ST VNQ830M-E User Manual

VNQ830M-E
QUAD CHANNEL HIGH SIDE DRIVER
Table 1. General Features
Type R
VNQ830M-E 60m
(*) Per each channel
CMOS COMPATIBLE INPUTS
ON STATE OP EN L OAD DET ECTIO N
OFF STATE OPEN LOAD DETECTION
SHOR T E D L O A D PROTE C TION
UNDERVOLTAGE AND OVERVOLTAGE
DS(on)
(*) 6A (*) 36V
I
out
V
CC
SHUTDOWN
LOSS OF GROUND PROTECTION
VERY LOW STAND-BY CURRENT
REVERSE BATTERY PROTECTION (**)
IN COMPLIANCE WITH THE 2002/95/EC
EUROPEAN DIRECT IVE
DESCRIPTION
The VNQ830M-E is a quad HSD formed by assembling two VND830M-E chips in the same SO-28 package. The VND830M-E is a monolithic device made by using| STMicroelectronics VIPower M0-3 Technology. The VNQ830M-E is intended for driving any type of multiple loads with one side connected to ground.
Activ e V
pin voltage clamp pro tects the device
CC
against low energy spikes (see ISO7637 transient compatibility table).
Figure 1. Package
SO-28 (DOUBLE ISLAND)
Active current limitation combined with thermal shutdown and automatic restart protects the device against overload.
The device detects open load condition both in on and off state. The openload t hreshold is aim ed at detecting the 5W/12V standard bulb as an openload fault in the on state. Outp ut shorted to
is detected in the off state. Device
V
CC
automatically turns off in case of ground pin disconnection
Table 2. Order Codes
Package Tube Tape and Reel
SO-28
Note: (**) See appli c a t i on sche m atic at pa ge 10
VNQ830M-E VNQ830MTR-E
Rev. 1
1/21October 2004
VNQ830M-E
Figure 2. Block Diagram
V
cc
CLAMP
OVERVOLTAGE
UNDERVOLTAGE
V
CC1,2
GND1,2
INPUT1
STATUS1
INPUT2
STATUS2
GND3,4
INPUT3
STATUS3
INPUT4
STATUS4
OVERTEMP. 1
OVERTEMP. 2
V
cc
CLAMP
OVERTEMP. 3
LOGIC
LOGIC
CLAM P 1
DRIVER 1
CURRENT LIMITER 1
OPENLOAD ON 1
OPENLOAD OFF 1
OVERVOLTAGE
UNDERVOLTAGE
CLAMP 3
DRIVER 3
CURRENT LIMITE R 3
OPENLOAD ON 3
OPENLOAD OFF 3
CLAMP 2
DRIVER 2
CURRENT LIMITER 2
OPENLOAD ON 2
OPENLOAD OFF 2
CLAMP 4
DRIVER 4
CURRENT LIMITER 4
OPENLOAD ON 4
OUTPUT1
OUTPUT2
V
CC3,4
OUTPUT3
OUTPUT4
2/21
OVERTEMP. 4
OPENLOAD OFF 4
VNQ830M-E
Table 3. Absolute Maximum Ratings
Symbol Parameter Value Unit
V
- V
- I I
OUT
- I
I
STAT
V
P
E
T
CC
CC
GND
OUT
I
IN
ESD
tot
MAX
T
j
stg
DC Supply Voltage 41 V Reverse DC Supply Voltage - 0.3 V DC Reverse Ground Pin Current - 200 mA DC Output Current Internally Limited A Reverse DC Output Current - 6 A DC Input Current +/- 10 mA DC Status Current +/- 10 mA Electrostatic Discharge (Human Body Model:
R=1.5KΩ; C=100pF)
- INPUT
- STATUS
- OUTPUT
- V
CC
Power Dissipation T
