ST TS921 User Manual

Rail-to-rail input and output
Low noise: 9nV/Hz
■ High output current: 80mA (able to drive 32
loads)
High-speed: 4MHz, 1V/µs
Operating from 2.7V to 12V
ESD internal protection: 1.5kV
Latch-up immunity
Macromodel included in this specification
Description
The TS921 is a rail-to-rail single BiCMOS operational amplifier optimized and fully specified for 3V and 5V operation.
Its high output current allows low-load impedances to be driven.
The TS921 exhibits very low noise, low distortion and low offset. It has a high output current capability which makes this device an excellent choice for high quality, low voltage or battery­operated audio systems.
The device is stable for capacitive loads up to 500pF.
TS921
Rail-to-Rail High Output Current
Single Operational Amplifier
N DIP8
(Plastic Package)
D SO-8
(Plastic Micropackage)
P TSSOP8
(Thin Shrink Small Outline Package)
Pin connections (top view)
N.C.
Inverting Input
Non-inverting Input
V
CC
1
2
-
+
3
45
8
7
6
N.C.
V
CC
Output
N.C.
+
Applications
Headphone amplifier
Piezoelectric speaker driver
Sound cards, multimedia systems
Line driver, actuator driver
November 2005 1/14
Servo amplifier
Mobile phone and portable communication
sets
Instrumentation with low noise as key factor
Rev 3
www.st.com
14
Order Codes
TS921
Part Number
TS921IN
TS921ID/IDT SO-8 Tube or Tape & Reel
TS921IPT
TS921IYD/IYDT SO-8 (automotive grade level) Tube or Tape & Reel 921IY
Temperature
Range
-40°C, +125°C
Package Packing Marking
DIP8 Tube TS921IN
TSSOP8
(Thin Shrink Outline Package)
Tape & Reel
921I
2/14
TS921 Absolute Maximum Ratings

1 Absolute Maximum Ratings

Table 1. Key parameters and their absolute maximum ratings

Symbol Parameter Condition Value Unit
V
T
R
R
CC
Vid
V
stg
T
thja
thjc
Supply voltage
Differential Input Voltage
Input Voltage
i
Storage Temperature -65 to +150 °C
Maximum Junction Temperature 150 °C
j
Thermal Resistance Junction to Ambient
Thermal Resistance Junction to Case
(1)
ESD Electro-Static Discharge
Output Short Circuit Duration
Latch-up Immunity 200 mA
(2)
SO-8 TSSOP8 DIP8
SO-8 TSSOP8 DIP8
HBM Human Body Model
(3)
MM Machine Model
(4)
CDM Charged Device Model
14 V
±1 V
V
-0.3 to VCC+0.3
DD
125 120
85
40 37 41
1.5 kV
100 V
1.5 kV
see note
V
°C/W
°C/W
(5)
10sec, Standard package
250 °C
Soldering Temperature
10sec, Pb-free package
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If Vid > ±1V, the maximum input current must not exceed ±1mA. In this case (Vid > ±1V) an input serie resistor must be added to limit input current.
3. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
4. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5), into pin to pin of device.
5. There is no short-circuit protection inside the device: short-circuits from the output to V heating. The maximum output current is approximately 80mA, independent of the magnitude of Vcc. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.
260
can cause excessive
cc

Table 2. Operating conditions

Symbol Parameter Value Unit
V
T
V
oper
Supply Voltage 2.7 to 12 V
CC
V
Common Mode Input Voltage Range
icm
-0.2 to VCC +0.2
DD
Operating Free Air Temperature Range -40 to +125 °C
V
3/14
Electrical Characteristics TS921

