ST TS616 User Manual

Features
Low noise: 2.5 nV/Hz
High output current: 420 mA
distortion
High slew rate: 420 V/µs
-3dB bandwidth: 40 MHz @ gain = 12 dB on
25 Ω single-ended load
20.7 Vp-p differential output swing on 50 Ω
load, 12 V power supply
Current feedback structure
5 V to 12 V power supply
Specified for 20 Ω and 50 Ω differential load
Applications
Line driver for xDSL
Multiple video line driver
TS616
Dual wide band operational amplifier
with high output current
DW
SO-8 Exposed-pad
(Plastic micropackage)
Pin connections (top view)
Output1
Output1
1
1
2
Inverting Input1 Output2
Inverting Input1 Output2
Non Inverting Input1
Non Inverting Input1
This pad must be connected to a (-Vcc) copper area on the PCB
This pad must be connected to a (-Vcc) copper area on the PCB
2
-
-
+
+
3
3
VCC -
VCC -
4
4
Cross Section View Showing Exposed-Pad.
Cross Section View Showing Exposed-Pad.
VCC +
VCC +
8
8
7
7
Inverting Input2
Inverting Input2
6
6
-
-
+
+
Non Inverting Input2
Non Inverting Input2
5
5
dice
dice
Pad
Pad
Description
The TS616 is a dual operational amplifier featuring a high output current of 410 mA. This driver can be configured differentially for driving signals in telecommunication systems using multiple carriers. The TS616 is ideally suited for xDSL (high speed asymmetrical digital subscriber line) applications. This circuit is capable of driving a 10 Ω or 25 Ω load on a range of power supplies: ±2.5 V, 5 V, ±6 V or +12 V. The TS616 is capable of reaching a -3 dB bandwidth of 40 MHz on 25 Ω load with a 12 dB gain. This device is designed for high slew rates and demonstrates low harmonic distortion and intermodulation.
September 2008 Rev 5 1/37
www.st.com
37
Contents TS616
Contents
1 Typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Safe operating area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Intermodulation distortion product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 Printed circuit board layout considerations . . . . . . . . . . . . . . . . . . . . . 20
6.1 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7 Noise measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.1 Measurement of eN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 Measurement of iNn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3 Measurement of iNp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8 Power supply bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1 Single power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.2 Channel separation and crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9 Choosing the feedback circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.1 The bias of an inverting amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.2 Active filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10 Increasing the line level using active impedance matching . . . . . . . . 31
11 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
12 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2/37
TS616 Typical application

1 Typical application

Figure 1 shows a schematic of a typical xDSL application using the TS616.

Figure 1. Differential line driver for xDSL applications

8
8
3
3
2
2
Vi
Vi
Vi
Vi
R1
R1
R4
R4
Vi Vo
Vi Vo
Vi Vo
Vi Vo
4
4
5
5
+
+
+
+
1/2TS61 5
1/2TS61 6
1/2TS61 5
1/2TS61 6
_
_
_
_
R2
R2
GND
GND
R3
R3
_
_
_
_
1/2TS615
1/2TS616
1/2TS615
1/2TS616
+
+
+
+
4
4
+Vcc
+Vcc
+Vcc
+Vcc
-Vcc
-Vcc
-Vcc
-Vcc
Ω
Ω
Ω
Ω
12.5
12.5
12.5
12.5
1
1
1
1
Vo
Vo
Vo
12.5
12.5
12.5
12.5
Vo
Ω
Ω
Ω
Ω
25
25
25
25
1:2
1:2
1:2
1:2
Ω
Ω
Ω
Ω
Ω
Ω
Ω
100
100
100
100
Ω
3/37
Absolute maximum ratings and operating conditions TS616

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
V
CC
V
id
V
in
T
oper
T
std
T
j
R
thjc
R
thja
P
max
ESD only pins 1, 4, 7, 8
ESD only pins 2, 3, 5, 6
Supply voltage
Differential input voltage
Input voltage range
Operating free air temperature range -40 to + 85 °C
Storage temperature -65 to +150 °C
Maximum junction temperature 150 °C
Thermal resistance junction to case 16 °C/W
Thermal resistance junction to ambient area 60 °C/W
Maximum power dissipation (at T
=150°C
T
j
HBM: human body model MM: machine model CDM: charged device model
HBM: human body model MM: machine model CDM: charged device model
Output short circuit
(1)
(3)
(5)
(5)
(2)
(4)
(4)
(6)
(6)
= 25° C) for
amb
±7 V
±2 V
±6 V
2W
1.5 2
200
1.5 2
100
(7)
kV kV
V
kV kV
V
1. All voltage values, except differential voltage are with respect to network terminal.
2. Differential voltages are non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltage must never exceed VCC +0.3 V.
4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
6. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.
7. An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating. Destructive dissipation can result from short-circuits on amplifiers.

