ST TS616 User Manual

TS616

Dual wide band operational amplifier with high output current

Features

Low noise: 2.5 nV/√Hz

High output current: 420 mA

Very low harmonic and intermodulation distortion

High slew rate: 420 V/µs

-3dB bandwidth: 40 MHz @ gain = 12 dB on 25 Ω single-ended load

20.7 Vp-p differential output swing on 50 Ω load, 12 V power supply

Current feedback structure

5 V to 12 V power supply

Specified for 20 Ω and 50 Ω differential load

Applications

Line driver for xDSL

Multiple video line driver

Description

DW

SO-8 Exposed-pad

(Plastic micropackage)

Pin connections (top view)

Output1

1

 

 

8

VCC +

Inverting Input1

2

-

 

7

Output2

Non Inverting Input1

3

+

-

6

Inverting Input2

VCC -

4

 

+

5

Non Inverting Input2

 

 

 

 

 

dice

 

 

 

 

 

Pad

Cross Section View Showing Exposed-Pad.

This pad must be connected to a (-Vcc) copper area on the PCB

The TS616 is a dual operational amplifier featuring a high output current of 410 mA. This driver can be configured differentially for driving signals in telecommunication systems using multiple carriers. The TS616 is ideally suited for xDSL (high speed asymmetrical digital subscriber line) applications. This circuit is capable of driving a 10 Ω or 25 Ω load on a range of power supplies:

±2.5 V, 5 V, ±6 V or +12 V. The TS616 is capable of reaching a -3 dB bandwidth of 40 MHz on 25 Ω load with a 12 dB gain. This device is designed for high slew rates and demonstrates low harmonic distortion and intermodulation.

September 2008

Rev 5

1/37

www.st.com

Contents

TS616

 

 

Contents

1

Typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 3

2

Absolute maximum ratings and operating conditions . . . . . . . . . . . . .

4

3

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4

Safe operating area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

5

Intermodulation distortion product . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

6

Printed circuit board layout considerations . . . . . . . . . . . . . . . . . . . . .

20

 

6.1

Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

7

Noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

7.1 Measurement of eN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.2 Measurement of iNn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.3 Measurement of iNp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8

Power supply bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

8.1

Single power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

8.2

Channel separation and crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

9

Choosing the feedback circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

9.1

The bias of an inverting amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

 

9.2

Active filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

10

Increasing the line level using active impedance matching . . . . . . . .

31

11

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

12

Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

13

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

2/37

TS616

Typical application

 

 

1 Typical application

Figure 1 shows a schematic of a typical xDSL application using the TS616.

Figure 1. Differential line driver for xDSL applications

3

 

8

 

+

+Vcc

12.5Ω

 

 

1/2TS6165

 

2

_

1

 

Vi

R2

Vo

 

 

1:2

 

R1

 

 

GND

25Ω

100Ω

 

R4

 

 

Vi

R3

Vo

 

 

 

 

4 _

12.5Ω

 

 

1/2TS6165

 

 

 

 

 

5 +

 

 

 

4 -Vcc

 

 

3/37

Absolute maximum ratings and operating conditions

TS616

 

 

2 Absolute maximum ratings and operating conditions

Table 1.

Absolute maximum ratings

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

VCC

Supply voltage (1)

±7

V

V

Differential input voltage (2)

±2

V

id

 

 

 

V

Input voltage range (3)

±6

V

in

 

 

 

Toper

Operating free air temperature range

-40 to + 85

°C

Tstd

Storage temperature

-65 to +150

°C

Tj

Maximum junction temperature

150

°C

Rthjc

Thermal resistance junction to case

16

°C/W

Rthja

Thermal resistance junction to ambient area

60

°C/W

Pmax

Maximum power dissipation (at Tamb = 25° C) for

2

W

Tj = 150° C

 

 

 

ESD

HBM: human body model(4)

1.5

kV

only pins

MM: machine model(5)

2

kV

1, 4, 7, 8

CDM: charged device model(6)

200

V

ESD

HBM: human body model(4)

1.5

kV

only pins

MM: machine model(5)

2

kV

2, 3, 5, 6

CDM: charged device model(6)

100

V

 

Output short circuit

(7)

 

 

 

 

 

1.All voltage values, except differential voltage are with respect to network terminal.

