ST TS4962M User Manual

3W filter-free class D audio power amplifier
Features
Operating from V
Output power: 3W into 4Ω and 1.75W into 8Ω
with 10% THD+N max and 5V power supply.
Output power: 2.3W @5V or 0.75W @ 3.0V
into 4Ω with 1% THD+N max.
Output power: 1.4W @5V or 0.45W @ 3.0V
into 8Ω with 1% THD+N max.
Adjustable gain via external resistors
Low current consumption 2mA @ 3V
Efficiency: 88% typ.
Signal to noise ratio: 85dB typ.
PSRR: 63dB typ. @217Hz with 6dB gain
PWM base frequency: 250kHz
Low pop & click noise
Thermal shutdown protection
Available in flip-chip 9 x 300μm (Pb-free)
Description
The TS4962M is a differential Class-D BTL po wer amplifier. It is able to drive up to 2.3W into a 4Ω load and 1.4W into a 8Ω load at 5V. It achieves outstanding efficiency (88%typ.) compared to classical Class-AB audio amps.
The gain of the device can be controlled via two external gain-setting resistors. Pop & click reduction circuitry provides low on/off s witch noise while allowing the device to start within 5ms. A standby function (active low) allows the reduction of current consumption to 10nA typ.
= 2.4V to 5.5V
CC
Pin connections
IN
IN
+
+
1/A1
1/A1
V
V
DD
DD
4/B1
4/B1
IN
IN
-
-
7/C1 8/C2 9/C3
7/C1 8/C2 9/C3
IN+: positive differential input IN-: negative differenti al input VDD: analog power supply GND: power supply ground STBY: standb y pin (active low) OUT+: positive differential output OUT-: negative differential output
Block diagram
Stdby
C2
300k
150k
C1
-
In­In+
+
A1
150k
Applications
Cellular phone
PDA
Notebook PC
Internal
Bias
Oscillator
TS4962M
GND
GND
2/A2 3/A3
2/A2 3/A3
V
V 5/B2
5/B2
STBY
STBY
PWM
DD
DD
OUT
OUT
GND
GND
6/B3
6/B3
OUT
OUT
B1 B2
Vcc
Output
H
Bridge
GND
A2
-
-
+
+
Out+
Out-
C3
A3
B3
January 2007 Rev 4 1/41
www.st.com
41
Contents TS4962M
Contents
1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Application component information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1 Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Gain in typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Common mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . . 29
For example: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6 Wake-up time: (t
5.7 Shutdown time (t
5.8 Consumption in shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.9 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.10 Output filter considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.11 Different examples with summed inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Example 1: Dual differential inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Example 2: One differential input plus one single-ended input . . . . . . . . . . . . . . . 34
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
WU
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
STBY
6 Demoboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7 Footprint recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2/41
TS4962M Absolute maximum ratings

1 Absolute maximum ratings

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
V
T
T
R P
CC
V
oper
stg
T
thja
diss
in
j
Supply voltage Input voltage Operating free-air temperature range -40 to + 85 °C Storage temperature -65 to +150 °C Maximum junction temperature 150 °C Thermal resistance junction to ambient Power dissipation
ESD Human body model 2 kV ESD Machine model 200 V
Latch-up Latch-up immunity 200 mA
V
STBY
Standby pin voltage maximum voltage Lead temperature (soldering, 10sec) 260 °C
1. Caution: This device is not protected in the event of abnormal operating conditions, such as for example, short-circuiting between any one output pin and ground, between any one output pin and VCC, and between individual output pins.
2. All voltage values are measured with respect to the ground pin.
3. The magnitude of the input signal must never exceed VCC+ 0.3V / GND - 0.3V.
4. The device is protected in case of over temperature by a thermal shutdown active @ 150°C.
5. Exceeding the power derating curves during a long period causes abnormal operation.
6. The magnitude of the standby signal must never exceed VCC+ 0.3V / GND - 0.3V.

Table 2. Operating conditions

(1), (2)
(3)
(6)
(4)
6V
GND to V
CC
200 °C/W
Internally Limited
GND to V
CC
V
(5)
V
Symbol Parameter Value Unit
V
CC
V
IC
Supply voltage Common mode input voltage range Standby voltage input:
V
STBY
Device ON Device OFF
R
L
R
thja
1. For VCC from 2.4V to 2.5V, the operating temperature range is reduced to 0°C ≤ T
2. For VCC from 2.4V to 2.5V, the common mode input range must be set at VCC/2.
3. Without any signal on V
4. Minimum current consumption is obtained when V
5. With heat sink surface = 125mm2.
Load resistor ≥ 4 Ω Thermal resistance junction to ambient
(1)
(3)
, the device will be in standby.
STBY
STBY
(2)
= GND.
(5)
2.4 to 5.5 V
0.5 to V
1.4 ≤ V
GND
≤VSTBY
CC
STBY
- 0.8
VCC
0.4
90 °C/W
amb
(4)
70°C.
3/41
V
V
Application component information TS4962M

2 Application component information

Table 3. Component information

Component Functional description
Bypass supply capacitor. Install as close as possible to the TS4962M to
C
s
R
in
Input
capacitor

Figure 1. Typical application schematics

In+
GND
Input
In-
GND
+
­Input
capacitors are optional
Differential
minimize high-frequency ripple. A 100nF ceramic capacitor should be added to enhance the power supply filtering at high frequency.
Input resistor to program the TS4962M differential gain (gain = 300kΩ/Rin with R
in kΩ).
in
Due to common mode feedback, these input capacitors are optional. However, they can be added to form with R
-3dB cut-off frequency
Vcc
C2
GND
Rin
C1
A1
Rin
Stdby
In­In+
-
+
300k
150k
150k
Internal
Bias
Oscillator
= 1/(2*π*R
PWM
B1 B2
Vcc
Out+
Output
H
Bridge
Out-
GND
A2
GND
in*Cin
B3
a 1st order high pass filter with
in
).
Vcc
Cs 1u
GND
C3
SPEAKER
A3
TS4962
Vcc
In+
GND
Differential
Input
In-
GND
GND
+
­Input
capacitors are optional
Rin
Rin
C2
C1
A1
Stdby
In­In+
-
+
300k
150k
150k
Internal
Bias
Oscillator
4/41
PWM
B1 B2
Vcc
Out+
Output
H
Bridge
Out-
GND
A2
GND
B3
GND
C3
A3
TS4962
Vcc
Cs 1u
4 Ohms LC Output Filter
15µH
2µF
GND
2µF
15µH
30µH
1µF
GND
1µF
30µH
8 Ohms LC Output Filter
Load
TS4962M Electrical characteristics
Ω

