Rail-to-RailHigh Output Current Dual Operational Amplifier
■Rail-to-rail input and output
■Low noise: 9nV/
√Hz
■Low distortion
■High output current: 80mA
(able to drive 32Ω loads)
■High-speed: 4MHz, 1V/µs
■Operating from 2.7V to 12V
■Low input offset voltage: 900µV max
(TS922A)
■ESD Internal protection: 2kV
■Latch-up immunity
■Macromodel included in this specification
■Dual version available in flip-chip package
Description
The TS922 is a rail-to-rail dual BiCMOS
operational amplifier optimized and fully specified
for 3V and 5V operation.
The device’s high output current allows low-load
impedances to be driven.
Very low noise, low distortion, low offset and a
high output current capability make this device an
excellent choice for high quality, low voltage or
battery operated audio systems.
The device is stable for capacitive loads up to
500pF.
J
TS922IJ
(Flip-chip)
N
DIP-8
(Plastic Package)
D
SO-8
(Plastic Micropackage)
P
TSSOP8
(Thin Shrink Small Outline Package)
Applications
■Headphone amplifier
■Piezoelectric speaker driver
■Sound cards, multimedia systems
■Line driver, actuator driver
■Servo amplifier
■Mobile phone and portable equipment
■Instrumentation with low noise as key
factor
Order Codes
Part NumberTemperature RangePackagePackaging
TS922IN/AIN
TS922ID/IDT/AID/AIDTSOTube or Tape & Reel
TS922IPT/TS922AIPT
TS922IJTFlip-ChipTape & Reel
May 2005Revision 31/16
-40°C, +125°C
(Thin Shrink Outline Package)
DIPTube
TSSOP
Tape & Reel
TS922Pin Diagrams
1 Pin Diagrams
Figure 1: Pin connections (top view)
Output 1
Inverting Input 1
Non-inverting Input 1
1
2
-
+
3
V
45
CC
Figure 2: Pin-out for flip-chip package (top view)
OUT2-IN2+IN2
OUT2-IN2+IN2
-
-
+
+
VCC+
VCC+
+
+
-
-
V
8
Output 2
7
-
Inverting Input 2
6
+
Non-inverting Input 2
CC
+
GND
GND
+IN1-IN1OUT1
+IN1-IN1OUT1
2/16
Absolute Maximum RatingsTS922
2 Absolute Maximum Ratings
Table 1: Key parameters and their absolute maximum ratings
SymbolParameterValueUnit
V
T
Supply voltage
CC
V
Differential Input Voltage
id
V
Input Voltage
in
Storage Temperature
stg
Thermal Resistance Junction to Ambient
SO8
R
TSSOP8120
thja
DIP885
Flip Chip90
T
Maximum Junction Temperature
j
HBM: Human Body Model
ESD
MM: Machine Model
CDM: Charged Device Model1.5kV
Output Short Circuit Duration
Latch-up Immunity200mA
Soldering Temperature (10sec), leaded version250°C
Soldering Temperature (10sec), unleaded version260°C
1) All voltages values, except differential voltage are with respect to network ground terminal.
2) Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If Vid > ±1V, the maximum input current must not exceed ±1mA. In this case (Vid > ±1V) an input serie resistor must be added to limit input current.
3) Do not exceed 14V.
4) Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
5) Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor
(internal resistor < 5
6) There is no short-circuit protection inside the device: short-circuits from the output to V
output current is approximately 80mA, independent of the magnitude of V
circuits on all amplifiers.
1
2
3
4
5
Ω), into pin to pin of device.
14V
±1V
VDD-0.3 to VCC+0.3
-65 to +150°C
125
150°C
2kV
100V
see note
can cause excessive heating. The maximum
. Destructive dissipation can result from simultaneous short-
cc
cc
6
V
°C/W
Table 2: Operating conditions
SymbolParameterValueUnit
V
V
T
Supply voltage
CC
Common Mode Input Voltage Range
icm
Operating Free Air Temperature Range
oper
2.7 to 12V
-0.2 to VCC +0.2
V
DD
-40 to +125°C
V
3/16
TS922Electrical Characteristics
3 Electrical Characteristics
Table 3: VCC = +3V, VDD = 0V, V
= VCC/2, T
icm
= 25°C, RL connected to Vcc/2 (unless otherwise
amb
specified)
SymbolParameterMin.Typ.Max.Unit
Input Offset Voltage TS922
Input Offset voltage TS922A
Input Offset Voltage TS922IJ (Flip Chip)
V
io
T
≤ T
≤ T
TS922
max.