2.Differential voltages are non-inverting input terminal with respect to the inverting input terminal.

3.The magnitude of input and output voltage must never exceed VCC +0.3 V.

4.Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

5.Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.

6.Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

7.An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating. Destructive dissipation can result from short-circuits on amplifiers.

Table 2.

Operating conditions

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

VCC

Power supply voltage

±2.5 to ±6

V

Vicm

Common mode input voltage

-VCC+1.5 V to +VCC-1.5 V

V

4/37

TS616

 

 

 

 

 

 

Electrical characteristics

 

 

 

 

 

 

 

 

3

Electrical characteristics

 

 

 

 

 

Table 3.

VCC = ±6 V, Rfb= 910 Ω, Tamb = 25° C (unless otherwise specified)

 

 

 

Symbol

Parameter

 

 

Test conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

 

DC performance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vio

Input offset voltage

Tamb

 

 

 

1

3.5

mV

Tmin < Tamb < Tmax

 

1.6

 

 

 

 

 

 

Vio

Differential input offset voltage

Tamb = 25°C

 

 

 

2.5

mV

Iib+

Positive input bias current

Tamb

 

 

 

5

30

µA

Tmin < Tamb < Tmax

 

7.2

 

 

 

 

 

 

Iib-

Negative input bias current

Tamb

 

 

 

3

15

µA

Tmin < Tamb < Tmax

 

3.1

 

 

 

 

 

 

ZIN+

Input(+) impedance

 

 

 

 

 

 

82

 

ZIN-

Input(-) impedance

 

 

 

 

 

 

54

 

Ω

CIN+

Input(+) capacitance

 

 

 

 

 

 

1

 

pF

CMR

Common mode rejection ratio

Vic = ±4.5V

 

58

64

 

dB

20 log ( Vic/ Vio)

T

min

< T

< T

max

 

62

 

 

 

 

 

 

 

 

amb

 

 

 

 

 

SVR

Supply voltage rejection ratio

VCC = ±2.5V to ±6V

72

81

 

dB

20 log ( VCC/ Vio)

T

min

< T

< T

max

 

80

 

 

 

 

 

 

 

 

amb

 

 

 

 

 

ICC

Total supply current per operator

No load

 

 

 

13.5

17

mA

Dynamic performance and output characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

ROL

Open loop transimpedance

Vout = 7Vp-p, RL = 25Ω

5

13.5

 

Tmin < Tamb < Tmax

 

5.7

 

 

 

 

 

 

 

-3dB bandwidth

Small signal Vout < 20mVp

25

40

 

 

 

 

AV = 12dB, RL = 25Ω

 

 

 

MHz

BW

Full power bandwidth

Large signal Vout = 3Vp

 

26

 

 

 

 

 

 

AV = 12dB, RL = 25Ω

 

 

 

 

 

Gain flatness @ 0.1dB

Small signal Tamb<20mVp

 

7

 

MHz

 

 

AV = 12dB, RL = 25Ω

 

 

 

 

Tr

Rise time

Vout = 6Vp-p, AV = 12dB, RL = 25Ω

 

10.6

 

ns

Tf

Fall time

Vout = 6Vp-p, AV = 12dB, RL = 25Ω

 

12.2

 

ns

Ts

Settling time

Vout = 6Vp-p, AV= 12dB, RL = 25Ω

 

50

 

ns

SR

Slew rate

Vout = 6Vp-p, AV = 12dB, RL = 25Ω

330

420

 

V/µs

VOH

High level output voltage

RL = 25Ω connected to GND

4.8

5.05

 

V

VOL

Low level output voltage

RL = 25Ω Connected to GND

 

-5.3

-5.1

V

5/37

Electrical characteristics

 

 

 

 

TS616

 

 

 

 

 

 

 

Table 3.

