The TS912 is a rail-to-rail CMOS dual operational
amplifier designed to operate with a single or dual
supply voltage.
The input voltage range V
supply rails V
The output reaches V
with R
= 10 kΩ and V
L
400 mV, with R
+
and V
CC
= 600 Ω.
L
CC
This product offers a broad supply voltage
operating range from 2.7 to 16 V and a supply
current of only 200 μA/amp (V
Source and sink output current capability is
typically 40 mA (at V
CC
limitation circuit.
includes the two
icm
-
.
CC
-
+30 mV, V
-
+300 mV, V
CC
CC
CC
CC
= 3 V).
+
-40 mV,
+
-
= 3 V), fixed by an internal
Output 1
Inverting Input 1
Non-inverting Input 1
Pin connections (top view)
+
1
2
-
+
3
V
45
CC
V
8
7
-
6
+
CC
Output 2
Inverting Input 2
Non-inverting Input 2
February 2010Doc ID 2325 Rev 61/20
www.st.com
20
Absolute maximum ratings and operating conditionsTS912, TS912A, TS912B
1 Absolute maximum ratings and operating conditions
Table 1.Absolute maximum ratings
SymbolParameterValueUnit
(3)
(1)
(6)
(2)
(5)
(7)
(4)
(4)
CC
+
+0.3 V.
18V
±18V
-0.3 to 18 V
85
°C/W
125
41
°C/W
40
3kV
200V
1500V
V
CC
V
id
V
i
I
in
I
o
T
stg
T
j
Supply voltage
Differential input voltage
Input voltage
Current on inputs±50mA
Current on outputs±130mA
Storage temperature-65 to +150°C
Maximum junction temperature150°C
Thermal resistance junction to ambient
R
thja
DIP8
SO-8
Thermal resistance junction to case
R
thjc
DIP8
SO-8
HBM: human body model
ESD
MM: machine model
CDM: charged device model
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed V
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all
amplifiers. These values are typical.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor
between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the
device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations
while the other pins are floating.
7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly
to the ground through only one pin. This is done for all pins.
Table 2.Operating conditions
SymbolParameterValueUnit
V
V
T
CC
icm
oper
Supply voltage2.7 to 16V
Common mode input voltage rangeV
-0.2 to V
CC-
+0.2V
CC+
Operating free air temperature range-40 to + 125°C
2/20Doc ID 2325 Rev 6
TS912, TS912A, TS912BSchematic diagram
2 Schematic diagram
Figure 1.Schematic diagram (1/2 TS912)
V
CC
Internal
Non-inverting
Input
Inverting
Input
Vref
Output
V
CC
Doc ID 2325 Rev 63/20
Electrical characteristicsTS912, TS912A, TS912B
3 Electrical characteristics
Table 3.V
CC+
= 3 V, V
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified)
SymbolParameterMin.Typ.Max.Unit
Input offset voltage (Vic = Vo = VCC/2)
TS912
TS912A
V
io
TS912B
T
min
≤ T
amb
≤ T
max
TS912
TS912A
TS912B
ΔV
I
CMR
Input offset voltage drift5μV/°C
io
Input offset current
I
io
T
≤ T
≤ T
≤ T
amb
amb
amb
≤ T
≤ T
≤ T
min
Input bias current
I
ib
T
min
Supply current (per amplifier, A
CC
T
min
(1)
max
(1)
max
max
Common mode rejection ratio
V
= 0 to 3 V, Vo = 1.5 V
ic
SVRSupply voltage rejection ratio (V
A
