ST VIPer53EDIP - E, VIPer53ESP - E User Manual

ST VIPer53EDIP - E, VIPer53ESP - E User Manual

!

VIPer53EDIP - E

VIPer53ESP - E

OFF-line Primary Switch

Features

Switching frequency up to 300kHz

Current mode control with adjustable limitation

Soft start and shut-down control

Automatic burst mode in standby condition (“Blue Angel“ compliant )

Undervoltage lockout with Hysteresis

Integrated start-up current source

Over-temperature protection

Overload and short-circuit control

Overvoltage protection

In compliance with the 2002/95/EC European Directive

Description

The VIPer53E combines an enhanced current mode PWM controller with a high voltage MDMesh Power MOSFET in the same package.

Block diagram

PowerSO-10

DIP-8

Typical applications cover offline power supplies with a secondary power capability ranging up to 30W in wide range input voltage, or 50W in single European voltage range and DIP-8 package and 40W in wide range input voltage, or 65W in single European voltage range and PowerSO-10 package, with the following benefits:

Overload and short-circuit events controlled by feedback monitoring and delayed device reset;

Efficient standby mode by enhanced pulse skipping.

Integrated start-up current source is disabled during normal operation to reduce the input power.

 

 

OSC

 

 

 

 

DRAIN

ON/OFF

 

 

 

 

 

 

 

 

OSCILLATOR

 

 

 

 

 

PWM

 

 

 

 

 

 

 

LATCH

 

 

 

 

 

OVERTEMP.

R1

S

 

BLANKING TIME

 

 

 

DETECTOR

 

 

SELECTION

 

 

 

 

FF

Q

1V

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

R3 R4 R5

 

 

 

 

 

 

 

 

PWM

 

HCOMP

 

UVLO

 

 

 

COMPARATOR

0.5V

 

COMPARATOR

 

 

 

 

 

 

 

VDD

 

 

 

150/400ns

 

 

 

 

 

 

BLANKING

 

CURRENT

 

 

 

 

 

 

 

8.4/

 

 

 

 

 

AMPLIFIER

 

11.5V

 

 

 

 

 

 

 

8V

 

 

 

STANDBY

 

Vcc

 

 

 

 

COMPARATOR

0.5V

 

 

 

 

 

 

 

 

125k

 

 

 

 

 

IC OMP

 

4V

 

 

 

OVERLOAD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMPARATOR

4.4V

 

 

 

 

 

 

 

 

 

OVERVOLTAGE

 

 

 

 

 

 

 

COMPARATOR

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5V

 

18V

 

 

 

 

 

 

 

TOVL

 

 

 

 

 

COMP

SOURCE

January 2006

 

 

DocRev1

 

 

 

1/31

 

 

 

 

 

 

 

www.st.com

Contents

VIPer53EDIP - E / VIPer53ESP - E

 

 

Contents

1

Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 3

 

1.1

Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

 

1.2

Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

2

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

3

Pin connections and function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

4

Rectangular U-I Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .

8

5

Secondary Feedback Configuration Example . . . . . . . . . . . . . . . . . . . .

9

6

Current Mode Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

7

Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

8

High Voltage Start-up Current Source . . . . . . . . . . . . . . . . . . . . . . . . . .

13

9

Short-Circuit and Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . .

15

10

Regulation Loop Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

11

Special Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

12

Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

13

Operation pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

14

Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

15

Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

16

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

2/31

DocRev1

VIPer53EDIP - E / VIPer53ESP - E

Electrical data

 

 

1 Electrical data

1.1Maximum rating

Stressing the device above the rating listed in the “Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 1.

