ST VNP35N07FI, VNB35N07, VNV35N07 User Manual

 

VNP35N07FI

 

VNB35N07/VNV35N07

 

ºOMNIFETº:

 

FULLY AUTOPROTECTED POWER MOSFET

TYPE

Vclamp

RDS( on)

Ilim

VNP35N07FI

70 V

0.028 Ω

35 A

VNB35N07

70 V

0.028 Ω

35 A

VNV35N07

70 V

0.028 Ω

35 A

LINEAR CURRENT LIMITATION

THERMAL SHUT DOWN

SHORT CIRCUIT PROTECTION

INTEGRATED CLAMP

LOW CURRENT DRAWN FROM INPUT PIN

DIAGNOSTIC FEEDBACK THROUGH INPUT PIN

ESD PROTECTION

DIRECT ACCESS TO THE GATE OF THE POWER MOSFET (ANALOG DRIVING)

COMPATIBLE WITH STANDARD POWER MOSFET

DESCRIPTION

The VNP35N07FI, VNB35N07 and VNV35N07 are monolithic devices made using STMicroelectronics VIPower M0 Technology, intended for replacement of standard power MOSFETS in DC to 50 KHz applications. Built-in thermal shut-down, linear current limitation and overvoltage clamp protect the chip in harsh

BLOCK DIAGRAM ( )

ISOWATT220 3

2

1

 

10

1

3

1

D2PAK

PowerSO-10

TO-263

 

enviroments.

Fault feedback can be detected by monitoring the voltage at the input pin.

( ) PowerSO-10 Pin Configuration : INPUT = 6,7,8,9,10; SOURCE = 1,2,4,5; DRAIN = TAB

June 1998

1/13

ST VNP35N07FI, VNB35N07, VNV35N07 User Manual

VNP35N07FI-VNB35N07-VNV35N07

ABSOLUTE MAXIMUM RATING

Symbol

Parameter

 

Val ue

Unit

 

 

Po werSO-10

ISOW AT T220

 

 

 

D2PAK

 

 

VDS

Drain-source Voltage (Vin = 0)

Internally Clamped

V

Vin

Input Voltage

 

18

V

ID

Drain Current

Internally Limited

A

IR

Reverse DC Output Current

 

-50

A

Vesd

Electrostatic Discharge (C= 100 pF, R=1.5 KΩ)

 

2000

V

Pto t

Total Dissipation at Tc = 25 oC

125

40

W

Tj

Operating Junction Temperature

Internally Limited

oC

Tc

Case Operating Temperature

Internally Limited

oC

Tst g

Storage Temperature

-55 to 150

oC

THERMAL DATA

 

 

 

 

 

ISOW ATT 220

Pow erSO -10

D2PAK

 

Rt hj-ca se

Thermal

Resistance

Junction-case

Max

3.12

1

1

oC/W

Rt hj-a mb

Thermal

Resistance

Junction-ambient

Max

62.5

50

62.5

oC/W

ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified) OFF

Symb ol

Parameter

Test Cond ition s

Mi n. Typ . Max. Un it

VCLAMP

Drain-source Clamp

ID = 200 mA

Vin = 0

60

70

80

V

 

Voltage

 

 

 

 

 

 

VCL TH

Drain-source Clamp

ID = 2 mA

Vin = 0

55

 

 

V

 

Threshold Voltage

 

 

 

 

 

 

VI NCL

Input-Source Reverse

Iin = -1 mA

 

-1

 

-0.3

V

 

Clamp Voltage

 

 

 

 

 

 

IDSS

Zero Input Voltage

VDS = 13 V

Vin = 0

 

 

50

μA

 

Drain Current (Vin = 0)

VDS = 25 V

Vin = 0

 

 

200

μA

II SS

Supply Current from

VDS = 0 V

Vin = 10 V

 

250

500

μA

 

Input Pin

 

 

 

 

 

 

ON ( )

Symb ol

Parameter

 

Test Cond ition s

Mi n. Typ . Max.

Un it

VIN(th)

Input Threshold

VDS = Vin

ID + Iin = 1 mA

0.8

3

V

 

Voltage

 

 

 

 

 

RDS( on)

Static Drain-source On

Vi n = 10 V

ID = 18 A

 

0.028

Ω

 

Resistance

Vi n = 5 V

ID = 18 A

 

0.035

Ω

DYNAMIC

Symb ol

Parameter

Test Cond ition s

Mi n. Typ . Max. Un it

gfs ( ) Forward

VDS = 13 V

ID = 18 A

20

25

S

 

Transconductance

 

 

 

 

 

Coss

Output Capacitance

VDS = 13 V

f = 1 MHz Vin = 0

 

980 1400

pF

2/13

VNP35N07FI-VNB35N07-VNV35N07

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ( )

Symb ol

Parameter

td(on)

Turn-on Delay Time

tr

Rise Time

td(of f)

Turn-off Delay Time

tf

Fall Time

td(on)

Turn-on Delay Time

tr

Rise Time

td(of f)

Turn-off Delay Time

tf

Fall Time

(di/dt)on

Turn-on Current Slope

Qi

Total Input Charge

Test Cond ition s

Mi n. Typ . Max.