3 Electrical characteristics

Table 4. VCC= +5V, GND = 0V, VIC=2.5V, t
= 25°C (unless otherwise specified)
amb
Symbol Parameter Conditions Min. Typ. Max. Unit
I
I
STBY
V
Supply current No input signal, no load 2.3 3.3 mA
CC
Standby current Output offset voltage No input signal, RL=8Ω 325mV
OO
(1)
No input signal, V
= GND 10 1000 nA
STBY
G=6dB
2.3 3
1.4
1.75
1
0.4
78 88
63 dB
57 dB
300k
Ω
----------------­R
in
in
327k
----------------­R
in
Ω
P
THD + N
Output power
out
Total harmonic distortion + noise
Efficiency Efficiency
Power supply
PSRR
CMRR
rejection ratio with inputs grounded
(2)
Common mode rejection ratio
Gain Gain value R
R
STBY
Internal resistance from Standby to GND
THD = 1% max, F = 1kHz, R
L
=4Ω THD = 10% max, F = 1kHz, RL=4Ω THD = 1% max, F = 1kHz, R
L
=8Ω THD = 10% max, F = 1kHz, RL=8Ω
P
= 900mW
out
=8Ω + 15µH, BW < 30kHz
R
L
P
=1W
out
R
L
P
out
P
out
RMS
=8Ω + 15µH, BW < 30kHz
=2W
RMS
=1.2W
, G = 6dB, 20Hz < F < 20kHz
RMS
, G = 6dB, F = 1kHz,
, RL=4Ω + ≥ 15µH
, RL=8Ω+ ≥ 15µH
RMS
F = 217Hz, RL=8Ω, G=6dB,
= 200mV
V
ripple
F = 217Hz, R ΔV
= 200mV
icm
in kΩ V/V
in
pp
=8Ω, G = 6dB,
L
pp
273k
----------------­R
273 300 327 kΩ
W
%
%
PWM
base frequency
Pulse width modulator
F
SNR Signal to noise ratio A-weighting, P
t
WU
t
STBY
Wake-up time 5 10 ms Standby time 5 10 ms
180 250 320 kHz
= 1.2W, RL=8Ω 85 dB
out
5/41
Electrical characteristics TS4962M
Table 4. VCC= +5V, GND = 0V, VIC=2.5V, t
= 25°C (unless otherwise specified) (continued)
amb
Symbol Parameter Conditions Min. Typ. Max. Unit
F = 20Hz to 20kHz, G = 6dB Unweighted RL=4Ω
A-weighted RL=4Ω Unweighted RL=8Ω
A-weighted RL=8Ω Unweighted R
A-weighted R
V
Output voltage noise
N
Unweighted R A-weighted RL=4Ω + 30µH
Unweighted R A-weighted RL=8Ω + 30µH
Unweighted R A-weighted R
Unweighted R A-weighted R
1. Standby mode is active when V
2. Dynamic measurements - 20*log(rms(V
is tied to GND.
STBY
)/rms(V
out
=4Ω + 15µH
L
=4Ω + 15µH
L
=4Ω + 30µH
L
=8Ω + 30µH
L
=4Ω + Filter
L
=4Ω + Filter
L
=4Ω + Filter
L
=4Ω + Filter
L
)). V
ripple
ripple
is the superimposed sinusoidal signal to VCC @ F = 217Hz.
85 60
86 62
83 60
88 64
78 57
87 65
82 59
μV
RMS
6/41
TS4962M Electrical characteristics
Ω
Table 5. VCC= +4.2V, GND = 0V, VIC=2.5V, T
= 25°C (unless otherwise specified)
amb
(1)
Symbol Parameter Conditions Min. T yp. Max. Unit
I
I
STBY
V
Supply current No input signal, no load 2.1 3 mA
CC
Standby current Output offset voltage No input signal, RL=8Ω 325mV
OO
(2)
No input signal, V
= GND 10 1000 nA
STBY
G=6dB
1.6 2
0.95
1.2
1
0.35 78
88
63 dB
57 dB
300k
Ω
----------------­R
in
in
327k
----------------­R
in
Ω
P
THD + N
Output power
out
Total harmonic distortion + noise
Efficiency Efficiency
Power supply
PSRR
CMRR
rejection ratio with inputs grounded
(3)
Common mode rejection ratio
Gain Gain value R
R
F
STBY
PWM
Internal resistance from Standby to GND
Pulse width modulator base frequency
THD = 1% max, F = 1kHz, R THD = 10% max, F = 1kHz, R
L
=4Ω
=4Ω
L
THD = 1% max, F = 1kHz, RL=8Ω THD = 10% max, F = 1kHz, RL=8Ω
P
out
= 600mW
, G = 6dB, 20Hz < F < 20kHz
RMS
RL=8Ω + 15µH, BW < 30kHz P
= 700mW
out
=8Ω + 15µH, BW < 30kHz
R
L
=1.45W
P
out
=0.9W
P
out
, G = 6dB, F = 1kHz,
RMS
, RL=4Ω + ≥ 15µH
RMS
, RL=8Ω+ ≥ 15µH
RMS
F = 217Hz, RL=8Ω, G=6dB, V
= 200mV
ripple
F = 217Hz, R ΔV
=200mV
icm
in kΩ V/V
in
pp
=8Ω, G=6dB,
L
pp
273k
----------------­R
273 300 327 kΩ
180 250 320 kHz
W
%
%
SNR Signal to noise ratio A-weighting, P
t
WU
t
STBY
Wake-uptime 5 10 ms Standby time 5 10 ms
= 0.9W, RL=8Ω 85 dB
out
7/41
Electrical characteristics TS4962M
Table 5. VCC= +4.2V, GND = 0V, VIC=2.5V, T
= 25°C (unless otherwise specified)
amb
(1)
Symbol Parameter Conditions Min. T yp. Max. Unit
F = 20Hz to 20kHz, G = 6dB Unweighted RL=4Ω
A-weighted RL=4Ω Unweighted RL=8Ω
A-weighted RL=8Ω Unweighted R
A-weighted R
V
Output voltage noise
N
Unweighted R
=4Ω + 15µH
L
=4Ω + 15µH
L
=4Ω + 30µH
L
A-weighted RL=4Ω + 30µH Unweighted R
=8Ω + 30µH
L
A-weighted RL=8Ω + 30µH Unweighted R
A-weighted R Unweighted R
A-weighted R
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.
2. Standby mode is active when V
3. Dynamic measurements - 20*log(rms(V
is tied to GND.
STBY
out
)/rms(V
=4Ω + Filter
L
=4Ω + Filter
L
=4Ω + Filter
L
=4Ω + Filter
L
)). V
ripple
is the superimposed sinusoidal signal to VCC @ F = 217Hz.
ripple
85 60
86 62
83 60
88 64
78 57
87 65
82 59
μV
RMS
8/41
TS4962M Electrical characteristics
Ω
Table 6. VCC= +3.6V, GND = 0V, VIC= 2.5V, T
= 25°C (unless otherwise specified)
amb
(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
I
I
STBY
V
Supply current No input signal, no load 2 2.8 mA
CC
Standby current Output offset voltage No input signal, RL=8Ω 325mV
OO
(2)
No input signal, V
= GND 10 1000 nA
STBY
G=6dB
1.15
1.51
0.7
0.9
1
0.27 78
88
62 dB
56 dB
300k
Ω
----------------­R
in
in
327k
----------------­R
in
Ω
P
THD + N
Output power
out
Total harmonic distortion + noise
Efficiency Efficiency
Power supply
PSRR
CMRR
rejection ratio with inputs grounded
(3)
Common mode rejection ratio
Gain Gain value R
R
F
STBY
PWM
Internal resistance from Standby to GND
Pulse width modulator base frequency
THD = 1% max, F = 1kHz, R THD = 10% max, F = 1kHz, R
=4Ω
L
L
=4Ω THD = 1% max, F = 1kHz, RL=8Ω THD = 10% max, F = 1kHz, RL=8Ω
P
out
= 500mW
, G = 6dB, 20Hz < F< 20kHz
RMS
RL=8Ω + 15µH, BW < 30kHz P
= 500mW
out
=8Ω + 15µH, BW < 30kHz
R
L
=1W
P
out
P
out
RMS
=0.65W
, G = 6dB, F = 1kHz,
RMS
, RL=4Ω + ≥ 15µH
, RL=8Ω+ ≥ 15µH
RMS
F = 217Hz, RL=8Ω, G=6dB, V
= 200mV
ripple
F = 217Hz, R ΔV
= 200mV
icm
in kΩ V/V
in
pp
=8Ω, G=6dB,
L
pp
273k
----------------­R
273 300 327 kΩ
180 250 320 kHz
W
%
%
SNR Signal to noise ratio A-weighting, P
t
WU
t
STBY
Wake-uptime 5 10 ms Standby time 5 10 ms
= 0.6W, RL=8Ω 83 dB
out
9/41
Electrical characteristics TS4962M
Table 6. VCC= +3.6V, GND = 0V, VIC= 2.5V, T
= 25°C (unless otherwise specified)
amb
(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
F = 20Hz to 20kHz, G = 6dB Unweighted RL=4Ω
A-weighted RL=4Ω Unweighted RL=8Ω
A-weighted RL=8Ω Unweighted R
A-weighted R
V
Output voltage noise
N
Unweighted R
=4Ω + 15µH
L
=4Ω + 15µH
L
=4Ω + 30µH
L
A-weighted RL=4Ω + 30µH Unweighted R
=8Ω + 30µH
L
A-weighted RL=8Ω + 30µH Unweighted R
A-weighted R Unweighted R
A-weighted R
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.
2. Standby mode is active when V
3. Dynamic measurements - 20*log(rms(V
