5/15
Page 6
L4962
Figure3. Test and applicationcircuit (Powerdip)
1) D1: BYW98 or 3A Schottky diode, 45V of VRRM;
2) L
: CORE TYPE- MAGNETICS 58120 - A2 MPP
1
N° TURNS 45, WIRE GAUGE: 0.8mm (20 AWG)
3) C
: ROE, EKR 220µF 40V
6,C7
Figure 4. Quiescent drain currentvs.supplyvoltage (0% duty cycle)
6/15
Figure 5. Quiescent drain current vs. supply voltage (100% duty cycle)
Figure 6. Quiescent drain current vs. junct ion tem­perature(0% duty cycle)
Page 7
L4962
Figure 7. Quiescent drain current vs. junction tem­perature(100% duty cycle)
Figure 10. Open loop fre­quency and phase re- sponse of error amplifier
Figure 8. Reference voltage (pin 10)vs. V
rdip) vs. V
i
i
Figure 11. Sw itchi ng fre­quency vs. inputvoltage
Figure 9. Reference voltage (pin 10 ) vs. junction t em­perature
Figure 1 2. Swit ching fre­quenc y vs . ju nction te m­perature
Figure 13 . S witching f re­quencyvs. R2 (seetestcircuit)
Figure 14 . Li ne tran sie nt response
Figure 15 . Load transient response
7/15
Page 8
L4962
Fig ur e 16 . S u pply vol t a ge ripple rejectionvs. frequency
Figure 19. Efficien cy vs. output current
Figure 17. Dropout voltage between pin 7 and pin 2 vs. current at pin 2
Figure 20. Efficiency vs. output current
Figure 18. Dropout voltage between pin 7 and 2 v s. junction temperature
Figure 21. Efficiency vs. output current
Figure 22 . Effici ency vs. outputvoltage
8/15
Figure 23. Efficiency vs. output voltage
Figure 24. Maximum allow­able powerdissipationvs.am­bient temperature (Powerdip)
Page 9
APPLICATION INFORMATION
Figure25. Typical application circuit
C1,C6,C7: EKR (ROE) D
: BYW98 OR VISK340 (SCHOTTKY)
1
SUGGESTED INDUCTORS: (L COGEMA 946043 OR U15, GUP15, 60 TURNS 1mm, AIRGAP 0.8mm (20AWG) - COGEMA969051.
) = MAGNETICS 58120 - A2MPP- 45 TURNS - WIRE GAUGE 0.8mm(20AWG)
1
L4962
Figure26. P.C.boardand component layout of the circuit of Fig. 25 (1 : 1 scale)
Resistor valuesfor
standard output 7 voltages
V
12V 15V 18V 24V
o
R3 R4
4.7K
4.7K
4.7K
4.7K
6.2K
9.1K
12K 18K
9/15
Page 10
L4962
APPLICATION INFORMATION (continued)
Figure 27. - Aminimal 5.1Vfixedregulator; Very few component arerequired
* COGEMA946043 (TOROID CORE) ** EKR (ROE)
969051 (U15 CORE)
Figure28. Programmablepowersupply
Vo= 5.1Vto 15V I
= 1.5A max
o
Load regulation(0.5Ato 1.5A) =10mV (V Line regulation(220V ± 15% and to I
= 5.1V)
o
= 1A)= 15mV (Vo= 5.1V)
o
10/15
Page 11
L4962
APPLICATION INFORMATION (continued)
Figure29. DC-DC converter 5.1V/4A, ± 12V/1A.A suggestionhow to synchronize a negativeoutput
L1, L3 = COGEMA 946043(969051) L2 =COGEMA 946044 (946045)
Figure30. Inmultiple suppliesseveral L4962s can be synchronizedas shown
Figure 31. Preregulator for distributedsupplies
* L2 and C2 are necessary to reduce the switchingfrequency spikes
when linear regulators are remote from L4962
11/15
Page 12
L4962
MOUNTING INSTRUCTION
The Rth-j-amb of the L4962 can be reduced by solderingtheGND pinsto a suitablecopperareaof the printed circuit board(Fig. 32). The diagram of figure 33 shows the R
th-j-amb
functionof the side ”l” of two equal squarecopper areashavingthethicknessof35µ(1.4mils).During
as a
soldering the pins temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. The externalheatsink orprinted circuit copper are must beconnectedto electrical ground.
Figure32.ExampleofP.C.boardcopperareawhichisused as heatsink
Figure 33. Maximum dissipable power and junction to ambient thermal resistancevs. side”l”
12/15
Page 13
POWERDIPPACKAGE MECHANICAL DATA
L4962
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
a1 0.51 0.020
B 0.85 1.40 0.033 0.055
b 0.50 0.020
b1 0.38 0.50 0.015 0.020
D 20.0 0.787 E 8.80 0.346
e 2.54 0.100
e3 17.78 0.700
F 7.10 0.280
I 5.10 0.201
L 3.30 0.130
Z 1.27 0.050
mm inch
13/15
Page 14
L4962
HEPTAWATT PACKAGE MECHANICAL DATA
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.8 0.189 C 1.37 0.054 D 2.4 2.8 0.094 0.110
D1 1.2 1.35 0.047 0.053
E 0.35 0.55 0.014 0.022 F 0.6 0.8 0.024 0.031
F1 0.9 0.035
G 2.41 2.54 2.67 0.095 0.100 0.105 G1 4.91 5.08 5.21 0.193 0.200 0.205 G2 7.49 7.62 7.8 0.295 0.300 0.307 H2 10.4 0.409 H3 10.05 10.4 0.396 0.409
L 16.97 0.668 L1 14.92 0.587 L2 21.54 0.848 L3 22.62 0.891 L5 2.6 3 0.102 0.118 L6 15.1 15.8 0.594 0.622 L7 6 6.6 0.236 0.260
M 2.8 0.110
M1 5.08 0.200
Dia 3.65 3.85 0.144 0.152
mm inch
14/15
Page 15
L4962
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such informationnor for any infringement of patents or other rights of third parties which may result from itsuse. No license is granted by implication orotherwise under anypatent or patent rights ofSGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronicsproducts arenotauthorized foruseas critical components inlife support devices orsystems without express written approval of SGS-THOMSON Microelectronics.
1996 SGS-THOMSON Microelectronics -AllRights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil -France - Germany - Hong Kong- Italy-Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore-
Spain -Sweden - Switzerland- Taiwan- Thaliand - United Kingdom - U.S.A.
15/15
Loading...