ST TSA1204 User Manual

Dual channel 12-bit 20Msps 120mW A/D converter
Features
0.5 Msps to 20 Msps sampling frequency
Adaptive power consumption: 120 mW @
20 Msps, 95 mW@10 Msps
Independent supply for CMOS output stage
with 2.5 V/3.3 V capability
ENOB=11.2 @ Nyquist
SFDR= -81.5 dBc @ Nyquist
1GHz analog bandwidth track-and-hold
Common clocking between channels
Dual simultaneous sample and hold inputs
Multiplexed outputs
Built-in reference voltage with external bias
capability.
Description
index corner
AGND
INI
AGND
INIB
AGND
IPOL
AVCCB
AGND
INQ
AGND INBQ AGND
7x7mm TQFP48
REFPI
REFMI
INCMI
AVCC
48 44 43 42 41 40 39 38
46 45
47
1 2
3 4 5 6
7 8
9 10 11 12
13 14 15 16 17 18 19 20 21 22
REFPQ
AGND
INCMQ
REFMQ
VCCBI
AVCC
CLKD
OEB
TSA1204
DGND
AVCC
DVCC
TSA1204
GNDBE
D0(LSB)
VCCBE
VCCBI
D1
37
36
35 34 33
32
31
30
29
28 27 26 25
23 24
SELECT
CLK
DGND
DVCC
GNDBI
D2 D3 D4
D5 D6 D7 D8 D9
D10 D11(MSB) VCCBE GNDBE
The TSA1204 is a new generation of high speed, dual-channel analog-to-digital converters implemented in a mainstream 0.25 µm CMO S technology yielding high performance and very low power consumption.
The inputs of the ADC must be differentially driven.
The TSA1204 is specifically designed for applications requiring very low noise floor, high SFDR and good insulation between channels. It is based on a pipeline structure and digital error
The TSA1204 is available in extended (-40°C to +85° C) temperature range, in a small 48-pin TQFP package.
correction to provide excellent static linearity and over 11.2 effective bits at F F
=10 MHz.
in
For each channel, an integrated v oltage ref erence simplifies the design and minimizes external components. It is ne vertheless possible t o use the circuit with external references.
The ADC outputs are multiplexed in a common
=20 Msps, and
S
Applications
Medical imaging and ultrasound
3G base station
I/Q signal processing applications
High speed data acquisition system
Portable instrumentation
bus with a small number of pins. A tri-state capability is available for the outputs, allowing chip selection.
December 2006 Rev 4 1/31
www.st.com
31
Contents TSA1204
Contents
1 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.1 Additional functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.1.1 Output enable mode (OEB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.1.2 Select mode (SELECT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.2 References and common mode connection . . . . . . . . . . . . . . . . . . . . . . . 16
8.2.1 Internal reference and common mode . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.2.2 External reference and common mode . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.3 Driving the differential analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.4 Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.5 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.6 Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.7 EVAL1204/BA evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.7.1 Evaluation board operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.7.2 Consumption adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.7.3 Single and differential inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.7.4 Mode select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9 Practical application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.1 Digital interface applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.2 Medical imaging application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/31
TSA1204 Contents
10 Definitions of specified parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Static parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Dynamic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
11 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
12 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3/31
Schematic diagram TSA1204

1 Schematic diagram

Figure 1. TSA1204 block diagram

+2.5V/3.3V
VINI
VINBI
VINCMI
common mode
VREFPI
VREFMI
IPOL
Polar.
VREFPQ
VREFMQ
VINCMQ
common mode
VINQ
VINBQ

Figure 2. Timing diagram

AD 12 I channel
REF I
REF Q
AD 12 Q channel
CLK
Timing
12
12
GND
SELECT
M U
X
12
OEB
Buffers
GNDBE
VCCBE
12
D0 TO D11
Simultaneous sampling on I/Q channels
I
Q
CLK
SELECT
OEB
DATA OUTPUT
sample N-9 I channel
N-1
N
sample N-8 I channel
sample N-7 Q channel
N+1
N+2
sample N-6 Q channel
N+3
Tpd I + Tod
N+4
N+5
N+6
N+7
N+8
CLOCK AND SELECT CONNECTED TOGETHER
sample N Q channel
sample N+1 I channel
sample N+2 I channel
N+9
Tod
sample N+1 Q channel
N+10
sample N+2 Q channel
sample N+3 I channel
N+11
N+12
N+13
4/31
TSA1204 Pin descriptions

2 Pin descriptions

Table 1. Pin descriptions (TQFP48 package)

Pin Name Description Observation Pin Name Description Observation
1 AGND Analog ground 0 V 25 GNDBE Digital buffer ground 0 V
2 INI I channel analog input 26 VCCBE
3 AGND Analog ground 0 V 27 D11(MSB)
4INBI
5 AGND Analog ground 0 V 29 D9 Digital output
6IPOL
7 AVCC Analog power supply 2.5 V 31 D7 Digital output
8 AGND Analog ground 0V 32 D6 Digital output
9INQ
10 AGND Analog ground 0 V 34 D4 Digital output
11 INBQ
12 AGND Analog ground 0 V 36 D2 Digital output
13 REFPQ
14 REFMQ
15 INCMQ
16 AGND Analog ground 0V 40 GNDBE Digital buffer ground 0 V
17 AVCC Analog power supply 2.5 V 41 VCCBI
18 DVCC Digital power supply 2.5 V 42 CLKD Data clock input
19 DGND Digital ground 0 V 43 OEB Output Enable input
20 CLK Clock input
21 SELECT Channel selection
22 DGND Digital ground 0V 46 INCMI
23 DVCC Digital power supply 2.5 V 47 REFMI
24 GNDBI Digital buffer ground 0 V 48 REFPI
I channel inverted analog input
Analog bias current input
Q channel analog input
Q channel inverted analog input
Q channel top reference voltage
Q channel bottom reference voltage
Q channel input common mode
0 V 38 D0(LSB)
2.5 V CMOS input
2.5 V CMOS input
28 D10 Digital output
30 D8 Digital output
33 D5 Digital output
35 D3 Digital output
37 D1 Digital output
39 VCCBE
44 AVCC Analog power supply 2.5 V
45 AVCC Analog power supply 2.5 V
Digital Buffer power supply
Most Significant Bit output
Least Significant Bit output
Digital Buffer power supply
Digital Buffer power supply
I channel input common mode
I channel bottom reference voltage
I channel top reference voltage
2.5 V/3.3 V
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
2.5 V/3.3 V - See Application Note
2.5 V
Idle at high level
2.5 V or 3.3 V
2.5 V/3.3 V CMOS input
0V
5/31
Dynamic characteristics TSA1204