is tied to GND.
STBY
out
)/rms(V
=4Ω + Filter
L
=4Ω + Filter
L
=4Ω + Filter
L
=4Ω + Filter
L
)). V
ripple
is the superimposed sinusoidal signal to VCC @ F = 217Hz.
ripple
83 57
83 61
81 58
87 62
77 56
85 63
80 57
μV
RMS
10/41
TS4962M Electrical characteristics
Ω
Table 7. VCC= +3V, GND = 0V, VIC=2.5V, T
= 25°C (unless otherwise specified)
amb
(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
I
I
STBY
V
Supply current No input signal, no load 1.9 2.7 mA
CC
Standby current Output offset voltage No input signal, RL=8Ω 325mV
OO
(2)
No input signal, V
= GND 10 1000 nA
STBY
G=6dB
0.75 1
0.5
0.6
1
0.21
78 88
60 dB
54 dB
300k
Ω
----------------­R
in
in
327k
----------------­R
in
Ω
P
THD + N
Output power
out
Total harmonic distortion + noise
Efficiency Efficiency
Power supply
PSRR
CMRR
rejection ratio with inputs grounded
(3)
Common mode rejection ratio
Gain Gain value R
R
F
STBY
PWM
Internal resistance from Standby to GND
Pulse width modulator base frequency
THD = 1% max, F = 1kHz, R THD = 10% max, F = 1kHz, R
L
=4Ω
=4Ω
L
THD = 1% max, F = 1kHz, RL=8Ω THD = 10% max, F = 1kHz, RL=8Ω
P
out
= 350mW
, G = 6dB, 20Hz < F < 20kHz
RMS
RL=8Ω + 15µH, BW < 30kHz P
=350mW
out
=8Ω + 15µH, BW < 30kHz
R
L
=0.7W
P
out
=0.45W
P
out
, G = 6dB, F = 1kHz,
RMS
, RL=4Ω + ≥ 15µH
RMS
, RL=8Ω+ ≥ 15µH
RMS
F = 217Hz, RL=8Ω, G=6dB, V
= 200mV
ripple
F = 217Hz, R ΔV
=200mV
icm
in kΩ V/V
in
pp
=8Ω, G=6dB,
L
pp
273k
----------------­R
273 300 327 kΩ
180 250 320 kHz
W
%
%
SNR Signal to noise ratio A-weighting, P
t
WU
t
STBY
Wake-up time 5 10 ms Standby time 5 10 ms
= 0.4W, RL=8Ω 82 dB
out
11/41
Electrical characteristics TS4962M
Table 7. VCC= +3V, GND = 0V, VIC=2.5V, T
= 25°C (unless otherwise specified)
amb
(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
f = 20Hz to 20kHz, G = 6dB Unweighted RL=4Ω
A-weighted RL=4Ω Unweighted RL=8Ω
A-weighted RL=8Ω Unweighted R
A-weighted R
V
Output Voltage Noise
N
Unweighted R
=4Ω + 15µH
L
=4Ω + 15µH
L
=4Ω + 30µH
L
A-weighted RL=4Ω + 30µH Unweighted R
=8Ω + 30µH
L
A-weighted RL=8Ω + 30µH Unweighted R
A-weighted R Unweighted R
A-weighted R
1. All electrical values are guaranteed with correlation measurements at 2.5V and 5V.
2. Standby mode is active when V
3. Dynamic measurements - 20*log(rms(V
is tied to GND.
STBY
out
)/rms(V
=4Ω + Filter
L
=4Ω + Filter
L
=4Ω + Filter
L
=4Ω + Filter
L
)). V
ripple
is the superimposed sinusoidal signal to VCC @ F = 217Hz.
ripple
83 57
83 61
81 58
87 62
77 56
85 63
80 57
μV
RMS
12/41
TS4962M Electrical characteristics
Ω
Table 8. VCC= +2.5V, GND = 0V, VIC= 2.5V, T
= 25°C (unless otherwise specified)
amb
Symbol Parameter Conditions Min. Typ. Max. Unit
I
I
STBY
V
Supply current No input signal, no load 1.7 2.4 mA
CC
Standby current Output offset voltage No input signal, RL=8Ω 325mV
OO
(1)
No input signal, V
= GND 10 1000 nA
STBY
G=6dB
0.52
0.71
0.33
0.42
1
0.19 78
88
60 dB
54 dB
300k
Ω
----------------­R
in
in
327k
----------------­R
in
Ω
P
THD + N
Output power
out
Total harmonic distortion + noise
Efficiency Efficiency
Power supply
PSRR
CMRR
rejection ratio with inputs grounded
(2)
Common mode rejection ratio
Gain Gain value R
R
F
STBY
PWM
Internal resistance from Standby to GND
Pulse width modulator base frequency
THD = 1% max, F = 1kHz, R THD = 10% max, F = 1kHz, R
=4Ω
L
L
=4Ω THD = 1% max, F = 1kHz, RL=8Ω THD = 10% max, F = 1kHz, RL=8Ω
P
out
= 200mW
, G = 6dB, 20Hz < F< 20kHz
RMS
RL=8Ω + 15µH, BW < 30kHz P
= 200W
out
=8Ω + 15µH, BW < 30kHz
R
L
=0.47W
P
out
=0.3W
P
out
, G = 6dB, F = 1kHz,
RMS
, RL=4Ω + ≥ 15µH
RMS
, RL=8Ω+ ≥ 15µH
RMS
F = 217Hz, RL=8Ω, G=6dB, V
= 200mV
ripple
F = 217Hz, R ΔV
= 200mV
icm
in kΩ V/V
in
pp
=8Ω, G=6dB,
L
pp
273k
----------------­R
273 300 327 kΩ
180 250 320 kHz
W
%
%
SNR Signal to noise ratio A-weighting, P
t
WU
t
STBY
Wake-up time 5 10 ms Standby time 5 10 ms
= 1.2W, RL=8Ω 80 dB
out
13/41
Electrical characteristics TS4962M
Table 8. VCC= +2.5V, GND = 0V, VIC= 2.5V, T
= 25°C (unless otherwise specified)
amb
Symbol Parameter Conditions Min. Typ. Max. Unit
F = 20Hz to 20kHz, G = 6dB
V
1. Standby mode is active when V
2. Dynamic measurements - 20*log(rms(V
Output Voltage Noise
N
STBY
Unweighted RL=4Ω A-weighted RL=4Ω
Unweighted RL=8Ω A-weighted RL=8Ω
Unweighted R A-weighted R
Unweighted R
=4Ω + 15µH
L
=4Ω + 15µH
L
=4Ω + 30µH
L
A-weighted RL=4Ω + 30µH Unweighted R
=8Ω + 30µH
L
A-weighted RL=8Ω + 30µH Unweighted R
A-weighted R Unweighted R
A-weighted R
is tied to GND.
)/rms(V
out
=4Ω + Filter
L
=4Ω + Filter
L
=4Ω + Filter
L
=4Ω + Filter
L
)). V
ripple
is the superimposed sinusoidal signal to VCC @ F = 217Hz.
ripple
85 60
86 62
76 56
82 60
67 53
78 57
74 54
μV
RMS
14/41
TS4962M Electrical characteristics
Ω
Table 9. VCC= +2.4V, GND = 0V, VIC=2.5V, T
= 25°C (unless otherwise specified)
amb
Symbol Parameter Conditions Min. Typ. Max. Unit
I
I
STBY
V
Supply current No input signal, no load 1.7 mA
CC
Standby current Output offset voltage No input signal, RL=8Ω 3mV
OO
(1)
No input signal, V
= GND 10 nA
STBY
G=6dB THD = 1% max, F = 1kHz, R
out
Output power
THD = 10% max, F = 1kHz, R
P
THD = 1% max, F = 1kHz, RL=8Ω THD = 10% max, F = 1kHz, RL=8Ω
THD + N
Total harmonic distortion + noise
Efficiency Efficiency
CMRR
Common mode rejection ratio
Gain Gain value R
R
F
STBY
PWM
Internal resistance from Standby to GND
Pulse width modulator base frequency
P
= 200mW
out
RL=8Ω + 15µH, BW < 30kHz
=0.38W
P
out
=0.25W
P
out
F = 217Hz, R
= 200mV
ΔV
icm
in kΩ V/V
in
SNR Signal to noise ratio A Weighting, P
t
WU
t
STBY
Wake-up time 5 ms Standby time 5 ms
=4Ω
L
=4Ω
L
, G = 6dB, 20Hz < F< 20kHz
RMS
, RL=4Ω + ≥ 15µH
RMS
, RL=8Ω+ ≥ 15µH
RMS
=8Ω, G=6dB,
L
pp
273k
----------------­R
273 300 327 kΩ
= 1.2W, RL=8Ω 80 dB
out
0.48
0.65
0.3
0.38 1
77 86
54 dB
300k
Ω
----------------­R
in
in
250 kHz
327k
----------------­R
in
Ω
F = 20Hz to 20kHz, G = 6dB Unweighted RL=4Ω
A-weighted RL=4Ω Unweighted RL=8Ω
A-weighted R Unweighted R
A-weighted R
V
Output voltage noise
N
Unweighted R
=8Ω
L
=4Ω + 15µH
L
=4Ω + 15µH
L
=4Ω + 30µH
L
A-weighted RL=4Ω + 30µH Unweighted R
A-weighted R Unweighted R
=8Ω + 30µH
L
=8Ω + 30µH
L
=4Ω + Filter
L
A-weighted RL=4Ω + Filter
85 60
86 62
76 56
82 60
67 53
78 57
μV
W
%
%
RMS
1. Standby mode is active when V
Unweighted R A-weighted RL=4Ω + Filter
is tied to GND.
STBY
=4Ω + Filter
L
74 54
15/41
Electrical characteristic curves TS4962M