Large signal voltage gain (RL = 10 kΩ, Vo = 1.2 V to 1.8 V)
vd
T
≤ T
amb
≤ T
max
min
High level output voltage (Vid = 1 V)
= 100 kΩ
R
L
RL = 10 kΩ
= 600 Ω
R
T
min
L
R
= 100 Ω
L
≤ T
amb
≤ T
max
V
OH
RL = 10 kΩ
= 600 Ω
R
L
Low level output voltage (Vid = -1 V)
= 100 kΩ
R
L
RL = 10 kΩ
V
OL
RL = 600 Ω
= 100 Ω
R
L
T
≤ T
min
amb
≤ T
max
RL = 10 kΩ
RL = 600 Ω
1100
1150
= 1, no load)
VCL
200300
70dB
+
= 2.7 to 3.3 V, Vo = VCC/2)5080dB
CC
3
10
2
2.95
2.9
2.3
2.96
2.6
2
2.8
2.1
30
300
900
10
5
2
12
7
3
200
300
400
V/mV
50
70
400
100
600
mV
pA
pA
μA
V
mV
Output short-circuit current (Vid = ±1 V)
I
o
GBP
Source (Vo = V
Sink (V
= V
o
CC+
CC-
)
)
Gain bandwidth product
= 100, RL = 10 kΩ, CL = 100 pF, f = 100 kHz)
(A
VCL
4/20Doc ID 2325 Rev 6
20
20
40
mA
40
0.8MHz
TS912, TS912A, TS912BElectrical characteristics
Table 3.V
CC+
= 3 V, V
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified) (continued)
SymbolParameterMin.Typ.Max.Unit
+
SR
SR
φmPhase margin30Degrees
1. Maximum values include unavoidable inaccuracies of the industrial tests.
Slew rate (A
-
Slew rate (A
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 1.3 V to 1.7 V)0.4V/μs
VCL
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 1.3 V to 1.7 V)0.3V/μs
VCL
enEquivalent input noise voltage (R
= 100 Ω, f = 1 kHz)30nV/√Hz
s
Doc ID 2325 Rev 65/20
Electrical characteristicsTS912, TS912A, TS912B
Table 4.V
CC+
= 5 V, V
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified)
SymbolParameterMin.Typ.Max.Unit
Input offset voltage (Vic = Vo = VCC/2)
TS912
TS912A
V
io
TS912B
T
min
≤ T
amb
≤ T
max
TS912
TS912A
TS912B
ΔV
I
I
I
CC
CMR
Input offset voltage drift5μV/°C
io
Input offset current
io
T
min
Input bias current
ib
T
min
≤ T
≤ T
amb
amb
≤ T
≤ T
(1)
max
(1)
max
Supply current (per amplifier, A
≤ T
T
min
amb
≤ T
max
Common mode rejection ratio
= 1.5 to 3.5 V, Vo = 2.5 V
V
ic
SVRSupply voltage rejection ratio (V
A
Large signal voltage gain (RL = 10 kΩ, Vo = 1.5 V to 3.5 V)
vd
T
≤ T
amb
≤ T
max
min
High level output voltage (Vid = 1V)
RL = 100 kΩ
= 10 kΩ
R
L
V
OH
RL = 600 Ω
RL = 100 Ω
≤ T
T
min
amb
≤ T
max
RL = 10 kΩ
R
= 600 Ω
L
Low level output voltage (Vid = -1 V)
= 100 kΩ
R
L
= 10 kΩ
R
L
= 600 Ω
R
V
OL
L
RL = 100 Ω
≤ T
T
min
amb
≤ T
max
RL = 10 kΩ
= 600 Ω
R
L
Output short-circuit current (Vid = ±1 V)
I
o
GBP
SR
SR
Source (V
Sink (Vo = V
Gain bandwidth product
(A
VCL
+
Slew rate (A
-
Slew rate (A
= V
CC+
CC-
)
)
o
= 100, RL = 10 kΩ, CL = 100 pF, f = 100 kHz)
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 1 V to 4 V)0.8V/μs
VCL
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 1 V to 4 V)0.6V/μs
VCL
1100
1150
= 1, no load)
VCL
230350
6085dB
= 3 to 5 V, Vo = VCC/2)5580dB
CC+
10
40
7
4.95
4.9
4.95
4.25
4.55
3.7
4.8
4.1
40
350
1400
45
45
65
65
1MHz
10
5
2
12
7
3
200
300
450
50
100
500
150
750
mV
pA
pA
μA
V/mV
V
mV
mA
6/20Doc ID 2325 Rev 6
TS912, TS912A, TS912BElectrical characteristics
Table 4.V
CC+
= 5 V, V
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified) (continued)
SymbolParameterMin.Typ.Max.Unit
enEquivalent input noise voltage (R
V
O1/VO2
Channel separation (f = 1 kHz)120dB
φmPhase margin30Degrees
1. Maximum values include unavoidable inaccuracies of the industrial tests.
= 100 Ω, f = 1 kHz)30nV/√Hz
s
Doc ID 2325 Rev 67/20
Electrical characteristicsTS912, TS912A, TS912B
Table 5.V
CC+
= 10 V, V
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified)
SymbolParameterMin.Typ.Max.Unit
Input offset voltage (Vic = Vo = VCC/2)
TS912
TS912A
V
io
TS912B
T
min
≤ T
amb
≤ T
max
TS912
TS912A
TS912B
ΔV
I
Input offset voltage drift5μV/°C
io
Input offset current
I
io
T
≤ T
≤ T
≤ T
amb
amb
amb
≤ T
≤ T
≤ T
min
Input bias current
I
ib
T
min
Supply current (per amplifier, A
CC
T
min
(1)
max
(1)
max
max
Common mode rejection ratio
CMR
= 3 to 7 V, Vo = 5 V
V
ic
Vic = 0 to 10 V, Vo = 5 V
SVRSupply voltage rejection ratio (V
A
Large signal voltage gain (RL = 10 kΩ, Vo = 2.5 V to 7.5 V)
vd
T
≤ T
amb
≤ T
max
min
High level output voltage (Vid = 1V)
= 100 kΩ
R
L
RL = 10 kΩ
= 600 Ω
R
V
OH
L
RL = 100 Ω
≤ T
T
min
amb
≤ T
max
RL = 10 kΩ
= 600 Ω
R
L
Low level output voltage (Vid = -1 V)
= 100 kΩ
R
L
RL = 10 kΩ
= 600 Ω
R
T
min
L
= 100 Ω
R
L
≤ T
amb
≤ T
max
V
OL
RL = 10 kΩ
RL = 600 Ω
1100
1150
= 1, no load)
VCL
60
50
= 5 to 10 V, Vo = VCC/2)6090dB
CC+
15
400600
90
75
50
10
9.95
9.85
9.95
9
9.35
7.8
9.8
8.8
50
650
2300
10
5
2
12
7
3
200
300
700
V/mV
50
150
800
150
900
mV
pA
pA
μA
dB
V
mV
Output short circuit current (Vid = ±1 V)
I
o
GBP
Source (Vo = V
Sink (V
= V
o
CC+
CC-
)
)
Gain bandwidth product
= 100, RL = 10 kΩ, CL = 100 pF, f = 100 kHz)
(A
VCL
8/20Doc ID 2325 Rev 6
45
50
65
mA
75
1.4MHz
TS912, TS912A, TS912BElectrical characteristics
Table 5.V
= 10 V, V
CC+
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified) (continued)
SymbolParameterMin.Typ.Max.Unit
Slew rate
+
SR
SR
-
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 2.5 V to 7.5 V)
(A
VCL
Slew rate
(A
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 2.5 V to 7.5 V)
VCL
φmPhase margin40Degrees
enEquivalent input noise voltage (Rs = 100 Ω, f = 1 kHz)30nV/√Hz
Total harmonic distortion
= 1, RL = 10 kΩ, CL = 100 pF, Vo= 4.75 V to 5.25 V,
THD
(A
VCL
f = 1 kHz)
