ST TSC103 User Manual

High-voltage, high-side current sense amplifier
Features
Independent supply and input common-mode
voltages
2.9 to 70 V in single-supply configuration
-2.1 to 65 V in dual-supply configuration
Wide common-mode surviving range:
-16 to 75 V (reversed battery and load-dump conditions)
Supply voltage range:
2.7 to 5.5 V in single-supply configuration
Low current consumption: I
Pin selectable gain: 20 V/V, 25 V/V, 50 V/V or
max = 360 µA
CC
100 V/V
Buffered output
,
TSC103
TSSOP8
(Plastic package)
SO-8
(Plastic package)
Applications
Automotive current monitoring
DC motor control
Photovoltaic systems
Battery chargers
Precision current sources
Current monitoring of notebook computers
Uninterruptible power supplies
High-end power supplies
Description
The TSC103 measures a small differential voltage on a high-side shunt resistor and translates it into a ground-referenced output voltage. The gain is adjustable to four different values from 20 V/V up to 100 V/V by two selection pins.
Wide input common-mode voltage range, low quiescent current, and tiny TSSOP8 packaging enable use in a wide variety of applications.
Vm
SEL1
SEL2
Ou
1
2
3
t
4
Vp
8
Vcc-
7
Gnd
6
Vcc+
5
Pin connections
(top view)
The input common-mode and power-supply voltages are independent. The common-mode voltage can range from 2.9 to 70 V in the single­supply configuration or be offset by an adjustable voltage supplied on the Vcc- pin in the dual­supply configuration.
With a current consumption lower than 360 µA and a virtually null input leakage current in standby mode, the power consumption in the applications is minimized.
November 2011 Doc ID 16873 Rev 2 1/26
www.st.com
26
Contents TSC103
Contents
1 Application schematic and pin description . . . . . . . . . . . . . . . . . . . . . . 3
2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Electrical characteristics curves: current sense amplifier . . . . . . . . . 10
5 Parameter definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Common mode rejection ratio (CMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Supply voltage rejection ratio (SVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Gain (Av) and input offset voltage (V
) . . . . . . . . . . . . . . . . . . . . . . . . . . 13
os
5.4 Output voltage drift versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5 Input offset drift versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6 Output voltage accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 Maximum permissible voltages on pins . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.1 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.2 TSSOP-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2/26 Doc ID 16873 Rev 2
TSC103 Application schematic and pin description

1 Application schematic and pin description

The TSC103 high-side current sense amplifier can be used in either single- or dual-supply mode. In the single-supply configuration, the TSC103 features a wide 2.9 V to 70 V input common-mode range totally independent of the supply voltage. In the dual-supply range, the common-mode range is shifted by the value of the negative voltage applied on the Vcc­pin. For instance, with Vcc+ = 5 V and Vcc- = -5 V, then the input common-mode range is
-2.1 V to 65 V.

Figure 1. Single-supply configuration schematic

Vsense
Iload
Rsense
Rsense
Vp Vm
Vp Vm
Rg1
Rg1
Rg2
Rg2
Iload
Sense
amplifier
Common-mode voltage: 2.9 V to 70 V
load
load
Vcc+
Vcc+
Voltage
buffer
SEL1
SEL2
Vcc
Vcc
GPIO1
GPIO2
5 V
Vout
ADC
Gnd
TSC103
Vcc-
Rg3
Gnd
K2
Out
µ Controller
AM04517
Doc ID 16873 Rev 2 3/26
Application schematic and pin description TSC103

Figure 2. Dual-supply configuration schematic

Vsense
Iload
Rsense
Common-mode voltage: -2.1 V to 65 V
load
5 V
Vp Vm Vcc+
Out
SEL1
TSC103
Vcc-
SEL2
Gnd
Vout
GPIO1
GPIO2
Vcc
ADC
µController
Gnd
-5 V
AM04518
4/26 Doc ID 16873 Rev 2
TSC103 Application schematic and pin description

Figure 3. Common-mode versus supply voltage in dual-supply configuration

Vicm
common-mode voltage
operating range
Max = 70 V
min = 2.9 V
V
= 0 V V
cc-
Max = 65 V
min = -2.1 V
= -5 V
cc-
Max = 60 V
min = -7.1 V
V
= -10 V
cc-
Single-supply Dual-supply
AM04519
Ta bl e 1 describes the function of each pin. Their position is shown in the illustration on the
cover page and in Figure 1 on page 3.