4 Electrical characteristic curves

The graphs included in this section use the following abbreviations:
R
Filter = LC output filter (1µF+30µH for 4Ω and 0.5µF+60µH for 8Ω)
All measurements done with C

Figure 2. Test diagram for measurement s

+ 15μH or 30μH = pure resistor + very low series resistance inductor
L
=1µF and Cs2=100nF except for PSRR where Cs1 is
s1
removed.
1uF
Cs1
Rin
150k
Rin
150k
GND
Cin
Cin
Vcc
100nF
Cs2
+
GND
In+
In-
TS4962
GND
Out+
Out-
15uH or 30uH
Audio Measurement Bandwidth < 30kHz

Figure 3. Test diagram for PSRR measurements

100nF
Cs2
GND
4.7uF
4.7uF
50kHz low pass
Rin
150k
Rin
150k
5th order
filter
GND
In+
In-
20Hz to 20kHz
Out+
TS4962
Out-
GND
Reference
Vcc
GND
15uH or 30uH
LC Filter
RMS Selective Measurement
Bandwidth=1% of Fmeas
or
LC Filter
or
4 or 8 Ohms
RL
4 or 8 Ohms
RL
5th order
50kHz low pass
filter
5th order
50kHz low pass
filter
16/41
TS4962M Electrical characteristic curves
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
2
4
6
8
10
Vcc=3.6V
Vcc=2.5V
Vcc=5V
G = 6dB Tamb = 25°C
Voo (mV)
Common Mode Input Voltage (V)
Figure 4. Current consumption vs. power
supply voltage
2.5
No load Tamb=25°C
2.0
1.5
1.0
0.5
Current Consumption (mA)
0.0
012345
Power Supply Voltage (V)
Figure 6. Current consumption vs. standby
voltage
2.0
1.5
Figure 5. Current consumption vs. standby
voltage
2.5
2.0
1.5
1.0
0.5
Current Consumption (mA)
0.0 012345
Standby Voltage (V)
Vcc = 5V No load Tamb=25°C
Figure 7. Output offset v oltage vs. common
mode input voltage
1.0
0.5
Current Consumption (mA)
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Standby Voltage (V)
Vcc = 3V No load Tamb=25°C
Figure 8. Efficiency vs. output power Figure 9. Efficiency vs. output power
100
Efficiency
80
60
40
Efficiency (%)
20
0
0.0 0.5 1.0 1.5 2.0
Power
Dissipation
Output Power (W)
Vcc=5V RL=4Ω + ≥ 15μH F=1kHz THD+N≤1%
2.3
600
500
400
300
200
100
0
Power Dissipation (mW)
100
Efficiency
80
60
40
Efficiency (%)
20
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Power
Dissipation
Output Power (W)
Vcc=3V RL=4Ω + 15μH F=1kHz THD+N1%
200
150
100
50
0
Power Dissipation (mW)
17/41
Electrical characteristic curves TS4962M
2.5 3.0 3.5 4.0 4.5 5.0 5.5
0.0
0.5
1.0
1.5
2.0
THD+N=10%
RL = 8Ω + ≥ 15μH F = 1kHz BW < 30kHz Tamb = 25°C
THD+N=1%
Output power (W)
Vcc (V)
100 1000 10000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc=5V, 3.6V, 2.5V
20k
20
Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7μF RL = 4Ω + 30μH
Δ
R/R≤0.1%
Tamb = 25°C
PSRR (dB)
Frequency (Hz)