=25°C 6.25 W
pins
4000 4000 5000 5000
Maximum Switching Energy (L=1mH; R
I
=10.5A)
L
=0Ω; V
L
=13.5V; T
bat
jstart
=150ºC;
77 mJ
Junction Operating Temperature Internally Limited °C Storage Temperature - 55 to 150 °C
V V V V
Figure 3. Con fig urat i on Dia g ra m (Top View) & Sugg est ed C o nnections for Unu sed and N.C. Pins
VCC1,2 GND 1,2 INPUT1 STA TUS1 STA TUS2
INPUT2
1,2
V
CC
VCC3,4 GND 3,4 INPUT3
STATUS3 STA TUS4 INPUT4
3,4
V
CC
1
14
Connection / Pin Status N.C. Output Input
Floating X X X X To Ground X Through 10Kresistor
28
VCC1,2 OUTPUT1 OUTPUT1 OUTPUT1 OUTPUT2 OUTPUT2
OUTPUT2
OUTPUT3 OUTPUT3 OUTPUT3
OUTPUT4
OUTPUT4
OUTPUT4
V
15
3,4
CC
3/21
VNQ830M-E
Figure 4. Current and Voltage Conventions
V
CC3,4
V
IN1
(*) VFn = V
V
STAT1
CCn
V
- V
I
S3,4
I
IN1
I
STAT1
I
IN2
I
IN2
V
STAT2
V
IN3
V
STAT3
during reverse battery condition
OUTn
STAT2
I
IN3
I
STAT3
I
IN4
I
STAT4
V
IN4
V
STAT4
INPUT1 STATUS1
INPUT2 STATUS2
INPUT3
STATUS3
INPUT4 STATUS4
GND
V
CC3,4
3,4
I
GND3,4
V
CC1,2
OUTPUT1
OUTPUT2
OUTPUT3
OUTPUT4
GND
1,2
I
GND1,2
I
OUT1
I
OUT2
I
OUT3
I
OUT4
V
OUT4
V
V
F1
OUT3
I
S1,2
V
OUT1
V
CC1,2
(*)
V
OUT2
Table 4. Thermal Data (Per islan d )
Symbol Parameter Value Unit
R
thj-lead
R
thj-amb
R
thj-amb
Thermal Resistance Junction-lead per chip 20 °C/W
Thermal Resistance Junction-ambient 60 Thermal Resistance Junction-ambient (two chips ON) 46
(1) (1)
44 31
(2) (2)
°C/W °C/W
Note: 1. When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal
mounting an d no arti ficial ai r flow
Note: 2. When mounted on a standard single-sided FR-4 board with 6cm
2
of Cu (at least 3 5µm thick) connected to all VCC pins. Hori zontal
mounting an d no arti fi cial ai r flow
4/21
VNQ830M-E
ELECTRICAL CHARACTERISTICS
(8V<V
(Per each channel)
Table 5. Po we r Ou t put
Symbol Parameter Test Conditions Min. Typ. Max. Unit
V
V
V
Note: (**) Per island
<36V; -40°C< Tj <150°C, unless otherwise specified)
CC
(**) Operating Supply Voltage 5.5 13 36 V
CC
(**) Undervoltage Shut-down 3 4 5.5 V
USD
(**) Overvoltage Shut- down 36 V
OV
I
R
on
(**) Supply Current
I
S
I
L(off1)
I
L(off2)
I
L(off3)
I
L(off4)
On State Resistance
Off State Output Current VIN=V Off State Output Current VIN=0V; V Off State Output Current VIN=V Off State Output Current VIN=V
=2A; Tj=25°C
OUT
I
=2A; VCC>8V
OUT
Off State; V Off State; V
=13V; VIN=V
CC
=13V; VIN=V
CC
OUT OUT
=25°C On State; VCC=13V; VIN=5V; I
=0V 0 50 µA
OUT
=3.5V -75 0 µA
OUT
=0V; VCC=13V; Tj =125°C 5 µA
OUT
=0V; VCC=13V; Tj =25°C 3 µA
OUT
=0V =0V; Tj
=0A
OUT
12
12
5
60
120
40
