ST TSA1002 User Manual

查询TSA1002供应商
TSA1002
10-BIT, 50MSPS, 50mW A/D CONVERTER
10-bit A/D converter in deep submicron
CMOS technology
Single supply voltage: 2.5V
Input range: 2Vpp differential
50Msps sampling frequency
Ultra low power consumption: 50mW @
50Msps
SFDR typically up to 72dB @ Fs=50Msps,
Fin=5MHz
Built-in reference voltage with external bias
capability
STMicroelectronics 8, 10, 12 and 14-bits ADC
pinout compatibility
DESCRIPTION
The TSA1002 is a 10-bit, 50Msps sampling frequency Analog to Digital converter using a CMOS technology combining high performances and very low power consumption. The TSA1002 is based on a pipeline structure and digital error correction to provide excellent static linearity and guarantee 9.4 effective bits at Fs=50Msps, and Fin=15MHz . A voltage reference is int egrated in the circuit to simplify the design and minimize external components. It is nevertheless possible to use the circuit with an external reference. Especially designed for high speed, low power applications, the TSA1002 only dissipates 50m W at 50Msps. A tri-state capability, available on the output buffers, enables to address several slave ADCs by a unique master. The output data can be coded into two d ifferent formats. A Data Ready signal is raised as the data is valid on the output and can be used for synchronization purposes. The TSA1002 is available in commercial (0 to
+70°C) and extended (-40 t o +85°C) temperat ure range, in a small 48 pins TQFP package.
ORDER CODE
Part Number
TSA1002CF 0°C to +70°C TQFP48 Tray SA1002C TSA1002CFT 0°C to +70°C TQFP48 Tape & Reel SA1002C TSA1002IF -40°C to +85°C TQFP48 Tray SA1002I TSA1002IFT -40°C to +85°C TQFP48 Tape & Reel SA1002I EVAL1002/AA Evaluation board
Temperature
Range
Package Conditioning Marking
PIN CONNECTIONS (top view)
AGND
index
corner
IPOL
VREFP
VREFM
AGND
VIN
AGND
VINB AGND INCM
AGND AVCC AVCC
AVCC
AVCC
DFSB
4748 44 43 42 41 40 39 38
46 45
1 2
3 4
5 6
7 8
9 10 11 12
13 14 15 16 17 18 19 20 21 22
DVCC
DVCC
TSA1002
CLK
DGND
DGND
OEB
NC
NC
DGND
VCCB
GNDB
VCCB
NC
DR
37
NC
36
NC
35
NC
34
D0 (LSB)
33 32
D1
31
D2
30
D3 D4
29
D5
28
D6
27 26
D7
25
D8
23 24
GNDB
GNDB
VCCBNCOR
D9 (MSB)
PACKAGE
7 × 7 mm TQFP48
APPLICATIONS
Medical imaging and ultrasound
Portable instrumentation
Cable Modem Receivers
High resolution fax and scanners
High speed DSP interface
October 2000
1/19
TSA1002
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Values Unit
AVCC DVCC VCCB
Analog Supply voltage Digital Supply voltage Digital buffer Supply voltage
IDout Digital output current -100 to 100 mA
Tstg Storage temperature +150 °C
Electrical Static Discharge
ESD
- HBM
- CDM-JEDEC Standard
1) All voltages values, e xcept differential voltage, are with respect to network g round terminal. The m agnitude of i nput and output volt ages must neve r exceed -0.3V or VCC+0V
OPERATING CONDITIONS
Symbol Parameter Test conditions Min Typ Max Unit
AVCC Analog Supply voltage 2.25 2.5 2.7 V DVCC Digital Supply voltage 2.25 2.5 2.7 V VCCB Digital buffer Supply voltage 2.25 2.5 2.7 V
VREFP Forced top reference voltage 1.16 - AVCC V
VREFM Forced bottom reference voltage 0 0 0.5
1)
1)
1)
0 to 3.3 V 0 to 3.3 V 0 to 3.3 V
2
KV
1.5
BLOCK DIAGRAM
VIN
INCM
VINB
CLK
+2.5V
Timing
GND
stage 1 2
stage
stage n
Sequencer-ph as e shifting
Digital data correction
Referen ce
Buffers
VREFP
circuit
GNDA
IPOL
VREFM
DFSB OEB
DR DO
TO
D9
OR
2/19
PIN CONNECTIONS (top view)
index
corner
1
IPOL
2
VREFP
AGND
VIN
AGND
VINB AGND INCM
AGND AVCC
3 4
5 6
7 8
9 10 11 12
VREFM
AGND
AVCC
AVCC
DFSB
OEB
4748 44 43 42 41 40 39 38
46 45
VCCB
NC
GNDB
NC