2 Electrical Characteristics

Table 3. Electrical characteristics for VCC=3V, VDD=0V, V
to V
CC
/2, T
= 25°C (unless otherwise specified)
amb
icm=VCC
/2, RL connected
Symbol Parameter Conditions Min. Typ. Max. Unit
V
Input Offset Voltage
io
DV
V
Input Offset Voltage Drift 2 µV/°C
io
I
Input Offset Current
io
I
Input Bias Current
ib
High Level Output Voltage RL=600
OH
Low Level Output Voltage RL=600
V
OL
A
Large Signal Voltage Gain V
vd
GBP Gain Bandwidth Product
I
Supply Current
CC
T
at T
V
out
V
out
min.
=1.5V
=1.5V
amb
T
max
2.87
R
=32
L
R
=32 180
L
= 2V
out
pk-pk
RL=600 R
=32
L
R
= 600
L
no load, V
= VCC/2
out
130 nA
15 100 nA
2.63
35 16
4MHz
11.5 mA
3 5
100
mV
mV
V/mV
CMR Common Mode Rejection Ratio 60 80 dB
SVR Supply Voltage Rejection Ratio
VCC = 2.7 to 3.3V
60 80 dB
V
I
Output Short-Circuit Current 50 80 mA
o
SR Slew Rate 0.7 1.3 V/µs
Pm Phase Margin at Unit Gain
GM Gain Margin
e
Equivalent Input Noise Voltage f = 1kHz 9
n
R
R
THD Total Harmonic Distortion V
f=1kHz, A R
4/14
= 600Ω, CL =100pF
L
= 600Ω, CL =100pF
L
=2V
out
=600
L
pk-pk
v
,
=1,
68 Degrees
12 dB
nV
------------
0.005 %
Hz
TS921 Electrical Characteristics
Table 4. Electrical characteristics for VCC = 5V, VDD = 0V, V
to V
CC
/2, T
= 25°C (unless otherwise specified)
amb
= VCC/2, RL connected
icm
Symbol Parameter Conditions Min. Typ. Max. Unit
V
Input Offset Voltage
io
DV
V
Input Offset Voltage Drift
io
I
Input Offset Current V
io
I
Input Bias Current V
ib
High Level Output Voltage
OH
V
Low Level Output Voltage RL = 600
OL
A
Large Signal Voltage Gain V
vd
GBP Gain Bandwidth Product
I
Supply Current
CC
T
at T
min.
= 1.5V
out
= 1.5V
out
R
= 600
L
R
= 32
L
R
= 32 300
L
= 2V
out
amb
pk-pk
T
max
4.85
RL = 600 R
= 32
L
R
= 600
L
no load, V
= VCC/2
out
2 µV/°C
130 nA
15 100 nA
4.4
35 16
4MHz
11.5 mA
3 5
120
mV
mV
V/mV
CMR Common Mode Rejection Ratio 60 80 dB
V
V
SVR Supply Voltage Rejection Ratio
I
Output Short-Circuit Current 50 80 mA
o
= 4.5to 5.5V
CC
60 80 dB
SR Slew Rate 0.7 1.3 V/µs
R
Pm Phase Margin at Unit Gain
GM Gain Margin
e
Equivalent Input Noise Voltage f = 1kHz 9
n
THD Total Harmonic Distortion
= 600Ω, CL =100pF
L
R
= 600Ω, CL =100pF
L
= 2V
V
out
A
=1, RL= 600
v
pk-pk
, f = 1kHz,
68 Degrees
12 dB
nV
------------
0.005 %
Hz
5/14
Electrical Characteristics TS921
)
Figure 1. Output short circuit vs. output
voltage
100
80
60
40
20
0
-20
-40
-60
Output Short-Circuit Current (mA)
-80
-100
-120 012345
Sink
Vcc=0/5V
Source
Output Voltage (V)
Figure 3. Output short circuit vs. output
voltage
100
80
60
40
20
0
-20
-40
-60
Outp ut Short-Circu it Curre nt (mA)
-80
-100 00,511,522,53
Sink
Vcc=0/3V
Source
Output Voltage (V
Figure 2. Voltage gain and phase vs.
frequency
60
phase
40
gain
20
Gain (dB)
0
-20 1E+02 1E+03 1E +04 1E+05 1E+06 1E+07 1E+08
Frequency (Hz)
Rl=10k Cl=100pF
180
120
60
Pha se ( De g)
0
-60
Figure 4. Equivalent input noise voltage vs.
frequency
30
25
20
15
10
5
Equivalent Input Noise (nV/sqrt(Hz)
0
0.01 0.1 1 10 100
Frequency (kHz)
Figure 5. Output suppply current vs. supply
voltage
6/14

