ST TS914, TS914A User Manual

Rail-to-rail CMOS quad operational amplifier
Features
Rail-to-rail input and output voltage ranges
Single (or dual) supply operation from 2.7 to
16 V
Low input offset voltage: 5 mV max. (A grade)
Specified for 600 Ω and 100 Ω loads
Low supply current: 200 μA/ampli (V
Latch-up immunity
Spice macromodel included in this specification
Description
The TS914 is a rail-to-rail CMOS quad operational amplifier designed to operate with a single or dual supply voltage.
= 3 V)
CC
(Plastic micropackage)
Pin connections (top view)
Output 1
Inverting Input 1
Non-inverting Input 1
V
CC
Non-inverting Input 2
Inverting Input 2
Output 2
TS914, TS914A
D
SO-14
1
2
-
+
3
+
4
5
+
-
6
7
14
13
-
+
12
11
10
+
­9
8
Output 4
Inverting Input 4
Non-inverting Input 4
-
V
CC
Non-inverting Input 3
Inverting Input 3
Output 3
The input voltage range V supply rails V
The output reaches V with R V
= 10 kΩ, and V
L
-350 mV, with RL = 600 Ω.
CC
+
CC
and V
+
CC-
includes the two
icm
.
CC-
+50 mV, V
+350 mV,
CC-
-50 mV,
CC
+
This product offers a broad supply voltage operating range from 2.7 to 16 V and a supply current of only 200 μA/amp (V
= 3 V).
CC
The source and sink output current capability is typically 40 mA (at V
= 3 V), fixed by an internal
CC
limitation circuit.
February 2010 Doc ID 4475 Rev 7 1/17
www.st.com
17
Absolute maximum ratings and operating conditions TS914, TS914A

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
(3)
(1)
(6)
(2)
(5)
(7)
(4)
18 V
±18 V
-0.3 to 18 V
103 °C/W
1kV
50 V
1.5 kV
V
CC
V
id
V
in
I
in
I
o
T
T
stg
R
thja
R
thjc
ESD
Supply voltage
Differential input voltage
Input voltage
Current on inputs ±50 mA
Current on outputs ±130 mA
j
Maximum junction temperature 150 °C
Storage temperature -65 to +150 °C
Thermal resistance junction to ambient
Thermal resistance junction to case 31 °C/W
HBM: human body model
MM: machine model
CDM: charged device model
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed V
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short­circuit on all amplifiers. These are typical values.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

CC
+
+0.3 V.
Symbol Parameter Value Unit
V
V
T
CC
icm
oper
Supply voltage 2.7 to 16 V
Common mode input voltage range V
-0.2 to V
CC-
+0.2 V
CC+
Operating free air temperature range -40 to + 125 °C
2/17 Doc ID 4475 Rev 7
TS914, TS914A Schematic diagram

2 Schematic diagram

Figure 1. Schematic diagram

V
CC
Internal
Non-inverting
Input
Inverting
Input
Vref
Output
V
CC
Doc ID 4475 Rev 7 3/17
Electrical characteristics TS914, TS914A