3 Dynamic characteristics

Dynamic characteristics are measured at AVCC = DVCC = V F
=10.5 MHz, Vin@ -1 dBFS, V
in
REFP
=1.0 V , V
specified).

Table 2. Dynamic characteristics

Symbol Parameter Test conditions Min Typ Max Unit
SFDR Spurious free dynamic range -81.5 -71.0 dBc
SNR Signal to noise ratio 66.9 68.5 dB THD Total harmonics distortion -80 -70 dBc
SINAD Signal to noise and distortion ratio 64.8 68 dB
ENOB Effective number of bits 10.6 11.2 bits

4 Timing characteristics

Timing characteristics are measured at AVCC = DVCC = V F
=10.5 MHz, Vin@ -1 dBFS, V
in
specified).

Table 3. Timing characteristics

REFP
=1.0 V , V
REFM
REFM
=0 V and T
CCB
CCB
=0 V and T
= 2.5 V, FS= 20 Msps,
= 25° C (unless otherwise
amb
= 2.5 V, FS= 20 Msps,
= 25° C (unless otherwise
amb
Symbol Parameter Test conditions Min Typ Max Unit
F
Sampling frequency 0.5 20 MHz
S
DC Clock duty cycle 45 50 55 % TC1 Clock pulse width (high) 22.5 25 ns TC2 Clock pulse width (low) 22.5 25 ns
T
T
pd
T
pd
T
T
Data output delay (clock edge to data
od
valid)
I Data pipeline delay for channel I 7
Q Data pipeline delay for channel Q 7.5
Falling edge of OEB to digital output
on
valid data Rising edge of OEB to digital output
off
tri-state
10 pF load
capacitance
9ns
cycle
s
cycle
s
1ns
1ns
6/31
TSA1204 Absolute maximum ratings

5 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol Parameter Values Unit
(1)
(1)
(2)
(1) (1)
(3)
0 to 3.3 V 0 to 3.3 V 0 to 3.6 V 0 to 3.3 V
2
1.5
kV
A
AV
CC
DV
CC
V
CCBE
V
CCBI
ID
out
T
stg
ESD
Latch-up Class
1. All voltage values, except differential voltage, are with respect to network ground terminal. The magnitude of input and output voltages must not exceed -0.3 V or VCC.
2. Electrostatic discharge pulse (ESD pulse) simulating a human body discharge of 100 pF through 1.5 kΩ.
3. Discharge to ground of a device that has been previously charged.
4. ST Microelectronics corporate procedure number 0018695.
Analog supply voltage Digital supply voltage Digital buffer supply voltage Digital buffer supply voltage Digital output current -100 to 100 mA Storage temperature +150 °C HBM: human body model
CDM: charged device model
(4)

6 Operating conditions

Table 5. Operating conditions

Symbol Parameter Min Typ Max Unit
AV
CC
DV
CC
V
CCBE
V
CCBI
V
REFP
V
REFP
V
REFM
V
REFM
V
INCM
V
INCM
1. Condition V
Analog supply voltage 2.25 2.5 2.7 V Digital supply voltage 2.25 2.5 2.7 V External digital buffer supply voltage 1.8 2.5 3.5 V Internal digital buffer supply voltage 2.25 2.5 2.7 V
I
Forced top voltage reference
Q
I
Forced bottom reference voltage
Q
I
Forced input common mode voltage 0.2 1 V
Q
REFP-VREFM
>0.3V
(1)
(1)
0.96 1.4 V
00.4V
7/31
Electrical characteristics TSA1204

7 Electrical characteristics

Electrical characteristics are measured at AVCC = DVCC = V F
=2 MHz, Vin@ -1 dBFS, V
in
REFP
=1.0 V, V
REFM
=0 V, and T
= 2.5 V, FS= 20 Msps,
CCB
= 25° C (unless otherwise
amb
specified).

Table 6. Analog inputs

Symbol Parameter Test conditions Min Typ Max Unit
V
IN-VINB
R
Full scale reference voltage
C
Input capacitance 7.0 pF
in
Equivalent input resistor 3 KΩ
eq
BW Analog input bandwidth V
ERB

Table 7. Digital inputs and outputs

Effective resolution bandwidth
Symbol Parameter Test conditions Min Typ Max Unit
Clock and select inputs
V V
Logic "0" voltage 0 0.8 V
IL
Logic "1" voltage 2.0 2.5 V
IH
OEB input
Differential inputs mandatory 1.1 2.0 2.8 Vpp
@full scale, FS=20 Msps 1000 MHz
in
70 MHz
V
V
Logic "0" voltage 0
IL
Logic "1" voltage
IH
0.75 x
V
CCBE
V
CCBE
0.25 x
V
CCBE
Digital outputs
V
V
I
C

Table 8. Reference voltage

Logic "0" voltage IOL=10 µA 0
OL
Logic "1" voltage IOH=10 µA
OH
High impedance leakage
OZ
current Output load capacitance 15 pF
L
OEB set to V
0.9 x
VCCBE
IH
-1.7 1.7 µA
VCCBE V
0.1 x
VCCBE
Symbol Parameter Test conditions Min Typ Max Unit
V
I
Top internal reference voltage
Q
I
Input common mode voltage
Q
0.807 0.89 0.963 V
0.40 0.46 0.52 V
V
V
V
REFP
REFP
INCM
INCM
V
V
V
8/31
TSA1204 Electrical characteristics