Absolute maximum rating

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

VDS

Continuous Drain Source Voltage (TJ= 25 ... 125°C) (1)

-0.3 ... 620

V

ID

Continuous Drain Current

Internally limited

A

 

 

 

 

VDD

Supply Voltage

0 ... 19

V

VOSC

OSC Input Voltage Range

0 ... VDD

V

ICOMP

COMP and TOVL Input Current Range (1)

-2 ... 2

mA

ITOVL

 

 

 

 

Electrostatic Discharge:

 

 

VESD

Machine Model (R = 0Ω; C = 200pF)

200

V

 

Charged Device Model

1.5

kV

 

 

 

 

TJ

Junction Operating Temperature

Internally limited

°C

 

 

 

 

TC

Case Operating Temperature

-40 to 150

°C

 

 

 

 

TSTG

Storage Temperature

-55 to 150

°C

1.In order to improve the ruggedness of the device versus eventual drain overvoltages, a resistance of 1kΩ should be inserted in series with the TOVL pin.\

1.2Thermal data

Table 2.

Thermal data

 

 

 

 

Symbol

Parameter

 

PowerSO-10 (1)

DIP-8 (2)

Unit

 

 

 

 

 

 

RthJC

Thermal Resistance Junction-case

Max

2

20

°C/W

RthJA

Thermal Resistance Ambient-case

Max

60

80

°C/W

1.When mounted on a standard single-sided FR4 board with 50mm² of Cu (at least 35 mm thick) connected to the DRAIN pin.

2.When mounted on a standard single-sided FR4 board with 50mm² of Cu (at least 35 mm thick) connected to the device tab.

DocRev1

3/31

Electrical characteristics

VIPer53EDIP - E / VIPer53ESP - E

 

 

2 Electrical characteristics

TJ = 25°C, VDD = 13V, unless otherwise specified

 

 

 

 

Table 3.

Power section

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

 

Test conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

BVDSS

Drain-Source

ID = 1mA; VCOMP = 0V

620

 

 

V

Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDSS

Off State Drain

VDS = 500V; VCOMP = 0V; Tj = 125°C

 

 

150

µA

Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Static Drain-Source

ID = 1A; VCOMP = 4.5V; VTOVL = 0V

 

 

 

 

RDS(on)

TJ = 25°C

 

 

0.9

1

On State Resistance

 

 

 

TJ = 100°C

 

 

 

1.7

 

 

 

 

 

 

 

 

 

 

 

 

tfv

Fall Time

ID = 0.2A; VIN = 300V (1)

 

100

 

ns

trv

Rise Time

ID = 1A; VIN = 300V (1)

 

50

 

ns

Coss

Drain Capacitance

VDS = 25V

 

 

170

 

pF

CEon

Effective Output

200V < V

DSon

< 400V (2)

 

60

 

pF

Capacitance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.On clamped inductive load

2.This parameter can be used to compute the energy dissipated at turn on Eton according to the initial drain to source voltage VDSon and the following formula:

E

 

=

1

C

 

300

2

VDSon

1.5

ton

--

Eon

 

----------------

 

 

2

 

 

 

300

 

Table 4.

Oscillator Section

 

 

 

 

Symbol

Parameter

Test Conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

FOSC1

Oscillator Frequency

RT = 8kΩ; CT = 2.2nF

95

100

105

kHz

Initial Accuracy

Figure 15 on page 23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RT = 8kΩ; CT = 2.2nF

 

 

 

 

FOSC2

Oscillator Frequency

Figure 17 on page 24

93

100

107

kHz

Total Variation

VDD = VDDon ... VDDovp;

 

 

 

 

 

 

 

TJ = 0 ... 100°C

 

 

 

 

VOSChi

Oscillator Peak

 

 

9

 

V

Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOSClo

Oscillator Valley

 

 

4

 

V

Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4/31

DocRev1

VIPer53EDIP - E / VIPer53ESP - E

 

 

 

 

 

Electrical characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.

Supply Section

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

 

 

Test Conditions

 

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDSstart

Drain Voltage Starting

 

VDD = 5V; IDD = 0mA

 

 

34

50

V

 

Threshold

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDDch1

Startup Charging Current

VDD = 0 ... 5V; VDS = 100V

 

 

-12

 

mA

 

Figure 9 on page 22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDDch2

Startup Charging Current

VDD = 10V; VDS = 100VFigure 9.