25
7
m m
µA
µA
mA
Table 6. Protection (Per each channel) (See note 1)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
T
TSD
T
T
hyst
t
SDL
I
lim
V
demag
Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
Table 7. V
Symbol Parameter Test Conditions Min Typ Max Unit
V
Shut-down Temperature 150 175 200 °C Reset Temperature 135 °C
R
Thermal Hysteresis 7 15 °C Status Delay in Overload
Conditions
Current limitation
Turn-off Output Clamp Voltage
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the durat i on and number of activation cycl es
- Output Diode (Per each channel)
CC
Forward on Voltage -I
F
T
j>TTSD
20 µs
6 10.5 15
5.5V<V
I
OUT
OUT
<36V
CC
=2A; L=6mH VCC-41 VCC-48 VCC-55 V
=1.3A; Tj=150°C 0.6 V
15
A A
5/21
VNQ830M-E
ELECTRICAL CHARACTERISTICS (continued) Table 8. Status Pin (Per each channel)
Symbol Parameter Test Conditions Min Typ Max Unit
V
I
LSTAT
C
V
STAT
STAT
SCL
Status Low Output Voltage I
=1.6mA 0.5 V
STAT
Status Leakage Current Normal Operation; V Status Pin Input
Capacitance Status Clamp Voltage
Normal Operation; V I
=1mA
STAT
=-1mA
I
STAT
=5V 10 µA
STAT
=5V 100 pF
STAT
6 6.8
-0.7
8V
V
Table 9. Switching (Per each channel) (V
CC
=13V)
Symbol Parameter Test Conditions Min Typ Max Unit
=6.5from VIN rising edge to
R
L
V
=1.3V
OUT
=6.5from VIN falling edge to
R
L
V
=11.7V
OUT
=6.5from V
R
L
V
=10.4V
OUT
=6.5from V
R
L
V
=1.3V
OUT
OUT
OUT
(Per each channel)
=1.3V to
=11.7V to
30 µs
30 µs
See
relative
diagram
See
relative
diagram
dV
dV
t
t
OUT
OUT
d(on)
d(off)
Turn-on Delay Time
Turn-off Delay Time
/dt
Turn-on Voltage Slope
(on)
/dt
Turn-off Voltage Slope
(off)
Table 10. Openload Detection
Symbol Parameter Test Conditions Min Typ Max Unit
I
OL
t
DOL(on)
Openload ON State Detection Threshold Openload ON State Detection Delay
=5V 0.6 0.9 1.2 A
V
IN
I
=0A 200 µs
OUT
Openload OFF State
V
OL
Voltage Detection
V
=0V 1.5 2.5 3.5 V
IN
Threshold Openload Detection Delay
t
DOL(off)
at Turn Off
1000 µs
V/µs
V/µs
Table 11. Logic Input
(Per each channel)
Symbol Parameter Test Conditions Min Typ Max Unit
V
V
V
IL
I
IL
V
IH
I
IH
I(hyst)
ICL
Input Low Level 1.25 V Low Level Input Current VIN=1.25V 1 µA Input High Level 3.25 V High Level Input Current VIN=3.25V 10 µA Input Hysteresis Voltage 0.5 V
Input Clamp Voltage
I
IN
I
IN
=1mA =-1mA
6 6.8
-0.7
8V
6/21
V
Tabl e 12. Truth Tabl e
CONDITIONS INPUT OUTPUT SENSE
VNQ830M-E
Normal Operation
L
H
L
Current Limitation
H H
Overtemperature
Undervoltage
Overvoltage
Output Voltage > V
Output Current < I
OL
OL
L
H
L
H
L
H
L
H
L
H
Figure 5.