Table 9. Power consumption

Symbol Parameter Min Typ Max Unit
I
CCA
I
CCD
I
CCBE
I
CCBI
P
R
thja

Table 10. Accuracy

Analog supply current 40 49.5 mA Digital supply current 2 3 mA Digital buffer supply current (10 pF load) 6.2 9 mA Digital buffer supply current 73 221 µA Power consumption in normal operation
d
mode
120 155 mW
Thermal resistance (TQFP48) 80 °C/W
Symbol Parameter Min Typ Max Unit
OE Offset error -1.8 -0.5 1.8 LSB GE Gain error -0.1 0 0.1 %
DNL Differential non linearity -0.93 ±0.4 +0.93 LSB
INL Integral non linearity -1.8 ±0.8 +1.8 LSB
Monotonicity and no missing codes Guaranteed

Table 11. Matching between channels

Symbol Parameter Min Typ Max Unit
GM Gain match 0.033 0.1 % OM Offset match 0.4 2.5 LSB
PHM Phase match 1 dg
XTLK Crosstalk rejection 87 dB
9/31
Electrical characteristics TSA1204

Figure 3. Static parameter: integral non linearity

FS=20 MSPS; I
0.8
0.6
0.4
0.2 0
-0.2
INL (LSBs)
-0.4
-0.6
-0.8
=40 mA; Fin=2 MH
CCA
0 500 1000 1500 2000 2500 3000 3500 4000
(a)
Output Code
Figure 4. Static parameter: differential non linearity
FS=20 MSPS; I
0.4
0.3
0.2
0.1 0
-0.1
DNL (LSBs)
-0.2
-0.3
-0.4
=40 mA; Fin=2 MHz
CCA
0 500 1000 1500 2000 2500 3000 3500 4000
Output Code
(a)
a. For parameter definitions, see Section 10: Definitions of specified parameters on page 25.
10/31
TSA1204 Electrical characteristics
Q
Q
Q
Figure 5. Linearity vs. F
Fin=5MHz; R
100
90
ENOB I
80
70
60
50
Dynamic parameters (dB)
40
SNR
10 15 20 25
pol
ENOB
SINAD
SNR_I
Fs (MHz)
Figure 7. Linearity vs. F
FS=20Msps; I
100
90
80
SNR_Q
70
60
SNR_I
50
40
Dynamic parameters (dB)
30
0 1020304050
ENOB_Q
SINAD_Q
SINAD_I
Fin (MHz)
S
adjustment
SINAD_I
in
=40mA
CCA
ENOB_I
12
11
10
9
8
7
6
5
12
11
10
9
8
7
6
5
Figure 6. Distortion vs. F
Fin=5MHz; R
-20
-30
-40
-50 SFDR_I
-60
-70
ENOB (bits)
-80
-90
-100
-110
Dynamic parameters (dBc)
-120 10 15 20 25
Figure 8. Distortion vs. F
FS=20Msps; I
-30
-40
-50
THD_Q
-60
-70
-80
ENOB (bits)
-90
-100
-110
Dynamic parameters (dBc)
-120 0 1020304050
SFDR_Q
SFDR_I
S
adjustment
pol
Fs (MHz)
in
=40mA
CCA
Fin (MHz)
THD_I
THD_Q
SFDR_QTHD_I
Figure 9. Linearity vs. Temperature
F
=20Msps; I
S
100
90
80
70
60
50
Dynamic parameters (dB)
40
ENOB_I
ENOB_Q
SNR_I
SNR_Q
-40 10 60
Temperature (°C)
=40mA; Fin=2MHz
CCA
SINAD_I
SINAD_Q
12
11.5 11
10.5 10
9.5 9
8.5 8
7.5 7
Figure 10. Distortion vs. Temperature
FS=20Msps; I
120 110 100
90 80
ENOB (bits)
11/31
70
SFDR_I
60 50
Dynamic parameters (dBc)
40
-40 10 60
THD_I
Temperature (°C)
=40mA; Fin=2MHz
CCA
THD_QSFDR_Q
Electrical characteristics TSA1204
Figure 11. Linearity vs. AV
FS=20Msps; I
100
95 90 85 80 75 70 65 60 55
Dynamic parameters (dB)
50
2.25 2.35 2.45 2.55 2.65
ENOB_Q
SNR_Q
SINAD_I
CCA
ENOB_I
SINAD_Q
AVCC (V)
Figure 13. Linearity vs. DV
FS=20Msps; I
100
90
80
70
60
50
Dynamic parameters (dB)
40
2.25 2.35 2.45 2.55 2.65
ENOB_Q
SNR_Q
SINAD_I
CCA
ENOB_I
SINAD_Q
DVCC (V)
CC
=40mA; Fin=5MHz
12
11
10
9
8
SNR_I
7
6
CC
=40mA; Fin=5MHz
12
11
SNR_I
10
9
8
7
6
Figure 12. Distortion vs. AV
FS=20Msps; I
-30
-40
-50
-60
-70
-80
ENOB (bits)
-90
-100
-110
Dynamic Parameters (dBc)
-120
2.25 2.35 2.45 2.55 2.65
Figure 14. Distortion vs. DV
FS=20Msps; I
-40
-50
-60
-70
-80
-90
ENOB (bits)
Dynamic Parameters (dBc)
THD_Q
-100
-110
-120
2.25 2.35 2.45 2.55 2.65
THD_Q
CCA
THD_I
AVCC (V)
CCA
THD_I
DVCC (V)
CC
=40mA; Fin=5MHz
SFDR_I
SFDR_Q
CC
=40mA; Fin=5MHz
SFDR_I
SFDR_Q
Figure 15. Linearity vs. V
CCBI
FS=20Msps; I
90 85 80 75 70 65 60 55
Dynamic parameters (dB)
50
2.25 2.35 2.45 2.55 2.65
ENOB_I
ENOB_Q
SNR_I
SINAD_I
=40mA; Fin=5MHz
CCA
SNR_Q
SINAD_Q
12
11.5 11
10.5 10
9.5 9
8.5 8
ENOB (bits)
VCCBI (V )
12/31
Figure 16. Distortion vs. V
FS=20Msps; I
-40
-50
-60
-70
-80
-90
-100
-110
Dynamic Parameters (dBc)
-120
THD_Q
2.25 2.35 2.45 2.55 2.65
CCA
THD_I
VCCBI (V)
CCBI
=40mA; Fin=5MHz
SFDR_I
SFDR_Q
TSA1204 Electrical characteristics
Figure 17. Linearity vs. V
FS=20Msps; I
90 85 80 75 70 65 60 55
Dynamic parameters (dB)
50
2.25 2.75 3.25
SNR_I
CCA
ENOB_I
ENOB_Q
SINAD_I
SNR_Q
CCBE
=40mA; Fin=5MHz
SINAD_Q
VCCBE (V)
Figure 19. Linearity vs. duty cycle
F
=20Msps; I
S
100
90
80
70
60
50
Dynamic parameters (dB)
40
45 47 49 51 53 55
Positive Duty Cycle (%)
=40mA; Fin=5MHz
CCA
ENOB_I
ENOB_Q
SNR_I SINAD_I
SINAD_Q
SNR_Q
12
11.5 11
10.5 10
9.5 9
8.5 8
7.5 7
12
11.5 11
10.5 10
9.5 9
8.5 8
7.5 7
Figure 18. Distortion vs. V
FS=20Msps; I
-40
-50
-60
-70
-80
ENOB (bits)
-90
-100
-110
Dynamic Parameters (dBc)
-120
THD_Q
2.25 2.75 3.25
VCCBE (V)
Figure 20. Distortion vs. duty cycle
FS=20Msps; I
-40
-50
ENOB (bits)
-60
-70
-80
-90
-100
-110
Dynamic parameters (dBc)
-120
SFDR_Q
SFDR_I
45 47 49 51 53 55
THD_Q
THD_I
Posit ive Duty Cycle (%)
CCBE
=40mA; Fin=5MHz
CCA
SFDR_Q
SFDR_I
=40mA; Fin=5MHz
CCA
THD_I
13/31
Electrical characteristics TSA1204