Figure 10. Efficiency vs. output power Figure 11. Efficiency vs. output power

100
80
Efficiency
60
40
Efficiency (%)
20
0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Power
Dissipation
Output Power (W)
Vcc=5V RL=8Ω + ≥ 15μH F=1kHz THD+N≤1%
150
100
50
0
Figure 12. Output power vs. power supply
voltage
3.5
RL = 4Ω + ≥ 15μH F = 1kHz
3.0
BW < 30kHz Tamb = 25°C
2.5
2.0
1.5
Output power (W)
1.0
0.5
0.0
2.5 3.0 3.5 4.0 4.5 5.0 5.5
THD+N=10%
THD+N=1%
Vcc (V)
Power Dissipation (mW)
100
80
Efficiency
60
40
Efficiency (%)
20
0
0.0 0.1 0.2 0.3 0.4 0.5
Power
Dissipation
Output Power (W)
Vcc=3V RL=8Ω + ≥ 15μH F=1kHz THD+N≤1%
Figure 13. Output power vs. power supply
voltage
75
50
25
Power Dissipation (mW)
0

Figure 14. PSRR vs. frequency Figure 15. PSRR vs. frequency

0
Vripple = 200mVpp
-10
Inputs = Grounded G = 6dB, Cin = 4.7μF
-20
RL = 4Ω + 15μH
Δ
R/R≤0.1%
-30
Tamb = 25°C
-40
PSRR (dB)
-50
-60
-70
-80
20
18/41
Vcc=5V, 3.6V, 2.5V
100 1000 10000
Frequency (Hz)
20k
TS4962M Electrical characteristic curves
100 1000 10000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc=5V, 3.6V, 2.5V
20k
20
Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7μF RL = 8Ω + 15μH
Δ
R/R≤0.1%
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc=5V, 3.6V, 2.5V
20k
20
Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7μF
Δ
R/R≤0.1% RL = 8Ω + Filter Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000
-60
-40
-20
0
Vcc=5V, 3.6V, 2.5V
RL=4Ω + 15μH G=6dB
Δ
Vicm=200mVpp
Δ
R/R≤0.1% Cin=4.7μF Tamb = 25°C
20k20
CMRR (dB)
Frequency (Hz)

Figure 16. PSRR vs. frequency Figure 17. PSRR vs. frequency

0
Vripple = 200mVpp
-10
Inputs = Grounded G = 6dB, Cin = 4.7μF
-20
RL = 4Ω + Filter
Δ
R/R≤0.1%
-30
Tamb = 25°C
-40
PSRR (dB)
-50
Vcc=5V, 3.6V, 2.5V
-60
-70
-80
20
100 1000 10000
Frequency (Hz)
20k

Figure 18. PSRR vs. frequency Figure 19. PSRR vs. frequency

0
Vripple = 200mVpp
-10
Inputs = Grounded G = 6dB, Cin = 4.7μF
-20
RL = 8Ω + 30μH
Δ
R/R≤0.1%
-30
Tamb = 25°C
-40
PSRR (dB)
-50
-60
-70
-80
20
Vcc=5V, 3.6V, 2.5V
100 1000 10000
Frequency (Hz)
20k
Figure 20. PSRR vs. common mode input
voltage
0
Vripple = 200mVpp
-10
F = 217Hz, G = 6dB RL ≥ 4Ω + ≥ 15μH
-20
Tamb = 25°C
-30
-40
PSRR(dB)
-50
-60
-70
-80
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Common Mode Input Voltage (V)
Vcc=2.5V
Vcc=3.6V
Vcc=5V

Figure 21. CMRR vs. frequency

19/41
Electrical characteristic curves TS4962M
100 1000 10000
-60
-40
-20
0
Vcc=5V, 3.6V, 2.5V
RL=8Ω + 30μH G=6dB
Δ
Vicm=200mVpp
Δ
R/R≤0.1% Cin=4.7μF Tamb = 25°C
20k20
CMRR (dB)
Frequency (Hz)

Figure 22. CMRR vs. frequency Figure 23. CMRR vs. frequency

0
-20
-40
CMRR (dB)
-60
RL=4Ω + 30μH G=6dB
Δ
Vicm=200mVpp
Δ
R/R≤0.1% Cin=4.7μF Tamb = 25°C
Vcc=5V, 3.6V, 2.5V
100 1000 10000
Frequency (Hz)
20k20
0
RL=4Ω + Filter G=6dB
Δ
-20
Δ
Cin=4.7μF Tamb = 25°C
-40
CMRR (dB)
-60
Vicm=200mVpp R/R≤0.1%
Vcc=5V, 3.6V, 2.5V
100 1000 10000
Frequency (Hz)

Figure 24. CMRR vs. frequency Figure 25. CMRR vs. frequency

0
RL=8Ω + 15μH G=6dB
Δ
Vicm=200mVpp
-20
Δ
R/R≤0.1% Cin=4.7μF Tamb = 25°C
20k20
-40
CMRR (dB)
-60
Vcc=5V, 3.6V, 2.5V
100 1000 10000
Frequency (Hz)
20k20

Figure 26. CMRR vs. frequency Figure 27. CMRR vs. common mode input

voltage
0
RL=8Ω + Filter G=6dB
Δ
-20
Δ
Cin=4.7μF Tamb = 25°C
-40
CMRR (dB)
-60
Vicm=200mVpp R/R≤0.1%
Vcc=5V, 3.6V, 2.5V
100 1000 10000
Frequency (Hz)
20k20
-20
Δ
Vicm = 200mVpp
F = 217Hz
-30
G = 6dB RL ≥ 4Ω + ≥ 15μH Tamb = 25°C
-40
CMRR(dB)
-50
Vcc=2.5V
Vcc=3.6V
-60
Vcc=5V
-70
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Common Mode Input Voltage (V)
20/41
TS4962M Electrical characteristic curves
1E-3 0.01 0.1 1
0.1
1
10
2
Vcc=5V
Vcc=2.5V
Vcc=3.6V
RL = 8Ω + 30μH or Filter F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C
THD + N (%)
Output Power (W)

Figure 28. THD+N vs. output power Figure 29. THD+N vs. output power

10
RL = 4Ω + 15μH F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C
Vcc=5V
Vcc=3.6V
Vcc=2.5V
1
THD + N (%)
0.1
1E-3 0.01 0.1 1
Output Power (W)
3
10
RL = 4Ω + 30μH or Filter F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C
Vcc=5V
Vcc=3.6V
Vcc=2.5V
1
THD + N (%)
0.1
1E-3 0.01 0.1 1
Output Power (W)

Figure 30. THD+N vs. output power Figure 31. THD+N vs. output power

10
RL = 8Ω + 15μH F = 100Hz G = 6dB BW < 30kHz Tamb = 25°C
1
Vcc=5V
Vcc=3.6V
Vcc=2.5V
3
THD + N (%)
0.1
1E-3 0.01 0.1 1
Output Power (W)
2

Figure 32. THD+N vs. output power Figure 33. THD+N vs. output power

10
RL = 4Ω + 15μH F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C
Vcc=5V
Vcc=3.6V
Vcc=2.5V
1
THD + N (%)
0.1 1E-3 0.01 0.1 1
Output Power (W)
3
10
RL = 4Ω + 30μH or Filter F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C
1
THD + N (%)
0.1 1E-3 0.01 0.1 1
Output Power (W)
Vcc=5V
Vcc=3.6V
Vcc=2.5V
3
21/41
Electrical characteristic curves TS4962M
1E-3 0.01 0.1 1
0.1
1
10
2
Vcc=5V
Vcc=2.5V
Vcc=3.6V
RL = 8Ω + 30μH or Filter F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C
THD + N (%)
Output Power (W)
100 1000 10000
0.1
1
10
Po=0.45W
Po=0.9W
RL=4Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C
20k50
THD + N (%)
Frequency (Hz)