TSA1002
13 14 15 16 17 18 19 20 21 22
DVCC
CLK
DGND
DVCC
DGND
DGND
GNDB
GNDB
VCCB
23 24
VCCBNCOR
DR
NC
37
D9 (MSB)
36 35
34 33 32 31 30 29 28 27
26 25
TSA1002
NC NC NC
D0 (LSB) D1 D2 D3
D4 D5 D6
D7 D8AVCC
PIN DESCRIPTION
Pin No Name Description Observation Pin No Name Description Observation
1 IPOL Analog bias current input 25 D8 Digital ou tput CMOS output (2.5V) 2 VREFP Top voltage reference 1V 26 D7 Digita l output CMOS output (2.5V) 3 VREFM Bottom voltage reference 0V 27 D6 Digital output CMOS output (2.5V) 4 AGND Analog ground 0V 28 D5 Digital output CMOS output (2.5V) 5 VIN Analog input 1Vpp 29 D4 Digital output CMOS output (2.5V) 6 AGND Analog ground 0V 30 D3 Digital output CMOS output (2.5V) 7 VINB Inverted analog input 1Vpp 31 D2 Digital output CMOS output (2.5V) 8 AGND Analog ground 0V 32 D1 Digital output CMOS output (2.5V)
9 INCM Input common mode 0.5V 33 D0(LSB) Least Significant Bit output CMOS output (2.5V) 10 AGND Analog ground 0V 34 NC Non connected 1 1 AVCC Analog p ow er supply 2.5V 35 NC Non c onnected 12 AVCC Analog power supply 2.5V 36 NC Non connected 13 DVCC Digital power s upply 2.5V 37 NC Non connected 14 DVCC Digital power supply 2.5V 38 DR Data Ready output CMOS out put (2.5V) 15 DGND Digital ground 0V 39 VCCB Digital Buffer power supply 2.5V 16 CLK Clock input 2.5V compatible CMOS input 40 GNDB Digital Buffer ground 0V 17 DGND Digital ground 0V 41 VCCB Digital Buffer power supply 2.5V 18 NC Non connected 42 NC Non connected 19 DGN D Digita l ground 0V 43 NC Non connected 20 GND B Digital buffer ground 0V 44 OEB Output Enable i nput 2.5V compatible CMOS input 21 GNDB Digital buffer gro und 0V 45 DFSB Data Format Se lect input 2.5V compa tible CMOS inpu t 22 VCCB Digital buffer power supply 2.5V 46 AVCC Analog power supply 2.5V 23 OR Out Of Range output CMOS output (2.5V) 47 AVCC Analog power supply 2.5V 24 D9(MSB) Most Significant Bit output CMOS output (2.5V) 48 AGND Analog ground 0V
3/19
TSA1002
ELECTRICAL CHARACTERISTICS
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFM= 0V
Tamb = 25°C (unless otherwise specified)
TIMING CHARACTERISTICS
Symbol Parameter Test conditions Min Typ Max Unit
FS Sampling Frequency 0.5 50 Msps
DC Clock Duty Cycle 45 50 55 % TC1 Clock pulse width (high) 9 10 ns TC2 Clock pulse width (low) 9 10 ns
Tod
Data Output Delay (Fall of Clock to Data Valid)
Tpd Data Pipeline delay 6.5 cycles
Ton
Toff
Falling edge of OEB to digital output valid data
Rising edge of OEB to digital output tri-state
10pF load capacitance
5ns
1ns
1ns
TIMING DIAGRAM
N-1
CLK
OEB
Tod
DATA
OUT
DR
N-8
N+4
N+3
N+2
N-7
N+1
N-6
N-5
6.5 clk cycles
N-4
N-3
N
Toff
N+5
N-2
N+6
N+7
N+8
Ton
N
N+1
HZ state
4/19
TSA1002
CONDITIONS
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFM= 0V
Tamb = 25°C (unless otherwise specified)
ANALOG INPUTS
Symbol Parameter Test conditions Min Typ Max Unit
VIN-VINB Full scale refere nce voltag e 2.0 Vpp
Cin Input capacitance 7.0 pF
BW Analog Input Bandwidth Vin@ Full scale, FS=50Msps 100 MHz
ERB
1) See parameters definiti on for more in formation
Effective Resolution Bandwidth
REFERENCE VOLTAGE
Symbol Parameter Test conditions Min Typ Max Unit
1)
60 MHz
VREFP Top internal reference voltage
Tmin= -40°C to Tmax= 85°C
1)
0.88 1.16 V
1.20 1.27 1.35 V
0.91 1.03 1.14 V
Vpol Analog bias voltage
Tmin= -40°C to Tmax= 85°C
1)
1.18 1.36 V
Ipol Analog bias current Normal operating mode 50 70 100 µA Ipol Analog bias current Shutdown mode 0 µA
0.47 0.57 0.68 V
VINCM Input common mode voltage
Tmin= -40°C to Tmax= 85°C
1) No t f ul l y tested over the temperat ure range. Gua ranted by sam pl i ng.