≤ T
TS922A
max.
≤ T
TS922IJ (Flip Chip)
max.
2
130nA
15100nA
DV
min.
min.
min.
≤ T
≤ T
amb
amb
amb
T
T
Input Offset Voltage Drift
io
Input Offset Current
I
io
Vout = Vcc/2
Input Bias Current
I
ib
Vout = Vcc/2
High Level Output Voltage
R
= 10k
V
OH
L
R
= 600Ω
L
RL = 32Ω
2.90
2.87
2.63
Low Level Output Voltage
R
= 10k
V
OL
A
I
cc
GBP
L
R
= 600Ω
L
RL = 32Ω
Large Signal Voltage Gain (V
R
= 10k
L
vd
R
= 600Ω
L
RL = 32Ω
Total Supply Current
no load, V
out
= V
Gain Bandwidth Product
(R
= 600Ω)
L
cc/2
= 2Vpk-pk)
out
180
200
35
16
23mA
4MHz
CMRCommon Mode Rejection Ratio6080dB
SVR
Supply Voltage Rejection Ratio
= 2.7 to 3.3V
V
cc
I
Output Short Circuit Current
o
6085
5080mA
SRSlew Rate0.71.3V/
Phase Margin at Unit Gain
φm
G
m
e
n
THD
C
s
= 600Ω, CL =100pF
R
L
Gain Margin
R
= 600Ω, CL =100pF
L
Equivalent Input Noise Voltage
f = 1kHz
Total Harmonic Distortion
= 2Vpk-pk, F = 1kHz, Av = 1, RL =600Ω
V
out
Channel Separation
68Degrees
12dB
9
0.005%
120dB
3
0.9
1.5
5
1.8
2.5
µV/°C
50
100
mV
V
mV
V/mV
dB
µs
nV
-----------Hz
4/16
Electrical CharacteristicsTS922
Table 4: Electrical characteristics VCC = 5V, V
to V
/2 (unless otherwise specified)
cc
= 0V, V
DD
= Vcc/2, T
icm
= 25°C, RL connected
amb
SymbolParameterMin.Typ.Max.Unit
V
V
DV
V
Input Offset Voltage TS922
Input Offset voltage TS922A
Input Offset Voltage TS922IJ (Flip Chip)
io
T
≤ T
≤ T
min.
amb
max.
TS922
TS922A
TS922IJ (Flip Chip)
Input Offset Voltage TS922IJ (flip chip)
io
T
≤ T
≤ T
min.
amb
Input Offset Voltage Drift
io
Input Offset Current
I
io
Vout = Vcc/2
Input Bias Current
I
ib
Vout = Vcc/2
TS922IJ
max.