Table 2. Operating conditions

Symbol Parameter Value Unit
V
CC
V
icm
Power supply voltage ±2.5 to ±6 V
Common mode input voltage -VCC+1.5 V to +VCC-1.5 V V
4/37
TS616 Electrical characteristics

3 Electrical characteristics

Table 3. V
= ±6 V, Rfb= 910 Ω, T
CC
= 25° C (unless otherwise specified)
amb
Symbol Parameter Test conditions Min. Typ. Max. Unit
DC performance
V
io
ΔV
I
ib+
I
ib-
Z
IN+
Z
IN-
C
IN+
CMR
SVR
I
CC
T
Input offset voltage
Differential input offset voltage T
io
Positive input bias current
Negative input bias current
amb
< T
T
T
T
T
T
min
amb
amb
min
amb
min
< T
amb
max
= 25°C 2.5 mV
530
< T
< T
amb
max
315
< T
< T
amb
max
Input(+) impedance 82 kΩ
Input(-) impedance 54 Ω
Input(+) capacitance 1 pF
ΔV
Common mode rejection ratio 20 log (ΔV
/ΔVio)
ic
Supply voltage rejection ratio 20 log (ΔVCC/ΔVio)
= ±4.5V 58 64
ic
< T
T
ΔV
T
min
CC
min
< T
amb
max
= ±2.5V to ±6V 72 81
< T
< T
amb
max
Total supply current per operator No load 13.5 17 mA
13.5
1.6
7.2
3.1
62
80
Dynamic performance and output characteristics
mV
µA
µA
dB
dB
R
Open loop transimpedance
OL
-3dB bandwidth
BW
Full power bandwidth
Gain flatness @ 0.1dB
Rise time V
T
r
T
Fall time V
f
Settling time V
T
s
SR Slew rate V
V
V
High level output voltage RL = 25Ω connected to GND 4.8 5.05 V
OH
Low level output voltage RL = 25Ω Connected to GND -5.3 -5.1 V
OL
V
= 7Vp-p, RL = 25Ω 513.5
out
< T
T
min
Small signal V
= 12dB, RL = 25Ω
A
V
Large signal V
= 12dB, RL = 25Ω
A
V
Small signal T
amb
< T
max
< 20mVp
out
= 3Vp
out
<20mVp
amb
AV = 12dB, RL = 25Ω
= 6Vp-p, AV = 12dB, RL = 25Ω 10.6 ns
out
= 6Vp-p, AV = 12dB, RL = 25Ω 12.2 ns
out
= 6Vp-p, AV= 12dB, RL = 25Ω 50 ns
out
= 6Vp-p, AV = 12dB, RL = 25Ω 330 420 V/µs
out
5.7
25 40
26
7MHz
5/37
MΩ
MHz
Electrical characteristics TS616
Table 3. V
= ±6 V, Rfb= 910 Ω, T
CC
= 25° C (unless otherwise specified) (continued)
amb
Symbol Parameter Test conditions Min. Typ. Max. Unit
V
= -4Vp -320 -490
Output sink current
I
out
Output source current
out
T
< T
< T
amb
amb
< T
< T
max
max
min
V
= +4Vp 330 420
out
T
min
-395
370
Noise and distortion
eN Equivalent input noise voltage F = 100kHz 2.5 nV/√Hz
iNp Equivalent input noise current (+) F = 100kHz 15 pA/√Hz
iNn Equivalent input noise current (-) F = 100kHz 21 pA/√Hz
HD2
HD3
2nd harmonic distortion (differential configuration)
3rd harmonic distortion (differential configuration)
V
= 14Vp-p, AV = 12dB
out
F= 110kHz, RL = 50Ω diff.
= 14Vp-p, AV = 12dB
V
out
F= 110kHz, R
= 50Ω diff.
L
-87 dBc
-83 dBc
F1= 100kHz, F2 = 110kHz
IM2
2nd order intermodulation product (differential configuration)
= 16Vp-p, AV = 12dB
V
out