C
1. Maximum values include unavoidable inaccuracies of the industrial tests.
Input capacitance1.5pF
in
1.3V/μs
0.8V/μs
0.02%
Doc ID 2325 Rev 69/20
Electrical characteristicsTS912, TS912A, TS912B
Figure 2.Supply current (each amplifier)
vs. supply voltage
600
A)
m
CC
500
T = 25°C
amb
A = 1
VCL
V = V / 2
O CC
400
300
200
SUPPLY CURRENT, I (
100
0 4 8 12 16
SUPPLY VOLTAGE, V (V)
CC
Figure 4.Low level output voltage vs. low
level output current
5
T = 25 C
amb
4
OL
V = -100mV
°
id
Figure 3.High level output voltage vs. high
level output current
5
T = 25 C
amb
OH
4
V = 100mV
id
°
V = +5V
CC
3
OUTPUT VOLTAGE, V (V)
2
1
V = +3V
CC
0
-70 -56 -42 -28 -14 0
OUTPUT CURRENT, I (mA)
OH
Figure 5.Input bias current vs. temperature
100
V = 10V
CC
V = 5V
ib
i
No load
3
V = +3V
CC
2
V = +5V
CC
1
OUTPUT VOLTAGE, V (V)
0
14 28 42 56 70
OUTPUT CURRENT, I (mA)
OL
Figure 6.High level output voltage vs. high
level output current
20
T = 25 C
amb
V = 100mV
16
OH
°
id
12
8
4
OUTPUT VOLTAGE, V (V)
0
-70 -56 -42 -28 -14 0
OUTPUT CURRENT, I (mA)
V = +16V
CC
V = +10V
CC
OH
10
INPUT BIAS CURRENT, I (pA)
1
25 50 75 100 125
TEMPERATURE, T ( C)
amb
°
Figure 7.Low level output voltage vs. low
level output current
10
T = 25 C
amb
8
OL
6
4
2
OUTPUT VOLTAGE, V (V)
0
V = -100mV
°
id
V = 16V
CC
V = 10V
CC
14 28 42 56 70
OUTPUT CURRENT, I (mA)
OL
10/20Doc ID 2325 Rev 6
TS912, TS912A, TS912BElectrical characteristics
6
6
6
Figure 8.Gain and phase vs. frequencyFigure 9.Gain bandwidth product vs. supply
voltage
50
40
30
PHASE
20
T = 25°C
V = 10V
GAIN (dB)
R = 10k
10
C = 100pF
A = 100
0
-10
23
10
amb
CC
L
L
VCL
W
10
10
Gain
Bandwidth
Product
4
FREQUENCY, f (Hz)
GAIN
5
10
10
Phase
Margin
6
10
0
45
90
135
180
7
1800
1400
1000
PHASE (Degrees)
GAIN BANDW. PROD., GBP (kHz)
T = 25°C
amb
R = 10k
L
C = 100pF
L
W
600
200
0 4 8 12 1
SUPPLY VOLTAGE, V (V)
CC
Figure 10. Phase margin vs. supply voltageFigure 11. Gain and phase vs. frequency
60
T = 25°C
amb
R = 10k
50
f
40
L
C = 100pF
L
W
30
20
PHASE MARGIN, m (Degrees)
0 4 8 12 1
SUPPLY VOLTAGE, V (V)
CC
50
40
30
T = 25°C
20
V = 10V
GAIN (dB)
R = 600
10
C = 100pF
A = 100
0
-
10
23
10
PHASE
amb
CC
L
L
VCL
10
GAIN
W
Gain
Bandwidth
Product
10
4
10
5
FREQUENCY, f (Hz)
Phase
Margin
6
10
10
0
45
90
135
180
7
PHASE (Degrees)
Figure 12. Gain bandwidth product vs. supply
voltage
1800
T = 25°C
amb
1400
R = 600
C = 100pF
1000
600
200
GAIN BANDW. PROD., GBP (kHz)
0 4 8 12 16
W
L
L
SUPPLY VOLTAGE, V (V)
CC
Doc ID 2325 Rev 611/20
Figure 13. Phase margin vs. supply voltage
60
T = 25°C
amb
R = 600
50
f
40
L
C = 100pF
L
30
20
PHASE MARGIN, m (Degrees)
0 4 8 12 1
W
SUPPLY VOLTAGE, V (V)
CC
MacromodelTS912, TS912A, TS912B
Figure 14. Input voltage noise vs. frequency
150
= 10V
V
CC
T
= 25°C
amb
= 100
100
50
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
0
10100
1000
FREQUENCY (Hz)
R
S
W
10000
4 Macromodel
4.1 Important note concerning this macromodel
●All models are a trade-off between accuracy and complexity (i.e. simulation time).