 

 

-2

 

mA

 

IDDchoff

Startup Charging Current

VDD = 5V; VDS = 100VFigure 11.

 

0

 

 

mA

 

in Thermal Shutdown

 

TJ > TSD - THYST

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

Operating Supply Current

F

= 0kHz; V

COMP

= 0V

 

 

8

11

mA

 

DD0

Not Switching

 

sw

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

Operating Supply Current

F

=100kHz

 

 

 

 

9

 

mA

 

DD1

Switching

 

sw

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDDoff

VDD Undervoltage

 

Figure 9 on page 22

 

7.5

8.4

9.3

V

 

Shutdown Threshold

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDDon

VDD Startup Threshold

 

Figure 9.

 

 

 

10.2

11.5

12.8

V

 

VDDhyst

VDD Threshold

 

Figure 9.

 

 

 

2.6

3.1

 

V

 

Hysteresis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDDovp

VDD Overvoltage

 

Figure 9.

 

 

 

17

18

19

V

 

Shutdown Threshold

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.

Pwm Comparator Section

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

 

 

Test Conditions

 

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

HCOMP

VCOMP / IDPEAK

VCOMP = 1 ... 4 V Figure 14.

 

 

 

 

 

 

dID/dt = 0

 

 

 

1.7

2

2.3

V/A

 

 

 

 

 

 

 

VCOMPos

VCOMP Offset

dID/dt = 0 Figure 14.

 

 

 

0.5

 

V

 

 

Peak Drain Current

ICOMP = 0mA; VTOVL = 0V

 

 

 

 

 

 

IDlim

Figure 14.

 

 

 

 

 

 

 

 

Limitation

 

 

 

1.7

2

2.3

A

 

 

dID/dt = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDmax

Drain Current

VCOMP = VCOMPovl; VTOVL = 0V

 

 

 

 

 

 

Capability

dID/dt = 0

 

 

 

1.6

1.9

2.3

A

 

 

 

 

 

 

td

Current Sense Delay

ID = 1A

 

 

 

 

250

 

ns

 

to Turn-Off

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCOMPbl

VCOMP Blanking Time

Figure 10 on page 22

 

 

 

1

 

V

 

Change Threshold

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tb1

Blanking Time

VCOMP < VCOMPBLFigure 10.

 

300

400

500

ns

 

tb2

Blanking Time

VCOMP > VCOMPBLFigure 10.

 

100

150

200

ns

 

tONmin1

Minimum On Time

VCOMP < VCOMPBL

 

 

450

600

750

ns

DocRev1

5/31

Electrical characteristics

 

 

 

 

VIPer53EDIP - E / VIPer53ESP - E

 

 

 

 

 

 

 

 

 

Table 6.

Pwm Comparator Section

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

 

 

Test Conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

tONmin2

Minimum On Time

VCOMP > VCOMPBL

250

350

450

ns

 

VCOMPoff

VCOMP Shutdown

Figure 13 on page 23

 

0.5

 

V

 

Threshold

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

COMPhi

V

COMP

High Level

I

COMP

=0mA (1)

 

4.5

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICOMP

COMP Pull Up Current

VCOMP= 2.5V

 

0.6

 

mA

1.In order to ensure a correct stability of the internal current source, a 10nF capacitor (minimum value 8nF) should always be present on the COMP pin.

Table 7.

Overload Protection Section

 

 

 

 

Symbol

Parameter

Test Conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

VCOMPovl

VCOMP Overload

ITOVL = 0mA Figure 7 on page 20

 

4.35

 

V

Threshold

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCOMPhi to VCOMPovl

VDD = VDDoff ... VDDreg;

 

 

 

 

VDIFFovl

ITOVL= 0mA

50

150

250

mV

Voltage Difference

 

Figure 7. (1)

 

 

 

 

 

 

 

 

 

 

VOVLth

VTOVL Overload

Figure 7.

 

4

 

V

Threshold

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tOVL

Overload Delay

COVL = 100nF Figure 7.