VCC = ±6 V, Rfb= 910 Ω, Tamb = 25° C (unless otherwise specified) (continued)

 

Symbol

Parameter

Test conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

Output sink current

Vout = -4Vp

-320

-490

 

 

Iout

Tmin < Tamb < Tmax

 

-395

 

mA

 

 

 

Output source current

Vout = +4Vp

330

420

 

 

 

 

 

Tmin < Tamb < Tmax

 

370

 

 

 

 

 

 

 

Noise and distortion

 

 

 

 

 

 

 

 

 

 

 

 

eN

Equivalent input noise voltage

F = 100kHz

 

2.5

 

nV/√Hz

 

 

 

 

 

 

 

iNp

Equivalent input noise current (+)

F = 100kHz

 

15

 

pA/√Hz

 

 

 

 

 

 

 

iNn

Equivalent input noise current (-)

F = 100kHz

 

21

 

pA/√Hz

 

 

 

 

 

 

 

HD2

2nd harmonic distortion

Vout = 14Vp-p, AV = 12dB

 

-87

 

dBc

 

(differential configuration)

F= 110kHz, RL = 50Ω diff.

 

 

 

 

HD3

3rd harmonic distortion

Vout = 14Vp-p, AV = 12dB

 

-83

 

dBc

 

(differential configuration)

F= 110kHz, RL = 50Ω diff.

 

 

 

 

 

 

F1= 100kHz, F2 = 110kHz

 

 

 

 

 

 

Vout = 16Vp-p, AV = 12dB

 

-76

 

 

IM2

2nd order intermodulation product

RL = 50Ω diff.

 

 

 

dBc

(differential configuration)

F1= 370kHz, F2 = 400kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vout = 16Vp-p, AV = 12dB

 

-75

 

 

 

 

RL = 50Ω diff.

 

 

 

 

 

 

F1 = 100kHz, F2 = 110kHz

 

 

 

 

 

 

Vout = 16Vp-p, AV = 12dB

 

-88

 

 

IM3

3rd order intermodulation product

RL = 50Ω diff.

 

 

 

dBc

(differential configuration)

F1 = 370kHz, F2 = 400kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vout = 16Vp-p, AV = 12 B

 

-87

 

 

 

 

RL = 50Ω diff.

 

 

 

 

6/37

TS616

 

 

 

 

 

Electrical characteristics

 

 

 

 

 

 

 

Table 4.

VCC = ±2.5 V, Rfb= 910 Ω, Tamb = 25° C (unless otherwise specified)

 

 

Symbol

Parameter

 

 

Test conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

 

 

 

DC performance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vio

Input offset voltage

Tamb

 

 

 

0.2

2.5

mV

Tmin < Tamb < Tmax

 

1

 

 

 

 

 

 

Vio

Differential input offset voltage

Tamb = 25°C

 

 

2.5

mV

Iib+

Positive input bias current

Tamb

 

 

 

4

30

µA

Tmin < Tamb < Tmax

 

7

 

 

 

 

 

 

Iib-

Negative input bias current

Tamb

 

 

 

1.1

11

µA

Tmin < Tamb < Tmax

 

1.2

 

 

 

 

 

 

ZIN+

Input(+) impedance

 

 

 

 

 

71

 

ZIN-

Input(-) impedance

 

 

 

 

 

62

 

Ω

CIN+

Input(+) capacitance

 

 

 

 

 

1.5

 

pF

CMR

Common mode rejection ratio

Vic = ±1V

 

55

61

 

dB

20 log ( Vic/ Vio)

T

min

< T

< T

 

60

 

 

 

 

 

 

 

 

amb

max

 

 

 

 

SVR

Supply voltage rejection ratio

VCC= ±2V to ±2.5V

63

79

 

dB

20 log ( Vcc/ Vio)