RL = 50Ω diff.
F1= 370kHz, F2 = 400kHz
= 16Vp-p, AV = 12dB
V
out
-76
-75
RL = 50Ω diff.
F1 = 100kHz, F2 = 110kHz
IM3
3rd order intermodulation product (differential configuration)
= 16Vp-p, A
V
out
RL = 50Ω diff.
F1 = 370kHz, F2 = 400kHz
= 16Vp-p, A
V
out
= 12dB
V
= 12 B
V
-88
-87
RL = 50Ω diff.
mA
dBc
dBc
6/37
TS616 Electrical characteristics
Table 4. VCC = ±2.5 V, Rfb= 910 Ω, T
= 25° C (unless otherwise specified)
amb
Symbol Parameter Test conditions Min. Typ. Max. Unit
DC performance
T
0.2 2.5
V
io
ΔV
I
ib+
I
ib-
Z
IN+
Z
IN-
C
IN+
CMR
SVR
I
CC
Input offset voltage
Differential input offset voltage T
i
o
Positive input bias current
Negative input bias current
Input(+) impedance 71 kΩ
Input(-) impedance 62 Ω
Input(+) capacitance 1.5 pF
Common mode rejection ratio 20 log (ΔV
/ΔVio)
ic
Supply voltage rejection ratio 20 log (ΔV
cc
/ΔVio)
Total supply current per operator
amb
< T
T
T
T
T
T
ΔV
T
ΔV
T
min
amb
amb
min
amb
min
ic
min
CC
min
< T
amb
max
= 25°C 2.5 mV
430
< T
< T
amb
max
1.1 11
< T
< T
amb
max
= ±1V 55 61
< T
< T
amb
max
= ±2V to ±2.5V 63 79
< T
< T
amb
max
1
7
1.2
60
78
No load 11.5 15 mA
mV
µA
µA
dB
dB
Dynamic performance and output characteristics
V
= 2V
R
Open loop transimpedance
OL
-3dB bandwidth
BW
Full power bandwidth
Gain flatness @ 0.1dB
Rise time V
T
r
Fall time V
T
f
T
Settling time V
s
SR Slew rate V
V
V
High level output voltage RL=10Ω connected to GND 1.5 1.7 V
OH
Low level output voltage RL=10Ω connected to GND -1.9 -1.7 V
OL
Output sink current
I
out
Output source current
out
< T
T
min
Small signal V AV = 12dB, RL = 10Ω
Large signal V R
= 10Ω
L
Small signal V
= 12dB, RL = 10Ω
A
V
= 2.8Vp-p, AV = 12dB RL= 10Ω 11 ns
out
= 2.8Vp-p, AV = 12dB RL= 10Ω 11.5 ns
out
= 2.2Vp-p, AV = 12dB RL= 10Ω 39 ns
out
= 2.2Vp-p, AV = 12dB RL =10Ω 100 130 V/µs
out
V
= -1.25V
out
T
< T
min
V
= +1.25V
out
< T
T
min
, RL = 10Ω 24.2
p-p
< T
amb
max
< 20mVp
amb
amb
out
= 1.4Vp AV=12dB,
out
< 20mVp
out
p
< T
max
p
< T
max
20 28
-300 -400
-360
200 270
1.5
MΩ
MHz
20
5.7 MHz
mA
240
7/37
Electrical characteristics TS616
Table 4. VCC = ±2.5 V, Rfb= 910 Ω, T
= 25° C (unless otherwise specified) (continued)
amb
Symbol Parameter Test conditions Min. Typ. Max. Unit
Noise and distorsion
eN Equivalent input noise voltage F = 100kHz 2.5 nV/√Hz
iNp
iNn
HD2
HD3
Equivalent input noise current (+)
Equivalent input noise current (-)
2nd harmonic distortion (differential configuration)
3rd harmonic distortion (differential configuration)
F = 100kHz 15 pA/√Hz
F = 100kHz 21 pA/√Hz
= 6V
V
out
F= 110kHz, RL = 20 Ω diff.
V
= 6V
out
F= 110 kHz, RL = 20Ω diff.
, AV = 12 dB
p-p
, AV = 12dB
p-p
-97 dBc