OPEN LOAD STATUS TIMING (with external pull-up)
V
> V
OUT
OL
V
INn
I
OUT
< I
L
H
L X X
(T
(T
< T
j
> T
j
L
L
L
L
L
L H
H
L H
TSD
TSD
H H
H
) H
) L
H
L
X X
H H
L
H H
L
OVER TEMP STATUS TIMING
OL
V
INn
Tj > T
TSD
V
STA Tn
t
DOL(off)
t
DOL(on)
V
STATn
t
SDL
t
SDL
7/21
VNQ830M-E
Figure 6. Switching time Waveforms
V
OUTn
80%
/dt
dV
OUT
(on)
V
INn
t
d(on)
10%
t
d(off)
90%
dV
OUT
/dt
(off)
t
Table 13. Electrical Transient Requirements On V
ISO T/R 7637/1
Test Pulse
1 -25 V -50 V -75 V -100 V 2 ms 10
2 +25 V +50 V +75 V +100 V 0.2 ms 10 3a -25 V -50 V -100 V -150 V 0.1 µs 50 3b +25 V +50 V +75 V +100 V 0.1 µs 50
4 -4 V -5 V -6 V -7 V 100 ms, 0.01
5 +26.5 V +46.5 V +66.5 V +86.5 V 400 ms, 2
ISO T/R 7637/1
Test Pulse
1CCCC
2CCCC 3aCCCC 3bCCCC
4CCCC
5C E E E
I II III IV Delays and
TEST LEVELS RESULTS
I II III IV
Pin
CC
TEST LEVELS
t
Impedance
CLASS CONTENTS
C All functions of the device are performed as designed after exposure to disturbance.
E One or more functions of the device is not performed as designed after exposure and cannot be
returned to proper operation without replacing the device.
8/21
Figure 7. Waveforms
INPUT
n
LOAD VOLTAGE STATUS
V
CC
INPUT
n
LOAD VOLTAGE STATUS
V
CC
INPUT
n
LOAD VOLTAGE STATUS
VNQ830M-E
NORMAL OPERATION
n
n
UNDERVOLT AGE
V
USDhyst
V
USD
n
undefined
OVERVOLTAGE
VCC<V
OV
n
n
VCC>V
OV
INPUT
n
LOAD VOLTAGE STATUS
INPUT
n
n
LOAD VOLTAGE STATUS
T
INPUT
n
j
n
LOAD CURRENT
STATUS
n
OPEN LOAD with external pull-up
n
OPEN LOAD without external pull-up
V
n
T
TSD
T
R
n
V
OL
OVERTEMPERATURE
OUT>VOL
9/21
VNQ830M-E
Figure 8. Application Schematic
+5V
+5V
µ
R
R
R
prot
R
C
+5V
prot
prot
prot
STATUS1
INP UT1
STA TU S2
INPUT2
V
CC1,2
V
CC3,4
OUTPUT1
D
ld
R
prot
R
prot
R
prot
R
prot
+5V
+5V
STATUS 3
INP UT3
STATUS4
INP UT4
GND1,2
V
GND
Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2.
GND PROTECTION NETWORK AGAINST REVERSE BATTERY
Solution 1: Re sistor in th e ground line (R can be used with any type of load.
The following is an indication on how to d imension the
resistor.
R
GND
1) R
2) R
where -I be found in the absolute maxim um rating section of the
600mV / 2(I
GND
≥ (−VCC) / (-I
GND
is the DC reverse ground pin current and can
GND
GND
S(on)max
)
).
device’s datasheet. Power Dissipation in R
battery situations) is:
(when VCC<0: during rever se
GND
only). This
GND
P
D
This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) wh ere I sum of the maximum on-stat e currents of the differe nt devices.
Please note that if the microprocessor ground is not common with the device ground then the R produce a shift (I and the status output values. This shift will vary depending on how many dev ices are ON in the case of several high side drivers sharing the same R
If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2.