●Macromodels are not a substitute to breadboarding; rather, they confirm the validity of
a design approach and help to select surrounding component values.
●A macromodel emulates the nominal performance of a typical device within specified
operating conditions (temperature, supply voltage, for example). Thus the
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the
main parameters of the product.
Data derived from macromodels used outside of the specified conditions (V
for example) or even worse, outside of the device operating conditions (V
example), is not reliable in any way.
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
Doc ID 2325 Rev 615/20
Package informationTS912, TS912A, TS912B
5.1 DIP8 package information
Figure 15. DIP8 package mechanical drawing
Table 6.DIP8 package mechanical data
Dimensions
Ref.
Min.Typ.Max.Min.Typ.Max.
A5.330.210
A10.380.015
A22.923.304.950.1150.1300.195
b0.360.460.560.0140.0180.022
b21.141.521.780.0450.0600.070
c0.200.250.360.0080.0100.014
D9.029.2710.160.3550.3650.400
E7.627.878.260.3000.3100.325
E16.106.357.110.2400.2500.280
e2.540.100
eA7.620.300
eB10.920.430
L2.923.303.810.1150.1300.150
MillimetersInches
16/20Doc ID 2325 Rev 6
TS912, TS912A, TS912BPackage information
5.2 SO-8 package information
Figure 16. SO-8 package mechanical drawing
Table 7.SO-8 package mechanical data
Dimensions
Ref.
Min.Typ.Max.Min.Typ.Max.
A1.750.069
A10.100.250.0040.010
A21.250.049
b0.280.480.0110.019
c0.170.230.0070.010
D4.804.905.000.1890.1930.197
E5.806.006.200.2280.2360.244
E13.803.904.000.1500.1540.157
e1.270.050
h0.250.500.0100.020
L0.401.270.0160.050
L11.040.040
k08°1°8°
ccc0.100.004
MillimetersInches
Doc ID 2325 Rev 617/20
Ordering informationTS912, TS912A, TS912B
6 Ordering information
Table 8.Order codes
Part number
TS912IN
Temperature
range
PackagePackingMarking
TS912IN
DIP8Tube
TS912AINTS912AIN
TS912ID
TS912IDT
TS912AID
TS912AIDT
TS912BID
TS912BIDT
TS912IYD
TS912IYDT
TS912AIYD
TS912AIYDT
(1)
(1)
-40°C, +125°C
(Automotive grade level)
SO-8
Tube or
Tape & reel
SO-8
TS912BIYD
TS912BIYDT
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening
according to AEC Q001 & Q 002 or equivalent.
(1)
912I
912AI
912BI
912IY
912AIY
912BY
18/20Doc ID 2325 Rev 6
TS912, TS912A, TS912BRevision history
7 Revision history
Table 9.Document revision history
DateRevisionChanges
04-Dec-20011First release.
31-Jul-20052
03-Oct-20053
13-Feb- 20064
16-Oct-20075
01-Feb-20106
PPAP references inserted in the datasheet, see order codes table.
ESD protection inserted in AMR table.
Some errors in the Order Codes table were corrected.
Reorganization of Section 4: Macromodel.
Parameters added in AMR table (Tj, ESD, R
thja
, R
thjc
).
Corrected units and ESD footnotes in Table 1: Absolute maximum
ratings.
Corrected misalignments in electrical characteristics table.
Updated Section 4: Macromodel.
Added missing automotive grade order codes and footnote in
Table 8: Order codes.
Format update.
Added TS912A and TS912B part numbers on cover page.
Doc ID 2325 Rev 619/20
TS912, TS912A, TS912B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.