The VNQ830M-E is a quad HSD formed by
assembling two VND830M-E chips in the same
SO-28 package. The VND830M-E is a monolithic
device made by using| STMicroelectronics
VIPower M0-3 Technology. The VNQ830M-E is
intended for driving any type of multiple loads with
one side connected to ground.
Activ e V
pin voltage clamp pro tects the device
CC
against low energy spikes (see ISO7637 transient
compatibility table).
Figure 1. Package
SO-28 (DOUBLE ISLAND)
Active current limitation combined with thermal
shutdown and automatic restart protects the
device against overload.
The device detects open load condition both in on
and off state. The openload t hreshold is aim ed at
detecting the 5W/12V standard bulb as an
openload fault in the on state. Outp ut shorted to
is detected in the off state. Device
V
CC
automatically turns off in case of ground pin
disconnection
Table 2. Order Codes
PackageTubeTape and Reel
SO-28
Note: (**) See appli c a t i on sche m atic at pa ge 10
VNQ830M-EVNQ830MTR-E
Rev. 1
1/21October 2004
VNQ830M-E
Figure 2. Block Diagram
V
cc
CLAMP
OVERVOLTAGE
UNDERVOLTAGE
V
CC1,2
GND1,2
INPUT1
STATUS1
INPUT2
STATUS2
GND3,4
INPUT3
STATUS3
INPUT4
STATUS4
OVERTEMP. 1
OVERTEMP. 2
V
cc
CLAMP
OVERTEMP. 3
LOGIC
LOGIC
CLAM P 1
DRIVER 1
CURRENT LIMITER 1
OPENLOAD ON 1
OPENLOAD OFF 1
OVERVOLTAGE
UNDERVOLTAGE
CLAMP 3
DRIVER 3
CURRENT LIMITE R 3
OPENLOAD ON 3
OPENLOAD OFF 3
CLAMP 2
DRIVER 2
CURRENT LIMITER 2
OPENLOAD ON 2
OPENLOAD OFF 2
CLAMP 4
DRIVER 4
CURRENT LIMITER 4
OPENLOAD ON 4
OUTPUT1
OUTPUT2
V
CC3,4
OUTPUT3
OUTPUT4
2/21
OVERTEMP. 4
OPENLOAD OFF 4
VNQ830M-E
Table 3. Absolute Maximum Ratings
SymbolParameterValueUnit
V
- V
- I
I
OUT
- I
I
STAT
V
P
E
T
CC
CC
GND
OUT
I
IN
ESD
tot
MAX
T
j
stg
DC Supply Voltage41V
Reverse DC Supply Voltage- 0.3V
DC Reverse Ground Pin Current- 200mA
DC Output CurrentInternally LimitedA
Reverse DC Output Current - 6A
DC Input Current+/- 10mA
DC Status Current+/- 10mA
Electrostatic Discharge (Human Body Model:
R=1.5KΩ; C=100pF)
- INPUT
- STATUS
- OUTPUT
- V
CC
Power Dissipation T
=25°C6.25W
pins
4000
4000
5000
5000
Maximum Switching Energy
(L=1mH; R
I
=10.5A)
L
=0Ω; V
L
=13.5V; T
bat
jstart
=150ºC;
77mJ
Junction Operating TemperatureInternally Limited°C
Storage Temperature- 55 to 150°C
V
V
V
V
Figure 3. Con fig urat i on Dia g ra m (Top View) & Sugg est ed C o nnections for Unu sed and N.C. Pins
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the durat i on
and number of activation cycl es
- Output Diode (Per each channel)
CC
Forward on Voltage-I
F
T
j>TTSD
20µs
610.515
5.5V<V
I
OUT
OUT
<36V
CC
=2A; L=6mHVCC-41 VCC-48 VCC-55V
=1.3A; Tj=150°C0.6V
15
A
A
5/21
VNQ830M-E
ELECTRICAL CHARACTERISTICS (continued)
Table 8. Status Pin (Per each channel)
SymbolParameterTest ConditionsMinTypMaxUnit
V
I
LSTAT
C
V
STAT
STAT
SCL
Status Low Output Voltage I
=1.6mA0.5V
STAT
Status Leakage CurrentNormal Operation; V
Status Pin Input
Capacitance
Status Clamp Voltage
Normal Operation; V
I
=1mA
STAT
=-1mA
I
STAT
=5V10µA
STAT
=5V100pF
STAT
66.8
-0.7
8V
V
Table 9. Switching (Per each channel) (V
CC
=13V)
SymbolParameterTest ConditionsMinTypMaxUnit
=6.5Ω from VIN rising edge to
R
L
V
=1.3V
OUT
=6.5Ω from VIN falling edge to
R
L
V
=11.7V
OUT
=6.5Ω from V