T

min

< T

< T

 

78

 

 

 

 

 

 

 

 

amb

max

 

 

 

 

ICC

Total supply current per

No load

 

 

11.5

15

mA

operator

 

 

Dynamic performance and output characteristics

 

 

 

 

 

 

 

 

 

 

 

 

ROL

Open loop transimpedance

Vout = 2Vp-p, RL = 10Ω

2

4.2

 

Tmin < Tamb < Tmax

 

1.5

 

 

 

 

 

 

 

-3dB bandwidth

Small signal Vout < 20mVp

20

28

 

 

 

 

AV = 12dB, RL = 10Ω

 

 

 

MHz

BW

Full power bandwidth

Large signal Vout = 1.4Vp AV= 12dB,

 

20

 

 

 

 

 

 

RL = 10Ω

 

 

 

 

 

 

Gain flatness @ 0.1dB

Small signal Vout< 20mVp

 

5.7

 

MHz

 

 

AV = 12dB, RL = 10Ω

 

 

 

 

Tr

Rise time

Vout = 2.8Vp-p, AV = 12dB RL= 10Ω

 

11

 

ns

Tf

Fall time

Vout = 2.8Vp-p, AV = 12dB RL= 10Ω

 

11.5

 

ns

Ts

Settling time

Vout = 2.2Vp-p, AV = 12dB RL= 10Ω

 

39

 

ns

SR

Slew rate

Vout = 2.2Vp-p, AV = 12dB RL =10Ω

100

130

 

V/µs

VOH

High level output voltage

RL=10Ω connected to GND

1.5

1.7

 

V

VOL

Low level output voltage

RL=10Ω connected to GND

 

-1.9

-1.7

V

 

Output sink current

Vout = -1.25Vp

-300

-400

 

 

Iout

Tmin < Tamb < Tmax

 

-360

 

mA

 

 

 

Output source current

Vout = +1.25Vp

200

270

 

 

 

 

 

Tmin < Tamb < Tmax

 

240

 

 

 

 

 

 

 

7/37

Electrical characteristics

 

 

 

 

TS616

 

 

 

 

 

 

 

Table 4.

VCC = ±2.5 V, Rfb= 910 Ω, Tamb = 25° C (unless otherwise specified) (continued)

Symbol

Parameter

Test conditions

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

Noise and distorsion

 

 

 

 

 

 

 

 

 

 

 

 

eN

Equivalent input noise voltage

F = 100kHz

 

2.5

 

nV/√Hz

 

 

 

 

 

 

 

iNp

Equivalent input noise current

F = 100kHz

 

15

 

pA/√Hz

(+)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iNn

Equivalent input noise current

F = 100kHz

 

21

 

pA/√Hz

(-)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HD2

2nd harmonic distortion

Vout = 6Vp-p, AV = 12 dB

 

-97

 

dBc

 

(differential configuration)

F= 110kHz, RL = 20 Ω diff.

 

 

 

 

HD3

3rd harmonic distortion

Vout = 6Vp-p, AV = 12dB

 

-98

 

dBc

 

(differential configuration)

F= 110 kHz, RL = 20Ω diff.

 

 

 

 

 

 

F1= 100 kHz, F2 = 110 kHz

 

 

 

 

 

2nd order intermodulation

Vout = 6 Vp-p, AV = 12dB

 

-86

 

 

 

RL = 20Ω diff.

 

 

 

 

IM2

product

 

 

 

 

dBc

F1= 370kHz, F2 = 400kHz

 

 

 

 

(differential configuration)

 

 

 

 

 

 

Vout = 6Vp-p, AV = 12dB

 

-88

 

 

 

 

RL = 20Ω diff.

 

 

 

 

 

 

F1 = 100kHz, F2 = 110kHz

 

 

 

 

 

3rd order intermodulation

Vout = 6Vp-p, AV = 12dB

 

-90

 

 

 

RL = 20Ω diff.