GND3,4
R
GND
= (-VCC)2/R
OUTPUT2
OUTPUT3
OUTPUT4
D
GND
GND
S(on)max
* R
S(on)max
) in the input thresho lds
GND
becomes t he
GND
GND
.
will
10/21
VNQ830M-E
Solution 2: A diode (D A resistor (R
if the device will be driving an inductive load.
D
GND
=1kΩ) should be inserted in parallel to
GND
) in the ground line.
GND
This small signal diode can be safely shared amongst several different HS D. Also in this cas e, the presenc e of the ground netwo rk will produce a shif t (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.
Series resistor in INPUT and STATUS lines are also required to p reven t tha t, d uring batt ery voltag e tr ansie nt, the current exceeds the Absolute Maximum Rating.
Safest configu ration for unu sed INPU T and S TAT US p in is to leave them unconnected.
LOAD DUMP PROTECTIO N
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the V shown in the ISO T/R 7637/1 table.
.
µC I/Os PROTECTION:
If a ground protection network is used and negative transients are present on the V be pulled negative. ST suggests to insert a resistor (R in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os.
-V
CCpeak/Ilatchup
Calculation example:
line that are greater than the ones
CC
line, the control pins will
CC
R
prot
(V
OHµC-VIH-VGND
) / I
prot
IHmax
CCpeak
prot
= - 100V and I
65k.
For V 5k R Recommended R
value is 10kΩ.
prot
latchup
20mA; V
OPEN LOAD DETECTION IN OFF STATE
Off state open load detection requires an external pull-up resistor (R positive supply voltage (V supply the microprocessor. The external res istor has to be s electe d ac cordin g to t he following requirements:
1) no false o pen load indic ation when lo ad is con necte d: in this case we have to avoid V
V
Olmin
V
OUT
2) no misdetection when load is disconnected: in this case the V results in the fol lowing condition R I
L(off2)
Because I
)
pulled high (up to several mA), the pull-u p resistor R should be connected to a supply that is switched OFF
when the module is in standby. The values of V
the Electrical Characteristics section.
) connected between OUTPUT pin and a
PU
) like the +5V line used to
PU
to be high er than
OUT
; this results in the following condition
=(VPU/(RL+RPU))RL<V
has to be higher than V
OUT
Olmin.
PU
<(V
.
may significantly increase if V
s(OFF)
OLmin
, V
OLmax
and I
are available in
L(off2)
4.5V
OHµC
OLmax
PU–VOLmax
; this
is
out
)/
PU
Figure 9. Open Load detection in off state
INPUT
STATUS
DRIVER
+
LOGIC
V batt. VPU
V
CC
OUT
+
R
­VOL
GROUND
IL(off2)
R
PU
RL
11/21
VNQ830M-E
Figure 10. Off State Output Current
IL(o ff 1 ) (uA)
2.5
2.25
2
1.75
1.5
1.25
1
0.75
0.5
0.25 0
-50 -25 0 25 50 75 100 125 150 175
Off state Vcc=36V
Vin=Vout=0V
Tc (°C)
Figure 11. Input Clamp Voltage
Vicl (V)
8
7.8
7.6
7.4
7.2
7
6.8
6.6
6.4
6.2
6
Iin=1mA
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 13. High Level Input Current
Iih (uA)
5
4.5
3.5
2.5
1.5
0.5
Vin=3.25V
4
3
2
1
0
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 14. Status Leakage Current
Ilstat (uA)
0.05
0.04
Vstat= 5 V
0.03
0.02
0.01
0
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 12. S t at us Low Output Volta ge
Vstat (V)
0.8
0.7
Istat=1.6mA
0.6
0.5
0.4
0.3
0.2
0.1
0
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
12/21
Figure 15. Status Clamp Voltage
Vscl (V)
8
7.8
7.6
7.4
7.2
6.8
6.6
6.4
6.2
Istat=1mA
7
6
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
VNQ830M-E
Figure 16. Overvoltage Shutdown
Vov (V)
50
48
46
44
42
40
38
36
34
32 30
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 17. Turn-on Voltage Slope
dVout/dt( on ) (V /ms )
800
700
600
Vcc=13V
Rl=6.5Ohm
Figure 19. I
LIM
Vs T
case
Ilim (A)
20
18
16
14
12
10
8
6
4
2 0
Vcc=13V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 20. Turn-off Voltage Slope
dVout/dt(off) (V/ms)
600
550
500
Ri=6.5Ohm
500
400
300
200
100
0
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
Figure 18. On State Resistance Vs T
Ron (mOhm)
160
140
120
100
80
60
40
20
0
-50 -25 0 25 50 75 100 125 150 175
Iout=2A
Vcc=8V; 13V & 36V
Tc (°C)
case
450
400
350
300
250
200
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 21. On State Resistance Vs V
Ron (mOhm)
120 110 100
90 80 70 60 50 40 30 20 10
0
5 10152025303540
Vcc (V)
Tc=150°C
Tc=25°C
Tc= - 40°C
Iout=5A
CC
13/21
VNQ830M-E
)
)
Figure 22. Input High Level
Vih (V )
3.6
3.4
3.2
3
2.8
2.6
2.4
2.2
2
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 23. Openload On State Detection
Threshol d
Iol (mA)
1250
1200
1150
1100
1050
1000
950
900
850
800 750
Vcc=13V
Vin=5V
-50 - 25 0 25 50 75 100 125 15 0 175
Tc (°C
Figure 25. Input Low Level
Vil (V)
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 26. Openload Off State Detection
Threshold
Vol (V )
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5 0
Vin=0V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C
Figure 24. Input Hysteresis Voltage
Vhyst (V)
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
14/21
Figure 27. Maximum turn off curren t vers us load indu ctan ce
LMAX (A)
I
100
10
VNQ830M-E
A
B
C
1
0.1 1 10 100
A = Single Pulse at T
B= Repetitive pulse at T C= Repetitive Pulse at T
Conditions: VCC=13.5V
VIN, I
L
Jstart
=150ºC
=100ºC
Jstart
=125ºC
Jstart
Demagnetization
L(mH)
Values are generated with R In case of repetitive pulses, T
each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.
Demagnetization
=0
L
(at beginning of
jstart
Demagnetization
t
15/21
VNQ830M-E
SO-28 Double Island Thermal Data
Figure 28. Double Island PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.5cm
2
, 3cm2, 6cm2).
Table 14. Thermal Calculation According To The Pcb Heatsink Area
Chip 1 Chip 2 T
ON OFF R
OFF ON R
ON ON R ON ON (R
R
= Thermal resistance Junctio n to Am bient wit h one
thA
chip ON
= Thermal resistance Jun ction to Ambient with both
R
thB
chips ON and P R
= Mutual thermal resistance
thC
dchip1=Pdchip2
thA thC thB
thA
x P
x P
x (P
x P
dchip1 dchip2
dchip1 dchip1
+ T + T
+ P ) + R
jchip1
amb amb
dchip2
thC
) + T
x P
amb
dchip2
+ T
amb(RthA
R
x P
thC
R
x P
thA
R
x (P
thB
x P
Figure 29. R Open Box Free Air Condition
dchip1 dchip2
dchip1
dchip2
T
jchip2
+ T
amb
+ T
amb
+ P
) + R
thj-amb
RTHj_amb
(°C/W)
70 60 50
dchip2