High Level Output Voltage
R
= 10k
OH
L
R
= 600Ω
L
RL = 32Ω
2
130nA
15100nA
4.90
4.85
4.4
3
0.9
1.5
5
1.8
2.5
1.5
2.5
µV/°C
Low Level Output Voltage
V
OL
A
vd
I
cc
GBP
= 10k
L
R
= 600Ω
L
RL = 32Ω
Large Signal Voltage Gain (V
RL= 10k
R
= 600Ω
L
RL = 32Ω
Total Supply Current
no load, V
out
= V
cc/2
Gain Bandwidth Product
(R
= 600Ω)
L
= 2Vpk-pk)
out
300
200
35
16
23mA
4MHz
50
120
R
CMRCommon Mode Rejection Ratio6080dB
SVR
Supply Voltage Rejection Ratio
= 4.5 to 5.5V
V
cc
I
Output Short Circuit Current
o
6085dB
5080mA
SRSlew Rate0.71.3V/
φm
G
THD
Phase Margin at Unit Gain
= 600Ω, CL =100pF
R
L
Gain Margin
m
R
= 600Ω, CL =100pF
L
Equivalent Input Noise Voltage
e
n
f = 1kHz
Total Harmonic Distortion
V
= 2Vpk-pk, F = 1kHz, Av = 1, RL =600Ω
out
C
Channel Separation
s
68Degrees
12dB
9
0.005%
120dB
mV
mV
V
mV
V/mV
µs
nV
-----------Hz
5/16
TS922Electrical Characteristics
Table 5: Electrical characteristics for V
= 3V, V
CC
= 0V, RL, CL connected to VCC/2, T
DD
amb
(unless otherwise specified)
SymbolConditionsValueUnit
V
A
I
CC
V
icm
V
OH
V
OL
I
sink
I
source
GBP
SR
φm
io
vd
RL = 10kΩ
No load, per operator
RL = 10kΩ
RL = 10kΩ
VO = 3V
VO = 0V
R
= 600kΩ
L
R
= 10kΩ, CL = 100pF
L
R
= 600kΩ
L
0mV
200V/mV
1.2mA
-0.2 to 3.2V
2.95V
25mV
80mA
80mA
4MHz
1.3V/
68Degrees
= 25°C
µs
6/16
Electrical CharacteristicsTS922
3
O
Sh
Ci
i
C
(
A)
60
180
Figure 3: Output Short Circuit Current vs.
Output Voltage
100
80
60
m
40
urrent
20
t
0
rcu
-20
ort-
-40
utput
-60
-80
-100
00,511,522,5
Sink
Vcc=0/3V
Source
Output Voltage (V)
Figure 4: Total supply current vs. Supply
voltage
Figure 6: Equivalent Input Noise Voltage vs.
Frequency
30
25
20
15
10
5
Equivalent Input Noise (nV/sqrt(Hz)
0
0.010.1110100
VCC=±1.5V
R
=100Ω
L
Frequency (kHz)
Figure 7: THD + Noise vs. Frequency
0.02
0.015
0.01
THD+Noise (%)
0.005
RL=2k Vo=10Vpp
V
=±6V A v= 1
CC
0
Figure 5: Voltage Gain And Phase vs.
0.010.1110100
Figure 8: THD + Noise vs. Frequency
Frequency (kHz)
Frequency
phase
40
gain
20
Gain ( dB)
0
-20
1E+021E+031E+041E +051E+061E+071E+08
Frequency (Hz)
Rl=10k
Cl=100pF
120
60
Phase (Deg )
0
-60
0.04
0.032
RL=32Ω Vo=4Vpp
0.024
0.016
THD+Noise (%)
0.008
0
VCC=±2.5V Av= 1
0.010.1110100
Frequency (kHz)
7/16
TS922Electrical Characteristics
2
)
Figure 9: THD + Noise vs. Frequency
0.7
0.6
0.5
0.4
0.3
THD+Noise (%)
0.2
0.1
0
RL=32Ω Vo=2Vpp
VCC=±1.5V Av= 10
0.010.1110100
Frequency (kHz)
Figure 10: THD + Noise vs. Output Voltage
10,000
RL=600Ω f=1kHz
V
=0/3V Av= -1
1,000
0,100
THD+Noise (%)
0,010
CC
Figure 12: THD + Noise vs. Output Voltage
10
0.1
THD+Noise (%)
0.01
0.001
RL=2kΩ f=1kHz
V
=±1.5V Av= -1
CC
1
00.20.40.60.811.2
Vout (Vrms)
Figure 13: Open Loop Gain And Phase vs.
Frequency
50
40
30
Gain(dB)
20
10
CL=500pF
180
120
60
Phase (Deg)
0,001
00,20,40,60,811,
Vout (Vrms
Figure 11: THD + Noise vs. Output Voltage
10
1
THD+Noise (%)
0.1
0.01
00.20.40.60.81
RL=32Ω f=1kHz
V
=±1.5V Av= -1
CC
Vout (Vrms)
0
1E+21E+31E+41E+51E+61E+71E+8
Frequency (Hz)
0
8/16
MacromodelTS922
4 Macromodel
Warning: Please consider following remarks before using this macromodel:
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach
and help to select surrounding component values.