Table 1. Pin description

Symbol Type Function
Out Analog output
Gnd Power supply Ground line.
Vcc+ Power supply Positive power supply line.
Vcc- Power supply Negative power supply line.
Vp Analog input
Vm Analog input
SEL1 Digital input Gain-select pin.
SEL2 Digital input Gain-select pin.
The Out voltage is proportional to the magnitude of the sense voltage V
p-Vm
.
Connection for the external sense resistor. The measured current enters the shunt on the V
side.
p
Connection for the external sense resistor. The measured current exits the shunt on the V
side.
m
Doc ID 16873 Rev 2 5/26
Absolute maximum ratings and operating conditions TSC103

2 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings

Symbol Parameter Value Unit
V
V
in_sense
V
in_sel
V
cc+
V
cc+-Vcc-
V
out
T
stg
T
id
Input pins differential voltage (Vp-Vm)±20V
Sensing pins input voltages (Vp, Vm)
Gain selection pins input voltages (SEL1, SEL2)
Positive supply voltage
(2)
(1)
(2)
-16 to 75 V
-0.3 to V
+0.3 V
cc+
-0.3 to 7 V
DC supply voltage 0 to 15 V
DC output pin voltage
(2)
-0.3 to V
+0.3 V
cc+
Storage temperature -55 to 150 °C
Maximum junction temperature 150 °C
j
TSSOP8 thermal resistance junction to ambient 120 °C/W
R
thja
ESD
1. These voltage values are measured with respect to the V
2. These voltage values are measured with respect to the Gnd pin.
3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
5. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 3. Operating conditions

SO-8 thermal resistance junction to ambient 125 °C/W
(4)
(3)
(5)
cc-
2.5 kV
150 V
1.5 kV
pin.
HBM: human body model
MM: machine model
CDM: charged device model
Symbol Parameter Value Unit
Supply voltage in single-supply configuration from
V
cc+
T
to T
min
(V
max
connected to Gnd = 0 V)
cc-
Negative supply voltage in dual-supply configuration from T
V
cc-
V
T
icm
oper
V
= 5.5 V max -8 to 0 V
cc+
V
= 3 V max -11 to 0 V
cc+
Common-mode voltage range referred to pin Vcc ­(T
min
to T
max
)
Operational temperature range (T
min
to T
6/26 Doc ID 16873 Rev 2
max
min
to T
2.7 to 5.5 V
2.9 to 70 V
) -40 to 125 °C
max
TSC103 Electrical characteristics

3 Electrical characteristics

The electrical characteristics given in the following tables are measured under the following test conditions unless otherwise specified.
T
V

Table 4. Supply

Symbol Parameter Test conditions Min. Typ. Max. Unit
=25°C, V
amb
sense=Vp-Vm
cc+
=5V, V
connected to Gnd (single-supply configuration).
cc-
=50mV, Vm= 12 V, no load on Out, all gain configurations.
I
CC
I
CC1

Table 5. Input

Total supply current V
Total supply current
= 0 V, T
sense
= 50 mV Av = 50 V/V
V
sense
< T
T
min
Symbol Parameter Test conditions Min. Typ. Max. Unit
DC common-mode rejection
DC CMR
Variation of V
out
referred to input
versus V
(1)
icm
AC common-mode rejection
AC CMR
Variation of V
versus V
out
referred to input (peak-to-peak
icm
voltage variation)
Supply voltage rejection
SVR
Variation of V
versus V
out
CC
(2)
SEL1 = Gnd, SEL2 = Gnd
V
Input offset voltage
os
(3)
dVos/dT Input offset drift vs. T
Input leakage current
I
lk
I
Input bias current
ib
V
V
I
1. See Chapter 5: Parameter definitions on page 13 for the definition of CMR.
2. See Chapter 5 for the definition of SVR.
3. See Chapter 5 for the definition of V
Logic low voltage threshold (SEL1
IL
and SEL2)
Logic high voltage threshold (SEL1
IH
and SEL2)
Gain-select pins (SEL1 and SEL2)
sel
input bias current
.
os
2.9 V< Vm < 70 V < T
T
min
Av=50V/V or 100V/V
2.9 V< V
1kHz sine wave
2.7 V< V
V
=30mV
sense
< T
T
min
T
=25°C
amb
T
< T
min
Av = 50 V/V
< T
T
min
V
=0V
CC
< T
T
min
V
=0V
sense
< T
T
min
V
min
CC
T
< T
min
V
min
CC
T
< T
min
SEL pin connected to GND or
V
T
min
CC
min
< T
amb
max
< T
amb
max
< 30 V
m
< 5.5 V
CC
< T
amb
max
< T
amb
max
< T
amb
max
< T
amb
max
< T
amb
max
< VCC < V
< T
amb
max
< VCC < V
< T
amb
max
< T
< T
amb
< T
CC
CC
amb
max
max
max
< T
max
200 360 µA
300 480 µA
90 105 dB
95 dB
85 95 dB
-20 +5 µV/°C
10 15 µA
-0.3 0.5 V
1.2 V
400 nA
±500
±1100
µV
A
CC
V
Doc ID 16873 Rev 2 7/26
Electrical characteristics TSC103