R
L
V
=10.4V
OUT
=6.5Ω from V
R
L
V
=1.3V
OUT
OUT
OUT
(Per each channel)
=1.3V to
=11.7V to
30µs
30µs
See
relative
diagram
See
relative
diagram
dV
dV
t
t
OUT
OUT
d(on)
d(off)
Turn-on Delay Time
Turn-off Delay Time
/dt
Turn-on Voltage Slope
(on)
/dt
Turn-off Voltage Slope
(off)
Table 10. Openload Detection
SymbolParameterTest ConditionsMinTypMaxUnit
I
OL
t
DOL(on)
Openload ON State
Detection Threshold
Openload ON State
Detection Delay
=5V 0.60.91.2A
V
IN
I
=0A 200µs
OUT
Openload OFF State
V
OL
Voltage Detection
V
=0V1.52.53.5V
IN
Threshold
Openload Detection Delay
t
DOL(off)
at Turn Off
1000µs
V/µs
V/µs
Table 11. Logic Input
(Per each channel)
SymbolParameterTest ConditionsMinTypMaxUnit
V
V
V
IL
I
IL
V
IH
I
IH
I(hyst)
ICL
Input Low Level1.25V
Low Level Input Current VIN=1.25V1µA
Input High Level3.25V
High Level Input Current VIN=3.25V10µA
Input Hysteresis Voltage0.5V
CAll functions of the device are performed as designed after exposure to disturbance.
EOne or more functions of the device is not performed as designed after exposure and cannot be
returned to proper operation without replacing the device.
8/21
Figure 7. Waveforms
INPUT
n
LOAD VOLTAGE
STATUS
V
CC
INPUT
n
LOAD VOLTAGE
STATUS
V
CC
INPUT
n
LOAD VOLTAGE
STATUS
VNQ830M-E
NORMAL OPERATION
n
n
UNDERVOLT AGE
V
USDhyst
V
USD
n
undefined
OVERVOLTAGE
VCC<V
OV
n
n
VCC>V
OV
INPUT
n
LOAD VOLTAGE
STATUS
INPUT
n
n
LOAD VOLTAGE
STATUS
T
INPUT
n
j
n
LOAD CURRENT
STATUS
n
OPEN LOAD with external pull-up
n
OPEN LOAD without external pull-up
V
n
T
TSD
T
R
n
V
OL
OVERTEMPERATURE
OUT>VOL
9/21
VNQ830M-E
Figure 8. Application Schematic
+5V
+5V
µ
R
R
R
prot
R
C
+5V
prot
prot
prot
STATUS1
INP UT1
STA TU S2
INPUT2
V
CC1,2
V
CC3,4
OUTPUT1
D
ld
R
prot
R
prot
R
prot
R
prot
+5V
+5V
STATUS 3
INP UT3
STATUS4
INP UT4
GND1,2
V
GND
Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2.
GND PROTECTION NETWORK AGAINST
REVERSE BATTERY
Solution 1: Re sistor in th e ground line (R
can be used with any type of load.
The following is an indication on how to d imension the
resistor.
R
GND
1) R
2) R
where -I
be found in the absolute maxim um rating section of the
≤ 600mV / 2(I
GND
≥ (−VCC) / (-I
GND
is the DC reverse ground pin current and can
GND
GND
S(on)max
)
).
device’s datasheet.
Power Dissipation in R
battery situations) is:
(when VCC<0: during rever se
GND
only). This
GND
P
D
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) wh ere I
sum of the maximum on-stat e currents of the differe nt
devices.
Please note that if the microprocessor ground is not
common with the device ground then the R
produce a shift (I
and the status output values. This shift will vary
depending on how many dev ices are ON in the case of
several high side drivers sharing the same R
If the calculated power dissipation leads to a large
resistor or several devices have to share the same
resistor then the ST suggests to utilize Solution 2.
GND3,4
R
GND
= (-VCC)2/R
OUTPUT2
OUTPUT3
OUTPUT4
D
GND
GND
S(on)max
* R
S(on)max
) in the input thresho lds
GND
becomes t he
GND
GND
.
will
10/21
VNQ830M-E
Solution 2: A diode (D
A resistor (R
if the device will be driving an inductive load.
D
GND
=1kΩ) should be inserted in parallel to
GND
) in the ground line.