 

 

 

 

IM3

product

 

 

 

 

dBc

F1 = 370kHz, F2 = 400kHz

 

 

 

 

(differential configuration)

 

 

 

 

 

 

Vout = 6Vp-p, AV = 12dB

 

-85

 

 

 

 

RL = 20Ω diff.

 

 

 

 

8/37

TS616

 

 

 

 

 

Electrical characteristics

Figure 2.

Load configuration

 

Figure 3.

Load configuration

 

RL= 25Ω

 

 

 

RL= 25 Ω

 

 

 

VCC= ±6 V

 

 

 

VCC= ±.5V

 

 

 

+

+6V

 

50Ω

+

+2.5V

 

50Ω

 

49.9Ω

cable

10Ω

49.9Ω

cable

TS616

 

 

 

25Ω

 

TS616

 

 

_

 

 

_

 

 

 

 

33Ω

50Ω

 

11Ω

50Ω

 

-6V

 

-2.5V

 

1W

 

 

0.5W

 

Figure 4. Closed loop gain vs. frequency

 

Figure 5. Closed loop gain vs. frequency

AV=+1, VCC=±2.5V, Rfb=1.1kΩ,

RL= 10Ω

 

 

AV=-1, VCC= ±2.5V, Rfb=1kΩ,

Rin=1kΩ, RL= 10Ω

 

2

VCC=±6V, Rfb=750Ω,

RL= 25Ω

40

 

 

VCC=±6V, Rfb=680Ω,

Rin=680Ω,

RL= 25Ω

 

 

gain

 

 

(Vcc=±6V)

 

 

2

 

 

 

 

 

-140

 

 

 

 

 

 

 

 

 

 

gain

 

 

 

 

 

0

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

-160

 

 

 

 

 

 

 

 

 

 

 

 

(Vcc=±2.5V)

 

-2

 

phase

 

(Vcc=±2.5V)

 

 

 

-2

 

phase

 

 

 

 

 

 

 

0

 

 

 

 

 

(Vcc=±6V)

-180

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(gain (dB)

-4

 

 

 

 

 

-20

 

(gain (dB))

-4

 

 

 

 

 

 

-6

 

 

 

 

 

Phase (°)

-6

 

 

 

(Vcc=±2.5V)

 

-200

 

 

(Vcc=±2.5V)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-8

 

 

 

 

 

-40

-8

 

 

 

 

 

-220

 

 

 

(Vcc=±6V)

 

 

 

 

(Vcc=±6V)

Phase°)(

-10

 

 

 

 

 

-60

-10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-240

 

-12

 

 

 

 

 

-80

 

 

-12

 

 

 

 

 

-260

 

-14

 

 

 

 

 

-100

 

 

-14

 

 

 

 

 

-280

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-16

 

 

 

 

 

-120

 

 

-16

 

 

 

 

 

 

 

100

1k

10k

100k

1M

10M

 

 

100

1k

10k

100k

1M

10M

-300

 

100M

 

 

100M

 

 

 

Frequency (Hz)

 

 

 

 

 

 

Frequency (Hz)

 

 

Figure 6. Closed loop gain vs. frequency

 

Figure 7. Closed loop gain vs. frequency

AV=+2, VCC=±2.5V, Rfb=1kΩ,

RL= 10Ω

 

 

AV=-2, VCC=±2.5V, Rfb=1kΩ,

Rin=510Ω,

RL=10Ω

 

8

VCC=±6V, Rfb=680Ω,

RL= 25Ω

40

 

VCC=±6V, Rfb=680Ω,

Rin=750/620Ω,

RL= 25Ω

 

 

 

 

 

(Vcc=±6V)

 

 

8

 

 

 

 

 

-140

 

 

 

gain

 

 

 

 

 

 

 

gain

 

 

 

 

 

6

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

-160

 

 

 

 

 

 

 

 

 

 

 

 

 

(Vcc=±2.5V)