Figure 6. THD + noise vs. frequency

0.02
0.015
0.01
THD+Noise (%)
0.005
0
0.01 0.1 1 10 100
Frequency (kHz)
TS921 Electrical Characteristics
Figure 7. THD + noise vs. frequency Figure 8. THD + noise vs. output voltage
0.04
0.032
0.024
0.016
THD+Noise (%)
0.008
0
0.01 0.1 1 10 100
Frequency (kHz)
10
1
THD+Noise (%)
0.1
0.01
0 0.2 0.4 0.6 0.8 1
Vout (Vrms)

Figure 9. THD + noise vs. frequency Figure 10. THD + noise vs. output voltage

0.7
0.6
0.5
0.4
0.3
THD+Noise (%)
0.2
0.1
0
0.01 0.1 1 10 100
Frequency (kHz)
10
1
0.1
THD+Nois e (%)
0.01
0.001
0 0.2 0.4 0.6 0.8 1 1.2
Vout (Vrms)

Figure 11. THD + noise vs. output voltage Figure 12. Open loop gain and phase vs.

frequency
10,000
1,000
0,100
THD+N oise (%)
0,010
0,001
0 0,2 0,4 0,6 0,8 1 1,2
Vout (Vrms)
50
40
30
Gain (dB)
20
10
0
1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Frequency (Hz)
180
120
60
0
Phase (Deg)
7/14
Macromodels TS921

3 Macromodels

3.1 Important note concerning this macromodel

Please consider following remarks before using this macromodel:
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a
design approach and help to select surrounding component values.
A macromodel emulates the NOMINAL performance of a TYPICAL device within
SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product.
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature,
etc) or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any way.
Section 3.3
In
, the electrical characteristics resulting from the use of these macromodels are
presented.

3.2 Electrical characteristics from macromodelization

Table 5. Electrical characteristics resulting from macromodel simulation at VCC = 3V,
V
= 0V, RL, CL connected to V
DD
Symbol Conditions Value Unit
V
io
A
I
CC
V
icm
V
OH
V
OL
I
sink
I
source
GBP
SR
φm
vd
RL = 10k
No load, per operator 1.2 mA
RL = 10k
RL = 10k
VO = 3V
VO = 0V
= 600k
R
L
R
= 10kΩ, CL = 100pF
L
R
= 600k
L
CC/2
, T
= 25°C (unless otherwise specified)
amb
-0.2 to 3.2 V
0mV
200 V/mV
2.95 V
25 mV
80 mA
80 mA
4MHz
1.3 V/µs
68 Degrees
8/14
TS921 Macromodels

3.3 Macromodel code

** Standard Linear Ics Macromodels, 1996. ** CONNECTIONS: * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS921 1 3 2 4 5 (analog) ********************************************************* .MODEL MDTH D IS=1E-8 KF=2.664234E-16 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 8.125000E+00 RIN 15 16 8.125000E+00 RIS 11 15 2.238465E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 153.5u VOFN 13 14 DC 0 IPOL 13 5 3.200000E-05 CPS 11 15 1e-9 DINN 17 13 MDTH 400E-12 VIN 17 5 -0.100000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.400000E+00 FCP 4 5 VOFP 1.865000E+02 FCN 5 4 VOFN 1.865000E+02 FIBP 2 5 VOFP 6.250000E-03 FIBN 5 1 VOFN 6.250000E-03 * GM1 STAGE *************** FGM1P 119 5 VOFP 1.1 FGM1N 119 5 VOFN 1.1 RAP 119 4 2.6E+06 RAN 119 5 2.6E+06 * GM2 STAGE *************** G2P 19 5 119 5 1.92E-02 G2N 19 5 119 4 1.92E-02 R2P 19 4 1E+07 R2N 19 5 1E+07 ************************** VINT1 500 0 5 GCONVP 500 501 119 4 19.38!send ds VP, I(VP)=(V119-V4)/2/Ut VP 501 0 0 GCONVN 500 502 119 5 19.38!send ds VN, I(VN)=(V119-V5)/2/Ut VN 502 0 0 ********* orientation isink isource ******* VINT2 503 0 5 FCOPY 503 504 VOUT 1 DCOPYP 504 505 MDTH 400E-9
9/14
Macromodels TS921
VCOPYP 505 0 0 DCOPYN 506 504 MDTH 400E-9 VCOPYN 0 506 0 *************************** F2PP 19 5 poly(2) VCOPYP VP 0 0 0 0 0.5!multiply I(vout)*I(VP)=Iout*(V119-V4)/2/Ut F2PN 19 5 poly(2) VCOPYP VN 0 0 0 0 0.5 !multiply I(vout)*I(VN)=Iout*(V119-V5)/2/Ut F2NP 19 5 poly(2) VCOPYN VP 0 0 0 0 1.75 !multiply I(vout)*I(VP)=Iout*(V119-V4)/2/Ut F2NN 19 5 poly(2) VCOPYN VN 0 0 0 0 1.75 !multiply I(vout)*I(VN)=Iout*(V119-V5)/2/Ut * COMPENSATION ************ CC 19 119 25p * OUTPUT*********** DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 6.250000E+02 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 6.250000E+02 VINM 5 27 5.000000E+01 VOUT 3 23 0 ROUT 23 19 6 COUT 3 5 1.300000E-10 DOP 19 25 MDTH 400E-12 VOP 4 25 1.052 DON 24 19 MDTH 400E-12 VON 24 5 1.052 .ENDS
10/14
TS921 Package Mechanical Data