Table 6. Output

Symbol Parameter Test conditions Min. Typ. Max. Unit
Av Gain
/ΔT Output voltage drift vs. T
ΔV
out
ΔV
/ΔI
out
Output stage load regulation
out
(1)
SEL1 = Gnd, SEL2 = Gnd SEL1 = Gnd, SEL2 = Vcc+ SEL1 = Vcc+, SEL2 = Gnd SEL1 = Vcc+, SEL2 = Vcc+
Av = 50 V/V T
< T
amb
< T
out
max
<10 mA
min
-10 mA < I I
sink or source current
out
20 25 50
100
±240 ppm/°C
0.3 ±1.5 mV/mA
Av = 50 V/V
amb
amb
amb
amb
amb
< T
< T
< T
< T
< T
(3)
max
(3)
max
max
max
amb
max
amb
amb
=25° C
=25° C
=25° C
or
CC
±2.5
±4
±3.5
±5
±3.5
±5
±5.5
±8
±10 ±22
15 26 mA
ΔV
ΔV
ΔV
ΔV
ΔV
V
=50mV
Total output voltage accuracy
out
Total output voltage accuracy
out
Total output voltage accuracy
out
Total output voltage accuracy
out
Total output voltage accuracy
out
I
sc
Short-circuit current
(2)
sense
T
=25°C
amb
T
< T
min
V
=90mV
sense
T
=25°C
amb
< T
T
min
=20mV T
V
sense
T
< T
min
V
=10mV T
sense
T
< T
min
=5mV T
V
sense
< T
T
min
OUT connected to V GND
V/V
%
%
%
%
%
Output stage high-state saturation
V
OH
V
1. See Chapter 5: Parameter definitions on page 13 for the definition of output voltage drift versus temperature.
2. Output voltage accuracy is the difference with the expected theoretical output voltage V more detailed definition.
3.
Except for Av = 100 V/V.
voltage VOH=VCC-V
Output stage low-state saturation
OL
voltage
out
V
sense
I
out
V
sense
I
out
=1V
=1mA
=-1 V
=1mA
out-th
=Av*V
85 135 mV
80 125 mV
. See Chapter 5 for a
sense
8/26 Doc ID 16873 Rev 2
TSC103 Electrical characteristics

Table 7. Frequency response

Symbol Parameter Test conditions Min. Typ. Max. Unit
square pulse applied to
V
sense
generate a variation of Vout from 500 mV to 3 V
=47pF
C
Response to input differential
ts
voltage change. Output settling to 1% of final value
load
Av = 20 V/V, 3 µs
Av = 25 V/V 4 µs
Av = 50 V/V 6 µs
Av = 100 V/V 10 µs
t
SEL
Response to a gain change. Output settling to 1% of final value
Response to common-mode
rec
voltage change.
t
Output settling to 1% of final value
SR Slew rate V
BW 3 dB bandwidth
Any change of state of SEL1 or SEL2 pin
V
=5V, V
cc+
=-5V
cc-
Vm step change from -2 V to
s
20 µs
30 V or 30 V to -2 V
=10mV to 100mV 0.4 0.6 V/µs
sense
C
=47pF Vm=12V
load
V
sense
=50mV
700 kHz
Av = 50 V/V

Table 8. Noise

Symbol Parameter Test conditions Min. Typ. Max. Unit
e
Equivalent input noise voltage f = 1 kHz 40 nV/√ Hz
N
Doc ID 16873 Rev 2 9/26