 

8

 

ms

1. VCOMPovl is always lower than VCOMPhi

 

 

 

 

Table 8.

Over temperature Protection Section

 

 

 

 

Symbol

Parameter

Test Conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

TSD

Thermal Shutdown

Figure 11 on page 22

140

160

 

°C

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THYST

Thermal Shutdown

Figure 11 on page 22

 

40

 

°C

Hysteresis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Typical Output Power Capability

Type

European

US / Wide range

(195 - 265Vac)

(85 - 265Vac)

 

 

 

 

VIPer53EDIP-E

50W

30W

 

 

 

VIPer53ESP-E

65W

40W

 

 

 

6/31

DocRev1

VIPer53EDIP - E / VIPer53ESP - E

Pin connections and function

 

 

3 Pin connections and function

Figure 1. Pin connection (top view)

 

 

 

 

COMP 1

8

TOVL

DRAIN

 

 

 

 

 

 

NC

1

10

SOURCE

OSC 2

7

VDD

NC

2

9

NC

 

 

 

NC

3

8

NC

SOURCE 3

6

NC

VDD

4

7

OSC

 

 

 

TOVL

5

6

COMP

SOURCE 4

5

DRAIN

 

 

 

 

DIP-8

PowerSO-10

Figure 2. Current and voltage conventions

 

 

IDD

 

ID

 

VDD

 

DRAIN

 

IOSC

 

 

 

OSC

 

 

 

15V

 

 

VDD

 

 

VDS

TOVL

COMP

SOURCE

 

ITOVL

 

 

 

VOSC

 

 

 

 

ICOMP

 

 

VTOVL

 

 

 

 

VCOMP

 

Table 10.

Pin function

Pin Name

 

Pin Function

 

 

 

 

 

Power supply of the control circuits. Also provides the charging current of the external

 

 

capacitor during start-up.

VDD

 

The functions of this pin are managed by four threshold voltages:

 

- VDDon: Voltage value at which the device starts switching (Typically 11.5 V).

-VDDoff: Voltage value at which the device stops switching (Typically 8.4 V).

-VDDovp: Triggering voltage of the overvoltage protection (Trimmed to 18 V).

SOURCE Power MOSFET source and circuit ground reference.

DRAIN

Power MOSFET drain. Also used by the internal high voltage current source during the start-up phase, to charge the external VDD capacitor.

Allows the setting of the dynamic characteristic of the converter through an external passive network. The useful voltage range extends from 0.5V to 4.5V. The Power

COMP MOSFET is always off below 0.5V, and the overload protection is triggered if the voltage exceeds 4.35V. This action is delayed by the timing capacitor connected to the TOVL pin.

TOVL

Allows the connection of an external capacitor for delaying the overload protection, which is triggered by a voltage on the COMP pin higher than 4.4V.

OSC

Allows the setting of the switching frequency through an external Rt-Ct network.

DocRev1

7/31

Rectangular U-I Output characteristics

VIPer53EDIP - E / VIPer53ESP - E

 

 

4 Rectangular U-I Output characteristics

Figure 3. Off Line Power Supply With Optocoupler Feedback

 

F1

 

 

 

 

 

 

 

 

 

AC IN

C1

 

 

 

D1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1

 

 

 

 

 

 

 

 

R1

 

 

 

 

C2

 

R2

 

 

 

 

 

 

 

C3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T2

 

 

 

 

 

 

 

 

 

D2

 

 

 

 

 

 

 

 

 

 

 

 

L1

 

 

 

 

 

 

 

 

 

D4

 

 

 

 

 

 

 

R4

 

D3

C8

C9

DC OUT

 

 

 

 

 

 

 

 

 

 

 

 

R3

 

VDD

 

DRAIN

 

 

 

 

 

 

 

 

 

 

C10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSC

 

CONTROL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R8

 

 

C4

 

COMP

 

TOVL

SOURCE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U2

 

 

 

 

 

 

R5

R9

 

 

 

 

 

 

 

 

C12

1k

 