 

4

 

phase

 

(Vcc=±2.5V)

 

 

 

4

 

phase

 

 

 

 

 

0

 

 

 

 

(Vcc=±6V)

-180

 

 

 

 

 

 

 

 

 

 

 

 

 

(gain (dB))

2

 

 

 

 

 

 

 

(gain (dB))

2

 

 

 

 

 

 

0

 

 

(Vcc=±2.5V)

 

-20

 

0

 

 

 

(Vcc=±2.5V)

 

-200

 

 

 

 

 

 

 

 

 

 

-2

 

 

 

 

 

-40

 

-2

 

 

 

 

 

-220

 

 

 

(Vcc=±6V)

 

Phase°)(

 

 

 

(Vcc=±6V)

 

Phase°)(

-4

 

 

 

 

 

-60

-4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-240

 

-6

 

 

 

 

 

-80

 

 

-6

 

 

 

 

 

-260

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-8

 

 

 

 

 

-100

 

 

-8

 

 

 

 

 

-280

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-10

 

 

 

 

 

-120

 

 

-10

 

 

 

 

 

-300

 

100

1k

10k

100k

1M

10M

 

 

100

1k

10k

100k

1M

10M

 

100M

 

 

100M

 

 

 

Frequency (Hz)

 

 

 

 

 

 

Frequency (Hz)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9/37

ST TS616 User Manual

Electrical characteristics

TS616

 

 

Figure 8. Closed loop gain vs. frequency

Figure 9. Closed loop gain vs. frequency

AV=+4, VCC=±2.5V, Rfb=910Ω,

Rg=300Ω, RL=10Ω

 

AV=-4, VCC=±2.5V, Rfb=1kΩ Rin=320/360Ω RL=10Ω

 

VCC=±6V, Rfb=620Ω, Rg=560/330Ω, RL= 25Ω

 

 

VCC=±6V, Rfb=620Ω,

Rin=360/270Ω,

RL= 25Ω

 

14

 

 

 

 

 

40

 

 

14

 

 

 

 

 

-140

 

12

 

gain

 

 

 

 

 

 

12

 

gain

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

-160

 

 

 

 

 

(Vcc=±2.5V)

 

 

 

 

 

 

(Vcc=±2.5V)

 

10

 

phase

 

 

 

 

10

 

phase

 

 

 

 

 

 

(Vcc=±6V)

0

 

 

 

 

(Vcc=±6V)

-180

 

 

 

 

 

 

 

 

 

 

 

 

(gain (dB))

8

 

 

 

 

 

 

 

(gain (dB))

8

 

 

 

 

 

 

6

 

 

 

(Vcc=±2.5V)

 

-20

 

6

 

 

 

(Vcc=±2.5V)

 

-200

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

-40

 

4

 

 

 

 

 

-220

 

 

 

(Vcc=±6V)

 

Phase°)(

 

 

 

(Vcc=±6V)

 

Phase°)(

2

 

 

 

 

 

-60

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-240

 

0

 

 

 

 

 

-80

 

 

0

 

 

 

 

 

-260

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-2

 

 

 

 

 

-100

 

 

-2

 

 

 

 

 

-280

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-4

 

 

 

 

 

-120

 

 

-4

 

 

 

 

 

-300

 

100

1k

10k

100k

1M

10M

 

 

100

1k

10k

100k

1M

10M

 

100M

 

 

100M

 

 

 

Frequency (Hz)

 

 

 

 

 

 

Frequency (Hz)

 

 

Figure 10. Closed loop gain vs. frequency

 

Figure 11. Closed loop gain vs. frequency

AV=+8, VCC=±2.5V, Rfb=680Ω, Rg=240/160Ω, RL=10Ω

 

AV=-8, VCC=±2.5V, Rfb=680Ω Rin=160/180Ω RL=10Ω

 

VCC=±6V, Rfb=510Ω,

Rg=270/100Ω,

RL= 25Ω

 

 

