ST VNH2SP30-E User Manual

Features
VNH2SP30-E
Automotive fully integrated H-bridge motor driver
Type R
VNH2SP30-E
5V logic level compatible inputs
Undervoltage and overvoltage shut-down
Overvoltage clamp
Cross-conduction protection
Linear current limiter
Very low stand-by power consumption
PWM operation up to 20 kHz
Protection against loss of ground and loss of
V
CC
Current sense output proportional to motor
DS(on)
19mΩ max
(per leg)
I
V
out
30A 41V
ccmax
current
Package: ECOPACK
®
Description
The VNH2SP30-E is a full bridge motor driver intended for a wide range of automotive applications. The device incorporates a dual monolithic high side driver and two low side switches. The high side driver switch is designed using STMicroelectronic’s well known and proven proprietary VIPower permits efficient integration on the same die of a true Power MOSFET with an intelligent signal/protection circuitry.

Table 1. Device summary

M0 technology which
MultiPowerSO-30
The low side switches are vertical MOSFETs manufactured using STMicroelectronic’s proprietary EHD (‘STripFET™’) process. The three die are assembled in the MultiPowerSO-30 package on electrically isolated leadframes. This package, specifically designed for the harsh automotive environment offers improved thermal performance thanks to exposed die pads. Moreover, its fully symmetrical mechanical design allows superior manufacturability at board level. The input signals IN
and INB can directly
A
interface to the microcontroller to select the motor direction and the brake condition. The DIAG
/ENA or DIAGB/ENB, when connected to an
A
external pull-up resistor, enable one leg of the bridge. They also provide a feedback digital diagnostic signal. The normal condition operation is explained in Table 12: Truth table in normal
operating conditions on page 14. The motor
current can be monitored with the CS pin by delivering a current proportional to its value. The speed of the motor can be controlled in all possible conditions by the PWM up to 20 kHz. In all cases, a low level state on the PWM pin will turn off both the LS PWM rises to a high level, LS
and LSB switches. When
A
or LSB turn on
A
again depending on the input pin state.
Order codes
Package
Tube Tape and Reel
MultiPowerSO-30 VNH2SP30-E VNH2SP30TR-E
October 2008 Rev 8 1/33
www.st.com
1
Contents VNH2SP30-E
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 PowerSSO-30 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Thermal calculation in clockwise and anti-clockwise operation in steady­state mode 26
4.1.2 Thermal resistances definition (values according to the PCB heatsink area) 26
4.1.3 Thermal calculation in transient mode . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.4 Single pulse thermal impedance definition
(values according to the PCB heatsink area) . . . . . . . . . . . . . . . . . . . . . 26
5 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 MultiPowerSO-30 package mechanical data . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2/33
VNH2SP30-E List of tables
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Block description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. Pin functions description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 7. Logic inputs (INA, INB, ENA, ENB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 8. PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 9. Switching (V
Table 10. Protection and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 11. Current sense (9V < V
Table 12. Truth table in normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 13. Truth table in fault conditions (detected on OUTA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 14. Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 15. Thermal calculation in clockwise and anti-clockwise operation in steady-state mode . . . . 26
Table 16. Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 17. MultiPowerSO-30 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 18. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
=13V, R
CC
= 0.87W , unless otherwise specified) . . . . . . . . . . . . . . . . 10
LOAD
< 16V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
CC
3/33
List of figures VNH2SP30-E
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. Definition of the delay times measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Definition of the low side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Definition of the high side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. Definition of dynamic cross conduction current during a PWM operation. . . . . . . . . . . . . . 13
Figure 8. On state supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. Off state supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 10. High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 11. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 12. Input high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 13. Input low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 14. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 15. High level enable pin current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 16. Delay time during change of operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 17. Enable clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 18. High level enable voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 19. Low level enable voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 20. PWM high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 21. PWM low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 22. PWM high level current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 23. Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 24. Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 25. Current limitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 26. On state high side resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 27. On state low side resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 28. Turn-On delay time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 29. Turn-Off delay time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 30. Output voltage rise time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 31. Output voltage fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 32. Typical application circuit for DC to 20 kHz PWM operation short circuit protection . . . . . 20
Figure 33. Behavior in fault condition (How a fault can be cleared). . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 34. Half-bridge configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 35. Multi-motors configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 36. Waveforms in full bridge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 37. Waveforms in full bridge operation (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 38. MultiPowerSO-30™ PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 39. Chipset configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 40. Auto and mutual Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . 25
Figure 41. MultiPowerSO-30 HSD thermal impedance junction ambient single pulse . . . . . . . . . . . . 27
Figure 42. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse . . . . . . . . . . . . . 27
Figure 43. Thermal fitting model of an H-bridge in MultiPowerSO-30 . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 44. MultiPowerSO-30 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 45. MultiPowerSO-30 suggested pad layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 46. MultiPowerSO-30 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 47. MultiPowerSO-30 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4/33
VNH2SP30-E Block diagram and pin description