Un it

VDD = 28 V

Id = 18 A

100

200

ns

Vgen = 10 V

Rgen = 10 Ω

350

600

ns

(see figure 3)

 

650

1000

ns

 

 

200

350

ns

VDD = 28 V

Id = 18 A

500

800

ns

Vgen = 10 V

Rgen = 1000 Ω

2.7

4.2

μs

(see figure 3)

 

10

16

μs

 

 

4.3

6.5

μs

VDD = 28 V

ID = 18 A

60

 

A/μs

Vi n = 10 V

Rgen = 10 Ω

 

 

 

VDD = 12 V

ID = 18 A Vi n = 10 V

100

 

nC

SOURCE DRAIN DIODE

Symb ol

Parameter

Test Cond ition s

Mi n. Typ .

Max.

Un it

VSD ( )

Forward On Voltage

ISD = 18 A

Vin = 0

 

1.6

V

tr r( )

Reverse Recovery

ISD = 18 A

di/dt = 100 A/μs

250

 

ns

Qr r( )

Time

VDD = 30 V

Tj = 25 oC

 

 

μC

Reverse Recovery

(see test circuit, figure 5)

1

 

IRRM ( )

Charge

 

 

 

 

 

Reverse Recovery

 

 

8

 

A

Current

PROTECTION

Symb ol

Parameter

 

Test Cond ition s

Mi n. Typ . Max. Un it

Ilim

Drain Current Limit

Vi n = 10 V

VDS = 13 V

25

35

45

A

 

 

Vi n = 5 V

VDS = 13 V

25

35

45

A

tdl im( )

Step Response

Vi n = 10 V

 

 

35

60

μs

 

Current Limit

Vi n = 5 V

 

 

70

140

μs

Tj sh( ) Overtemperature

 

 

150

 

 

oC

 

Shutdown

 

 

 

 

 

 

Tj rs( )

Overtemperature Reset

 

 

Igf( )

Fault Sink Current

Vi n = 10 V

VDS = 13 V

 

 

Vi n = 5 V

VDS = 13 V

Eas( )

Single Pulse

starting Tj = 25 oC VDD

 

Avalanche Energy

Vi n = 10 V

Rgen = 1 KΩ

( ) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 % ( ) Parameters guaranteed by design/characterization

 

135

oC

 

50

mA

 

20

mA

= 20 V

2.5

J

L = 10 mH

 

 

3/13

VNP35N07FI-VNB35N07-VNV35N07

PROTECTION FEATURES

During normal operation, the Input pin is electrically connected to the gate of the internal power MOSFET. The device then behaves like a standard power MOSFET and can be used as a switch from DC to 50 KHz. The only difference from the user's standpoint is that a small DC current (Iiss) flows into the Input pin in order to supply the internal circuitry.

The device integrates:

-OVERVOLTAGE CLAMP PROTECTION: internally set at 70V, along with the rugged avalanche characteristics of the Power MOSFET stage give this device unrivalled ruggedness and energy handling capability. This feature is mainly important when driving inductive loads.

-LINEAR CURRENT LIMITER CIRCUIT: limits the drain current Id to Ilim whatever the Input pin voltage. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the capability of the heatsink. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the overtemperature threshold Tjsh.

-OVERTEMPERATURE AND SHORT CIRCUIT PROTECTION: these are based on sensing the chip temperature and are not dependent on the input voltage. The location of the sensing element on the chip in the power stage area ensures fast, accurate detection of the junction

temperature. Overtemperature cutout occurs at minimum 150oC. The device is automatically

restarted when the chip temperature falls below 135oC.

-STATUS FEEDBACK: In the case of an overtemperature fault condition, a Status Feedback is provided through the Input pin. The internal protection circuit disconnects the

input from the gate and connects it instead to ground via an equivalent resistance of 100 Ω. The failure can be detected by monitoring the voltage at the Input pin, which will be close to ground potential.

Additional features of this device are ESD protection according to the Human Body model and the ability to be driven from a TTL Logic circuit (with a small increase in RDS(on)).

4/13

Loading...
+ 9 hidden pages