Figure 34. THD+N vs. output power Figure 35. THD+N vs. output power

10
RL = 8Ω + 15μH F = 1kHz G = 6dB BW < 30kHz Tamb = 25°C
1
THD + N (%)
0.1 1E-3 0.01 0.1 1
Output Power (W)
Vcc=5V
Vcc=3.6V
Vcc=2.5V
2

Figure 36. THD+N vs. frequency Figure 37. THD+N vs. frequency

10
RL=4Ω + 15μH G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C
1
Po=1.5W
10
RL=4Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C
1
Po=1.5W
THD + N (%)
0.1
100 1000 10000

Figure 38. THD+N vs. frequency Figure 39. THD+N vs. frequency

10
RL=4Ω + 15μH G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C
1
THD + N (%)
0.1
100 1000 10000
22/41
Po=0.75W
Frequency (Hz)
Po=0.9W
Frequency (Hz)
Po=0.45W
THD + N (%)
0.1
20k50
100 1000 10000
Po=0.75W
20k50
Frequency (Hz)
20k50
TS4962M Electrical characteristic curves
100 1000 10000
0.1
1
10
Po=0.2W
Po=0.4W
RL=4Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25°C
20k50
THD + N (%)
Frequency (Hz)
100 1000 10000
0.1
1
10
Po=0.45W
Po=0.9W
RL=8Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C
20k50
THD + N (%)
Frequency (Hz)

Figure 40. THD+N vs. frequency Figure 41. THD+N vs. frequency

10
RL=4Ω + 15μH G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25°C
1
THD + N (%)
0.1
Po=0.4W
Po=0.2W
1000 10000
Frequency (Hz)
20k200

Figure 42. THD+N vs. frequency Figure 43. THD+N vs. frequency

10
RL=8Ω + 15μH G=6dB Bw < 30kHz Vcc=5V Tamb = 25°C
1
Po=0.9W
THD + N (%)
0.1
100 1000 10000
Po=0.45W
20k50
Frequency (Hz)

Figure 44. THD+N vs. frequency Figure 45. THD+N vs. frequency

10
RL=8Ω + 15μH G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C
Po=0.5W
1
THD + N (%)
0.1
Po=0.25W
100 1000 10000
Frequency (Hz)
20k50
10
RL=8Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25°C
1
THD + N (%)
0.1
100 1000 10000
Po=0.5W
Po=0.25W
Frequency (Hz)
23/41
20k50
Electrical characteristic curves TS4962M
100 1000 10000
0
2
4
6
8
Vcc=5V, 3.6V, 2.5V
RL=4Ω + 30μH G=6dB Vin=500mVpp Cin=1μF Tamb = 25°C
20k20
Differential Gain (dB)
Frequency (Hz)
100 1000 10000
0
2
4
6
8
Vcc=5V, 3.6V, 2.5V
RL=8Ω + 15μH G=6dB Vin=500mVpp Cin=1μF Tamb = 25°C
20k20
Differential Gain (dB)
Frequency (Hz)

Figure 46. THD+N vs. frequency Figure 47. THD+N vs. frequency

10
RL=8Ω + 30μH or Filter G=6dB Bw < 30kHz Vcc=2.5V
1
Tamb = 25°C
THD + N (%)
0.1
0.01 100 1000 10000
Po=0.2W
Po=0.1W
Frequency (Hz)
THD + N (%)
0.1
0.01
10
1
RL=8Ω + 15μH G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25°C
100 1000 10000
Po=0.2W
Po=0.1W
Frequency (Hz)
20k50

Figure 48. Gain vs. frequency Figure 49. Gain vs. frequency

8
6
4
Vcc=5V, 3.6V, 2.5V
20k50
RL=4Ω + 15μH G=6dB
2
Differential Gain (dB)
Vin=500mVpp Cin=1μF Tamb = 25°C
0
100 1000 10000
20k20
Frequency (Hz)

Figure 50. Gain vs. frequency Figure 51. Gain vs. frequency

8
6
4
RL=4Ω + Filter G=6dB
2
Differential Gain (dB)
Vin=500mVpp Cin=1μF Tamb = 25°C
0
Vcc=5V, 3.6V, 2.5V
100 1000 10000
Frequency (Hz)
20k20
24/41
TS4962M Electrical characteristic curves

Figure 52. Gain vs. frequency Figure 53. Gain vs. frequency

8
6
4
RL=8Ω + 30μH G=6dB
2
Differential Gain (dB)
Vin=500mVpp Cin=1μF Tamb = 25°C
0
Vcc=5V, 3.6V, 2.5V
100 1000 10000
Frequency (Hz)
20k20
8
6
4
RL=8Ω + Filter G=6dB
2
Differential Gain (dB)
Vin=500mVpp Cin=1μF Tamb = 25°C
0
Vcc=5V, 3.6V, 2.5V
100 1000 10000
Frequency (Hz)

Figure 54. Gain vs. frequency Figure 55. Startup & shutdown time

V
=5V, G=6dB, Cin=1µF
CC
(5ms/div)
8
6
Vcc=5V, 3.6V, 2.5V
4
Vo1
Vo2
Standby
20k20
RL=No Load G=6dB
2
Differential Gain (dB)
Vin=500mVpp Cin=1μF Tamb = 25°C
0
100 1000 10000
Frequency (Hz)
Vo1-Vo2
20k20
25/41
Electrical characteristic curves TS4962M
Figure 56. Startup & shutdown time
V
= 3V , G= 6dB, Cin= 1µF
CC
(5ms/div)
Vo1
Vo2
Standby
Vo1-Vo2
Figure 58. Startup & shutdown time
V
=3V, G = 6dB, Cin=100nF
CC
(5ms/div)
Vo1
Figure 57. Startup & shutdown time
VCC=5V, G = 6dB, Cin=100nF (5ms/div)
Vo1
Vo2
Standby
Vo1-Vo2
Figure 59. Startup & shutdown time
VCC= 5V, G = 6dB, No C
Vo1
(5ms/div)
in
Vo2
Standby
Vo1-Vo2
Vo2
Standby
Vo1-Vo2
26/41
TS4962M Electrical characteristic curves
Figure 60. St artup & shutdown time
Vo1
Vo2
Standby
V
= 3V, G = 6dB, No C
CC
Vo1-Vo2
(5ms/div)
in
27/41
Application information TS4962M

5 Application information

5.1 Differential configuration principle

The TS4962M is a monolithic fully-differential input/output class D power amplifier. The TS4962M also includes a common-mode feedback loop that controls the output bias value to average it at V always have a maximum output voltage swing, and by conseque nce, maximizes the output power. Moreover, as the load is connected differentially compared to a single-ended topology, the output is four times higher for the same power supply voltage.
The advantages of a full-differential amplifier are:
High PSRR (power supply rejection ratio).
High common mode noise rejection.
Virtually zero pop without additional circuitry, giving a faster start-up time compared to
conventional single-ended input amplifiers.
Easier interfacing with differential output audio DAC.
No input coupling capacitors required due to common mode feedback loop.
The main disadvantage is:
As the differential function is directly linked to external resistor mismatching, paying
particular attention to this mismatching is mandatory in order to obtain the best performance from the amplifier.
/2 for any DC common mode input voltage. This allows th e device to
CC

5.2 Gain in typical application schematic

Typical differential applications are shown in Figure 1 on page 4. In the flat region of the frequency-response curve (no input coupling capacitor effect), the
differential gain is expressed by the relation:
+In-
V
diff
-
327
--------- -
R
in
Out+Out
V
diff
------------------------------ -
In
with R
expressed in kΩ.
in
A
Due to the tolerance of the internal 15 0kΩ feedback resistor, the differential gain will be in the range (no tolerance on R
):
in
273
--------- -
A
≤≤
R
in
300
--------- -==
R
in
28/41
TS4962M Application information