1 Block diagram and pin description

Figure 1. Block diagram

V
CC
OVERTEMPERATURE A
CLAMP HS
HS
A
OUT
A
CLAMP LS
LS
A
GND
A

Table 2. Block description

A
DRIVER
CURRENT
LIMITATION A
A
DRIVER
HS
A
1/K
LS
A
Name Description
Logic control
Overvoltage + undervoltage
Allows the turn-on and the turn-off of the high side and the low side switches according to the truth table
Shuts down the device outside the range [5.5V..16V] for the battery voltage
DIAGA/EN
OV + U
V
LOGIC
IN
CS DIAGB/EN
A
PWM
A
OVERTEMPERATURE B
1/K
IN
B
B
CLAMP HS
DRIVER
HS
B
CURRENT
LIMITATION B
CLAMP LS
DRIVER
LS
B
B
B
GND
HS
B
OUT
B
LS
B
B
High side and low side clamp voltage
High side and low side driver
Linear current limiter
Overtemperature protection
Fault detection
Protects the high side and the low side switches from the high voltage on the battery line in all configurations for the motor
Drives the gate of the concerned switch to allow a proper R
DS(on)
for the leg of
the bridge
Limits the motor current by reducing the high side switch gate-source voltage when short-circuit to ground occurs
In case of short-circuit with the increase of the junction’s temperature, shuts down the concerned high side to prevent its degradation and to protect the die
Signals an abnormal behavior of the switches in the half-bridge A or B by pulling low the concerned EN
/DIAGx pin
x
5/33
Block diagram and pin description VNH2SP30-E

Figure 2. Configuration diagram (top view)

OUT
V
IN
ENA/DIAG
PWM
A
Nc
CC
Nc
A
A
Nc
1
OUT
Heat Slug3
V
CC
Heat Slug1
CS
EN
/DIAG
B
B
IN
B
Nc
V
CC
OUT
Heat Slug2
Nc
OUT

Table 3. Pin definitions and functions

15 16
B
Pin No Symbol Function
1, 25, 30 OUT
2, 4, 7, 12, 14, 17, 22, 24, 29
, Heat Slug3 Source of high side switch A / Drain of low side switch A
A
NC Not connected
30
A
OUT Nc GND GND
GND OUT
A
A
A
A
A
Nc V
CC
Nc OUT
B
GND
B
B
GND GND
B
B
Nc OUT
B
3, 13, 23 VCC, Heat Slug1 Drain of high side switches and power supply voltage
6EN
5IN
A
A
/DIAG
A
Status of high side and low side switches A; open drain output
Clockwise input
8 PWM PWM input
9 CS Output of current sense
11 IN
10 EN
15, 16, 21 OUT
26, 27, 28 GND
18, 19, 20 GND
B
/DIAG
B
B
, Heat Slug2 Source of high side switch B / Drain of low side switch B
B
A
B
1. GNDA and GNDB must be externally connected together.
Counter clockwise input
Status of high side and low side switches B; open drain output
Source of low side switch A
Source of low side switch B
(1)
(1)
6/33
VNH2SP30-E Block diagram and pin description

Table 4. Pin functions description

Name Description
V
CC
, GNDBPower grounds; must always be externally connected together
GND
A
OUTBPower connections to the motor
OUT
A,
Battery connection
Voltage controlled input pins with hysteresis, CMOS compatible. These two pins
IN
A, INB
control the state of the bridge in normal operation according to the truth table (brake to VCC, brake to GND, clockwise and counterclockwise).
Voltage controlled input pin with hysteresis, CMOS compatible. Gates of low side
PWM
FETs are modulated by the PWM signal during their ON phase allowing speed control of the motor.
Open drain bidirectional logic pins. These pins must be connected to an external pull
ENA/DIAGA, ENB/DIAG
up resistor. When externally pulled low, they disable half-bridge A or B. In case of fault detection (thermal shutdown of a high side FET or excessive ON state voltage
B
drop across a low side FET), these pins are pulled low by the device (see truth table in fault condition).
Analog current sense output. This output sources a current proportional to the motor
CS
current. The information can be read back as an analog voltage across an external resistor.
7/33
Electrical specifications VNH2SP30-E

2 Electrical specifications

Figure 3. Current and voltage conventions

I
S
V
I
INA
I
INB
I
ENA
I
ENB
V
INA
V
INB
V
ENA
V
ENB
IN
A
IN
B
DIAGA/EN
DIAGB/EN
PWM
I
pw
V
pw
V
CC
OUT
A
OUT
B
A
B
GND
CS
GND
A
B
V
SENSE
I
SENSE
I
V
OUTB
OUTB
I
OUTA
V
OUTA
GND
I
GND
CC

2.1 Absolute maximum ratings

Table 5. Absolute maximum ratings

Symbol Parameter Value Unit
V
I
max
I
R
I
IN
EN
I
pw
V
V
T
T
CC
CS
ESD
j
c
STG
Supply voltage +41 V
Maximum output current (continuous) 30
Reverse output current (continuous) -30
Input current (INA and INB pins) ±10
Enable input current (DIAGA/ENA and DIAGB/ENB pins) ±10
PWM input current ±10
Current sense maximum voltage -3/+15 V
Electrostatic discharge (R = 1.5kΩ, C = 100pF) –CS pin – logic pins – output pins: OUT
, OUTB, V
A
CC
Junction operating temperature Internally limited
Case operating temperature -40 to 150
Storage temperature -55 to 150
A
mAI
2 4 5
kV kV kV
°CT
8/33
VNH2SP30-E Electrical specifications

2.2 Electrical characteristics

VCC = 9V up to 16 V; -40°C < TJ < 150°C, unless otherwise specified.