1)
0.46 0.66 V
5/19
TSA1002
CONDITIONS
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V
Tamb = 25°C (unless otherwise specified)
POWER CONSUMPTION
Symbol Parameter Test conditions Min Typ Max Unit
1)
ICCA Analog Supply current
Tmin= -40°C to Tmax= 85°C
1)
ICCD Digital Supply Current
Tmin= -40°C to Tmax= 85°C
1)
ICCB Digital Buffer Supply Current
Tmin= -40°C to Tmax= 85°C
ICCBZ
PdZ
Rthja
1) Rp ol = 18KΩ. Equivalent load: Rload= 470 and Cload= 6pF
2) No t f ul l y t ested over the temperature range. Gua ranted by sam pling.
Digital Buffer Supply Current in High Impedance Mode
Power consumption in normal
Pd
operation mode Power consumption in High
Impedance mode Junction-ambient thermal resis-
tor (TQFP48)
1)
1)
Tmin= -40°C to Tmax= 85°C
1)
2)
2)
2)
2)
15.6 18 mA
21 mA
1.3 2 mA 2mA
2.5 5 mA 5mA
40 100 µA 48 60 mW
62 mW
43 48 mW
80 °C/W
DIGITAL INPUTS AND OUTPUTS
Symbol Parameter Test conditions Min Typ Max Unit
Digital inputs
VIL Logic "0" voltage 0.8 V
VIH Logic "1" voltage 2.0 V
Digital Outputs
VOL Logic "0" voltage Iol=10µA 0.4 V
VOH Logic "1" voltage Ioh=-10µA 2.4 V
IOZ High Impedance leakage current OEB set to VIH -1.5 1.5 µA
C
Output Load Capacitance 15 pF
L
ACCURACY
Symbol Parameter Test conditions Min Typ Max Unit
OE Offset Error
DNL Differential Non Linearity
INL Integral Non Linearity
Monotonicity and no missing
-
codes
6/19
Fin= 2MHz , VIN@+1dBF S
Fin= 2MHz , VIN@+1dBF S Fin= 2MHz , VIN@+1dBF S
-5 ±0.2 +5 %
-0.7 ±0.2 +0.7 LSB
-0.8 ±0.3 +0.8 LSB
Guaranted
TSA1002
CONDITIONS
AVCC = DVCC = 2.5V, Fs= 40Msps Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V
Tamb = 25°C (unless otherwise specified)
DYNAMIC CHARACTERISTICS
Symbol Parameter Test conditions Min Typ Max Unit
Fin= 5MHz Fin= 10MHz
1)
Fin= 24MHz
SFDR Spurious Free Dynamic Range
Fin= 5MHz Fin= 10MHz
2)
Fin= 24MHz Fin= 5MHz
Fin= 10MHz
1)
Fin= 24MHz
SNR Signal to Noise Ratio
Fin= 5MHz Fin= 10MHz
2)
Fin= 24MHz Fin= 5MHz
Fin= 10MHz
1)
Fin= 24MHz
THD Total Harmonic Distortion
Fin= 5MHz Fin= 10MHz
2)
Fin= 24MHz Fin= 5MHz
1)
2)
SINAD
Signal to Noise and Distortion­Ratio
Fin= 10MHz Fin= 24MHz
Fin= 5MHz Fin= 10MHz
Fin= 24MHz Fin= 5MHz
Fin= 10MHz
1)
Fin= 24MHz
ENOB Effective Number of Bits
Fin= 5MHz Fin= 10MHz
2)
Fin= 24MHz
1) Rp ol = 18KΩ. Equiv alent load: Rloa d= 470 and Cload= 6pF
Tmin= -40°C to Tmax= 85°C. Not fully tes t ed over the tem perature ra nge. Guarant ed by samplin g.
2)
65.5
68.5
63.4 60
60 60
58.5
58.3
57.4 48
48 48
63.5
67.4
62.5 57
55 57
58.5
58.2
57.0 48
48 48
9.6
9.5
9.3
7.9
7.9
7.9
79.2 77 69
59.5
59.4
59.0
77.8 76
68.1
59.4
59.3
58.5
9.76
9.71
9.60
dBc
dBc
dB
dB
dB
dB
dB
dB
bits
bits
7/19
TSA1002
DEFINITIONS OF SPECIFIED PARAMETERS
STATIC PARAMETERS
Static measurements are performed through method of histograms on a 2MHz input signal, sampled at 40Msps, which is high eno ugh to fully characterize the test frequency response. The input level is +1dBFS to saturate the signal.
Differential Non Linearity (DNL)
The average devia tion of any outp ut code width from the ideal code width of 1LSB.
Integral Non linearity (INL)
An ideal converter presents a transfer function as being the straight line from the starting code to the ending code. The INL is the deviation for each transition from this ideal curve.