5.3 Common mode feedback loop limitations

As explained pre viously, the common mode feedback loop allo ws the output DC bias v oltage to be averaged at V
However, due to V
page 3), the common mode feedback loop can ensure its role only within a defined range.
This range depends upon the values of V the V
value, we can apply this formula (no tolerance on Rin):
icm
with
and the result of the calculation must be in the range:
/2 for any DC common mode bias input voltage.
CC
limitation in the input stage (see Table 2: Operating conditions on
icm
and Rin (A
CC
V
× 2V
CCRin
V
----------------------------------------------------------------------------- -
icm
2R
V
IC
× 150kΩ×+
150kΩ+()×
in
In+In-+
---------------------
2
IC
(V)=
). To have a good estimation of
Vdiff
(V)=
0.5V V
Due to the +/-9% tolerance on the 150kΩ resistor, it’s also important to check V conditions:
V
---------------------------------------------------------------------------------- -
If the result of V be used (with V
× 2V
CCRin
2R
calculation is not in the previous range, input coupling capacitors must
icm
from 2.4V to 2.5V, input coupling capacitors are mandatory).
CC
× 136.5kΩ×+
IC
136.5kΩ+()×
in

For example:

With VCC=3V, Rin= 150k and VIC= 2.5V, we typically find V 3V- 0.8V = 2.2V . With 136. 5kΩ we find 1.97V, and with 163.5kΩ we have 2.02V. So, no input coupling capacitors are required.

5.4 Low frequency response

If a low frequency bandwidth limitation is requested, it is possible to use input coupling capacitors.
In the low frequency region, C with R
, a first order high-pass filter with a -3dB cut-off frequency:
in
(input coupling capacitor) starts to have an eff ect. Cin forms,
in
F
CL
icm VCC
V
≤≤
------------------------------------- -
2π Rin× C
1
icm
×
0.8V≤≤
V
× 2V
CCRin
---------------------------------------------------------------------------------- -
2R
× 163.5kΩ×+
IC
163.5kΩ+()×
in
= 2V and this is lower than
icm
(Hz)=
in
in these
icm
So, for a desired cut-off frequency we can calculate C
1
--------------------------------------- -
C
with R
in Ω and FCL in Hz.
in
in
× F
2π R
×
in
CL
29/41
,
in
(F)=
Application information TS4962M

5.5 Decoupling of the circuit

A power supply capacitor, referred to as CS, is needed to correctly bypass the TS4962M. The TS4962M has a typical switching frequency at 250kHz an d output fall and rise time
about 5ns. Due to these very fast transients, careful decoupling is mandatory. A 1µF ceramic capacitor is enough, but it must be located very close to the TS4962M in
order to avoid any extra parasitic inductance created an ov erly long track wire. In relation with dI/dt, this parasitic inductance introduces an overvoltage that decreases the global efficiency and, if it is too high, may cause a breakdown of the device.
In addition, even if a ceramic capacitor has an adequate high frequency ESR value, its current capability is also important. A 0603 size is a good compromise, particularly when a 4Ω load is used.
Another important parameter is the rated voltage of the capacitor. A 1µF/6.3V capacitor used at 5V, loses about 50% of its value. In fact, with a 5V power supply voltage , the decoupling value is about 0.5µF instead of 1µF. As C THD+N in the medium-high frequency region, this capacitor variation becomes decisive. In addition, less decoupling means higher overshoots, which can be problematic if they reach the power supply AMR value (6V).
has particular influence on the
S

5.6 Wake-up time (tWU)

When the standby is released to set the device ON, there is a wait of about 5ms. The TS4962M has an internal digital delay that mutes the outputs and releases them after this time in order to avoid any pop noise.
5.7 Shutdown time (t
When the standby command is set, the time required to put the two output stages into high impedance and to put the internal circuitry in shutdown mode, is about 5ms. This time is used to decrease the gain and avoid any pop noise during shutdown.
STBY
)

5.8 Consumption in shutdown mode

Between the shutdown pin and G ND there is an int ernal 300kΩ resistor . This resistor forces the TS4962M to be in standby mode when the standby input pin is left floating.
However, this resistor also introduces additional power consumption if the shutdown pin voltage is not 0V.
For example, with a 0.4V standby voltage pin, Table 2: Operating conditions on page 3, shows that you mu st a dd 0.4V/ 300kΩ= 1.3µA in typical (0.4V/273kΩ =1.46µA in maximum) to the shutdown current specified in Table 4 on page 5.

5.9 Single-ended input configuration

It is possible to use the TS4962M in a single-ended input configuration. However, input coupling capacitors are needed in this configuration. The schematic in Figure 61 shows a single-ended input typical application.
30/41
TS4962M Application information

Figure 61. Single-ended input typical application

Vcc
GND
SPEAKER
Cs 1u
Ve
GND
GND
Cin
Cin
Standby
Rin
Rin
C2
C1
A1
Stdby
In­In+
-
+
300k
150k
150k
Internal
Bias
Oscillator
PWM
B1 B2
Vcc
Out+
Output
H
Bridge
Out-
GND
A2
GND
B3
C3
A3
TS4962
All formulas are identical except for the gain (with R
V
glesin
-------------------------------
Out+Out
A
V
in kΩ) :
in
e
300
--------- -==
-
R
in
And, due to the internal resistor tolerance we have:
273
--------- -
A
≤≤
R
in
In the event that multiple single-ended inputs are summed, it is impo rtant that the impedance on both TS4962M inputs (In
-
and In+) are equal.
327
--------- -
V
glesin
R
in

Figure 62. Typical application schematic with multiple single-ended inputs

B3
GND
C3
A3
TS4962
Vcc
SPEAKER
Cs 1u
Vek
GND
Ve1
GND
GND
Cink
Cin1
Ceq
Standby
Rink
Rin1
Req
C2
C1
A1
Stdby
In­In+
-
+
300k
150k
150k
Internal
Bias
Oscillator
PWM
B1 B2
Vcc
Out+
Output
H
Bridge
Out-
GND
A2
GND
31/41
Application information TS4962M
We have the following equations:
Out+Out
V
C
eq
-
=
300
-------------
×…V
e1
R
in1
k
C
Σ
inj
j1=
ek
× (V)++=
300
------------ ­R
ink
C
inj
R
In general, for mixed situations (single-ended and differential inputs), it is best to use the same rule, that is, to equalize impedance on both TS4962M inputs.