A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING
CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as
the datasheet, its goal is to illustrate the main parameters of the product.
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc) or even
worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any way.
Figure 14: Top view and dimensions of 8-bump flip-chip
1600 µm
1600 µm
■Die size: 1600µm x 1600µm ±30µm
■Die height: 350µm ±20µm
■Die height (including bumps): 600µm
1600 µm
500µm
500µm
500µm
500µm
1600 µm
∅ 315µm
∅ 315µm
■Bumps diameter: 315µm ±50µm
■Bumps height: 250µm ±40µm
■Pitch: 500µm ±10µm
600 µm
600 µm
Figure 15: Flip-chip Footprint recommendation
TS922IJ Footprint
TS922IJ Footprint
500µm
500µm
500µm
Φ=250µm
Φ=250µm
Φ=250µm
Φ=400µm
Φ=400µm
Φ=400µm
500µm
500µm
500µm
500µm
500µm
500µm
500µm
500µm
500µm
75µm min.
75µm min.
75µm min.
100µm max.
100µm max.
100µm max.
150µm min.
150µm min.
150µm min.
Track
Track
Track
Solder mask opening
Solder mask opening
Solder mask opening
Pad in Cu 1 8µm with Flash NiAu (6µm, 0.15µm)
Pad in Cu 1 8µm with Flash NiAu (6µm, 0.15µm)
Pad in Cu 1 8µm with Flash NiAu (6µm, 0.15µm)
11/16
TS922Package Mechanical Data
Figure 16: Flip-chip marking (top view)
BUMP 1A CORNER
BUMP 1A CORNER
LEADFREE
E
E
922
922
YWW
YWW
■Logo: ST
■Part Number: 922
■Date Code: YWW
■The dot is for marking the bump
LEADFREE
Table 6: Tape & Reel specification (top view)
1
1
A
A
User direction of feed
User direction of feed
1
1
A
A
Note: Device Orientation: The devices are oriented in the carrier pocket with bump number A1 adjacent
to the sprocket holes.
12/16
Package Mechanical DataTS922
5.2 DIP8 package
Plastic DIP-8 MECHANICAL DATA
DIM.
A3.30.130
a10.70.028
B1.391.650.0550.065
B10.911.040.0360.041
b0.50.020
b10.380.50.0150.020
D9.80.386
E8.80.346
e2.540.100
e37.620.300
e47.620.300
F7.10.280
I4.80.189
L3.30.130
Z0.441.60.0170.063
MIN.TYPMAX.MIN.TYP.MAX.
mm.inch
P001F
13/16
TS922Package Mechanical Data
5.3 SO8 package
SO-8 MECHANICAL DATA
DIM.
A1.351.750.0530.069
A10.100.250.040.010
A21.101.650.0430.065
B0.330.510.0130.020
C0.190.250.0070.010
D4.805.000.1890.197
E3.804.000.1500.157
e1.270.050
H5.806.200.2280.244
h0.250.500.0100.020
L0.401.270.0160.050
k˚ (max.)
ddd0.10.04
MIN.TYPMAX.MIN.TYP.MAX.
mm.inch
8
14/16
0016023/C
Package Mechanical DataTS922
5.4 TSSOP8 package
TSSOP8 MECHANICAL DATA
DIM.
MIN.TYPMAX.MIN.TYP.MAX.
A1.20.047
A10.050.150.0020.006
A20.801.001.050.0310.0390.041
b0.190.300.0070.012
c0.090.200.0040.008
D2.903.003.100.1140.1180.122
E6.206.406.600.2440.2520.260
E14.304.404.500.1690.1730.177
e0.650.0256
K0˚8˚0˚8˚
L0.450.600.750.0180.0240.030
L110.039
mm.inch
0079397/D
15/16
Revision HistoryTS922
6 Revision History
DateRevisionDescription of Changes
Feb.20011First Release
July 20042Flip-Chip package inserted in the document
May 20053
Modifications on AMR Table 1 on page 3 (explanation of Vid and Vi limits,
ESD MM and CDM values added, Rthja added)
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners