ST VNN7NV04P-E, VNS7NV04P-E User Manual

VNN7NV04P-E, VNS7NV04P-E

OMNIFET II fully autoprotected Power MOSFET

Features

Type

RDS(on)

Ilim

Vclamp

VNN7NV04P-E

60 mΩ

6 A

40 V

VNS7NV04P-E

 

 

 

 

 

 

 

Linear current limitation

Thermal shutdown

Short circuit protection

Integrated clamp

Low current drawn from input pin

Diagnostic feedback through input pin

ESD protection

Direct access to the gate of the Power MOSFET (analog driving)

Compatible with standard Power MOSFET in compliance with the 2002/95/EC European Directive

2

 

3

1

2

SO-8

SOT-223

Description

The VNN7NV04P-E, VNS7NV04P-E, are monolithic devices designed in STMicroelectronics VIPower™ M0-3 Technology, intended for replacement of standard Power MOSFETs from DC up to 50 kHz applications. Built in thermal shutdown, linear current limitation and overvoltage clamp protect the chip in harsh environments.

Fault feedback can be detected by monitoring the voltage at the input pin.

Table 1.

Device summary

 

Package

 

Order codes

 

 

 

 

Tube

Tape and reel

 

 

 

 

 

 

SOT-223

 

-

VNN7NV04PTR-E

 

 

 

 

SO-8

 

VNS7NV04P-E

VNS7NV04PTR-E

 

 

 

 

July 2011

Doc ID 15632 Rev 3

1/29

www.st.com

Contents

VNN7NV04P-E, VNS7NV04P-E

 

 

Contents

1

Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 5

2

Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

2.1

Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

2.2

Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

2.3

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

3

Protection features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

3.1

Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

3.2

SO-8 maximum demagnetization energy . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

3.3

SOT-223 maximum demagnetization energy . . . . . . . . . . . . . . . . . . . . . .

17

4

Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

4.1

SO-8 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

4.2

SOT-223 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

5

Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

5.1

SOT-223 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

5.2

SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

5.3

SOT-223 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

5.4

SO-8 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

6

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

2/29

Doc ID 15632 Rev 3

VNN7NV04P-E, VNS7NV04P-E

List of tables

 

 

List of tables

Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 3. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 5. SO-8 thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 6. SOT-223 thermal parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 7. SOT-223 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 8. SO-8 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 9. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Doc ID 15632 Rev 3

3/29

List of figures

VNN7NV04P-E, VNS7NV04P-E

 

 

List of figures

Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 4. Switching time test circuit for resistive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 5. Test circuit for diode recovery times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 6. Unclamped inductive load test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 7. Input charge test circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 8. Unclamped inductive waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 9. Derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 10. Transconductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 11. Static drain-source on resistance vs input voltage (part 1/2) . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 12. Static drain-source on resistance vs input voltage (part 2/2) . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 13. Source-drain diode forward characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 14. Static drain source on resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 15. Turn-on current slope (part 1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 16. Turn-on current slope (part 2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 17. Transfer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 18. Static drain-source on resistance vs Id. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 19. Input voltage vs input charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 20. Turn-off drain source voltage slope (part 1/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 21. Turn-off drain source voltage slope (part 2/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 22. Capacitance variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 23. Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 24. Normalized on resistance vs temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 25. Switching time resistive load (part 1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 26. Switching time resistive load (part 2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 27. Normalized input threshold voltage vs temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 28. Normalized current limit vs junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 29. Step response current limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 30. SO-8 maximum turn-off current versus load inductance. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 31. SO-8 demagnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 32. SOT-223 maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 33. SOT-223 demagnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 34. SO-8 PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 35. Rthj-amb vs PCB copper area in open box free air condition. . . . . . . . . . . . . . . . . . . . . . . 18 Figure 36. SO-8 thermal impedance junction ambient single pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 37. Thermal fitting model of an OMNIFET II in SO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 38. SOT-223 PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 39. Rthj-amb vs PCB copper area in open box free air condition. . . . . . . . . . . . . . . . . . . . . . . 20 Figure 40. SOT-223 thermal impedance junction ambient single pulse. . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 41. Thermal fitting model of an OMNIFET II in SOT-223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 42. SOT-223 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 43. SO-8 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 44. SOT-223 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 45. SO-8 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 46. SO-8 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4/29

Doc ID 15632 Rev 3

ST VNN7NV04P-E, VNS7NV04P-E User Manual

VNN7NV04P-E, VNS7NV04P-E

Block diagram and pin description

 

 

1 Block diagram and pin description

Figure 1. Block diagram

 

 

 

DRAIN

 

 

 

2

 

 

 

Overvoltage

 

 

 

Clamp

INPUT

 

Gate

 

 

1

 

 

Control

 

 

 

 

 

 

 

Linear

 

 

Over

Current

 

 

Limiter

 

 

Temperature

 

 

 

 

3

 

 

 

SOURCE

FC01000

Figure 2. Configuration diagram (top view)

SO-8 Package(1)

SOURCE

 

 

1

8

DRAIN

 

 

 

SOURCE

 

 

 

 

DRAIN

 

 

 

 

 

 

SOURCE

 

 

4

 

DRAIN

 

 

 

 

INPUT

5

DRAIN

 

 

 

 

 

 

1. For the pins configuration related to SOT-223 see outlines at page 1.

Doc ID 15632 Rev 3

5/29

Electrical specifications

VNN7NV04P-E, VNS7NV04P-E

 

 

2 Electrical specifications

Figure 3. Current and voltage conventions

ID

VDS

DRAIN

IIN RIN

INPUT

SOURCE

VIN

2.1Absolute maximum ratings

Table 2.

Absolute maximum ratings

 

 

 

 

Symbol

Parameter

Value

 

Unit

 

 

 

SOT-223

 

SO-8

 

 

 

 

 

 

 

 

 

VDS

Drain-source voltage (VIN = 0 V)

Internally clamped

V

VIN

Input voltage

Internally clamped

V

IIN

Input current

+/-20

 

mA

RIN MIN

Minimum input series impedance

150

 

Ω

ID

Drain current

Internally limited

A

IR

Reverse DC output current

-10.5

 

A

VESD1

Electrostatic discharge (R = 1.5 KΩ,

4000

 

V

C = 100 pF)

 

VESD2

Electrostatic discharge on output pin only

16500

 

V

(R = 330 Ω, C = 150 pF)

 

 

 

 

 

 

 

 

 

 

 

 

Ptot

Total dissipation at Tc = 25 °C

7

 

4.6

W

 

Maximum switching energy (L = 0.7 mH;

 

 

 

 

EMAX

RL = 0 Ω; Vbat = 13.5 V; Tjstart = 150 °C;

40

 

 

mJ

 

IL = 9 A)

 

 

 

 

 

Maximum switching energy (L = 0.6 mH;

 

 

 

 

EMAX

RL = 0 Ω; Vbat = 13.5 V; Tjstart = 150 °C;

 

 

37

mJ

 

IL = 9 A)

 

 

 

 

Tj

Operating junction temperature

Internally limited

°C

Tc

Case operating temperature

Internally limited

°C

Tstg

Storage temperature

-55 to 150

 

°C

6/29

Doc ID 15632 Rev 3

VNN7NV04P-E, VNS7NV04P-E

Electrical specifications

 

 

2.2Thermal data

Table 3.

Thermal data

 

 

 

 

Symbol

Parameter

Value

 

Unit

 

 

 

SOT-223

 

SO-8

 

 

 

 

 

 

 

 

 

 

Rthj-case

Thermal resistance junction-case max

18

 

 

°C/W

Rthj-lead

Thermal resistance junction-lead max

 

 

27

°C/W

Rthj-amb

Thermal resistance junction-ambient max

96(1)

 

90(1)

°C/W

1.When mounted on a standard single-sided FR4 board with 0.5 mm2 of Cu (at least 35 µm thick) connected to all DRAIN pins.

2.3Electrical characteristics

-40 °C < Tj < 150 °C, unless otherwise specified.

Table 4.

Electrical characteristics

 

 

 

 

 

 

 

 

Symbol

Parameter

 

 

 

Test conditions

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

 

Off

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCLAMP

Drain-source clamp

VIN = 0 V; ID = 3.5 A

40

45

55

V

voltage

VCLTH

Drain-source clamp

VIN = 0 V; ID = 2 mA

36

 

 

V

threshold voltage

 

 

VINTH

Input threshold voltage

VDS = VIN; ID = 1 mA

0.5

 

2.5

V

I

Supply current from input

V

DS

= 0 V; V

IN

= 5 V

 

100

150

µA

ISS

pin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VINCL

Input-source clamp

IIN = 1 mA

 

 

 

6

6.8

8

V

voltage

IIN = -1 mA

 

 

 

-1.0

 

-0.3

V

 

 

 

 

 

 

IDSS

Zero input voltage drain

VDS = 13 V; VIN = 0 V; Tj = 25 °C

 

 

30

µA

current (VIN = 0 V)

VDS = 25 V; VIN = 0 V

 

 

75

µA

 

 

 

On

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RDS(on)

Static drain-source on

VIN = 5 V; ID = 3.5 A; Tj = 25 °C

 

 

65

resistance

VIN = 5 V; ID = 3.5 A

 

 

130

 

 

 

Dynamic (Tj = 25 °C, unless otherwise specified)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g (1)

Forward

V

DD

= 13 V; I

D

= 3.5 A

 

9

 

S

transconductance

 

 

fs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COSS

Output capacitance

VDS = 13 V; f = 1 MHz; VIN = 0 V

 

220

 

pF

Doc ID 15632 Rev 3

7/29

Electrical specifications

 

VNN7NV04P-E, VNS7NV04P-E

 

 

 

 

 

 

 

 

Table 4.

Electrical characteristics (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test conditions

 

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

Switching (Tj = 25 °C, unless otherwise specified)

 

 

 

 

 

 

 

 

 

 

 

 

 

td(on)

Turn-on delay time

 

 

 

100

300

ns

 

 

VDD = 15 V; ID = 3.5 A;

 

 

 

 

 

tr

Rise time

 

 

470

1500

ns

Vgen = 5 V; Rgen = RIN MIN = 150 Ω;

 

 

td(off)

Turn-off delay time

 

 

500

1500

ns

(see figure Figure 4)

 

 

tf

Fall time

 

 

 

350

1000

ns

td(on)

Turn-on delay time

 

 

 

0.75

2.3

µs

 

 

VDD = 15 V; ID = 3.5 A;

 

 

 

 

 

tr

Rise time

 

 

4.6

14.0

µs

Vgen = 5 V; Rgen = 2.2 KΩ;

 

 

td(off)

Turn-off delay time

 

 

5.4

16.0

µs

(see figure Figure 4)

 

 

tf

Fall time

 

 

 

3.6

11.0

µs

(dI/dt)on

Turn-on current slope

VDD = 15 V; ID = 3.5 A; Vgen = 5 V;

 

 

6.5

 

A/µs

Rgen = RIN MIN = 150 Ω

 

 

 

 

 

 

 

 

 

 

Qi

Total input charge

VDD = 12 V; ID = 3.5 A; VIN = 5 V;

 

 

18

 

nC

Igen = 2.13 mA (see figure Figure 7)

 

 

 

 

 

 

 

 

 

 

Source drain diode (Tj = 25 °C, unless otherwise specified)

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

Forward on voltage

ISD = 3.5 A; VIN = 0 V

 

 

0.8

 

V

VSD

 

 

 

trr

Reverse recovery time

ISD = 3.5 A; dI/dt = 20 A/µs;

 

 

220

 

ns

Qrr

Reverse recovery charge

VDD = 30 V; L = 200 µH;

 

 

0.28

 

µC

 

 

(see test circuit, figure Figure 5)

 

 

 

 

 

IRRM

Reverse recovery current

 

 

2.5

 

A

Protections (-40 °C < Tj < 150 °C, unless otherwise specified)

 

 

 

 

 

 

 

 

 

 

 

 

 

Ilim

Drain current limit

VIN = 5 V; VDS = 13 V

 

6

9

12

A

tdlim

Step response current

VIN = 5 V; VDS = 13 V

 

 

4.0

 

µs

limit

 

 

 

Tjsh

Overtemperature

 

 

150

175

200

°C

shutdown

 

 

Tjrs

Overtemperature reset

 

 

135

 

 

°C

Igf

Fault sink current

VIN = 5 V; VDS = 13 V; Tj = Tjsh

 

 

15

 

mA

 

Single pulse avalanche

starting Tj = 25 °C; VDD = 24 V; VIN = 5 V;

 

 

 

 

Eas

energy

Rgen = RIN MIN = 150 Ω; L = 24 mH;

 

200

 

 

mJ

 

 

(see Figure 6 and Figure 8)

 

 

 

 

 

1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %

8/29

Doc ID 15632 Rev 3

VNN7NV04P-E, VNS7NV04P-E

Protection features

 

 

3 Protection features

During normal operation, the input pin is electrically connected to the gate of the internal Power MOSFET through a low impedance path.

The device then behaves like a standard Power MOSFET and can be used as a switch from DC up to 50 kHz. The only difference from the user’s standpoint is that a small DC current IISS (typ. 100µA) flows into the input pin in order to supply the internal circuitry.

The device integrates:

Overvoltage clamp protection: internally set at 45 V, along with the rugged avalanche characteristics of the Power MOSFET stage give this device unrivalled ruggedness and energy handling capability. This feature is mainly important when driving inductive loads.

Linear current limiter circuit: limits the drain current ID to Ilim whatever the input pin voltages. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the capability of the heatsink. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the overtemperature threshold Tjsh.

Overtemperature and short circuit protection: these are based on sensing the chip temperature and are not dependent on the input voltage. The location of the sensing element on the chip in the power stage area ensures fast, accurate detection of the junction temperature. Overtemperature cutout occurs in the range 150 to 190 °C, a typical value being 170 °C. The device is automatically restarted when the chip temperature falls of about 15 °C below shutdown temperature.

Status feedback: in the case of an overtemperature fault condition (Tj > Tjsh), the device tries to sink a diagnostic current Igf through the input pin in order to indicate fault condition. If driven from a low impedance source, this current may be used in order to warn the control circuit of a device shutdown. If the drive impedance is high enough so

that the input pin driver is not able to supply the current Igf, the input pin falls to 0 V. This however not affects the device operation: no requirement is put on the current capability of the input pin driver except to be able to supply the normal operation drive current

IISS.

Additional features of this device are ESD protection according to the Human Body model and the ability to be driven from a TTL logic circuit.

Doc ID 15632 Rev 3

9/29

Loading...
+ 20 hidden pages