3 Electrical characteristics

Table 3. V
CC+
= 3 V, V
Symbol Parameter Test conditions Min. Typ. Max. Unit
= 0 V, RL, CL connected to VCC/2, T
cc-
= 25° C (unless otherwise specified)
amb
TS914
Input offset voltage
V
io
(V
= Vo = VCC/2)
icm
ΔV
Input offset voltage drift 5 μV/°C
io
Input offset current
I
io
Input bias current
I
ib
Supply current
I
CC
(1)
(1)
CMR Common mode rejection ratio V
SVR Supply voltage rejection ratio V
A
Large signal voltage gain
vd
TS914A T
≤ T
min
T
≤ T
min
T
≤ T
min
T
min.
per amplifier, A
≤ T
T
min
= 0 to 3 V, Vo = 1.5 V 70 dB
icm
CC+
= 10 kΩ, Vo = 1.2 V to 1.8 V
R
L
T
≤ T
min
≤ T
≤ T
amb
amb
amb
amb
amb
≤ T
≤ T
≤ T
≤ T
max,
TS914A
max,
max
max
= 1, no load
VCL
max
= 2.7 to 3.3 V, Vo = VCC/2 80 dB
≤ T
amb
max
Vid = 1 V,
RL = 10 kΩ
= 600 Ω
R
L
V
High level output voltage
OH
RL = 100 Ω
= 1V, T
V
id
min
≤ T
amb
RL = 10 kΩ
= 600 Ω
R
L
Vid = -1 V,
= 10 kΩ
R
L
RL = 600 Ω
V
Low level output voltage
OL
RL = 100 Ω
= -1 V, T
V
id
min
≤ T
amb
RL = 10 kΩ R
= 600 Ω
L
= ±1 V
V
I
Output short circuit current
o
GBP Gain bandwidth product
SR Slew rate
φ
Phase margin 30 °
m
e
Equivalent input noise voltage Rs = 100 Ω, f = 1 kHz 30 nV/√Hz
n
V
O1/VO2
1. Maximum values include unavoidable inaccuracies of the industrial tests.
Channel separation f = 1 kHz 120 dB
id
Source (V Sink (V
A
VCL
= V
o
CC-
= V
o
CC+
)
=100, RL=10kΩ,
CL= 100 pF, f = 100 kHz
=1, RL=10kΩ, CL= 100 pF,
A
VCL
= 1.3 V to 1.7 V
V
in
TS914
≤ T
max
≤ T
)
max
3 2
2.9
2.2
2.8
2.1
10
5
12
mV
7
1 100
200
1 150
300
200 300
400
10
pA
pA
μA
V/mV
2.97
2.7 2
50
100 300 900
600
mV
150
900
40
mA
40
0.8 MHz
0.5 V/μs
V
4/17 Doc ID 4475 Rev 7
TS914, TS914A Electrical characteristics
Table 4. V
CC
+
= 5 V, V
Symbol Parameter Test conditions Min. Typ. Max. Unit
-
= 0 V, RL, CL connected to VCC/2, T
cc
= 25° C (unless otherwise specified)
amb
Input offset voltage
V
io
(V
= Vo = VCC/2)
icm
ΔV
I
Input offset voltage drift 5 μV/°C
io
I
Input offset current
io
Input bias current
I
ib
Supply current
CC
(1)
(1)
CMR Common mode rejection ratio V
SVR Supply voltage rejection ratio V
A
V
V
Large signal voltage gain
vd
High level output voltage
OH
Low level output voltage
OL
Output short circuit current
I
o
GBP Gain bandwidth product
TS914 TS914A T
≤ T
min
T
T
min
amb
amb
≤ T
T
max,
max,
TS914
TS914A
10
5
12
7
1 100
T
T
min
amb
T
max
200
1 150
T
T
min
per amplifier, A T
min
icm
CC+
= 10 kΩ, Vo = 1.5 V to 3.5 V
R
L
T
min
T
amb
max
T
amb
T
= 1, no load
VCL
max
230 350
= 1.5 to 3 V, Vo = 2.5 V 85 dB
= 3 to 5 V, Vo = VCC/2 80 dB
10
T
amb
T
max
7
300
450
40
Vid = 1 V,
= 10 kΩ
R
L
RL = 600 Ω RL = 100 Ω
= 1 V, T
V
id
RL = 10 kΩ RL = 600 Ω
min
T
amb
T
max
4.85
4.20
4.8
4.1
4.95
4.65
3.7 V
Vid = -1 V,
= 10 kΩ
R
L
RL = 600 Ω
= 100 Ω
R
L
Vid = -1 V, T
min
T
amb
T
RL = 10 kΩ
= 600 Ω
R
L
= ±1 V
V
id
Source (Vo = V Sink (V
A
VCL
= V
o
=100, RL=10kΩ, CL= 100 pF,
CC+
CC-
)
)
f = 100 kHz
max
50
100
350
680
1400