Figure 21. Single-tone 8K FFT at 20Msps - Channel I

F
=5MHz; I
in
=40mA, Vin@-1dBFS
CCA
0
-20
-40
-60
-80
-100
-120
Power spectrum (dB)
-140 1234 6789105
Frequency (MHz)

Figure 22. Dual-tone 8K FFT at 20Msps - Channel I

F
=9.7MHz; F
in1
in2
0
-20
-40
-60
-80
-100
-120
Power spectrum (dB)
-140
=10.7MHz; I
1234 6789105
=40mA, V
CCA
@-7dBFS; V
in1
Frequency (MHz)
@-7dBFS; IMD=-76dBc
in2
14/31
TSA1204 Application information

8 Application information

The TSA1204 is a dual-channel, 12-bit resolution analog-to-digital converter based on a pipeline structure and the latest deep submicron CMOS process to achieve the best performance in terms of linearity and power consumption.
Each channel achieves 12-bit resolution through the pipeline structure which consists of 12 internal conversion stages in which the analog signal is fed and sequentially converted into digital data. A latency time of 7 clock periods is necessary to obtain the digitiz ed data on the output bus.
The input signals are simultaneously sampled, for both channels, on the rising edge of the clock. The output data is delivered on the rising edge of the clock for channel I and on the falling edge of the clock f or channel Q, as shown in Figure 2: Timing diagram on page 4. The digital data produced at the diff erent st ages must be t ime dela y ed accordidng t o the order of conversion. Fianlly, a digital data correction completes the processing and ensures the validity of the ending codes on the output bus.
The structure is specifically designed to accept differential signals only.

8.1 Additional functions

To simplify the application board as much as possible, the following operating modes are provided:
Output enable mode (OEB)
Select mode (SELECT)

8.1.1 Output enable mode (OEB)

When set to low level (VIL), all digital outputs remain active and are in low impedance state. When set to high level (V converter goes on sampling. When OEB is set to a low lev el again, the data arrives on the output with a very short T
Figure 2: Timing diagram on page 4 summarizes this functionality.
If you do not want to use OEB mode, the OEB pin should be grounded through a low value resistor.
), all digital output buffers are in high impedance state while the
IH
delay. This mechanism allows the chip select of the device.
on

8.1.2 Select mode (SELECT)

The digital data output from each of the ADC cores is multiplexed to share the same output bus. This pre vents an incr ease in the number of pins and allo ws to use the same package as for a single-channel ADC lik e the TSA1201.
The information channel is selected with the "SELECT" pin. When set to high level (V channel I data is present on the D0-D11 output bus. When set to low level (V data is delivered on D0-D11.
), channel Q
IL
IH
),
By connecting SELECT to CLK, channel I and channel Q are simulta neously present on D0­D11, channel I on the rising edge of the clock and channel Q on the falling edge of the clock. (Refer to Figure 2: Timing diagram on page 4).
15/31
Application information TSA1204

8.2 References and common mode connection

VREFM must always be connected externally.

