ST TS9222, TS9224 User Manual

TS9222, TS9224
High precision, high stability dual and quad operational amplifiers
Features
High precision: Vio = 500 µV max
Able to drive capacitive loads up to 500 pF
Rail-to-rail input and output
Low distortion
High output current: 80 mA
High speed: 4 MHz, 1.3 V/μs
Operates from 2.7 V to 12 V
ESD internal protection: 2 kV
Latch-up immunity
Applications
Signal conditioning
Automotive applications
Headphone amplifiers
Sound cards, multimedia systems
Line and actuator drivers
Servo amplifiers
Description
The TS9222 and TS9224 are rail-to-rail dual and quad operational amplifiers optimized for precision, noise and stability, which make them suitable for a wide range of automotive and industrial applications.
TS9222ID-IDT/IPT
SO8/TSSOP8
Out1
Out1
In1-
In1-
In1+
In1+
V
V
CC-
CC-
1
1
_
_
2
2
+
+
3
3
4
4
8
8
V
V
CC+
CC+
7
7
Out2
Out2
_
_
+
+
In2-
In2-
6
6
In2+
In2+
5
5
TS9224IDT/IPT
SO14/TSSOP14
Out4
1
In1-
In1-
In1+
In1+
CC+
CC+
In2+
In2+
In2-
In2-
1
_
_
2
2
+
+
3
3
4
4
5
5
+
+ _
_
6
6
7
7
_
_
+
+
+
+ _
_
Out1
Out1
V
V
Out2
Out2
14
14
13
13
12
12
11
11
10
10
Out4
In4-
In4-
In4+
In4+
V
V
CC-
CC-
In3+
In3+
In3-
In3-
9
9
Out3
Out3
8
8
These devices deliver a high output current that allows low-load impedances to be driven. They are stable for capacitive loads up to 500 pF.
April 2011 Doc ID 15718 Rev 3 1/14
www.st.com
14
Absolute maximum ratings and operating conditions TS9222, TS9224

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol Parameter Value Unit
(3)
(1)
(6)
(2)
(5)
(7)
(4)
V
CC-
14 V
±1 V
-0.3 to V
+0.3 V
CC+
125 120
66
100
2000
100
1500
(8)
°C/W
V
V
CC
V
id
V
in
T
stg
R
thja
T
ESD
Supply voltage
Differential input voltage
Input voltage
Storage temperature -65 to +150 °C
Thermal resistance junction to ambient
SO-8 TSSOP8 SO-14 TSSOP14
Maximum junction temperature 150 °C
j
HBM: human body model MM: machine model CDM: charged device model
Output short circuit duration see note
Latch-up immunity 200 mA
Soldering temperature (10 sec), unleaded version 260 °C
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If Vid> ±1 V, the maximum input current must not exceed ±1 mA. In this case (Vid > ±1 V), an input series resistor must be added to limit input current.
3. Do not exceed 14 V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short­circuits on all amplifiers. These values are typical.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.
8. There is no short-circuit protection inside the device: short-circuits from the output to V excessive heating. The maximum output current is approximately 80mA, independent of the magnitude of V
. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
CC

Table 2. Operating conditions

can cause
CC
Symbol Parameter Value Unit
V
V
T
Supply voltage 2.7 to 12 V
CC
Common mode input voltage range V
icm
Operating free air temperature range -40 to +125 °C
oper
-0.2 to V
CC-
CC+
+0.2 V
2/14 Doc ID 15718 Rev 3
TS9222, TS9224 Electrical characteristics