Electrical characteristics curves: current sense amplifier TSC103

-25
-20
-15
-10
-5
0
5
10
15
20
25
020406080100
Vsense(mV)
Typical accuracy
0
50
100
150
200
250
300
350
400
-100 -50 0 50 100
Icc (μA)
Vsense (mV)
4 Electrical characteristics curves: current sense
amplifier
Unless otherwise specified, the test conditions for the following curves are:
Tamb = 25°C, V
No load on Out pin.
Figure 4. Output voltage vs. Vsense Figure 5. Output voltage accuracy vs. Vsense
6
5
4
3
2
Vout (V)
1
0
-20 0 20 40 60 80 100 120
Vsense (mV)
= 5 V, Vsense = Vp - Vm = 50 mV, Vm = 12 V.
CC
delta in (%)
Guaranteed accuracy vs. T
Guaranteed
accuracy @25°C
Figure 6. Supply current vs. supply voltage Figure 7. Supply current vs. Vsense
350
300
250
200
150
100
Icc (μA)
T=-40°C
T=-40°C
T=25°C
T = 125 °C
50
0
2.5 3 3.5 4 4.5 5 5.5
Vcc (V)
T=25°C
T = 125 °C
10/26 Doc ID 16873 Rev 2
TSC103 Electrical characteristics curves: current sense amplifier
0
2
4
6
8
10
12
14
16
18
20
-100 -50 0 50 100
T = 125°C
0
200
400
600
800
1000
1200
-10-8-6-4-2 0
T=-40°C
T=25°C
Output stage
sourcing current
Vsense
Figure 8. Vp pin input current vs. Vsense Figure 9. Vn pin input current vs. Vsense
40
35
30
25
T=25°C
T=-40°C
20
15
Ip (μA)
10
5
T = 125°C
0
-100 -50 0 50 100
Vsense (mV)
Figure 10. Output stage low-state saturation
voltage vs. output current (Vsense = -1 V)
1200
1000
Output stage
sinking current
Im (μA)
Figure 11. Output stage high-state saturation
T=25°C
T=-40°C
Vsense (mV)
voltage vs. output current (Vsense = +1 V)
T = 125°C
800
T = 125°C
600
400
Vol (mV)
200
T=25°C
T=-40°C
Voh (mV)
0
0246810
Iout (mA)

Figure 12. Output stage load regulation Figure 13. Step response

1
0
-1
T = 125°C
-2
-3
-4
-5
Output stage
sourcing current
-6
Vout - (Vout @ Iout = 0A) (mV)
-10 -5 0 5 10
T = -40°C
Iout (mA)
T = 25°C
Output stage
sinking current
Vout
Iout (mA)
Time base 4µs/div
Vsense 50mV/div
Vout 500mV/div
Doc ID 16873 Rev 2 11/26
Electrical characteristics curves: current sense amplifier TSC103

Figure 14. Bode diagram Figure 15. Power supply rejection ratio

30
20
10
0
-10
Gain (dB)
-20
-30
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Frequency (Hz)
100
80
60
PSRR (dB)
40
20
10 100 1000 10000 100000
Frequency (Hz)

Figure 16. Noise level

120
100
80
60
40
20
0
Noise level (nv/sqrt(Hz))
Frequency (Hz)
12/26 Doc ID 16873 Rev 2
TSC103 Parameter definitions

5 Parameter definitions

5.1 Common mode rejection ratio (CMR)

The common-mode rejection ratio (CMR) measures the ability of the current-sensing amplifier to reject any DC voltage applied on both inputs V back to the input so that its effect can be compared with the applied differential signal. The CMR is defined by the formula:
ΔV
CMR 20
------------------------------log= ΔV
out
icm

5.2 Supply voltage rejection ratio (SVR)

The supply-voltage rejection ratio (SVR) measures the ability of the current-sensing amplifier to reject any variation of the supply voltage V input so that its effect can be compared with the applied differential signal. The SVR is defined by the formula:
Av
and Vm. The CMR is referred
p
. The SVR is referred back to the
CC
ΔV
out
SVR 20
------------------------------log= ΔV
CC
Av

5.3 Gain (Av) and input offset voltage (Vos)

The input offset voltage is defined as the intersection between the linear regression of the
vs. V
V
out
V
sense=Vsense1
calculated with the following formula.
curve with the X-axis (see Figure 17). If V
sense
and V
is the output voltage with V
out2
V
sense1Vsense2
⎛⎞
V
V
os
sense1
------------------------------------------------
=
⎝⎠
V
out1Vout2
out1
sense=Vsense2
V
is the output voltage with
, then Vos can be
out1
Doc ID 16873 Rev 2 13/26
Parameter definitions TSC103
Figure 17. V
versus V
out
characteristics: detail for low V
sense
Vout
Vout_1
Vout_2
The values of V
sense1
and V
Vos Vsense2
used for the input offset calculations are detailed in
sense2
Vsense1
Ta bl e 9 .

