ST TS912, TS912A, TS912B User Manual

Rail-to-rail CMOS dual operational amplifier
Features
Rail-to-rail input and output voltage ranges
Single (or dual) supply operation from 2.7 to
16 V
Low input offset voltage: 2 mV max.
Specified for 600 Ω and 100 Ω loads
Low supply current: 200 μA/amplifier
(V
= 3 V)
CC
Latch-up immunity
ESD tolerance: 3 kV
Spice macromodel included in this specification
TS912, TS912A, TS912B
N
DIP-8
(Plastic package)
D
SO-8
(Plastic micropackage)
Description
The TS912 is a rail-to-rail CMOS dual operational amplifier designed to operate with a single or dual supply voltage.
The input voltage range V supply rails V
The output reaches V with R
= 10 kΩ and V
L
400 mV, with R
+
and V
CC
= 600 Ω.
L
CC
This product offers a broad supply voltage operating range from 2.7 to 16 V and a supply current of only 200 μA/amp (V
Source and sink output current capability is typically 40 mA (at V
CC
limitation circuit.
includes the two
icm
-
.
CC
-
+30 mV, V
-
+300 mV, V
CC
CC
CC
CC
= 3 V).
+
-40 mV,
+
-
= 3 V), fixed by an internal
Output 1
Inverting Input 1
Non-inverting Input 1
Pin connections (top view)
+
1
2
-
+
3
V
45
CC
V
8
7
-
6
+
CC
Output 2
Inverting Input 2
Non-inverting Input 2
February 2010 Doc ID 2325 Rev 6 1/20
www.st.com
20
Absolute maximum ratings and operating conditions TS912, TS912A, TS912B

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
(3)
(1)
(6)
(2)
(5)
(7)
(4)
(4)
CC
+
+0.3 V.
18 V
±18 V
-0.3 to 18 V
85
°C/W
125
41
°C/W
40
3kV
200 V
1500 V
V
CC
V
id
V
i
I
in
I
o
T
stg
T
j
Supply voltage
Differential input voltage
Input voltage
Current on inputs ±50 mA
Current on outputs ±130 mA
Storage temperature -65 to +150 °C
Maximum junction temperature 150 °C
Thermal resistance junction to ambient
R
thja
DIP8 SO-8
Thermal resistance junction to case
R
thjc
DIP8 SO-8
HBM: human body model
ESD
MM: machine model
CDM: charged device model
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed V
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuits on all amplifiers. These values are typical.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Symbol Parameter Value Unit
V
V
T
CC
icm
oper
Supply voltage 2.7 to 16 V
Common mode input voltage range V
-0.2 to V
CC-
+0.2 V
CC+
Operating free air temperature range -40 to + 125 °C
2/20 Doc ID 2325 Rev 6
TS912, TS912A, TS912B Schematic diagram

2 Schematic diagram

Figure 1. Schematic diagram (1/2 TS912)

V
CC
Internal
Non-inverting
Input
Inverting
Input
Vref
Output
V
CC
Doc ID 2325 Rev 6 3/20
Electrical characteristics TS912, TS912A, TS912B