8.2.1 Internal reference and common mode

In the default configu ration, the ADC operates with its own reference and common mode voltages generated by its internal bandgap. It is recommend ed to d ecouple t he VREFP and INCM pins in order to minimize low and high frequency noise (see Figure 23).
Figure 23. Internal reference and common mode setting
1.03V
VIN
TSA1204
VINB
VREFP
VREFM
INCM
330pF
0.57V
330pF
10nF
10nF
4.7μF

8.2.2 External reference and common mode

Each of the voltages V application needs (refer t o Table 5: Operating conditions on page 7 for min/max values). It is possible to use an external reference voltage device for specific applications requiring even better linearity, accuracy or enhanced temperature behavior.
The V
REFP
and V
REFM
that has a full scale amplitude of 2*(V The INCM voltage is half the value of V The best linearity and distortion performance is achieved with a dynamic ran ge abo v e 2 V
and by increasing the V To obta in the h i ghest pe rformance from the TSA1204 device, we recommend implement ing
the configuration shown in Figure 24 with the STMicroelectronics TS821or TS4041-1.2 Vref.
REFM
, V
and INCM can be fixed externally to better fit to the
REFP
voltages set the analog dynamic r ange at the input of the converter
REFP-VREFM
REFP-VREFM
voltage instead of lowering the V
REFM
4.7μF
).
.
pp
REFP
one.
Figure 24. External reference setting
1kΩ
VREFP
VCCA
VIN
TSA1204
VINB
16/31
VREFM
TS821
TS4041
330pF
external reference
10nF
4.7μF
TSA1204 Application information

8.3 Driving the differential analog inputs

The TSA1204 is designed to deliver optimum performance when driven on differential inputs. An RF transformer is an efficient way of achieving this high performance.
Figure 25 describes the schematics . The input signal is f ed to the primary of the transf ormer,
while the secondary drives both ADC inputs. The common mo de v oltage of the ADC (INCM) is connected to the center-tap of the secondary of the transformer in order to bias the input signal around this common voltage , internally set to 0.46 V . It determines the DC component of the analog signal. Being a high impedance input, it acts as an I/O and can be externally driven to adjust this DC component. The INCM is decoupled to maintain a low noise lev el on this node. Our evaluation board is mounted with a 1:1 ADT1-1WT transformer from Minicircuits. You might also use a higher impedance ratio (1:2 or 1:4) to reduce the driving requirement on the analog signal source.
Each analog input can drive a 1.4 V amplitude is 2.8 V
pp
.
amplitude input signal, so the resulting differential
pp

Figure 25. Differential input configuration with transformer

Analog source
ADT1-1
1:1
VIN
TSA1204
50Ω

Figure 26. AC-coupled differential input

50Ω
common
mode
50Ω
10nF
33pF
10nF
33pF
330pF 470nF10nF
100kΩ
100kΩ
VINB
INCM
channels
I or Q
INCM
VIN
TSA1204
VINB
Figure 26 represents the biasing of a differential input signal in A C- coupl ed differential input
configuration. Both inputs V
and V
IN
are centered around the common mo de volt age, that
INB
can be let internal or fixed externally.
17/31
Application information TSA1204

Figure 27. DC-coupled 2 Vpp differential analog input

Figure 27 shows a DC-coupled configuration with forced VREFP and INCM to the 1 V DC
analog input while VREFM is connected to ground; the differential amplitude obtained is 2V
.
pp

8.4 Clock input

The quality of your TSA1204 converter is very dependent on your clock input accur acy, in terms of aperture jitter; the use of a low jitter crystal controlled oscillator is recommended.
Further points to consider in your implementation are:
The duty cycle must be between 45% and 55%.
The clock pow er supplies must be independent from the ADC output supplies to avoid
digital noise modulation on the output.
When powered-on, the circuit needs se v eral cloc k periods to reach its normal operating
conditions. Theref ore, it is recommended to keep the circuit clocked to avoid random states before applying the supply voltages.
analog
DC
analog
DC
VREFP-VREFM = 1 V
AC+DC
330pF
VIN
VINB
10nF
VREFP
TSA1204
VREFM
INCM
4.7μF

8.5 Power consumption optimization

The internal architecture of the TSA1204 makes it possible to optimize power consumption according to the sampling frequency of the applica tion. For this purpose, an external resistor is placed between I optimized over the full sampling range (0.5 Msps up to 20 Msps).
The TSA1204 combines the highest performance and the lowest consumption at 20 Msps when R
is equal to 54 kΩ. This value is nev ertheless dependent on the application and the
pol
environment. In the lower sampling frequency range, this value of resistor may be adjusted in order to
decrease the analog current without any degradation of the dynamic performance.
Table 12 gives some values to illustrate this.
18/31
and the analog ground pins. Therefore, the total dissipation can be
POL
TSA1204 Application information
Table 12. Total power consumption optimization depending on R
pol
value
FS (Msps) 10 20
(kΩ) 120 54
R
pol
Optimized power (mW) 95 120

8.6 Layout precautions

To use the ADC circuits most ef ficiently at high frequencies, some preca utions have to be taken for power supplies:
First of all, the implementation of 4 proper separate supplies and ground planes
(analog, digital, internal and external buffer ones) on the PCB is recommended f or hig h speed circuit applications to provide lo w inductance and lo w resistance common return.
The separation of the analog si gna l from t he digi tal out put p art is mandatory to prevent noise from coupling onto the input signal. The best compromise is to connect AGND, DGND , GNDBI in a common point whereas GNDBE must be isolated. Similarly, the AVCC, DVCC and VCCBI power supplies must be separate from the VCCBE power supply.
Power supply bypass capacitors must be placed as close as possible to the IC pins in
order to improve high frequency bypassing and reduce harmonic distortion.
All inputs and outputs must be properly terminated with output termination resistors;
then the amplifier load is resistive only and the stability of the amplifier is improved. All leads must be wide and as short as possible especially for the analog input in order to decrease parasitic capacitance and inductance.
To keep the capacitive loading as low as possible at digital outputs, short lead lengths
of routing are essential to minimize currents when the outpu t changes . To minimize this output capacitance, use buffers or latches close to the output pins.
Choose component sizes as small as possible (SMD).