Table 9. Test conditions for Vos voltage calculation

sense
Vsense
values
AM04520
Av (V/V) V
(mV) V
sense1
sense2
(mV)
20 50 5
25 50 5
50 50 5
100 40 5
14/26 Doc ID 16873 Rev 2
TSC103 Parameter definitions

5.4 Output voltage drift versus temperature

The output voltage drift versus temperature is defined as the maximum variation of V
out
with
respect to its value at 25° C over the temperature range. It is calculated as follows:
with T
min
< T
amb
ΔV
-----------------max
ΔT
< T
max
.
out
V
()V
outTamb
--------------------------------------------------------------------------= T
amb
25° C()
out
25° C
Figure 18 provides a graphical definition of the output voltage drift versus temperature. On
this chart V
versus T, and T = 25° C is considered to be the reference.
V
out
is always within the area defined by the maximum and minimum variation of
out

Figure 18. Output voltage drift versus temperature (Av = 50 V/V Vsense = 50 mV)

60
40
20
0
-20
Vout-Vout@25°C (mV)
-40
-60
-60 -40 -20 0 20 40 60 80 100 120 140
T(°C)
Doc ID 16873 Rev 2 15/26
Parameter definitions TSC103

5.5 Input offset drift versus temperature

The input voltage drift versus temperature is defined as the maximum variation of Vos with respect to its value at 25° C over the temperature range. It is calculated as follows:
with T
min
< T
amb
< T
ΔV
os
---------------max
ΔT
.
max
VosT
()Vos25° C()
---------------------------------------------------------------------=
amb
T
amb
25° C
Figure 19. provides a graphical definition of the input offset drift versus temperature. On this
chart V V
os
is always comprised in the area defined by the maximum and minimum variation of
os
versus T, and T = 25° C is considered to be the reference.

Figure 19. Input offset drift versus temperature (Av = 50 V/V)

1.5
1
0.5
0
-0.5
-1
-1.5
Vos-Vos@25°C (mV)
-2
-2.5
-60 -40 -20 0 20 40 60 80 100 120 140

5.6 Output voltage accuracy

The output voltage accuracy is the difference between the actual output voltage and the theoretical output voltage. Ideally, the current sensing output voltage should be equal to the input differential voltage multiplied by the theoretical gain, as in the following formula.
=Av.V
V
out-th
The actual value is very slightly different, mainly due to the effects of:
the input offset voltage V
the non-linearity.
16/26 Doc ID 16873 Rev 2
sense
os
,
T(°C)
TSC103 Parameter definitions
Figure 20. V
out
vs. V
theoretical and actual characteristics
sense
Vout
Actual
Ideal
Vout accuracy for Vsense = 5 mV
Vsense
5 mV
AM04521
The output voltage accuracy, expressed as a percentage, can be calculated with the following formula,
ΔV
out
abs V
---------------------------------------------------------------------------=
out
Av V
Av V
()()
sense
sense
with 20 V/V, 25 V/V, 50 V/V or 100 V/V depending on the configuration of the SEL1 and SEL2 pins.
Doc ID 16873 Rev 2 17/26
Maximum permissible voltages on pins TSC103

6 Maximum permissible voltages on pins

The TSC103 can be used in either a single or dual supply configuration. The dual-supply configuration is achieved by disconnecting Vcc- and Gnd, and connecting Vcc- to a negative supply. Figure 21 illustrates how the absolute maximum voltages on input pins Vp and Vm are referred to the Vcc- potential, while the maximum voltages on the positive supply pin, gain selection pins and output pins are referred to the Gnd pin. It should also be noted that the maximum voltage between Vcc- and Vcc+ is limited to 15 V.

Figure 21. Maximum voltages on pins

Vp and Vm
+75 V
SEL1, SEL2 and Out
Vcc+
+15 V +7 V
Vcc+
Vcc+
+ 0.3 V
Vcc- Vcc-
-16 V
Vp and Vm
Gnd
-0.3V
Vcc+
Gnd
-0.3 V
SEL1, SEL2 and Out
AM04522
18/26 Doc ID 16873 Rev 2
TSC103 Application information

7 Application information

The TSC103 can be used to measure current and to feed back the information to a microcontroller.