DYNAMIC PARAMETERS
Dynamic measurements are performed by spectral analysis, appli ed to an in put sinewave of various frequencies and sampled at 40Msps.
Spurious Free Dynamic Range (SFDR)
The ratio between the am plitude of fundamental tone (signal power) and the power of the worst spurious signal (not always an harmonic) over the full Nyquist band. It is expressed in dBc.
Total Harmonic Distortion (THD)
The ratio of the rms sum of the first five harmonic distortion components to the rms value of the fundamental line. It is expressed in dB.
Signal to Noise Ratio (SNR)
The ratio of the rms value of the fundamental component to the rms sum of all other spectral components in the N yquist band (f
/2) excluding
s
DC, fundamental and the first five harmonics. SNR is reported in dB.
Signal to Noise and Distorsion Ratio (SINAD)
Similar ratio as for SNR but including the harmonic distortion components in the noise figure (not DC signal). It is expressed in dB. From the SINAD, the Effective Number of Bits (ENOB) can easily be deduced using the formula: SINAD= 6.02 × ENOB + 1.76 dB. When the applied signal is not Full Scale (FS), but has an A
amplitude, the SINAD expression
0
becomes: SINAD= 6.02 × ENOB + 1.76 dB + 20 log (2A
/FS)
0
The ENOB is expressed in bits.
Anal og Input Bandwidt h
The maximum analog input frequency at which the spectral response of a full power signal is reduced by 3dB. Higher values can be achieved with smaller in put levels.
Effective Resolution Bandwidth (ERB)
The band of input signal frequencies that the ADC is intended to convert without l oosing linearity i.e. the maximum analog input frequency at which the SINAD is decreased by 3dB or the ENOB by 1/2 bit.
Pipeline dela y
Delay between time when the analog input is initially sampled and time when the corresponding digital data output is valid on the output bus. Also called data latency. It is expressed as a number of clock cycles.
8/19
EQUIVALENT CIRCUITS
TSA1002
Figure 1 : Analog Input Circuit
AVCC=2.5V
VIN
(or V IN B )
PAD CAPACITANCE
7 pF
AGND=0V
Figure 2 : Input clock circuit
DVCC=2.5V
CLK
Req # 33 kΩ
(if Fs=50 MHz)
comm on m ode
Figure 3 : Input buffers
VCC buf=2.5V
278.5 208.2355.5
DFS
7 pF
PAD CAPACITANCE
GND buff=0V
Figure 4 : Tri-state output buffers
VCC buf=2.5V
OE
PAD CAPACITANCE
7 pF
DGND=0V
DATA
GN D bu ff=0V
GND buff =0V
VCC b u f =2 .5V
OUT
2 mA OUTPUT BUFFER
PAD CAPAC ITANCE 7pF
9/19
TSA1002
Static parameter: Integral Non Linearity Fs=50MSPS; Fin=1MHz; Icc=20mA; N=131072pts
0.8
0.6
0.4
0.2 0
-0.2
INL (LSBs)
-0.4
-0.6
-0.8
0 200 40 0 600 800 10 00
O utput Code
Static parameter: Differential Non Linearity Fs=50MSPS; Fin=1MHz; Icc=20mA; N=131072pts
0.5
0.4
0.3
0.2
0.1 0
-0 .1
DNL (LSBs)
-0 .2
-0 .3
-0 .4
-0 .5 0 200 400 600 800 1000
Linearity vs. AVcc Fs=50MSPS; Icca=20mA; Fin=1MHz
60
59.5 59
58.5 58
57.5 57
56.5 56
55.5
Dynamic parameters (dB)
55
2.25 2.35 2.45 2.55 2.65
SNR
SINAD
ENOB
AVCC (V)
Output Code
10
9.9
9.8
9.7
9.6
ENOB (bits)
9.5
9.4
9.3
Distortion vs. AVcc Fs=50MSPS; Icca=20mA; Fin=1MHz
-69
-71
-73
-75
-77
-79
-81
-83
Dynamic Parameters (dB)
-85
2.25 2.35 2.45 2.55 2.65
SFDR
THD
AVCC (V)
10/19
TSA1002
Linearity vs. DVcc Fs=50MSPS; Icca=20mA; Fin=1MHz
59.1
59.05
59
58.95
58.9
58.85
SNR
ENOB
SINAD
Dynamic parameters (dB)
58.8
2.25 2.35 2.45 2.55 2.65
DVCC (V)
Linearity vs. VccB Fs=50MSPS; Icca=20mA; Fin=1MHz
59.5
59
58.5
58
57.5
Dynamic parameters (dB)
57
2.25 2.35 2.45 2.55 2.65
SNR
SINAD
ENOB
VCCB (V)
9.6
9.595
9.59
9.585
9.58
9.575
9.57
10
9.9
9.8
9.7
9.6
9.5
9.4
Distortion vs. DVcc Fs=50MSPS; Icca=20mA; Fin=1MHz
-65
-67
-69
-71
-73
-75
ENOB (bits)
-77
-79
-81
-83
Dynamic parameters (dB)
-85
2.25 2.35 2.45 2.55 2.65
SFDR
THD