GND
This small signal diode can be safely shared amongst
several different HS D. Also in this cas e, the presenc e of
the ground netwo rk will produce a shif t (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT and STATUS lines are also
required to p reven t tha t, d uring batt ery voltag e tr ansie nt,
the current exceeds the Absolute Maximum Rating.
Safest configu ration for unu sed INPU T and S TAT US p in
is to leave them unconnected.
LOAD DUMP PROTECTIO N
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating.
The same applies if the device will be subject to
transients on the V
shown in the ISO T/R 7637/1 table.
.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transients are present on the V
be pulled negative. ST suggests to insert a resistor (R
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up
limit of µC I/Os.
-V
CCpeak/Ilatchup
Calculation example:
line that are greater than the ones
CC
line, the control pins will
CC
≤ R
prot
≤ (V
OHµC-VIH-VGND
) / I
prot
IHmax
CCpeak
prot
= - 100V and I
≤ 65kΩ.
For V
5kΩ≤ R
Recommended R
value is 10kΩ.
prot
latchup
≥ 20mA; V
OPEN LOAD DETECTION IN OFF STATE
Off state open load detection requires an external pull-up
resistor (R
positive supply voltage (V
supply the microprocessor.
The external res istor has to be s electe d ac cordin g to t he
following requirements:
1) no false o pen load indic ation when lo ad is con necte d:
in this case we have to avoid V
V
Olmin
V
OUT
2) no misdetection when load is disconnected: in this
case the V
results in the fol lowing condition R
I
L(off2)
Because I
)
pulled high (up to several mA), the pull-u p resistor R
should be connected to a supply that is switched OFF
when the module is in standby.
The values of V
the Electrical Characteristics section.
) connected between OUTPUT pin and a
PU
) like the +5V line used to
PU
to be high er than
OUT
; this results in the following condition
=(VPU/(RL+RPU))RL<V
has to be higher than V
OUT
Olmin.
PU
<(V
.
may significantly increase if V
s(OFF)
OLmin
, V
OLmax
and I
are available in
L(off2)
≥ 4.5V
OHµC
OLmax
PU–VOLmax
; this
is
out
)/
PU
Figure 9. Open Load detection in off state
INPUT
STATUS
DRIVER
+
LOGIC
V batt.VPU
V
CC
OUT
+
R
VOL
GROUND
IL(off2)
R
PU
RL
11/21
VNQ830M-E
Figure 10. Off State Output Current
IL(o ff 1 ) (uA)
2.5
2.25
2
1.75
1.5
1.25
1
0.75
0.5
0.25
0
-50 -250255075 100 125 150 175
Off state
Vcc=36V
Vin=Vout=0V
Tc (°C)
Figure 11. Input Clamp Voltage
Vicl (V)
8
7.8
7.6
7.4
7.2
7
6.8
6.6
6.4
6.2
6
Iin=1mA
-50 -250255075100 125 150 175
Tc (°C)
Figure 13. High Level Input Current
Iih (uA)
5
4.5
3.5
2.5
1.5
0.5
Vin=3.25V
4
3
2
1
0
-50 -250255075100 125 150 175
Tc (°C)
Figure 14. Status Leakage Current
Ilstat (uA)
0.05
0.04
Vstat= 5 V
0.03
0.02
0.01
0
-50 -250255075 100 125 150 175
Tc (°C)
Figure 12. S t at us Low Output Volta ge
Vstat (V)
0.8
0.7
Istat=1.6mA
0.6
0.5
0.4
0.3
0.2
0.1
0
-50 -250255075100 125 150 175
Tc (°C)
12/21
Figure 15. Status Clamp Voltage
Vscl (V)
8
7.8
7.6
7.4
7.2
6.8
6.6
6.4
6.2
Istat=1mA
7
6
-50 -250255075100 125 150 175
Tc (°C)
VNQ830M-E
Figure 16. Overvoltage Shutdown
Vov (V)
50
48
46
44
42
40
38
36
34
32
30
-50 -250255075 100 125 150 175
Tc (°C)
Figure 17. Turn-on Voltage Slope
dVout/dt( on ) (V /ms )
800
700
600
Vcc=13V
Rl=6.5Ohm
Figure 19. I
LIM
Vs T
case
Ilim (A)
20
18
16
14
12
10
8
6
4
2
0
Vcc=13V
-50 -250255075100 125 150 175
Tc (°C)
Figure 20. Turn-off Voltage Slope
dVout/dt(off) (V/ms)
600
550
500
Ri=6.5Ohm
500
400
300
200
100
0
-50 -250255075 100 125 150 175
Tc (ºC)
Figure 18. On State Resistance Vs T