8.7 EVAL1204/BA evaluation board

The EVAL1204/BA is a 4-layer board with high decoupling and grounding level. The schematic of the evaluation board is shown in Figure 30 and its top overlay view in
Figure 29. The board has been characterized with a fully devoted ADC test bench as shown
in Figure 28.

Figure 28. Analog-to-digital converter characterization bench

HP8644
Sine Wave
Generator
Vin
HP8133
HP8644
ADC
evaluation
board
Pulse
Generator
Sine Wave Generator
19/31
Clk
Data
Clk
Logic
Analyzer
PC
Application information TSA1204
Note: The analog signal must be filtered to be very pure. The dataready signal is the acquisition
clock of the logic analyzer. The ADC digital outputs are latched by the octal buffers 74LCX573. All characterization measurements are made with SFSR=1 dB for static parameters.

Figure 29. Evaluation board printed circuit

Table 13. Printed circuit board - list of components

Name Footprint Name Footprint Name Footprint Name Part Footprint
RSQ6 RSQ7 RSQ8 RSI6 RSI7 RSI8 R3 R5 RQ19 RI1 RQ1 RI19 RSI9 RSQ5 RSQ9 RSI5 R24 R23 R21 R22 R2 R12 R11 Raj1
C23 C41 C29
Part Type
0
805 CD2 10nF 603 C26 330pF 603 CQ6 NC 805
0
805 C40 10nF 603 C20 330pF 603 CI6 NC 805
0
805 C39 10nF 603 C33 330pF 603 U2 74LCX573 TSSOP20
0
805 CQ12 10nF 603 C25 330pF 603 U3 74LCX573 TSSOP20
0
805 CQ9 10nF 603 CI1 33pF 603 U1 STG719 SOT23-6
0
805 C52 10nF 603 CQ1 33pF 603 JA ANALOGIC connector
47
603 C18 10nF 603 C34 47µF RB.1 J17 BUFPOW connector
47
603 C21 10nF 603 C42 47µF RB.1 J25 CKDATA SMA
47
603 C4 10nF 603 C35 47µF RB.1 J4 CLK SMA
47
603 C15 10nF 603 C44 47µF RB.1 J27 CON2 SIP2
47
603 C27 10nF 603 C36 47µF RB.1 J26 CON2 SIP2
47
603 C11 10nF 603 C32 47µF RB.1 JD DIGITAL connector
0NC
805 CI9 10nF 603 C37 470nF 805 JI1 InI SMA
0NC
805 CI12 10nF 603 CQ10 470nF 805 JI1B InIB SMA
0NC
805 CI31 10nF 603 C28 470nF 805 JQ1 InQ SMA
0NC
805 CQ31 10nF 603 CI10 470nF 805 JQ1B InQB SMA
0NC
805 CQ30 330pF 603 CQ32 470nF 805 SW1 SWITCH connector
0NC
805 CI11 330pF 603 CQ13 470nF 805 S5 SW-SPST connector
0NC
805 C51 330pF 603 CI32 470nF 805 S4 SW-SPST connector
0NC
805 C2 330pF 603 C13 470nF 805 TI2 T2-AT1-1WT ADT
1K
603 C17 330pF 603 C53 470nF 805 TQ2 T2-AT1-1WT ADT
47K
603 CD3 330pF 603 C16 470nF 805 JI2 VREFI connector
47K
603 C10 330pF 603 C3 470nF 805 JQ2 VREFQ connector
200K
VR5 trimmer
10µF
1210 CI8 330pF 603 C38 470nF 805
10µF
1210 C14 330pF 603 CD1 470nF 805 NC: non soldered
10µF
1210 CI30 330pF 603 C19 470nF 805
Part Type
CQ8 330pF 603 C22 470nF 805 J6 32Pin CQ11 330pF 603 CI13 470nF 805
Part Type
Type
IDC-32 connector
20/31
TSA1204 Application information
1
1
2
2
3
3
M
G V