Figure 22. Single-supply configuration schematic

Vsense
Iload
Rsense
Rsense
Vp Vm
Vp Vm
Rg1
Rg1
Rg2
Rg2
Iload
Sense
amplifier
Common-mode voltage: 2.9 V to 70 V
load
load
Vcc+
Vcc+
Voltage
buffer
SEL1
SEL2
Vcc
Vcc
GPIO1
GPIO2
5 V
K2
TSC103
Vcc-
Rg3
Gnd
Out
The current from the supply flows to the load through the R drop equal to V
sense
across R
inverting input voltage is equal to V
. The amplifier’s input currents are negligible, therefore its
sense
. The amplifier's open-loop gain forces its non-inverting
m
Vout
resistor, causing a voltage
sense
ADC
Gnd
µ Controller
AM04517
input to the same voltage as the inverting input. As a consequence, the amplifier adjusts current flowing through R
Therefore, the drop across R
V
Rg1=Vsense=Rsense.Iload
If I
is the current flowing through Rg1, then I
Rg1
I
Rg1=Vsense/Rg1
The I
current flows entirely into resistor Rg3 (the input bias current of the buffer is
Rg1
negligible). Therefore, the voltage drop on the R
V
Rg3=Rg3.IRg1
The voltage across the R a gain equal to K2. Therefore V
V
=K1.K2.V
or: V
out
out
= Av .R
sense
sense.Iload
so that the voltage drop across Rg1 matches V
g1
is:
g1
is given by the formula:
Rg1
resistor can be calculated as follows.
g3
=(Rg3/Rg1).V
resistor is buffered to the Out pin by the voltage buffer, featuring
g3
out
= Av.V
sense
sense
=K1.V
with K1=Rg3/Rg1.
sense
can be expressed as:
with Av= K1.K2
sense
exactly.
Doc ID 16873 Rev 2 19/26
Application information TSC103
The resistor ratio K1= Rg3/Rg1 is internally set to 20 V/V, and the voltage buffer gain K2 can be set to 1, 1.25, 2.5 or 5 depending on the voltage applied on SEL1 and SEL2 pins. Since they define the full-scale output range of the application, the R
resistor and the
sense
amplification gain Av are important parameters and must therefore be selected carefully.
20/26 Doc ID 16873 Rev 2
TSC103 Package information

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of
®
ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
Doc ID 16873 Rev 2 21/26
Package information TSC103

8.1 SO-8 package information

Figure 23. SO-8 package mechanical drawing

Table 10. SO-8 package mechanical data

Dimensions
Ref.
Min. Typ. Max. Min. Typ. Max.
A1.750.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.010
D 4.80 4.90 5.00 0.189 0.193 0.197
E 5.80 6.00 6.20 0.228 0.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
L1 1.04 0.040
k 0
ccc 0.10 0.004
Millimeters Inches
22/26 Doc ID 16873 Rev 2
TSC103 Package information

8.2 TSSOP-8 package information

Figure 24. TSSOP8 package mechanical drawing

Table 11. TSSOP8 package mechanical data

Dimensions
Ref.
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A1.200.047
A1 0.05 0.15 0.002 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.008
D 2.90 3.00 3.10 0.114 0.118 0.122
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.0256
k0° 8°0° 8°
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1 0.039
aaa 0.10 0.004
Doc ID 16873 Rev 2 23/26
Ordering information TSC103

9 Ordering information

Table 12. Order codes

Part number Temperature range Package Packaging Marking
TSC103IPT
-40° C, +125° C
TSC103IDT SO-8 Tape & reel TSC103I
TSC103IYPT
TSC103IYDT
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent are on-going.
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent.
(1)
(2)
-40° C, +125° C
Automotive grade
TSSOP8 Tape & reel 103I
TSSOP8 Tape & reel 103Y
SO-8 Tape & reel TSC103Y
24/26 Doc ID 16873 Rev 2
TSC103 Revision history

10 Revision history

Table 13. Document revision history

Date Revision Changes
04-Jan-2010 1 Initial release.
Added Chapter 4: Electrical characteristics curves: current
sense amplifier.
18-Nov-2011 2
Changed Figure 4 to Figure 16. Added automotive grade qualification for SO-8 package in
Table 12: Order codes.
Doc ID 16873 Rev 2 25/26
TSC103
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
26/26 Doc ID 16873 Rev 2
Loading...