150 900
60 60
1MHz
mV
pA
pA
μA
V/mV
mV
mA
A
=1, RL=10kΩ, CL= 100 pF,
SR Slew rate
Phase margin 30 °
φ
m
e
Equivalent input noise voltage Rs = 100 Ω, f = 1 kHz 30 nV/√Hz
n
V
O1/VO2
1. Maximum values include unavoidable inaccuracies of the industrial tests.
Channel separation f = 1 kHz 120 dB
VCL
Vin=1Vto4V
Doc ID 4475 Rev 7 5/17
0.8 V/μs
Electrical characteristics TS914, TS914A
Table 5. V
+
= 10 V, V
CC
= 0 V, RL, CL connected to VCC/2, T
DD
amb
= 25° C
(unless otherwise specified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
V
io
ΔV
I
io
I
ib
CMR
Input offset voltage (V Vo = VCC/2)
Input offset voltage drift 5 μV/°C
io
Input offset current
Input bias current
Common mode rejection ratio
(1)
(1)
icm
=
SVR Supply voltage rejection ratio V
A
V
Large signal voltage gain
vd
High level output voltage
OH
TS914 TS914A T
≤ T
min
T
≤ T
min
T
≤ T
min
T
≤ T
min
= 3 to 7 V, Vo = 5 V
V
icm
= 0 to 10 V, Vo = 5 V
V
icm
CC+
R
= 10 kΩ, Vo = 2.5 V to 7.5 V
L
T
≤ T
min
amb
amb
amb
amb
≤ T
T
≤ T
≤ T
max,
max,
max
max
TS914
TS914A
90 75
= 5 to 10 V, Vo = VCC/2 90 dB
amb
≤ T
max
15 10
60
Vid = 1 V,
= 10 kΩ
R
L
RL = 600 Ω
= 100 Ω
R
L
Vid = 1 V, T
RL = 10 kΩ RL = 600 Ω
min
≤ T
amb
≤ T
max
9.85 9
9.8 9
9.95
9.35
7.8
10
5
12
7
1 100
200
1 150
300
mV
pA
pA
dB
V/mV
V
V
I
I
CC
Low level output voltage
OL
Output short-circuit current Vid = ±1 V 60 mA
o
Supply current / operator
GBP Gain bandwidth product
SR Slew rate
φ
e
Phase margin Rs = 100 Ω, f = 1 kHz 40 °
m
Equivalent input noise
n
voltage
THD Total harmonic distortion
C
Input capacitance 1.5 pF
in
Vid = -1 V,
50
RL = 10 kΩ
= 600 Ω
R
L
RL = 100 Ω
= -1 V, T
V
id
min
≤ T
amb
≤ T
max
650
2300
RL = 10 kΩ
= 600 Ω
R
L
= 1, no load,
A
VCL
T
T
T
min
amb
= 100, RL=10kΩ, CL= 100 pF,
A
VCL
max
f=100kHz
A
=1, RL=10kΩ, CL=100pF,
VCL
400 600
1.4 MHz
Vi= 2.5 V to 7.5 V
= 100 Ω, f = 1 kHz 30 nV/√Hz
R
s
A
=1, RL=10kΩ, CL=100pF,
VCL
= 4.75 to 5.25 V, f = 1 kHz
V
o
0.02 %
180 800
150 900
700
1V/μs
mV
μA
6/17 Doc ID 4475 Rev 7
TS914, TS914A Electrical characteristics
Table 5. V
+
= 10 V, V
CC
= 0 V, RL, CL connected to VCC/2, T
DD
amb
= 25° C
(unless otherwise specified) (continued)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
R
V
O1/VO2
1. Maximum values include unavoidable inaccuracies of the industrial tests.
Input resistance >10 Tera Ω
in
Channel separation f = 1 kHz 120 dB
Doc ID 4475 Rev 7 7/17
Electrical characteristics TS914, TS914A
Figure 2. Supply current (each amplifier)
vs. supply voltage
600
A)
m
CC
500
T = 25°C
amb
A = 1
VCL
V = V / 2
O CC
400
300
200
SUPPLY CURRENT, I (
100
0 4 8 12 16
SUPPLY VOLTAGE, V (V)
CC
Figure 4. Low level output voltage vs. low
level output current
5
T = 25 C
amb
4
OL
V = -100mV
°
id
V = +5V
CC
Figure 3. High level output voltage vs. high
level output current
5
T = 25 C
amb
OH
4
V = 100mV
°
id
V = +5V
CC
3
2
V = +3V
1
OUTPUT VOLTAGE, V (V)
CC
0
-70 -40 -20 0
OUTPUT CURRENT, I (mA)
OH

Figure 5. Input bias current vs. temperature

100
V = 10V
CC
V = 5V
ib
i
No load
3
V = +3V
CC
2
1
OUTPUT VOLTAGE, V (V)
0 30 50 70 90
OUTPUT CURRENT, I (mA)
OL
Figure 6. High level output voltage vs. high
level output current
T = 25 C
20
16
OH
12
8
OUTPUT VOLTAGE, V (V)
amb
V = 100mV
°
id
V = +16V
CC
V = +10V
CC
4
0
-70 -40 -20 0
OUTPUT CURRENT, I (mA)
OH
10
INPUT BIAS CURRENT, I (pA)
1
25 50 75 100 125
TEMPERATURE, T ( C)
amb
°
Figure 7. Low level output voltage vs. low
level output current
10
T = 25 C
amb
8
OL
6
4
2
OUTPUT VOLTAGE, V (V)
0
V = -100mV
°
id
V = 16V
CC
V = 10V
CC
30 50 70 90
OUTPUT CURRENT, I (mA)
OL
8/17 Doc ID 4475 Rev 7
TS914, TS914A Electrical characteristics
6
6
6
Figure 8. Gain and phase vs. frequency Figure 9. Gain bandwidth product vs. supply
voltage
50
40
30
PHASE
20
T = 25°C V = 10V
GAIN (dB)
R = 10k
10
C = 100pF A = 100
0
-10
23
10
amb CC
W
L L
VCL
10
10510
FREQUENCY, f (Hz)
Gain Bandwidth Product
4
GAIN
10
Phase Margin
6
10
0
45
90
135
180
7
PHASE (Degrees)
1800
1400
T = 25°C
amb
R = 10k C = 100pF
W
L L
1000
600
200
GAIN BANDW. PROD., GBP (kHz)
0 4 8 12 1
SUPPLY VOLTAGE, V (V)
CC

Figure 10. Phase margin vs. supply voltage Figure 11. Gain and phase vs. frequency

60
T = 25°C
amb
R = 10k
50
f
40
L
C = 100pF
W
L
30
20
PHASE MARGIN, m (Degrees)
0 4 8 12 1
SUPPLY VOLTAGE, V (V)
CC
50
40
30
T = 25°C
20
V = 10V
GAIN (dB)
R = 600
10
C = 100pF A = 100
0
-
10
23
10
PHASE
amb
CC
L
L
VCL
10
GAIN
W
Gain Bandwidth Product
10
4
10
5
FREQUENCY, f (Hz)
Phase Margin
10
0
45
90
135
180
7
6
10
PHASE (Degrees)
Figure 12. Gain bandwidth product vs. supply
voltage
1800
T = 25°C
amb
R = 600
1400
L
C = 100pF
L
1000
600
200
GAIN BANDW. PROD., GBP (kHz)
0 4 8 12 16
W
SUPPLY VOLTAGE, V (V)
CC
Doc ID 4475 Rev 7 9/17

Figure 13. Phase margin vs. supply voltage

60
T = 25°C
amb
R = 600
50
f
40
L
C = 100pF
L
30
20
PHASE MARGIN, m (Degrees)
0 4 8 12 1
W
SUPPLY VOLTAGE, V (V)
CC
Electrical characteristics TS914, TS914A

Figure 14. Input voltage noise vs. frequency

150
= 10V
V
CC
T
= 25°C
amb
= 100
100
50
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
0
10 100
R
S
1000
FREQUENCY (Hz)
W
10000
10/17 Doc ID 4475 Rev 7
TS914, TS914A Macromodels

4 Macromodels

4.1 Important note concerning this macromodel

All models are a trade-off between accuracy and complexity (that is, simulation time).
Macromodels are not a substitute for breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.
A macromodel emulates the nominal performance of a typical device within specified
operating conditions (such as temperature or supply voltage, etc). Thus, the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product.
Data derived from macromodels used outside of the specified conditions (such as V
or temperature) or even worse, outside of the device’s operating conditions (such as V
CC
or V
) is not reliable in any way.
icm
The values provided in Tab le 6 are derived from this macromodel.
Table 6. V
+
= 3 V, VCC- = 0 V, RL, CL connected to V
CC
CC/2
, T
amb
= 25° C
(unless otherwise specified)
Symbol Conditions Value Unit
CC
,
V
io
A
vd
I
CC
V
icm
V
OH
V
OL
I
sink
I
source
GBP R
SR R
φ
m
0mV
RL = 10 kΩ 10 V/mV
No load, per operator 100 μA
-0.2 to 3.2 V
RL = 600 Ω 2.96 V
RL = 60 Ω 300 mV
VO = 3 V 40 mA
VO = 0 V 40 mA
= 10 kΩ, CL = 100 pF 0.8 MHz
L
= 10 kΩ, CL = 100 pF 0.3 V/μs
L
Phase margin 30 Degrees
Doc ID 4475 Rev 7 11/17
Macromodels TS914, TS914A

4.2 Macromodel code

* Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY * .SUBCKT TS914 1 2 3 4 5 ************************************************* .MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 7.322092E+00 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 IPOL 13 5 4.000000E-05 CPS 11 15 2.498970E-08 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.000000E+00 FCP 4 5 VOFP 5.750000E+00 FCN 5 4 VOFN 5.750000E+00 * AMPLIFYING STAGE FIP 5 19 VOFP 4.400000E+02 FIN 5 19 VOFN 4.400000E+02 RG1 19 5 4.904961E+05 RG2 19 4 4.904961E+05 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 1.8E+03 HZTN 5 30 VOFN 1.8E+03 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3800 VIPM 28 4 230 HONM 21 27 VOUT 3800 VINM 5 27 230 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 82 COUT 3 5 1.000000E-12 DOP 19 68 MDTH 400E-12 VOP 4 25 1.724
12/17 Doc ID 4475 Rev 7
TS914, TS914A Macromodels
HSCP 68 25 VSCP1 0.8E+8 DON 69 19 MDTH 400E-12 VON 24 5 1.7419107 HSCN 24 69 VSCN1 0.8E+8 VSCTHP 60 61 0.0875 DSCP1 61 63 MDTH 400E-12 VSCP1 63 64 0 ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8 VSCN1 73 74 0 DSCN1 71 73 MDTH 400E-12 VSCTHN 71 70 -0.55 ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000 .ENDS
Doc ID 4475 Rev 7 13/17
Package information TS914, TS914A

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.

Figure 15. SO-14 package mechanical drawing

Table 7. SO-14 package mechanical data

Dimensions
Millimeters Inches
Ref.
Min. Typ. Max. Min. Typ. Max.
A 1.35 1.75 0.05 0.068
A1 0.10 0.25 0.004 0.009
A2 1.10 1.65 0.04 0.06
B 0.33 0.51 0.01 0.02
C 0.19 0.25 0.007 0.009
D 8.55 8.75 0.33 0.34
E 3.80 4.0 0.15 0.15
e1.27 0.05
H 5.80 6.20 0.22 0.24
h 0.25 0.50 0.009 0.02
L 0.40 1.27 0.015 0.05
k 8° (max.)
ddd 0.10 0.004
14/17 Doc ID 4475 Rev 7
TS914, TS914A Ordering information

6 Ordering information

Table 8. Order codes

(1)
Temperature
range
-40, +125° C
Package Packing Marking
SO-14 Tube and tape & reel 914I
SO-14 Tube and tape & reel 914AI
SO-14
(Automotive grade level)
SO-14
(Automotive grade level)
Tube and tape & reel 914IY
Tape & reel 914AIY
Order code
TS914ID TS914IDT
TS914AID TS914AIDT
TS914IYD TS914IYDT
(1)
(1)
TS914AIYDT
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.
Doc ID 4475 Rev 7 15/17
Revision history TS914, TS914A

7 Revision history

Table 9. Document revision history

Date Revision Changes
01-Dec-2001 1 Initial release.
01-Nov-2004 2 Changed Vio max. on cover page from 2 mV to 5 mV.
01-Jun-2005 3 Inserted PIPAP references (see order code table on cover page).
01-Feb-2006 4
08-Jan-2007 5
02-Apr-2009 6
Added parameters in Table 1: Absolute maximum ratings on
page 2 (T
, ESD, R
j
thja
, R
thjc
).
Corrected package names in order codes table on cover page. Corrected macromodel.
Minor text edits. Removed table of contents. Updated package information in Chapter 5. Moved Table 8: Order codes from cover page to end of
datasheet. Added footnote to Table 8: Order codes.
04-Feb-2010 7
Added parameters for TS914A. Removed DIP14 package information. Removed TS914AIYD order code from Ta bl e 8 .
16/17 Doc ID 4475 Rev 7
TS914, TS914A
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 4475 Rev 7 17/17
Loading...