Figure 30. TSA1204 evaluation board schematic

D0 GND
D1 GND
D2 GND
D3 GND
D4 GND
D5 GND
D6 GND
D7 GND
D8 GND
D9 GND
D10 GND
D11 GND
CLK GND
J6
123456789
RS5 RS6 RS7 RS8 RS9
C C C
C C
C C
single input
differential input
Open Normal mode
Short High Impedance output mode
Switch S5
Open Normal mode
Short Test mode
VCCB3
VccB GndB VccB
VCCB2 Switch S4 OEB Mode
GndB VccB GndB
VCCB1
J17
BUFPOW
J25
CKDATA
R5
50
VCCB2
D
Vcc
47K
VCCB2 C28
470nF
47µF
GNDS1
STG719
C43 10µF+C44
VCCB1
AVCC
C16 470nF
0NM
0NM
0NM
0NM
RSI5
1
2
J26
CON2
S2
R12
47K
IN
U1
S5
SW-SPST
VCCB2 VCCB1
S4
SW-SPST
R11
INCM REF REFP
JI2
VREFI
R24
R23
R22
NM: non soudé analog input with transfo rmer (default)
R21
1011121314151617181920212223242526272829303132
D1D2D3D4D5
DO
VCCB3
20
47µF
+
C34
C27
C53 470nF
C15 10nF
RSI7
0 NC
TI2
1
RSI6
C37 470nF
10nF
C52 10nF
C14 330pF
C39 10nF
C25
0
0
RI1
50
Q019Q118Q217Q316Q415Q514Q613Q7
VCC
C26 330pF
OEB1D02D13D24D35D46D57D68D79GND
330pF
C51 330pF
CI11
330pF
CI12
10nF
CI13
470nF
CI30
330pF
CI31
10nF
CI32
470nF
CI8
330pF
CI9
10nF
CI10
470nF
RSI80RSI9
4326
T2-AT1-1WT
JI1B
InIB
D6
12
11
LE
U2
10
36
D1
37
D0(LSB)
38
VCCBE
39
GNDBE
40
VCCBI
41
VCCBI
CLKD
42
OEB
43
AVCC
44
AVCC
45
INCMI
46
REFMI
47
REFPI
48
AGND1INI2AGND3INBI4AGND5IPOL6AVCC7AGND8INQ9AGND10INBQ11AGND
CI6
NM
CI1
33pF
0 NC
RI19
50
D7D8D9
20
Q019Q118Q217Q316Q415Q514Q613Q7
VCC
74LCX573
OEB1D02D13D24D35D46D57D68D79GND
27
28
D929D830D731D632D533D434D335D2
D10
D11(MSB)
8-14bits ADCJ9ADC DUAL12B
R2
1K
Raj1
47K
C2
330pF
C4
10nF
C3
470nF
C41
10µF
C42
47µF
+
AVCC
JA
VCC
GND
D10
U3
26
VCCBE
ANALOGIC
25
12
GNDBE
D11
GNDBI DVCC DGND SELECT CLK DGND DVCC AVCC AGND INCMQ REFMQ REFPQ
RSQ5
CLK
12
11
LE
10
10µF
+
C29
24 23 22 21 20 19 18 17 16 15 14 13
CQ6
NM
CQ1
33pF
RSQ70RSQ8
0 NC
TQ2 1
0
RSQ6
C33 330pF
C40 10nF
C38 470nF
74LCX573
VCCB2
47µF
C17 330pF
DVcc
4326
RQ1
50
+
C18 10nF
C19 470nF
C35
DVCC
SW1
CD3 330pF
CD2 10nF
CD1 470nF
CQ11
330pF
CQ12
10nF
CQ13
470nF
CQ30
330pF
CQ31
10nF
CQ32
470nF
CQ8
330pF
CQ9
10nF
CQ10
470nF
0
RSQ9
T2-AT1-1WT
JQ1B
InQB
C10 330pF
C20 330pF
0 NC
RQ19
50
R3
50
C5
J4
CLK
100nF
1
2
J27
CON2
C11 10nF
C13 470nF
AVCC
DVCC
C21 10nF
C22 470nF
C23 10µF+C36
JQ2
C31 10µF+C32
47µF
INCM REFM
REFP
VREFQ
JD
DIGITAL
ND CC
47µF
21/31
Application information TSA1204

8.7.1 Evaluation board operating conditions

Table 14 below shows the connections to the board for the power supplies and other pins.
Table 14. Board connections for power supplies and other pins
Board marking Connection Internal voltage (V) External voltage (V)
AV AVCC 2.5 AG AGND 0 RPI REFPI 0.89 <1.4
RMI REFMI <0.4
CMI INCMI 0.46 <1 RPQ REFPQ 0.89 <1.4 RMQ REFMQ <0.4 CMQ INCMQ 0.46 <1
DV DVCC 2.5
DG DGND 0 GB1 GNDBI 0 VB1 VCCBI 2.5 GB2 GNDBE 0 VB2 VCCBE 1.8/2.5/3.3 GB3 GNDB3 0 VB3 VCCB3 2.5
Caution: Do not use the VB3 power supply (5 V) dedicated to the 74LCX573 external buffer s to
supply the VB2 of the TSA1203 which cannot exceed 3.3 V.

8.7.2 Consumption adjustment

Before beginnning characterization tests, make su re to a dju st t he R I
, value according to y our sampling frequency.
pol
(Raj1), and theref or e
pol

8.7.3 Single and differentia l inputs

The test board can be driven on a single analog input, or on dif f erent ial inputs . With a single analog input, you must use the ADT1-1WT transformer to genera te a differential signal. In this configuration, the resistors RSI6, RSI7, RSI8 for channel I (respectively RSQ6, RSQ7, RSQ8 for channel Q) are connected as short-circuits whereas RSI5, RSI9 (respectively RSQ5, RSQ9 for channel Q) are open circuits.
Alternatively, you can use the JI1 and JI1B differential inputs. In this case, the resistances RSI5, RSI9 for channel I (respectively RSQ5, RSQ9 for channel Q) are connected as short­circuits whereas RSI6, RSI7, RSI8 (respectively RSQ6, RSQ7, RSQ8 for channel Q) are open circuits.
22/31
TSA1204 Application information

8.7.4 Mode select

In order to select the channel you want to evaluate, you m ust set a jumper on the board in the relevant position for the SELECT pin (see Figure 31).
The channels selected depend on the position of the jumper:
With the jumper connected to the upper conn ecto rs, channel I at the output is selecte d.
With the jumper connected horizontally, channel Q at the output is selected.
With the jumper connected to the lower connectors, both channels are selected,
relative to the clock edge.
Figure 31. Mode selection
SELECT
DVCCDGNDCLK
SELECT
I channel
Q channel
I/Q channels
23/31
Practical application examples TSA1204

9 Practical application examples

9.1 Digital interface applications

The wide external buffer power supply range of the TSA1204 makes it a perfect choice for plugging into 2.5 V or 3.3 V low voltage DSPs or digital interfaces.

9.2 Medical imaging application

Driven by the demand of the applications requiring nowadays either portability or ahigh degree of parallelism (or both), this produ ct satisfies the requirements of medical imaging and telecom infrastructures.
The typical system diagram in Figure 32 shows how a narrow input b eam of acoustic energ y is sent into a living body via the transducer and how the energy reflected back is analyzed.