VCC=±6V, Rfb=510Ω,

Rin=150/110Ω,

RL= 25Ω

 

20

 

 

 

 

 

40

 

 

20

 

 

 

 

 

-140

 

18

 

gain

 

 

 

 

 

 

18

 

gain

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

-160

 

 

 

 

 

(Vcc=±2.5V)

 

 

 

 

 

 

(Vcc=±2.5V)

 

16

 

phase

 

 

 

 

16

 

phase

 

 

 

 

 

(Vcc=±6V)

0

 

 

 

 

(Vcc=±6V)

-180

 

 

 

 

 

 

 

 

 

 

 

(gain (dB))

14

 

 

 

 

 

-20

 

(gain (dB))

14

 

 

 

 

 

 

12

 

 

 

(Vcc=±2.5V)

 

Phase (°)

12

 

 

 

(Vcc=±2.5V)

 

-200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

-40

10

 

 

 

 

 

-220

 

 

 

(Vcc=±6V)

 

 

 

 

 

(Vcc=±6V)

 

Phase°()

8

 

 

 

 

 

-60

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-240

 

6

 

 

 

 

 

-80

 

 

6

 

 

 

 

 

-260

 

4

 

 

 

 

 

-100

 

 

4

 

 

 

 

 

-280

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

-120

 

 

2

 

 

 

 

 

-300

 

100

1k

10k

100k

1M

10M

 

 

100

1k

10k

100k

1M

10M

 

100M

 

 

100M

 

 

 

Frequency (Hz)

 

 

 

 

 

 

Frequency (Hz)

 

 

Figure 12. Positive slew rate

 

 

 

Figure 13. Positive slew rate

 

 

AV = +4, Rfb = 910Ω, VCC = ±6 , RL= 25Ω

 

 

AV = +4, Rfb = 910 Ω, VCC = ±2.5V, RL= 10Ω

 

 

4

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

(V)

0

 

 

 

 

 

(V)

0

 

 

 

 

 

OUT

 

 

 

 

 

OUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

V

 

 

 

 

 

 

 

-2

 

 

 

 

 

 

-1

 

 

 

 

 

 

-4

 

 

 

 

 

 

-2

 

 

 

 

 

 

0.0

10.0n

20.0n

30.0n

40.0n

50.0n

 

0.0

10.0n

20.0n

30.0n

40.0n

50.0n

 

 

 

Time (s)

 

 

 

 

 

Time (s)

 

 

10/37

TS616

 

 

 

 

 

 

 

 

 

 

 

Electrical characteristics

Figure 14. Positive slew rate

 

 

Figure 15. Positive slew rate

 

 

 

A

= -4, R

= 620 Ω, V

= ±6 V, R = 25 Ω

 

A

= -4, R

= 910 , V

CC

= ±2.5 V, R = 10

Ω

 

V

 

fb

 

CC

 

L

 

V

 

fb

Ω

 

L

 

 

 

 

4

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

(V)

0

 

 

 

 

 

 

(V)

0

 

 

 

 

 

 

 

 

OUT

 

 

 

 

 

 

OUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

-2

 

 

 

 

 

 

 

-1

 

 

 

 

 

 

 

 

 

-4

 

 

 

 

 

 

 

-2

 

 

 

 

 

 

 

 

 

0.0

10.0n

20.0n

30.0n

40.0n

50.0n

 

 

0.0

10.0n

20.0n

30.0n

40.0n

50.0n

 

 

 

 

Time (s)

 

 

 

 

 

 

 

Time (s)

 

 

 

Figure 16.

Negative slew rate

 

 

Figure 17.

Negative slew rate

 

 

 

AV = +4, Rfb = 620 Ω, VCC = ±6 V, RL= 25 Ω

 

4

 

 

 

 

 

 

2

 

 

 

 

 

(V)

0

 

 

 

 

 

OUT

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

-2

 

 

 

 

 

 

-4

 

 

 

 

 

 

0.0

10.0n

20.0n

30.0n

40.0n

50.0n

Time (s)

AV =

OUT

V (V)

+4, Rfb = 910 Ω, VCC = ±2.5 V, RL= 10 Ω

2

1

0

-1

-2

 

 

 

 

 

0.0

10.0n

20.0n

30.0n

40.0n

50.0n

Time (s)

Figure 18. Negative slew rate

Figure 19. Negative slew rate

AV = +4, Rfb = 620 Ω, VCC = ±6 V, RL= 25 Ω

 

4

 

 

 

 

 

 

2

 

 

 

 

 

(V)

0

 

 

 

 

 

OUT

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

-2

 

 

 

 

 

 

-4

 

 

 

 

 

 

0.0

10.0n

20.0n

30.0n

40.0n

50.0n

Time (s)

AV =

OUT

V (V)

+4, Rfb = 910 Ω, VCC = ±2.5 V, RL= 10 Ω

2

0

-2

 

 

 

 

 

0.0

10.0n

20.0n

30.0n

40.0n

50.0n

Time (s)

11/37

Electrical characteristics

TS616

 

 

Figure 20. Input voltage noise level

Figure 21. ICC vs. power supply

AV = +92, Rfb = 910 Ω

Open loop, no load

Input+ connected to GND via 25 Ω

 

 

5.0

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

+ 6V

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hz)

4.5

 

 

 

 

_

 

 

 

20

 

 

 

 

Icc(+)

 

 

 

 

 

 

 

 

 

 

 

- 6V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(nV/√

4.0

 

 

 

 

10Ω

910Ω

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Noise

 

 

 

 

 

 

 

(mA)

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

Voltage

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.0

 

 

 

 

 

 

 

 

-10

 

 

 

 

 

 

 

 

 

 

 

 

Input

2.5

 

 

 

 

 

 

 

 

-20

 

 

 

 

Icc(-)

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

 

 

-30

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

1k

 

10k

100k

 

1M

0

1

2

3

4

5

6

7

8

9

10

11

12

 

 

 

 

(Frequency (Hz)

 

 

 

 

 

 

 

 

 

VCC (V)

 

 

 

 

 

 

Figure 22. Iib vs. power supply

 

 

 

Figure 23. VOH & VOL vs. power supply

 

 

Open loop, no load

 

 

 

 

 

Open loop, RL = 25 Ω

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iib+

 

 

 

 

 

 

5

 

VOH

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

IB+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

(V)

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

OL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

μ(A)

 

 

 

 

 

 

 

&V

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iib

3

 

 

 

 

 

 

 

OH

-1

 

VOL

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

-2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iib-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

-

 

 

 

 

 

 

-3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-4

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

-5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

-6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

6

7

 

8

 

9

10

 

11

 

12

 

5

6

7

8

9

10

 

11

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V (V)

Vcc (V)

cc

 

Figure 24. Isource vs. output amplitude Figure 25. Isource vs. output amplitude

VCC = ±6 V, open loop, no load

 

 

VCC = ±2.5 V, open loop, no load

 

 

 

 

700

 

 

 

 

 

 

 

700

 

 

 

 

 

 

600

 

 

 

 

 

 

 

600

 

 

 

 

 

(mA)

500

 

 

 

 

 

 

(mA)

500

 

 

 

 

 

400

 

 

 

 

 

 

400

 

 

 

 

 

Isource

 

 

 

 

 

 

Isource

 

 

 

 

 

300

 

 

 

 

 

 

300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

200

 

 

 

 

 

 

100

 

 

 

 

 

 

 

100

 

 

 

 

 

 

0

 

 

 

 

 

 

 

0

 

 

 

 

 

 

0

1

2

3

4

5

6

 

0.0

0.5

1.0

1.5

2.0

2.5

 

 

 

 

Vout

(V)

 

 

 

 

 

Vout (V)

 

 

 

12/37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Loading...
+ 25 hidden pages