2 Electrical characteristics

Table 3. Electrical characteristics measured at V
T
= 25° C, and RL connected to VCC/2 (unless otherwise specified)
amb
= +3 V, V
CC+
= 0 V, V
CC-
= VCC/2,
icm
Symbol Parameter Test conditions Min. Typ. Max. Unit
500
V
Input offset voltage
io
DV
Input offset voltage drift 2 μV/°C
io
I
Input offset current V
io
Input bias current
I
ib
CMR Common mode rejection ratio
SVR Supply voltage rejection ratio
Large signal voltage gain
A
vd
V
V
High level output voltage
OH
Low level output voltage
OL
Output short circuit current 50 80 mA
I
o
I
Supply current (per operator)
CC
GBP Gain bandwidth product R
SR Slew rate R
φm Phase margin at unit gain R
Gain margin RL = 10 kΩ, CL = 100 pF 8.5 dB
G
m
Equivalent input noise voltage f = 1 kHz 9
e
n
≤ T
T
min
= VCC/2, T
out
V
= VCC/2
out
T
T
min
from 0 to 3 V
V
icm
T
T
min
V
= 2.7 to 3.3 V
CC
T
T
min
R
= 10 kΩ, V
L
RL = 600 Ω, V T
T
min
RL= 10 kΩ, T
= 600 Ω, T
R
L
R
= 10 kΩ, T
L
R
= 600 Ω, T
L
No load, Vout = V Tmin Tamb ≤ Tmax
= 10 kΩ, CL = 100 pF 4 MHz
L
= 10 kΩ, CL = 100 pF 1.3 V/μs
L
= 10 kΩ, CL = 100 pF 60 Degrees
L
amb
amb
amb
amb
amb
≤ T
T
T
T
out
T
min
min
min
900
max
T
amb
T
max
min
max
65
max
60
75
max
= 2 V
out
max
min
T
T
= 2 V
T
amb
T
amb
amb
/2
CC
p-p
amb
p-p
T
T
T
T
max
max
max
max
70
70 200
15
1.8
2.90 V
2.87 V
130 nA
15
55 90
85
90
35
50 mV
100 mV
0.9 1.2
1.3
V/mV
mA
------------
µV
nA
dB
dB
nV
Hz
THD Total harmonic distortion
Channel separation 120 dB
C
s
V
= 2 V
out
RL=600Ω
, f = 1 kHz, Av= 1,
p-p
0.005 %
Doc ID 15718 Rev 3 3/14
Electrical characteristics TS9222, TS9224
Table 4. Electrical characteristics measured at V
T
= 25° C, and RL connected to VCC/2 (unless otherwise specified)
amb
CC+
= 5 V, V
= 0 V, V
CC-
= VCC/2,
icm
Symbol Parameter Test conditions Min. Typ. Max. Unit
500
V
Input offset voltage
io
DV
CMR
Input offset voltage drift 2 μV/°C
io
I
Input offset current V
io
Input bias current
I
ib
Common mode rejection ratio
SVR Supply voltage rejection ratio
A
Large signal voltage gain
vd
V
V
High level output voltage
OH
Low level output voltage
OL
Output short circuit current 50 80 mA
I
o
I
Supply current (per operator)
cc
≤ T
T
min
= VCC/2, T
out
V
= VCC/2
out
T
T
min
V
from 0 to 5 V
icm
T
T
min
V
CC
T
T
min
= 10 kΩ, V
R
L
RL = 600 Ω, V T
≤ T
min
RL= 10 kΩ, T
= 600 Ω, T
R
L
R
= 10 kΩ, T
L
R
= 600 Ω, T
L
≤ T
amb
amb
amb
≤ T
T
max
min
max
max
= 4.5 to 5.5 V
T
amb
max
= 2 V
out
out
≤ T
amb
max
min
min
min
min
900
T
= 2 V
T
T
T
T
No load, Vout = VCC/2 Tmin Tamb ≤ Tmax
amb
p-p
amb
amb
amb
amb
p-p
T
T
T
T
T
max
max
max
max
max
130 nA
15
55 90
65
85
60
75
90
70
70 200
24
35
3
4.9 V
4.85
50 mV
120
0.9 1.2
1.3
µV
nA
dB
dB
V/mV
mA
GBP Gain bandwidth product RL = 10 kΩ, CL = 100 pF 4 MHz
SR Slew rate RL = 10 kΩ, CL = 100 pF 1.3 V/μs
φm Phase margin at unit gain RL = 10 kΩ, CL = 100 pF 63 Degrees
Gain margin RL = 10 kΩ, CL = 100 pF 9.5 dB
G
m
Equivalent input noise
e
n
voltage
THD Total harmonic distortion
C
Channel separation 120 dB
s
f = 1 kHz 9
V
out
R
L
= 2 V
= 600 Ω
, f = 1 kHz, Av= 1,
p-p
0.005 %
4/14 Doc ID 15718 Rev 3
nV
-----------­Hz
TS9222, TS9224 Electrical characteristics
100
O
S
C
C
(
)
Figure 1. Total supply current vs. supply
voltage
Figure 3. Voltage gain and phase vs.
frequency, C
4040
3030
2020
1010
00
Gain (dB)
−1 0−1 0
−2 0−2 0 Vcc=5V, Vicm=2.5V Cl=100pF, Rl=10kOhms, Vrl=Vcc/2
−3 0−3 0 Tamb=25°C
−4 0−4 0
10
6
= 100 pF
L
7
10
120
80
40
0
−4 0
−8 0
−1 2 0
Figure 2. Output short circuit current vs.
output voltage
80
60
mA
40
urrent
20
0
ircu it
-20
hort-
-40
utput
-60
-80
-100 0 0,5 1 1,5 2 2,5 3
Sink
Vcc=0/3V
Source
Output Voltage (V)
Figure 4. Voltage gain and phase vs.
frequency, CL = 500 pF
50
40
30
Gain (dB)
20
Phase (°)
10
0
1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
CL=500pF
Frequency (Hz)
180
120
Phase (Deg)
60
0
Figure 5. Equivalent input noise voltage vs.
30
25
20
15
10
5
Equivalent Input Noise (nV/sqrt(Hz)
0
0.01 0.1 1 10 100
frequency
VCC=±1.5V
RL=100Ω
Frequency (kHz)
Figure 6. THD + noise vs. frequency,
R
= 2 kΩ, Vo = 10 Vpp
L
0.02
0.015
0.01
THD+Noise (%)
0.005
0
0.01 0.1 1 10 100
Doc ID 15718 Rev 3 5/14
RL=2kΩ Vo=10Vpp
VCC=±6V Av= 1
Frequency (kHz)
Loading...
+ 9 hidden pages