4 Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com

4.1 DIP8 Package

.
Plastic DIP-8 MECHANICAL DATA
DIM.
A 3.3 0.130
a1 0.7 0.028
B 1.39 1.65 0.055 0.065
B1 0.91 1.04 0.036 0.041
b 0.5 0.020
b1 0.38 0.5 0.015 0.020
D 9.8 0.386
E 8.8 0.346
e 2.54 0.100
e3 7.62 0.300
e4 7.62 0.300
F 7.1 0.280
I 4.8 0.189
L 3.3 0.130
Z 0.44 1.6 0.017 0.063
MIN. TYP MAX. MIN. TYP. MAX.
mm. inch
P001F
11/14
Package Mechanical Data TS921

4.2 SO-8 Package

SO-8 MECHANICAL DATA
DIM.
A 1.35 1.75 0.053 0.069
A1 0.10 0.25 0.04 0.010
A2 1.10 1.65 0.043 0.065
B 0.33 0.51 0.013 0.020
C 0.19 0.25 0.007 0.010
D 4.80 5.00 0.189 0.197
E 3.80 4.00 0.150 0.157
e 1.27 0.050
H 5.80 6.20 0.228 0.244
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
k ˚ (max.)
ddd 0.1 0.04
MIN. TYP MAX. MIN. TYP. MAX.
mm. inch
8
12/14
0016023/C
TS921 Package Mechanical Data

4.3 TSSOP8 Package

TSSOP8 MECHANICAL DATA
DIM.
MIN. TYP MAX. MIN. TYP. MAX.
A 1.2 0.047
A1 0.05 0.15 0.002 0.006
A2 0.80 1.00 1.05 0.031 0.039 0.041
b 0.19 0.30 0.007 0.012
c 0.09 0.20 0.004 0.008
D 2.90 3.00 3.10 0.114 0.118 0.122
E 6.20 6.40 6.60 0.244 0.252 0.260
E1 4.30 4.40 4.50 0.169 0.173 0.177
e 0.65 0.0256
K0˚ 8˚0˚ 8˚
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1 0.039
mm. inch
0079397/D
13/14
Revision History TS921

5 Revision History

Date Revision Changes
Feb. 2001 1 Initial release - Product in full production.
Modifications on AMR table page 2 (explanation of Vid and Vi limits,
Dec. 2004 2
Nov. 2005 3
MM and CDM values added, Rthja added)
The following changes were made in this revision: – PPAP references inserted in the datasheet see
on page 2
– Data in tables
.
Electrical Characteristics on page 4
easier use.
– Thermal Resistance Junction to Case added in
ESD
Table . Order Codes
reformatted for
Table 1. on page 3
.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
14/14
Loading...