DVCC (V)
Distortion vs. VccB Fs=50MSPS; Icca=20mA; Fin=1MHz
-72
-73
-74
-75
-76
ENOB (bits)
-77
-78
-79
Dynamic Parameters (dB)
-80
2.25 2.35 2.45 2.55 2.65
THD
SFDR
VCCB (V)
Linearity vs. Fs Icca=20mA; Fin=5MHz
66
61
56
51
Dynamic parameters (dB)
46
25 35 45 55 65 75
ENOB
SNR
SINAD
Fs (MHz)
10
9.5
9
8.5
8
7.5
Distortion vs. Fs Icca=20mA; Fin=5MHz
-50
-55
-60
-65
-70
ENOB (bits)
-75
-80
-85
Dynamic parameters (dB)
-90 25 35 45 55 65 75
THD
SFDR
Fs (MHz)
11/19
TSA1002
Linearity vs. Fs
Icca=20mA; Fin=15 MHz
66
61
56
51
Dynamic parameters (dB)
46
25 35 45 55 65 75
ENOB
SNR
SINAD
Fs (MHz)
Linearity vs. Fin Fs=50MSPS; Icca=20mA
64
62
60
58
56
Dynamic parameters (dB)
54
0 204060
Fin (MH z)
SNR
SINAD
ENOB
9.6
9.1
8.6
8.1
7.6
10
9.5
9
8.5
8
7.5
Distortion vs. Fs Icca=20mA; Fin=15 MHz
-50
-55
-60
-65
-70
ENOB (bits)
-75
-80
-85
Dynamic parameters (dB)
-90 25 35 45 55 65 75
THD
SFDR
Fs (MHz)
Distortion vs. Fin Fs=50MSPS; Icca= 2 0mA
-50
-55
-60
-65
-70
ENOB (bits)
-75
-80
Dynamic parameters (dB)
-85
0 204060
THD
SFDR
Fin (MHz)
Linearity vs.Temperatur e
Fs=50MSPS; Icca=20mA; Fin=5MHz
12/19
64 62 60 58 56 54 52
Dynamic Parameters (dB)
50
-50 0 50 100
ENOB
SNR
SINAD
Temperature (°C)
10
9.8
9.6
9.4
9.2 9
8.8
8.6
8.4
8.2 8
Distortion vs. Temperature Fs=50MSPS; Icca=20mA; Fin=5MHz;
80
75
70
65
60
Dynamic Parameters (dB)
55
-50 0 50 100
SFDR
THD
Temperature (°C)
TSA1002 APPLICATION NOTE
DETAILED INFORMATION
The TSA1002 is a High Speed analog to digital converter based on a pipeline architecture and the latest deep submicron CMOS process to achieve the best performances in terms of linearity and power consumption.
The pipeline structure consists of 9 internal conversion stages in which the analog signal is fed and sequencially converted into digital data.
Each 8 first stages consists of an Analog to Digital converter, a Digital to Analog converter, a Sample and Hold and a gain of 2 amplifier. A 1.5bit conversion resolution is achieved in each stage. The latest stage simply is a comparator. Each resulting LSB-MSB c ouple is then time shifted to recover from the conversion delay. Digital data correction completes the processing by recovering from the redundancy of the (LSB-MSB)
couple for each stage. The corrected data are outputed through the digital buffers. Signal input is sampled on the rising edge of the clock while digital outputs are delivered on the falling edge of the Data Ready signal. The advantages of such a convert er reside in the combination of pipeline architec ture and the most advanced technologies. The highest dynamic performances are achieved while consumption remains at the lowest level. Some functionalities hav e been added i n order to simplify as much as possible the application board. These operational m odes are described in the following table. The TSA1002 is pin to pin compatible with the 8bits/40Msps TSA0801, the 10bits/25Msps TSA1001 and t he 12bits/50Msps TSA1201. T his ensures a conformity within the product family and above all, an easy upgrade of the application.
OPERATIONAL MODES DESCRIPTION
Inputs Output s
Analog input differential level DFSB OEB OR DR Most Significant Bit (MSB)
(VIN-VINB) > RANGE H L H CLK D9
-RANGE > (VIN-VINB) H L H CLK D9
RANGE> (VIN-VINB) >-RANGE H L L CLK D9
(VIN-VINB) > RANGE L L H CLK Complemented D9
-RANGE > (VIN-VINB) L L H CLK Complemented D9
RANGE> (VIN-VINB) >-RANGE L L L CLK Complemented D9
XXHHZHZHZ
Data Format Select (DFSB)
When set to low level (VIL), the digital input DFSB
provides a tw o’s complement d igital output MSB. This can be of interest when performing some further signal processing. When set to high level (VIH), DFSB provides a standard binary output coding.
Output Enable (OEB)
When set to low level (VIL), all digital outputs remain active and are in low impedance state. When set to high level (VIH), all digital outputs buffers are in high impedance state. This results in
13/19
lower consumption while the converter goes on sampling.
When OEB is set to low level again, , the data is then valid on the output with a very short Ton delay.
The timing diagram summarizes this operating cycle.
Out of Range (OR)
This function is im plemented on the output stage in order to set up an "Out of Range" flag whenever the digital data is over the full scale range.
TSA1002
Typically, there is a detection of all the dat a bei ng
at ’0’ or all the data being at ’1’. This ends up with an output signal OR which is in low level state (VOL) when the data stay within the range, or in high level state (VOH) when the data are out of the range.
Data Ready (DR)
The Data Ready output is an image of the clock being synchronized on the output data (D0 to D9). This is a very helpful signal that simplifies the synchronization of the measurement equipment or the cont ro llin g DSP.
As digital output, DR goes in high impedance state when OEB is as serted to High level as described in the timing diagram.
DRIVING THE ANALOG INPUT
Differentia l inp u t s
The TSA1002 has been designed to obtain optimum performances when being differentially driven. An RF transformer is a good way to achieve such performances.
Figure 5 describes the schematics. The input signal is fed to the primary of the transformer, while the secondary drives both ADC inputs. The common mode voltage of the ADC (INCM) is connected to the center-tap of the second ary of the transformer in order to bias the input signal around this common voltage, internally set to
0.56V. The INCM is decoupled to maintain a low noise level on this node. Our evaluation b oard is mounted with a 1:1 ADT1-1 transformer from Minicircuits. You might also use a higher impedance ratio (1:2 or 1:4) to reduce the driving requirement on the analog signal source.
Each analog input can drive a 1Vpp amplitude input signal, so the resultant differential amplitude is 2Vpp.
Figure 5 : Differential input configuration
Single-ended input configuration
Some applications may require a single-ended input which is easily achieved with the configuration reported on Figure 6. In this case, it is recommended to use an AC-coupled analog input and connect the other analog input to the common mode voltage of the circuit (INCM) so as to properly bi as the ADC. The INCM may remain at the same internal level (0.56V) thus driving only a 1Vpp i nput amplitude, or it must be increased to 0.9V to drive a 2Vpp input amplitude. You wi ll get higher pe rform ances using a 2Vpp signal.
Figure 6 : Single-ended input configuration
Signal so urce
50
100nF
330pF
VIN
TSA1002
VINB
INCM
10nF
470nF
0.9V
Dynamic characteristics, while not being as remarkable as for differential configuration, are still of very goo d quality. Measurements done at 50Msps, 2MHz input frequency, -1dBFS input level sum up these performances. An SFDR of
-64.5dBc, a SNR of 57.8dB and an ENOB Full Scale of 9.3bits are achieved.
REFERENCE CONNECTION Inte rnal ref erence
In the standard configuration, the ADC is bi ased with the internal reference voltage. VREFM pin is connected to Analog Ground while VREFP is internally set to a voltage of 1.03V. It is recommended to d ecouple the V R EF P i n order to minimize low and high frequency noise. Refer to Figure 7 for the schematics.
Analog source
14/19
50
ADT1-1
1:1
330pF
100pF
10nF
VIN
TSA1002
VINB
INCM
470nF
Figure 7 : Internal reference setting
VIN
1.03V VREFP
330pF
TSA1002
VINB
VREFM
10nF
470nF
TSA1002
Exte rnal ref eren ce
It is possible to use an external reference vo ltage instead of the internal one for specific applications requiring even better linearity or enhanced temperature behaviour. In this case, the amplitude of the external voltage mu st be at least equal to the internal one (1.03V). Using the STMicroelectronics Vref TS821 leads to optim um performances when configured as shown on Figure 8.
Figure 8 : External reference setting
1k
10nF
470nF
VCCA
VIN
TSA1002
VINB
VREFP
VREFM
330pF
TS821
external reference
At 15Msps sampling frequency, 1MHz input frequency and -1dBFS amplitude signal, performances can be improved of up to 2dBc on SFDR and 0.3dB on SINAD. At 50Msps sam pling frequency, 1MHz input frequency and -1dBFS amplitude signal, performanc es can be improved of up to 1dBc on SFDR and 0.6dB on SINAD. This can be very helpful for example for multichannel application to kee p a good matching among the sampling frequency range.
Clock input
The quality of your converter is very dependant on your clock input accuracy, in terms of aperture jitter; the use of low jitter crystal controlled oscillator is recommended. The duty cycle must be between 45% and 55%. The clock power supplies must be separated from the ADC output ones to avoid digital noise modulation at the output. It is recommended to always keep the circuit clocked, even at the lowest specified sampling frequency of 0.5Msps, bef ore applying the supply voltages.
Power co nsumption
The internal architecture of the TSA1 002 enables to optimize the power consumption according to the sampling frequency of the application. For this purpose, a resistor is placed between I POL and the analog Ground pins.
The TSA1002 wi ll combine highest pe rformances and lowest consumption at 50Msps when Rpol is in the range of 12kto 20k.
At lower sampling frequency, this value of resistor may be changed and the consumption will decrease as wel l.
The figure 9 sums up the relevant data. Figure 9 : Analog Current consumption vs. Fs
According value of Rpol polarization resistance
60
50
40
30
Icca (mA)
20
10
0
25 35 45 55 65 75
RPOL
ICCA
Fs (MHz)
20 18 16 14 12 10 8
Rpol (kOhms)
6 4 2 0
Layout precautions
To use the ADC circuits in the best manner at high frequencies, some precautions have to be taken for power supplies:
- First of all, the implementation of 4 separate proper supplies and ground planes (analog, digital, internal and external buffer ones) on the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return.
The separation of the analog signal from the digital part is essential to prevent noise from coupling onto the input signal.
- Power supply bypass capacitors must be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion.
- Proper termination of all inputs and outputs must be incorporated with output termination resistors; then the amplifier load wi ll be only resistive and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for the analog input in order to decrease parasitic capacitance and inductance.
- To keep the capacitive loading as low as possible at digital outputs, short lead lengths of routing are essential to minimize currents when the output changes. To minimize this output
15/19
TSA1002
capacitance, buffers or latches close to the output pins will relax this constraint.
- Choose component sizes as small as possible (SMD).
EVAL1002 evaluation board
The characterization of the board has been made with a fully ADC devoted test bench as shown on Figure 10. The analog signal must be filtered t o be very pure.
The dataready signal is the acquisition clock of the logic analyzer.
The ADC digital outputs are latched by the octal buffers 74LCX573.
All characterization measurements have been made with:
SFSR=+0.2dB for static parameters.­SFSR=-0.5dB for dynamic parameters.
Figure 10 : Analog to Digital Converter characterization bench
Power
HP8644B
Sine wave Generator
Vin
HP8133A
ADC
evaluation
board
ck
Pulse
Generator
data
dataready
Logic
Analyzer
TLA704
HP8644B
Sine Wave Generator
16/19
Figure 11 : TSA1002 Evaluation board schematic
TSA1002
J6
123456789
DR
2
VCCB2
1
J17
VDDBU FF3V
+
C34
47µ
C37
2 1
J13
2 1
J11
2 1
J10
OEB
2 1
J9
DFSB
R10
47K
R11
47K
VCCB1 C28
AVCC
R12
47K
R13
47K
C16
470nF
470nF
470nF
C26
10nF
C39
R19 R18
R17
R16
R15
R14
C25
10nF
C27
C14
C15
10nF
Raj1
47K
R2
1K
1011121314151617181920212223242526272829303132
D1D2D3D4D5
DO
20
Q019Q118Q217Q316Q415Q514Q613Q7
VCC
330pF
OEB1D02D13D24D35D46D57D68D79GND
47K 47K
47K
47K
47K
47K
37 38
330pF
39 40 41 42 43 44 45 46 47 48
330pF
12
U2
36
D0
DR
NC NC
OEB
DFSB
AVCC AVCC AGND
Ipol1Vre fP2Vre fM3AGND4Vin5AGND6VINB7AGND8INCM9AGND10AVCC11AVCC
C11
330pF
C12
10nF
C13
470nF
C30
330pF
10nF
C31
C32
470nF
D6
11
LE
74LCX573
10
2.5VCCBUFF
GNDBUFF
2.5VCCBUFF
8-14bits ADC
D7D8D9
D10
20
Q019Q118Q217Q316Q415Q514Q613Q7
VCC
U3
OEB1D02D13D24D35D46D57D68D79GND
27
D928D829D730D631D532D433D334D235D1
D1225D1126D10
D13 OR
2.5VCCBUFF GNDBUFF GNDBUFF DGND NC DGND CLK DGND
TSA1002
DVCC DVCC
12
C2
330pF
C4
10nF
C3
470nF
D11
12
24 23 22 21 20 19 18 17 16 15 14 13
32PIN
OR
D12
D13
11
LE
C38
74LCX573
10
+
C29
43
2 6
470nF
C33
10nF
330pF
C40
VCCB1
1 2
+
J18
C17
330pF
C18
10nF
C19
470nF
10µF
T1
T2-AT1-1WT
1
C20
330pF
C21
C24
R3
50
10nF
C22
470nF
C23
VccB1
10µ
C35
47µ
J4
CLJ/SMB
1 2
J16
CON2
C36
47µ
+
1
10µ
2
J15
DVCC
AVCC
C5
330pF
C8
330pF
C1
100pF
4326
T2
R1
50
1
1
2
1
J2
2
Vre fP
J5
Vre fM
J1
Vin
C6
10nF
C9
10nF
C7
470nF
C10
470nF
T2-AT1-1WT
1
2
1
J7
Regl com mode
J8
C41
10µF
C42
47µF
+
1
2
2
Mes c om Mod e
1
2
1
2
1
2
1
J12
AVCC
J19
AGND
J20
DGND
J21
2
GndB2
J22
GndB1
17/19
TSA1002
Regl com mode
74LCX 573
74LCX 573
Figure 12 : Printed circuit of evaluation board.
Print ed circui t board - List of components
Part Design Foo tprint P art Design Fo o tprint P art D esign Footprint P art Design F oo tprint
ator
Type 10 uF C 2 4 12 10 10 uF C 2 3 12 10 10 uF C 4 1 12 10 10 uF C 2 9 12 10 100pF C1 603 10 nF C 12 6 0 3 10 nF C 3 9 6 03 10 nF C 15 6 0 3 10 nF C 4 0 6 03 10 nF C 2 7 6 03 10 nF C 4 6 0 3 10 nF C 2 1 6 03 10 nF C 3 1 6 03 10 nF C 6 6 0 3 10 nF C 9 6 0 3 10 nF C 18 6 0 3 1K
R2 603
32P IN J6 IDC32 330pF C 25 603
330pF C 26 603
18/19
ator
Type 330pF C33 603 470nF C7 805 A VCC J12 FICHE2M M 330pF C20 603 470nF C16 805 CLJ/SM B J4 SM B/H 330pF C8 603 470nF C19 805 AGND J19 FICHE2MM 330pF C2 603 470nF C3 805 DFSB J9 FICHE2MM 330pF C5 603 330pF C11 603 330pF C30 603 330pF C17 603 330pF C14 603 47uF C36 C A P 47uF C34 C A P 47uF C35 C A P 47uF C42 C A P 470nF C22 805 470nF C32 805 470nF C37 805 470nF C38 805 470nF C13 805 470nF C28 805 470nF C10 805 C O N 2 J16 SIP2
Type
47K 47K 47K 47K 47K 47K 47K 47K 47K 47K 47K 50 50
ator
R12 603 DGND J20 FICHE2MM
R14 603 DVCC J15 FICHE2M M
R11 603 GndB1 J22 FICHE2MM
Raj1 VR5 GndB2 J21 FICHE2MM
R 10 603 M es co m m ode J8 F IC H E2M M
R19 603 OEB J10 FICHE2MM
R13 603
R15 603 T2-A T1-1WT T2 ADT
R16 603 T2-A T1-1WT T1 ADT
R17 603 VccB1 J18 FICHE2M M
R18 603 VDDBUFF3V J17 FICHE2M M
R3 603 Vin J1 SM B/H
R1 603 VrefM J5 FICHE2M M U3 T S SO P 20 VrefP J2 F ICH E 2M M U2 TS S OP 20 T SA 1002 U1 T Q F P 48
Type
ator
J7 F ICH E 2M M
PACKAGE MECHANICAL DATA 48 PINS - PLASTIC PACKAGE
48 37
1
e
36
E3
E1
TSA1002
A
A2
A1
0,10 mm .004 inch
SEATING PLANE
B
E
12
13 24
D3
25
c
D1
D
L1
L
0,25 mm .010 inch
K
Millimeters Inches
Dim.
Min. Typ. Max. Min. Typ. Max.
A 1.60 0.063 A1 0.05 0.15 0.002 0.006 A2 1.35 1.40 1.45 0.053 0.055 0.057
B 0.17 0.22 0.27 0.007 0.009 0.011
C 0.09 0.20 0.004 0.008
D 9.00 0.354 D1 7.00 0.276 D3 5.50 0.216
e 0.50 0.0197
E 9.00 0.354 E1 7.00 0.276 E3 5.50 0.216
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
K 0° (min.), 7° (max.)
Information furnished is bel ieved to be accurate and reliable. However, STMicroe lectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No li cense is granted by imp lica tion or otherwise under any patent or patent rig hts of STMicroelectronics. Specificat ions mentioned in this publication ar e subject to change without notice. This publication supersedes and replaces all information previously supplied. S TMicroelectronics products are not authorized for use as critica l components in life suppo rt devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
GAGE PLANE
© 2000 STM icroelectronics - Printed in Ital y - All Rights Reserved
STMicr o el ectronics G ROU P OF COMPANIE S
Australi a - Brazil - Chi na - Finland - F rance - Germany - Hong Kon g - India - Italy - Japan - Mal aysia - Malta - Mo rocco
Singapo re - Spain - Sweden - Switzerland - Un i ted Kingdom
© http://www.st.com
19/19
Loading...