-98 dBc
F1= 100 kHz, F2 = 110 kHz
IM2
2nd order intermodulation product (differential configuration)
= 6 V
V
out
RL = 20Ω diff.
F1= 370kHz, F2 = 400kHz
= 6V
V
out
, AV = 12dB
p-p
, AV = 12dB
p-p
-86
-88
RL = 20Ω diff.
F1 = 100kHz, F2 = 110kHz V
IM3
3rd order intermodulation product (differential configuration)
= 6V
out
RL = 20Ω diff.
F1 = 370kHz, F2 = 400kHz
= 6V
V
out
p-p
p-p
, A
, A
= 12dB
V
= 12dB
V
-90
-85
RL = 20Ω diff.
dBc
dBc
8/37
TS616 Electrical characteristics
Figure 2. Load configuration Figure 3. Load configuration
RL= 25Ω VCC= ±6 V
+
+
TS616
TS616
_
_
+6V
+6V
-6V
-6V
25Ω
25Ω
49.9Ω
49.9Ω
33Ω
33Ω 1W
1W
50Ω
50Ω
cable
cable
50Ω
50Ω
RL= 25 Ω VCC= ±.5V
+
+
TS616
TS616
_
_
+2.5V
+2.5V
-2.5V
-2.5V
10Ω
10Ω
49.9Ω
49.9Ω
11Ω
11Ω
0.5W
0.5W
50Ω
50Ω
cable
cable
Figure 4. Closed loop gain vs. frequency Figure 5. Closed loop gain vs. frequency
AV=+1, VCC=±2.5V, Rfb=1.1kΩ, RL=10Ω
VCC=±6V, Rfb=750Ω, RL=25Ω
2
0
-2
-4
-6
-8
(gain (dB)
-10
-12
-14
-16 100 1k 10k 100k 1M 10M 100M
gain
phase
Frequency (Hz)
(Vcc=±6V)
(Vcc=±2.5V)
(Vcc=±2.5V)
(Vcc=±6V)
40
20
0
-20
-40
-60
-80
-100
-120
AV=-1, VCC= ±2.5V, Rfb=1kΩ, Rin=1kΩ, RL=10Ω
VCC=±6V, Rfb=680Ω, Rin=680Ω, RL=25Ω
2
0
-2
-4
-6
-8
Phase (°)
(gain (dB))
-10
-12
-14
-16 100 1k 10k 100k 1M 10M 100M
gain
phase
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±6V)
(Vcc=±2.5V)
(Vcc=±6V)
50Ω
50Ω
-140
-160
-180
-200
-220
-240
-260
-280
-300
Phase (°)
Figure 6. Closed loop gain vs. frequency Figure 7. Closed loop gain vs. frequency
AV=+2, VCC=±2.5V, Rfb=1kΩ, RL=10Ω
VCC=±6V, Rfb=680Ω, RL=25Ω
8
6
4
2
0
-2
(gain (dB))
-4
-6
-8
-10 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
Frequency (Hz)
(Vcc=±6V)
(Vcc=±2.5V)
(Vcc=±6V)
AV=-2, VCC=±2.5V, Rfb=1kΩ, Rin=510Ω, RL=10Ω
40
20
0
-20
-40
-60
-80
-100
-120
VCC=±6V, Rfb=680Ω, Rin=750/620Ω, RL=25Ω
8
6
4
2
0
-2
Phase (°)
(gain (dB))
-4
-6
-8
-10 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±6V)
(Vcc=±6V)
9/37
-140
-160
-180
-200
-220
-240
-260
-280
-300
Phase (°)
Electrical characteristics TS616
Figure 8. Closed loop gain vs. frequency Figure 9. Closed loop gain vs. frequency
=+4, VCC=±2.5V, Rfb=910Ω, Rg=300Ω, RL=10Ω
V
VCC=±6V, Rfb=620Ω, Rg=560/330
14
12
10
8
6
4
(gain (dB))
2
0
-2
-4 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
Frequency (Hz)
Ω,
(Vcc=±2.5V)
(Vcc=±6V)
(Vcc=±6V)
RL=25
Ω
AV=-4, VCC=±2.5V, Rfb=1kΩ Rin=320/360Ω RL=10Ω
40
20
0
-20
-40
-60
-80
-100
-120
VCC=±6V, Rfb=620
14
12
10
8
6
Phase (°)
4
(gain (dB))
2
0
-2
-4 100 1k 10k 100k 1M 10M 100M
Ω,
Rin=360/270
gain
phase
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±2.5V)
(Vcc=±6V)
Ω,
RL=25
(Vcc=±6V)
Ω