Table 6. Power section

Symbol Parameter Test conditions Min Typ Max Unit
V
CC
Operating supply voltage
Off state with all Fault Cleared & ENx=0
=INB=PWM=0; Tj= 25°C; VCC=13V
IN
A
=INB=PWM=0
IN
I
S
Supply current
A
Off state: INA=INB=PWM=0
On state:
or INB=5V, no PWM 10 mA
IN
A
= 15A; Tj= 25°C 14
I
R
ONHS
R
ONLS
Static high side resistance
Static low side resistance
OUT
I
= 15A; Tj= -40 to 150°C 28
OUT
= 15A; Tj= 25°C 5
I
OUT
= 15A; Tj= -40 to 150°C 10
I
OUT
High side free-
V
f
wheeling diode
= 15A 0.8 1.1 V
I
f
forward voltage
High side off state
I
L(off)
output current (per channel)
I
RM

Table 7. Logic inputs (INA, INB, ENA, ENB)

Dynamic cross­conduction current
Tj=25°C; V
= 125°C; V
T
j
= 15A (see Figure 7)0.7A
I
OUT
=ENX=0V; VCC=13V 3
OUTX
OUTX
5.5 16 V
12230
60
=ENX=0V; VCC=13V 5
µA µA
mA
mΩ
µA
Symbol Parameter Test conditions Min Typ Max Unit
V
V
V
V
I
I
V
IL
IH
IHYST
ICL
INL
INH
DIAG
Input low level voltage
Input high level voltage 3.25
Normal operation (DIAG as an input pin)
/ENX pin acts
X
1.25
Input hysteresis voltage 0.5
I
=1mA 5.5 6.3 7.5
Input clamp voltage
IN
= -1mA -1.0 -0.7 -0.3
I
IN
Input low current VIN=1.25V 1
Input high current VIN=3.25V 10
Enable output low level voltage
Fault operation (DIAGX/ENX pin acts as an output pin); IEN=1mA
0.4 V
µA
9/33
V
Electrical specifications VNH2SP30-E

Table 8. PWM

Symbol Parameter Test conditions Min Typ Max Unit
V
pwl
I
pwl
V
pwh
I
pwh
V
pwhhyst
V
pwcl
C
INPWM
Table 9. Switching (VCC=13V, R
PWM low level voltage 1.25 V
PWM pin current Vpw= 1.25V 1 µA
PWM high level voltage 3.25 V
PWM pin current Vpw= 3.25V 10 µA
PWM hysteresis voltage 0.5
I
= 1mA VCC+0.3 VCC+0.7 VCC+1.0
PWM clamp voltage
PWM pin input capacitance
pw
I
= -1mA -6.0 -4.5 -3.0
pw
V
=2.5V 25 pF
IN
=0.87Ω , unless otherwise specified)
LOAD
Symbol Parameter Test conditions Min Typ Max Unit
f PWM frequency 0 20 kHz
t
d(on)
t
d(off)
t
r
t
f
t
DEL
Turn-on delay time
Turn-off delay time
Rise time (see Figure 5)11.6
Fall time (see Figure 5)1.22.4
Delay time during change of operating mode
Input rise time < 1µs (see Figure 6)
Input rise time < 1µs (see Figure 6)
250
250
(see Figure 4) 300 600 1800
High side free wheeling
t
rr
diode reverse recovery
(see Figure 7)110ns
time
(1)
t
off(min)
1. To avoid false Short to Battery detection during PWM operation, the PWM signal must be low for a time longer than 6µs.

Table 10. Protection and diagnostic

PWM minimum off time
9V < V L = 250µH; I
<16V; Tj= 25°C;
CC
OUT
= 15A
s
V
µs
Symbol Parameter Test conditions Min Typ Max Unit
Undervoltage shut-down 5.5
V
USD
V
I
V
T
T
LIM
OV
CLP
TSD
TR
HYST
Overvoltage shut-down 16 19 22
High side current limitation 30 50 70 A
Total clamp voltage (VCC to GND) I
Thermal shut-down temperature V
Thermal reset temperature 135
Thermal hysteresis 7 15
10/33
= 15A 43 48 54 V
OUT
= 3.25V 150 175 200
IN
VUndervoltage reset 4.7
°CT
Loading...
+ 23 hidden pages