3 Electrical characteristics

Table 3. V
CC+
= 3 V, V
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified)
Symbol Parameter Min. Typ. Max. Unit
Input offset voltage (Vic = Vo = VCC/2)
TS912 TS912A
V
io
TS912B
T
min
≤ T
amb
≤ T
max
TS912 TS912A TS912B
ΔV
I
CMR
Input offset voltage drift 5 μV/°C
io
Input offset current
I
io
T
≤ T
≤ T
≤ T
amb
amb
amb
≤ T
≤ T
≤ T
min
Input bias current
I
ib
T
min
Supply current (per amplifier, A
CC
T
min
(1)
max
(1)
max
max
Common mode rejection ratio V
= 0 to 3 V, Vo = 1.5 V
ic
SVR Supply voltage rejection ratio (V
A
Large signal voltage gain (RL = 10 kΩ, Vo = 1.2 V to 1.8 V)
vd
T
≤ T
amb
≤ T
max
min
High level output voltage (Vid = 1 V)
= 100 kΩ
R
L
RL = 10 kΩ
= 600 Ω
R
T
min
L
R
= 100 Ω
L
≤ T
amb
≤ T
max
V
OH
RL = 10 kΩ
= 600 Ω
R
L
Low level output voltage (Vid = -1 V)
= 100 kΩ
R
L
RL = 10 kΩ
V
OL
RL = 600 Ω
= 100 Ω
R
L
T
≤ T
min
amb
≤ T
max
RL = 10 kΩ RL = 600 Ω
1100
1150
= 1, no load)
VCL
200 300
70 dB
+
= 2.7 to 3.3 V, Vo = VCC/2) 50 80 dB
CC
3
10
2
2.95
2.9
2.3
2.96
2.6 2
2.8
2.1
30 300 900
10
5 2
12
7 3
200
300
400
V/mV
50 70
400
100 600
mV
pA
pA
μA
V
mV
Output short-circuit current (Vid = ±1 V)
I
o
GBP
Source (Vo = V Sink (V
= V
o
CC+
CC-
)
)
Gain bandwidth product
= 100, RL = 10 kΩ, CL = 100 pF, f = 100 kHz)
(A
VCL
4/20 Doc ID 2325 Rev 6
20 20
40
mA
40
0.8 MHz
TS912, TS912A, TS912B Electrical characteristics
Table 3. V
CC+
= 3 V, V
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified) (continued)
Symbol Parameter Min. Typ. Max. Unit
+
SR
SR
φm Phase margin 30 Degrees
1. Maximum values include unavoidable inaccuracies of the industrial tests.
Slew rate (A
-
Slew rate (A
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 1.3 V to 1.7 V) 0.4 V/μs
VCL
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 1.3 V to 1.7 V) 0.3 V/μs
VCL
en Equivalent input noise voltage (R
= 100 Ω, f = 1 kHz) 30 nV/Hz
s
Doc ID 2325 Rev 6 5/20
Electrical characteristics TS912, TS912A, TS912B
Table 4. V
CC+
= 5 V, V
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified)
Symbol Parameter Min. Typ. Max. Unit
Input offset voltage (Vic = Vo = VCC/2)
TS912 TS912A
V
io
TS912B
T
min
≤ T
amb
≤ T
max
TS912 TS912A TS912B
ΔV
I
I
I
CC
CMR
Input offset voltage drift 5 μV/°C
io
Input offset current
io
T
min
Input bias current
ib
T
min
≤ T
≤ T
amb
amb
≤ T
≤ T
(1)
max
(1)
max
Supply current (per amplifier, A
≤ T
T
min
amb
≤ T
max
Common mode rejection ratio
= 1.5 to 3.5 V, Vo = 2.5 V
V
ic
SVR Supply voltage rejection ratio (V
A
Large signal voltage gain (RL = 10 kΩ, Vo = 1.5 V to 3.5 V)
vd
T
≤ T
amb
≤ T
max
min
High level output voltage (Vid = 1V)
RL = 100 kΩ
= 10 kΩ
R
L
V
OH
RL = 600 Ω RL = 100 Ω
≤ T
T
min
amb
≤ T
max
RL = 10 kΩ R
= 600 Ω
L
Low level output voltage (Vid = -1 V)
= 100 kΩ
R
L
= 10 kΩ
R
L
= 600 Ω
R
V
OL
L
RL = 100 Ω
≤ T
T
min
amb
≤ T
max
RL = 10 kΩ
= 600 Ω
R
L
Output short-circuit current (Vid = ±1 V)
I
o
GBP
SR
SR
Source (V Sink (Vo = V
Gain bandwidth product (A
VCL
+
Slew rate (A
-
Slew rate (A
= V
CC+
CC-
)
)
o
= 100, RL = 10 kΩ, CL = 100 pF, f = 100 kHz)
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 1 V to 4 V) 0.8 V/μs
VCL
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 1 V to 4 V) 0.6 V/μs
VCL
1 100
1 150
= 1, no load)
VCL
230 350
60 85 dB