 

 

 

 

 

 

C5

 

 

 

 

 

 

 

 

10nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C7

C6

 

 

 

C11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R7

 

 

 

 

 

 

 

 

 

U3

 

 

 

 

 

 

 

 

 

 

 

R6

 

8/31

DocRev1

VIPer53EDIP - E / VIPer53ESP - E

Secondary Feedback Configuration Example

 

 

5 Secondary Feedback Configuration Example

The secondary feedback is implemented through an optocoupler driven by a programmable zener diode (TL431 type) as shown in Figure 3 on page 8

The optocoupler is connected in parallel with the compensation network on the COMP pin which delivers a constant biasing current of 0.6mA to the optotransistor. This current does not depend on the compensation voltage, and so it does not depend on the output load either. Consequently, the gain of the optocoupler ensures a constant biasing of the TL431 device (U3), which is responsible for secondary regulation. If the optocoupler gain is sufficiently low, no additional components are required to a minimum current biasing of U3. Additionally, the low biasing current protects the optocoupler from premature failure.

The constant current biasing can be used to simplify the secondary circuit: instead of a TL431, a simple zener and resistance network in series with the optocoupler diode can insure a good secondary regulation. Current flowing in this branch remains constant just as it does by using a TL431, so typical load regulation of 1% can be achieved from zero to full output current with this simple configuration.

Since the dynamic characteristics of the converter are set on the secondary side through components associated to U3, the compensation network has only a role of gain stabilization for the optocoupler, and its value can be freely chosen. R5 can be set to a fixed value of 2.2kΩ, offering the possibility of using C7 as a soft start capacitor: When starting up the converter, the VIPer53E device delivers a constant current of 0.6mA on the COMP pin, creating a constant voltage of 1.3V in R5 and a rising slope across C7. This voltage shape, together with the operating range of 0.5V to 4.5V provides a soft startup of the converter. The rising speed of the output voltage can be set through the value of C7. The C4 and C6 values must be adjusted accordingly in order to ensure a correct startup.

DocRev1

9/31

Current Mode Topology

VIPer53EDIP - E / VIPer53ESP - E

 

 

6 Current Mode Topology

The VIPer53E implements the conventional current mode control method for regulating the output voltage. This kind of feedback includes two nested regulation loops:

The inner loop controls the peak primary current cycle by cycle. When the Power MOSFET output transistor is on, the inductor current (primary side of the transformer) is monitored

with a SenseFET technique and converted into a voltage. When VS reaches VCOMP, the power switch is turned off. This structure is completely integrated as shown on the Block

Diagram of Figure on page 1, with the current amplifier, the PWM comparator, the blanking time function and the PWM latch. The following formula gives the peak current in the Power MOSFET according to the compensation voltage:

IDpeak

VCOMP VCOMPos

= -------------------------------------------------

 

HCOMP

The outer loop defines the level at which the inner loop regulates peak current in the power switch. For this purpose, VCOMP is driven by the feedback network (TL431 through an optocoupler in secondary feedback configuration, see Figure 3 on page 8) and is sets accordingly the peak drain current for each switching cycle.

As the inner loop regulates the peak primary current in the primary side of the transformer, all input voltage changes are compensated for before impacting the output voltage. This results in an improved line regulation, instantaneous correction to line changes, and better stability for the voltage regulation loop.

Current mode topology also provides a good converter start-up control. The compensation voltage can be controlled to increase slowly during the start-up phase, so the peak primary current will follow this soft voltage slope to provide a smooth output voltage rise, without any overshoot. The simpler voltage mode structure which only controls the duty cycle, leads generally to high current at start-up with the risk of transformer saturation.

An integrated blanking filter inhibits the PWM comparator output for a short time after the integrated Power MOSFET is switched on. This function prevents anomalous or premature termination of the switching pulse in the case of current spikes caused by primary side transformer capacitance or secondary side rectifier reverse recovery time when working in continuous mode.

10/31

DocRev1

Loading...
+ 21 hidden pages