Figure 10. Closed loop gain vs. frequency Figure 11. Closed loop gain vs. frequency

AV=+8, VCC=±2.5V, Rfb=680Ω,Rg=240/160Ω,RL=10Ω
VCC=±6V, Rfb=510
20
18
16
14
12
10
(gain (dB))
8
6
4
2
100 1k 10k 100k 1M 10M 100M
Ω,
Rg=270/100
gain
phase
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±2.5V)
(Vcc=±6V)
Ω,
RL=25
(Vcc=±6V)
Ω
40
20
0
-20
-40
-60
-80
-100
-120
AV=-8, VCC=±2.5V, Rfb=680Ω Rin=160/180Ω RL=10Ω
VCC=±6V, Rfb=510
20
18
16
14
12
10
Phase (°)
(gain (dB))
8
6
4
2
100 1k 10k 100k 1M 10M 100M
Ω,
Rin=150/110
gain
phase
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±2.5V)
(Vcc=±6V)
Ω,
RL=25
(Vcc=±6V)
Ω
-140
-160
-180
-200
-220
-240
-260
-280
-300
-140
-160
-180
-200
-220
-240
-260
-280
-300
Phase (°)
Phase (°)

Figure 12. Positive slew rate Figure 13. Positive slew rate

AV = +4, Rfb = 910Ω, VCC = ±6 , RL=25Ω
4
2
(V)
0
OUT
V
-2
-4
0.0 10 .0n 20.0n 30.0n 40.0n 50.0n
Time (s)
10/37
AV = +4, Rfb = 910 Ω, VCC = ±2.5V, RL=10Ω
2
1
(V)
0
OUT
V
-1
-2
0.0 10. 0n 20.0n 30.0n 40.0n 50.0n
Time (s)
TS616 Electrical characteristics

Figure 14. Positive slew rate Figure 15. Positive slew rate

AV = -4, Rfb = 620 Ω, VCC = ±6 V, RL=25Ω
4
2
(V)
0
OUT
V
-2
-4
0.0 10. 0n 20.0n 30.0n 40.0n 50.0n
Time (s)
AV = -4, Rfb = 910 Ω, VCC = ±2.5 V, RL=10Ω
2
1
(V)
0
OUT
V
-1
-2
0.0 10. 0n 20.0n 30.0n 40.0n 50.0n
Time (s)

Figure 16. Negative slew rate Figure 17. Negative slew rate

AV = +4, Rfb = 620 Ω, VCC = ±6 V, RL=25Ω
4
2
AV = +4, Rfb = 910 Ω, VCC = ±2.5 V, RL=10Ω
2
1
(V)
0
OUT
V
-2
-4
0.0 10. 0n 20.0n 30.0n 40.0n 50.0n
Time (s)
(V)
0
OUT
V
-1
-2
0.0 10. 0n 20.0n 30.0n 40.0n 50.0n
Time (s)

Figure 18. Negative slew rate Figure 19. Negative slew rate

AV = +4, Rfb = 620 Ω, VCC = ±6 V, RL=25Ω
4
2
(V)
0
OUT
V
-2
-4
0.0 10 .0n 20.0n 30.0n 40.0n 50.0n
Time (s)
AV = +4, Rfb = 910 Ω, VCC = ±2.5 V, RL=10Ω
2
(V)
0
OUT
V
-2
0.0 10. 0n 20.0n 30.0n 40.0n 50.0n
Time (s)
11/37
Electrical characteristics TS616

Figure 20. Input voltage noise level Figure 21. ICC vs. power supply

AV = +92, Rfb = 910 Ω Input+ connected to GND via 25 Ω
5.0
+
+
+
4.5
4.0
3.5
3.0
Input Voltage Noise (nV/Hz)
2.5
2.0 100 1k 10k 100k 1M
(Frequency (Hz)
+
_
_
_
_
10
10
10
10
+ 6V
+ 6V
+ 6V
+ 6V
Output
Output
Output
Output
6VΩ-
6VΩ-
- 6V
- 6V
910
910
Ω
Ω
910
910
Ω
Ω
Ω
Ω
Open loop, no load
30
20
10
0
(mA)
CC
I
-10
-20
-30 0123456789101112
Icc(+)
Icc(-)
VCC (V)

Figure 22. Iib vs. power supply Figure 23. VOH & VOL vs. power supply

Open loop, no load
7
7
Iib+
Iib+
IB+
IB+
6
6
5
5
4
4
(μA)
(μA)
B
B
3
3
I
I
ib
I
Iib-
IB-
IB-
2
2
1
1
0
0
5 6 7 8 9 10 11 12
5 6 7 8 9 10 11 12
Vcc (V)
Vcc (V)
Open loop, RL = 25 Ω
6
5
4
3
2
(V)
1
OL
0
& V
-1
OH
V
-2
-3
-4
-5
-6 56789101112
VOH
VOL
Vcc (V)
Figure 24. I
source
vs. output amplitude Figure 25. I
VCC = ±6 V, open loop, no load
700
600
500
400
300
Isource (mA)
200
100
0
0123456
Vout (V)
12/37
vs. output amplitude
source
VCC = ±2.5 V, open loop, no load
700
600
500
400
300
Isource (mA)
200
100
0
0.0 0.5 1.0 1.5 2.0 2.5
Vout (V)
Loading...
+ 25 hidden pages