= 3 to 5 V, Vo = VCC/2) 55 80 dB
CC+
10
40
7
4.95
4.9
4.95
4.25
4.55
3.7
4.8
4.1
40
350
1400
45 45
65 65
1MHz
10
5 2
12
7 3
200
300
450
50 100 500
150 750
mV
pA
pA
μA
V/mV
V
mV
mA
6/20 Doc ID 2325 Rev 6
TS912, TS912A, TS912B Electrical characteristics
Table 4. V
CC+
= 5 V, V
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified) (continued)
Symbol Parameter Min. Typ. Max. Unit
en Equivalent input noise voltage (R
V
O1/VO2
Channel separation (f = 1 kHz) 120 dB
φm Phase margin 30 Degrees
1. Maximum values include unavoidable inaccuracies of the industrial tests.
= 100 Ω, f = 1 kHz) 30 nV/√Hz
s
Doc ID 2325 Rev 6 7/20
Electrical characteristics TS912, TS912A, TS912B
Table 5. V
CC+
= 10 V, V
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified)
Symbol Parameter Min. Typ. Max. Unit
Input offset voltage (Vic = Vo = VCC/2)
TS912 TS912A
V
io
TS912B
T
min
≤ T
amb
≤ T
max
TS912 TS912A TS912B
ΔV
I
Input offset voltage drift 5 μV/°C
io
Input offset current
I
io
T
≤ T
≤ T
≤ T
amb
amb
amb
≤ T
≤ T
≤ T
min
Input bias current
I
ib
T
min
Supply current (per amplifier, A
CC
T
min
(1)
max
(1)
max
max
Common mode rejection ratio
CMR
= 3 to 7 V, Vo = 5 V
V
ic
Vic = 0 to 10 V, Vo = 5 V
SVR Supply voltage rejection ratio (V
A
Large signal voltage gain (RL = 10 kΩ, Vo = 2.5 V to 7.5 V)
vd
T
≤ T
amb
≤ T
max
min
High level output voltage (Vid = 1V)
= 100 kΩ
R
L
RL = 10 kΩ
= 600 Ω
R
V
OH
L
RL = 100 Ω
≤ T
T
min
amb
≤ T
max
RL = 10 kΩ
= 600 Ω
R
L
Low level output voltage (Vid = -1 V)
= 100 kΩ
R
L
RL = 10 kΩ
= 600 Ω
R
T
min
L
= 100 Ω
R
L
≤ T
amb
≤ T
max
V
OL
RL = 10 kΩ RL = 600 Ω
1 100
1 150
= 1, no load)
VCL
60 50
= 5 to 10 V, Vo = VCC/2) 60 90 dB
CC+
15
400 600
90 75
50
10
9.95
9.85
9.95
9
9.35
7.8
9.8
8.8
50
650
2300
10
5 2
12
7 3
200
300
700
V/mV
50
150 800
150 900
mV
pA
pA
μA
dB
V
mV
Output short circuit current (Vid = ±1 V)
I
o
GBP
Source (Vo = V Sink (V
= V
o
CC+
CC-
)
)
Gain bandwidth product
= 100, RL = 10 kΩ, CL = 100 pF, f = 100 kHz)
(A
VCL
8/20 Doc ID 2325 Rev 6
45 50
65
mA
75
1.4 MHz
TS912, TS912A, TS912B Electrical characteristics
Table 5. V
= 10 V, V
CC+
= 0 V, RL, CL connected to VCC/2, T
CC-
= 25°C (unless otherwise
amb
specified) (continued)
Symbol Parameter Min. Typ. Max. Unit
Slew rate
+
SR
SR
-
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 2.5 V to 7.5 V)
(A
VCL
Slew rate (A
= 1, RL = 10 kΩ, CL = 100 pF, Vi = 2.5 V to 7.5 V)
VCL
φm Phase margin 40 Degrees
en Equivalent input noise voltage (Rs = 100 Ω, f = 1 kHz) 30 nV/√Hz
Total harmonic distortion
= 1, RL = 10 kΩ, CL = 100 pF, Vo= 4.75 V to 5.25 V,
THD
(A
VCL
f = 1 kHz)
C
1. Maximum values include unavoidable inaccuracies of the industrial tests.
Input capacitance 1.5 pF
in
1.3 V/μs
0.8 V/μs
0.02 %
Doc ID 2325 Rev 6 9/20
Electrical characteristics TS912, TS912A, TS912B
Figure 2. Supply current (each amplifier)
vs. supply voltage
600
A)
m
CC
500
T = 25°C
amb
A = 1
VCL
V = V / 2
O CC
400
300
200
SUPPLY CURRENT, I (
100
0 4 8 12 16
SUPPLY VOLTAGE, V (V)
CC
Figure 4. Low level output voltage vs. low
level output current
5
T = 25 C
amb
4
OL
V = -100mV
°
id
Figure 3. High level output voltage vs. high
level output current
5
T = 25 C
amb
OH
4
V = 100mV
id
°
V = +5V
CC
3
OUTPUT VOLTAGE, V (V)
2
1
V = +3V
CC
0
-70 -56 -42 -28 -14 0
OUTPUT CURRENT, I (mA)
OH

Figure 5. Input bias current vs. temperature

100
V = 10V
CC
V = 5V
ib
i
No load
3
V = +3V
CC
2
V = +5V
CC
1
OUTPUT VOLTAGE, V (V)
0
14 28 42 56 70
OUTPUT CURRENT, I (mA)
OL
Figure 6. High level output voltage vs. high
level output current
20
T = 25 C
amb
V = 100mV
16
OH
°
id
12
8
4
OUTPUT VOLTAGE, V (V)
0
-70 -56 -42 -28 -14 0
OUTPUT CURRENT, I (mA)
V = +16V
CC
V = +10V
CC
OH
10
INPUT BIAS CURRENT, I (pA)
1
25 50 75 100 125
TEMPERATURE, T ( C)
amb
°
Figure 7. Low level output voltage vs. low
level output current
10
T = 25 C
amb
8
OL
6
4
2
OUTPUT VOLTAGE, V (V)
0
V = -100mV
°
id
V = 16V
CC
V = 10V
CC
14 28 42 56 70
OUTPUT CURRENT, I (mA)
OL
10/20 Doc ID 2325 Rev 6
TS912, TS912A, TS912B Electrical characteristics
6
6
6
Figure 8. Gain and phase vs. frequency Figure 9. Gain bandwidth product vs. supply
voltage
50
40
30
PHASE
20
T = 25°C V = 10V
GAIN (dB)
R = 10k
10
C = 100pF A = 100
0
-10
23
10
amb CC
L L
VCL
W
10
10
Gain Bandwidth Product
4
FREQUENCY, f (Hz)
GAIN
5
10
10
Phase Margin
6
10
0
45
90
135
180
7
1800
1400
1000
PHASE (Degrees)
GAIN BANDW. PROD., GBP (kHz)
T = 25°C
amb
R = 10k
L
C = 100pF
L
W
600
200
0 4 8 12 1
SUPPLY VOLTAGE, V (V)
CC

Figure 10. Phase margin vs. supply voltage Figure 11. Gain and phase vs. frequency

60
T = 25°C
amb
R = 10k
50
f
40
L
C = 100pF
L
W
30
20
PHASE MARGIN, m (Degrees)
0 4 8 12 1
SUPPLY VOLTAGE, V (V)
CC
50
40
30
T = 25°C
20
V = 10V
GAIN (dB)
R = 600
10
C = 100pF A = 100
0
-
10
23
10
PHASE
amb
CC
L L VCL
10
GAIN
W
Gain Bandwidth Product
10
4
10
5
FREQUENCY, f (Hz)
Phase Margin
6
10
10
0
45
90
135
180
7
PHASE (Degrees)
Figure 12. Gain bandwidth product vs. supply
voltage
1800
T = 25°C
amb
1400
R = 600 C = 100pF
1000
600
200
GAIN BANDW. PROD., GBP (kHz)
0 4 8 12 16
W
L L
SUPPLY VOLTAGE, V (V)
CC
Doc ID 2325 Rev 6 11/20

Figure 13. Phase margin vs. supply voltage

60
T = 25°C
amb
R = 600
50
f
40
L
C = 100pF
L
30
20
PHASE MARGIN, m (Degrees)
0 4 8 12 1
W
SUPPLY VOLTAGE, V (V)
CC
Macromodel TS912, TS912A, TS912B

Figure 14. Input voltage noise vs. frequency

150
= 10V
V
CC
T
= 25°C
amb
= 100
100
50
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
0
10 100
1000
FREQUENCY (Hz)
R
S
W
10000

4 Macromodel

4.1 Important note concerning this macromodel

All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of
a design approach and help to select surrounding component values.
A macromodel emulates the nominal performance of a typical device within specified
operating conditions (temperature, supply voltage, for example). Thus the
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product.
Data derived from macromodels used outside of the specified conditions (V for example) or even worse, outside of the device operating conditions (V example), is not reliable in any way.
, temperature,
CC
, V
icm
, for
CC
12/20 Doc ID 2325 Rev 6
TS912, TS912A, TS912B Macromodel

4.2 Macromodel code

** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS912 1 2 3 4 5 ********************************************************** .MODEL MDTH D IS=1E-8 KF=6.563355E-14 CJO=10F * INPUT STAGE CIP 2 5 1.500000E-12 CIN 1 5 1.500000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 7.655100E+00 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 IPOL 13 5 4.000000E-05 CPS 11 15 3.82E-08 DINN 17 13 MDTH 400E-12 VIN 17 5 -0.5000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 -0.5000000E+00 FCP 4 5 VOFP 7.750000E+00 FCN 5 4 VOFN 7.750000E+00 * AMPLIFYING STAGE FIP 5 19 VOFP 5.500000E+02 FIN 5 19 VOFN 5.500000E+02 RG1 19 5 5.087344E+05 RG2 19 4 5.087344E+05 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 12.33E+02 HZTN 5 30 VOFN 12.33E+02 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3135 VIPM 28 4 150 HONM 21 27 VOUT 3135 VINM 5 27 150 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 65 COUT 3 5 1.000000E-12 DOP 19 68 MDTH 400E-12 VOP 4 25 1.924
Doc ID 2325 Rev 6 13/20
Macromodel TS912, TS912A, TS912B
HSCP 68 25 VSCP1 1E8 DON 69 19 MDTH 400E-12 VON 24 5 2.4419107 HSCN 24 69 VSCN1 1.5E8 VSCTHP 60 61 0.1375 DSCP1 61 63 MDTH 400E-12 VSCP1 63 64 0 ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8 VSCN1 73 74 0 DSCN1 71 73 MDTH 400E-12 VSCTHN 71 70 -0.75 ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000 .ENDS
14/20 Doc ID 2325 Rev 6
TS912, TS912A, TS912B Package information

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.
Doc ID 2325 Rev 6 15/20
Package information TS912, TS912A, TS912B

5.1 DIP8 package information

Figure 15. DIP8 package mechanical drawing

Table 6. DIP8 package mechanical data

Dimensions
Ref.
Min. Typ. Max. Min. Typ. Max.
A5.330.210
A1 0.38 0.015
A2 2.92 3.30 4.95 0.115 0.130 0.195
b 0.36 0.46 0.56 0.014 0.018 0.022
b2 1.14 1.52 1.78 0.045 0.060 0.070
c 0.20 0.25 0.36 0.008 0.010 0.014
D 9.02 9.27 10.16 0.355 0.365 0.400
E 7.62 7.87 8.26 0.300 0.310 0.325
E1 6.10 6.35 7.11 0.240 0.250 0.280
e 2.54 0.100
eA 7.62 0.300
eB 10.92 0.430
L 2.92 3.30 3.81 0.115 0.130 0.150
Millimeters Inches
16/20 Doc ID 2325 Rev 6
TS912, TS912A, TS912B Package information

5.2 SO-8 package information

Figure 16. SO-8 package mechanical drawing

Table 7. SO-8 package mechanical data

Dimensions
Ref.
Min. Typ. Max. Min. Typ. Max.
A1.750.069
A1 0.10 0.25 0.004 0.010
A2 1.25 0.049
b 0.28 0.48 0.011 0.019
c 0.17 0.23 0.007 0.010
D 4.80 4.90 5.00 0.189 0.193 0.197
E 5.80 6.00 6.20 0.228 0.236 0.244
E1 3.80 3.90 4.00 0.150 0.154 0.157
e 1.27 0.050
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
L1 1.04 0.040
k 0
ccc 0.10 0.004
Millimeters Inches
Doc ID 2325 Rev 6 17/20
Ordering information TS912, TS912A, TS912B

6 Ordering information

Table 8. Order codes

Part number
TS912IN
Temperature
range
Package Packing Marking
TS912IN
DIP8 Tube
TS912AIN TS912AIN
TS912ID TS912IDT
TS912AID TS912AIDT
TS912BID TS912BIDT
TS912IYD TS912IYDT
TS912AIYD TS912AIYDT
(1)
(1)
-40°C, +125°C
(Automotive grade level)
SO-8
Tube or
Tape & reel
SO-8
TS912BIYD TS912BIYDT
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.
(1)
912I
912AI
912BI
912IY
912AIY
912BY
18/20 Doc ID 2325 Rev 6
TS912, TS912A, TS912B Revision history

7 Revision history

Table 9. Document revision history

Date Revision Changes
04-Dec-2001 1 First release.
31-Jul-2005 2
03-Oct-2005 3
13-Feb- 2006 4
16-Oct-2007 5
01-Feb-2010 6
PPAP references inserted in the datasheet, see order codes table. ESD protection inserted in AMR table.
Some errors in the Order Codes table were corrected. Reorganization of Section 4: Macromodel.
Parameters added in AMR table (Tj, ESD, R
thja
, R
thjc
).
Corrected units and ESD footnotes in Table 1: Absolute maximum
ratings.
Corrected misalignments in electrical characteristics table. Updated Section 4: Macromodel. Added missing automotive grade order codes and footnote in
Table 8: Order codes.
Format update.
Added TS912A and TS912B part numbers on cover page.
Doc ID 2325 Rev 6 19/20
TS912, TS912A, TS912B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
20/20 Doc ID 2325 Rev 6
Loading...