Figure 32. Medical imaging application

HV TX amps
TX beam
former
Mux and
T/R
switches
TGC amplifier
The transducer is a piezoelectric ceramic such as zirconium titanate. The whole array can reach up to 512 channels. The TX beam f ormer , amplified by the HV TX amps , delivers up t o 100 V amplitude excitation pulses with phase an d amplitude shifts . Th e mux and T/R switch is a two-way input signal transmitter/output receiver.
To compensate for skin and tissues attenuation effects, the time gain compensation (TGC) amplifier is an exponential amplifier that enables the amplification of low voltage signals to the ADC input range. Differential output structure with low noise and very high linearity are mandatory factors.
These applications need high speed, low power and high performance ADCs. 10-12 bit resolution is necessary to lower the quantification noise. As multiple channels are used, a dual converter is a must for room saving issues.
The input signal is in the range of 2 to 20 MHz (mainly 2 to 7 MHz) and the application uses mostly a 4 over-sampling ratio for spurious free dynamic range ( SFDR) optimization.
ADC
RX beam
former
Processing and display
The next RX beam f ormer and processing b loc ks e nable t he analysis of th e output channe ls versus the input beam.
24/31
TSA1204 Definitions of specified parameters

10 Definitions of specified parameters

Static parameters

Static measurements are performed using the histograms method on a 2 MHz input signal, sampled at 50 Msps, which is high enough t o fully characteriz e the test freq uency response . The input level is +1 dBFS to saturate the signal.
Differential non linearity (DNL)
The average deviation of any output code width from the ideal code width of 1 LSB.
Integral non linearity (INL)
An ideal converter exhibits a transfer function which is a straight line from the starting code to the ending code. The INL is the deviation from this ideal line for each transition.

Dynamic parameters

Dynamic measurements are performed by spectral analysis, applied to an input sine wave of various frequencies sampled at 40 Msps.
The input lev el is -1dBFS to measure the linear beha vior of the con v erter. All th e parameters are given without correction for the full scale amplitude performance except the calculated ENOB parameter.
Spurious free dynamic range (SFDR)
The ratio between the power of the worst spurious signal (not always an harmonic) and the amplitude of fundamental tone (signal power) over the fu ll Nyquist band. It is expressed in dBc.
Total harmonic distortion (THD)
The ratio of the rms sum of the first fiv e harmonic distortion components to the rms value of the fundamental line. It is expressed in dB.
Signal to noise ratio (SNR)
The ratio of the rms value of the fundamental componen t to the rms sum of all other spectr al components in the Nyquist band (f harmonics. SNR is reported in dB.
/2) excluding DC, fundamental and the first five
s
Signal to noise and distortion ratio (SINAD)
Similar ratio as for SNR b ut including the harmonic distortion components in the noise figure (not DC signal). It is expressed in dB.
The effective number of bits (ENOB) is easily deduced from the SINAD, using the formula: SINAD= 6.02 × ENOB + 1.76 dB. When the applied signal is not full scale (FS), but has an A
expression becomes:
amplitude, the SINAD
0
SINAD
2Ao
=SINAD
Full Scale
+ 20 log (2A0/FS)
25/31
Definitions of specified parameters TSA1204
SINAD The ENOB is expressed in bits.
=6.02 × ENOB + 1.76 dB + 20 log (2A0/FS)
2Ao
Analog input bandwidth
The maximum analog input frequency at which the spectral response of a full power signal is reduced by 3 dB. Higher values can be achieved with smaller input levels.
Effective resolution bandwidth (ERB)
The band of input signal frequencies that the ADC is intended to convert without loosing linearity i.e. the maximum analog input frequency at which the SINAD is d ecreased by 3 dB or the ENOB by 1/2 bit.
Pipeline delay
Delay between the initial sample of the analog input and the av ailability of the corresponding digital data output, on the output bus. Also called data latency. It is expressed as a number of clock cycles.
26/31
TSA1204 Package mechanical data

11 Package mechanical data

In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK category of second level interconnect is marke d on the pa ckage and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related t o soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com
®
packages. These packages have a Lead-free second level interconnect. The
.
27/31
Package mechanical data TSA1204

Figure 33. Package mechanical data (48-pin plastic package)

A
A2
48 37
1
e
0,10 mm .004 inch
36
SEATING PLANE
A1
E
E3
E1
12
13 24
D3 D1
D
25
L1
L
K
0,25 mm .010 inch GAGE PLANE
B
c
Millimeters Inches
Ref.
Min. Typ. Max. Min. Typ. Max.
A 1.60 0.063 A1 0.05 0.15 0.002 0.006 A2 1.35 1.40 1.45 0.053 0.055 0.057
B 0.17 0.22 0.27 0.007 0.009 0.011
C 0.09 0.20 0.004 0.008
D9.00 0.354 D1 7.00 0.276 D3 5.50 0.216
e 0.50 0.0197
E9.00 0.354 E1 7.00 0.276 E3 5.50 0.216
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
K
28/31
0° (min.), 7° (max.)
TSA1204 Ordering information

12 Ordering information

Table 15. Order codes

Part number
TSA1204IFT-E -40° C to +85° C TQFP48 Tape & reel SA1204I EVAL1204/BA Evaluation board
Temperature
range
Package Packing Marking
29/31
Revision history TSA1204

13 Revision history

Table 16. Document revision history

Date Revision Changes
1-Apr-2004 1 Initial release.
2-May-2005 2
26-Sep-2006 3
12-Dec-2006 4 Renamed pin 42 to CLKD.
Datasheet modified from Not for new Design to full production further to new business demand.
Editorial updates. Reorganized document structure. No technical changes.
30/31
TSA1204
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely res ponsibl e fo r the c hoic e, se lecti on an d use o f the S T prod ucts and s ervi ces d escr ibed he rein , and ST as sumes no
liability whatsoever relati ng to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third pa rty p ro duc ts or se rv ices it sh all n ot be deem ed a lice ns e gr ant by ST fo r t he use of su ch thi r d party products or services, or any intellectua l property c ontained the rein or consi dered as a warr anty coverin g the use in any manner whats oever of suc h third party products or servi ces or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICUL AR PURPOS E (AND THEIR EQUIVALE NTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJ URY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST fo r the ST pro duct or serv ice describe d herein and shall not cr eate or exten d in any manne r whatsoever , any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document su persedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of compan ie s
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - Indi a - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
31/31
Loading...