Ron (mOhm)
160
140
120
100
80
60
40
20
0
-50 -250255075100 125 150 175
Iout=2A
Vcc=8V; 13V & 36V
Tc (°C)
case
450
400
350
300
250
200
-50 -250255075100 125 150 175
Tc (°C)
Figure 21. On State Resistance Vs V
Ron (mOhm)
120
110
100
90
80
70
60
50
40
30
20
10
0
5 10152025303540
Vcc (V)
Tc=150°C
Tc=25°C
Tc= - 40°C
Iout=5A
CC
13/21
VNQ830M-E
)
)
Figure 22. Input High Level
Vih (V )
3.6
3.4
3.2
3
2.8
2.6
2.4
2.2
2
-50 -250255075100 125 150 175
Tc (°C)
Figure 23. Openload On State Detection
Threshol d
Iol (mA)
1250
1200
1150
1100
1050
1000
950
900
850
800
750
Vcc=13V
Vin=5V
-50 - 250255075 100 125 15 0 175
Tc (°C
Figure 25. Input Low Level
Vil (V)
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1
-50 -250255075100 125 150 175
Tc (°C)
Figure 26. Openload Off State Detection
Threshold
Vol (V )
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
Vin=0V
-50 -250255075100 125 150 175
Tc (°C
Figure 24. Input Hysteresis Voltage
Vhyst (V)
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
-50 -250255075100 125 150 175
Tc (°C)
14/21
Figure 27. Maximum turn off curren t vers us load indu ctan ce
LMAX (A)
I
100
10
VNQ830M-E
A
B
C
1
0.1110100
A = Single Pulse at T
B= Repetitive pulse at T
C= Repetitive Pulse at T
Conditions:
VCC=13.5V
VIN, I
L
Jstart
=150ºC
=100ºC
Jstart
=125ºC
Jstart
Demagnetization
L(mH)
Values are generated with R
In case of repetitive pulses, T
each demagnetization) of every pulse must not
exceed the temperature specified above for
curves B and C.
Demagnetization
=0Ω
L
(at beginning of
jstart
Demagnetization
t
15/21
VNQ830M-E
SO-28 Double Island Thermal Data
Figure 28. Double Island PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.5cm
2
, 3cm2, 6cm2).
Table 14. Thermal Calculation According To The Pcb Heatsink Area
Chip 1Chip 2T
ONOFFR
OFFONR
ONONR
ONON(R
R
= Thermal resistance Junctio n to Am bient wit h one
thA
chip ON
= Thermal resistance Jun ction to Ambient with both
R
thB
chips ON and P
R
= Mutual thermal resistance
thC
dchip1=Pdchip2
thA
thC
thB
thA
x P
x P
x (P
x P
dchip1
dchip2
dchip1
dchip1
+ T
+ T
+ P
) + R
jchip1
amb
amb
dchip2
thC
) + T
x P
amb
dchip2
+ T
amb(RthA
R
x P
thC
R
x P
thA
R
x (P
thB
x P
Figure 29. R
Open Box Free Air Condition
dchip1
dchip2
dchip1
dchip2
T
jchip2
+ T
amb
+ T
amb
+ P
) + R
thj-amb
RTHj_amb
(°C/W)
70
60
50
dchip2
thC
x P
) + T
dchip1
amb
+ T
P
dchip1=Pdchip2
ambPdchip1≠Pdchip2
Vs. PCB Copper Area In
R
thA
R
thB
Note
16/21
40
R
thC
30
20
10
01234567
PCB Cu heatsink area (cm^2)/island
Figure 30. SO-28 Thermal Impedance Jun ction Ambient Single Pu lse
Zth(°C/W )
100
10
1
0.1
VNQ830M-E
0,5 cm^2/island
3 cm^2/island
6 cm^2/island
One channel ON
Two channels ON
on same chip
0.01
1E-04 0.001 0.010.11101001000
tim e(s )
Figure 31. Th e rm al fit t in g m od e l of a double
channel HSD in SO-28
Empty compon ents poc ke ts
saled with co ve r tape.
User direction of feed
Start
No compon entsNo componentsCom pon ents
500mm m in
19/21
VNQ830M-E
REVISION HIST ORY
DateRev isionDescription of Change s
Oct. 20041- First Issue
20/21
VNQ830M-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implic ation or otherwise und er any patent or patent rights of STMic roelectroni cs. Specifications menti oned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authori zed for use as criti cal components in life suppor t devices or systems without ex press written a pproval of STMi croelectroni cs.
The ST logo i s a registered tr ademark of STMic roelectroni cs .
All othe r nam es are the property of their res pective owners