thC
x P
) + T
dchip1
amb
+ T
P
dchip1=Pdchip2
ambPdchip1≠Pdchip2
Vs. PCB Copper Area In
R
thA
R
thB
Note
16/21
40
R
thC
30 20 10
01234567
PCB Cu heatsink area (cm^2)/island
Figure 30. SO-28 Thermal Impedance Jun ction Ambient Single Pu lse
Zth(°C/W )
100
10
1
0.1
VNQ830M-E
0,5 cm^2/island
3 cm^2/island
6 cm^2/island
One channel ON Two channels ON
on same chip
0.01 1E-04 0.001 0.01 0.1 1 10 100 1000
tim e(s )
Figure 31. Th e rm al fit t in g m od e l of a double channel HSD in SO-28
Tj_1
Pd1
Tj_2
Pd2
Tj_3
Pd3
Tj_4
Pd4
C1
C13 C14
R13
C7
C15 C16
R15
R14
R16
C3 C4
R3R1 R6R5R2
R17
C8
R8
R18
C9
C10
R9R7
T_amb
R4
R10
C5 C6C2
C11 C12
R12R11
Pulse calculation formula
Z
TH
where
R
δ Z
TH
δ
THtp
1 δ()+=
δ tpT=
Table 15. Thermal Parameter
Area/island (cm2) 0.5 6
R1=R7=R13= R15 (°C/W) 0.05 R2=R8=R14= R16 (°C/W) 0.3 R3=R9 (°C/W) 3.4 R4=R10 (°C/W) 11 R5=R11 (°C/W) 15 R6=R12 (°C/W) 30 13 C1=C7=C13= C15 (W.s/ °C) 0.001 C2=C8=C14= C16 (W.s/ °C) 5.00E-03 C3=C9 (W.s/°C) 1.00E-02 C4=C10 (W.s/°C) 0.2 C5=C11 (W.s/°C) 1.5 C6=C12 (W.s/°C) 5 8 R17=R18 (°C/W) 150
17/21
VNQ830M-E
PACKAGE MECHANICAL
Table 16. SO-28 Mechanical Data
Symbol
A 2.65
a1 0.10 0.30
b 0.35 0.49
b1 0.23 0.32
C 0.50
c1 45° (typ.)
D 17.7 18.1
E 10.00 10.65 e 1.27
e3 16.51
F 7.40 7.60 L 0.40 1.27 S 8° (max.)
Figure 32. SO-28 Package Dimensions
Min Typ Max
millimeters
18/21
Figure 33. SO-28 Tube Shipment (No Suffix)
Base Q.ty 28 Bulk Q.ty 700
C
B
Tube length (± 0.5) 532 A 3.5 B 13.8 C (± 0.1) 0.6
All dimensions are in mm.
A
Figure 34. Tape And Reel Shipment (Suffix “TR”)
VNQ830M-E
REEL DIMENSIONS
Base Q.ty 1000 Bulk Q.ty 1000 A (max) 330 B (min) 1.5 C (± 0.2) 13
F 20.2 G (+ 2 / -0) 16.4 N (min) 60 T (max) 22.4
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986
Tape width W 16 Tape Hole Spacing P0 (± 0.1) 4 Component Spacing P 12 Hole Diameter D (± 0.1/-0) 1.5 Hole Diameter D1 (min) 1.5 Hole Position F (± 0.05) 7.5 Compartment Depth K (max) 6.5 Hole Spacing P1 (± 0.1) 2
All dimensions are in mm.
Top
cover
tape
End
500mm m in
Empty compon ents poc ke ts saled with co ve r tape.
User direction of feed
Start
No compon entsNo components Com pon ents
500mm m in
19/21
VNQ830M-E
REVISION HIST ORY
Date Rev ision Description of Change s
Oct. 2004 1 - First Issue
20/21
VNQ830M-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implic ation or otherwise und er any patent or patent rights of STMic roelectroni cs. Specifications menti oned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authori zed for use as criti cal components in life suppor t devices or systems without ex press written a pproval of STMi croelectroni cs.
The ST logo i s a registered tr ademark of STMic roelectroni cs .
All othe r nam es are the property of their res pective owners
© 2004 STM i croelectroni cs - All right s reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czec h Republic - Finland - France - Germ any - Hong Kong - India - Israel - Italy - Japa n -
Malaysia - M al ta - Morocco - Singapore - Spain - Sweden - Swit zerland - United Kingdom - Unit ed States of America
www.st.com
21/21
Loading...