5.10 Output filter considerations

The TS4962M is designed to operate without an output filter . However, due to very sharp transients on the TS4962M output, EMI radiated emissions may cause some standard compliance issues.
These EMI standard compliance issues can appear if the distance between the TS4962M outputs and loudspeaker terminal is long (typically more than 50mm, or 100mm in both directions, to the speaker terminals). As the PCB layout and internal equipment device are different for each configuration, it is difficult to provide a one-size-fits-all solution.
However, to decrease the probability of EMI issues, there are several simple rules to follow:
Reduce, as much as possible, the distance between the TS4962M outpu t pins and the
speaker terminals.
Use ground planes for “shielding” sensitive wires.
Place, as close as possible to the TS4962M and in series with each output, a ferrite
bead with a rated current at minimum 2A and impedance greater than 50Ω at frequencies above 30MHz. If, after testing, these ferrite beads are not necessary, replace them by a short-circuit. Murata BLM18EG221SN1 or BLM18EG121SN1 are possible examples of devices you can use.
Allow enough footprint to place, if necessary, a capacitor to short perturbations to
ground (see the schematics in Figure 63).
eq
k
j1=
π R
1
1
----------
R
inj
1
F×××
inj
CLj
------------------------------------------------------- (F)= 2
-------------------=

Figure 63. Method for shorting pertubations to ground

From TS4962 output
32/41
Ferrite chip bead
To s pea k er
about 10 0pF
Gnd
TS4962M Application information
In the case where the distance between the TS4962M outputs and speaker terminals is high, it is possible to ha v e low fr equency EMI issues due to the f act that the t ypical operating frequency is 250kHz. In this configuration, we reco mmend using an output filter (as shown in Figure 1: Typical application schematics on page 4). It should be placed as close as possible to the device.

5.11 Different examples with summed inputs

Example 1: Dual differential inputs

Figure 64. Typical application schematic with dual differential inputs
Vcc
E2+
E1+ E1-
E2-
Standby
R2
R1
R1
R2
B1 B2
Stdby
C2
C1
A1
In­In+
300k
-
+
Internal
Bias
150k
150k
Oscillator
PWM
Vcc
Output
H
Bridge
GND
A2
GND
Out+
Out-
B3
C3
A3
TS4962
GND
SPEAKER
Cs 1u
With (R
in kΩ):
i
Out+Out
------------------------------ -
A
V
1
A
V
2
V
× R2300 V
CCR1
------------------------------------------------------------------------------------------------------------------------------- -
0.5V 300 R
E
1
------------------------= and V
V
IC
1
+
+
E
E
1
1
Out+Out
------------------------------ -
+
E
E
2
2
IC1R2VIC2
+()2R
1R2
E
+
× R+×
-
1
2
-
-
IC
-
300
--------- -==
R
1
-
300
--------- -==
R
2
+× R()×+×
1
E
------------------------=
2
VCC0.8V≤≤
+
-
E
+
2
2
2
33/41
Application information TS4962M

Example 2: One differential input plus one single-ended input

Figure 65. Typical application schematic with one differential input plus o ne single-
ended input
Vcc
E1+
GND
E2+
C1
E2-
C1
Standby
R2
R1
R2
R1
B1 B2
Stdby
C2
C1
A1
In­In+
­+
300k
150k
150k
Internal
Bias
Oscillator
PWM
Vcc
Output
Bridge
GND
A2
GND
Out+
H
Out-
B3
C3
A3
TS4962
GND
SPEAKER
Cs 1u
With (R
in kΩ):
i
A
V
1
A
V
2
C
1
Out+Out
------------------------------ -
Out+Out
------------------------------ -
E
2
--------------------------------------
× F
2π R
-
+
E
1
-
+
-
E
2
1
×
1
300
--------- -==
R
1
300
--------- -==
R
2
(F)=
CL
34/41
TS4962M Demoboard

6 Demoboard

A demoboard for the TS4962M is available with a flip-chip to DIP adapter. For more information about this demoboard, refer to Application Note AN2134.

Figure 66. Schematic diagram of mono class D demoboard for TS4962M

Vcc Vcc
Positive Input Negative input
Cn1 + J1
1 2
Cn2
3
GND GND
Cn4 + J2
Stdby
4
C2
100nF 100nF
C3
Cn5 + J3
R1
150k
R2
150k
5
In­In+
1
Cn3 Cn6
-
+
300k
150k
150k
+
GND
Internal
Bias
Oscillator
C1
2.2uF/10V
PWM
Vcc
38
Vcc
Out+
Output
H
Bridge
Out-
GND
2
3
GND
U1
6
Positive Output Negative Output
10
TS4962 Flip-Chip to DIP Adapter

Figure 67. Diagram for flip-chip-to-DIP adapter

Pin3
R1
OR
B1 B2
Pin2
Vcc
Output
Bridge
GND
A2
R2
OR
H
Pin4
Pin5 Pin1
Stdby
C2
C1
A1
In­In+
-
+
300k
150k
150k
Internal
Bias
Oscillator
PWM
pin8
Out+
Out-
B3
Pin9
100nF
C3
A3
TS4962
C1
Pin6
Pin10
+
C2
1uF
35/41
Demoboard TS4962M

Figure 68. Top view

Figure 69. Bottom layer

Figure 70. Top layer

36/41
TS4962M Footprint recommendations

7 Footprint recommendations

Figure 71. Footprint recommendations

75µm min.
75µm min. 100μm max.
100μm max.
150μm min.
150μm min.
Track
Track
Φ=250μm
Φ=250μm
Φ=400μm typ.
Φ=400μm typ. Φ=340μm min.
Φ=340μm min.
500μm
500μm
500μm
500μm
Non Solder mask opening
Non Solder mask opening
500μm
500μm
500μm
Pad in Cu 18μm with Flash NiAu(2-6μm, 0.2μm max.)
Pad in Cu 18μm with Flash NiAu(2-6μm, 0.2μm max.)
500μm
37/41
Package information TS4962M

8 Package information

In order to meet environmental requirements, STMicroelectronics off ers these devices in ECOPACK
®
packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marke d on the pa ckage and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related t o soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com
.

Figure 72. Pin-out for 9-bump flip-chip (top view)

GND
IN
IN
1/A1
1/A1
V
V
DD
DD
4/B1
4/B1
IN
IN
7/C1 8/C2 9/C3
7/C1 8/C2 9/C3
GND
+
+
2/A2 3/A3
2/A2 3/A3
V
V
DD
DD
5/B2
5/B2
STBY
STBY
-
-
OUT
OUT
GND
GND
6/B3
6/B3
OUT
OUT
-
-
Bumps are underneath
Bump diameter = 300μm
+
+

Figure 73. Marking for 9-bump flip-chip (top view)

ST Logo
Symbol for lead-free: E
Two first XX product code: 62
third X: Assembly code
Three digits date code: Y for year - WW for week
The dot is for marking pin A1
XXX
XXX
YWW
YWW
E
E

Figure 74. Mechanical data for 9- bump flip-chip

1.60 mm
1.60 mm
1.60 mm
0.25mm
0.25mm
1.60 mm
600µm600µm
0.5mm
0.5mm
0.5mm
0.5mm
38/41
Die size: 1.6mm x 1.6mm ±3 0 μ m
Die height (including bumps): 600μm
Bump diameter: 315μm ±50μm
Bump diameter before reflow: 300μm ±10μm
Bump height: 250μm ±4 0μm
Die height: 350μm ±2 0μm
Pitch: 500μm ±50μm
Coplanarity: 50μm max
TS4962M Ordering information

9 Ordering information

Table 10. Order codes

Part number
TS4962MEIJT -40°C to +85°C Lead-free flip-chip Tape & reel 62
Temperature
range
Package Packing Marking
39/41
Revision history TS4962M

10 Revision history

Date Revision Changes
Oct. 2005 1 First release corresponding to the product preview version.
Electrical data updated for output voltage noise, see Table 4, Table 5,
Nov. 2005 2
Dec. 2005 3 Product in full production.
10-Jan-2007 4 Template update, no technical changes.
Table 6, Table 7, Table 8 andTable 9
Formatting changes throughout.
40/41
TS4962M
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely res ponsibl e fo r the c hoic e, se lecti on an d use o f the S T prod ucts and s ervi ces d escr ibed he rein , and ST as sumes no
liability whatsoever relati ng to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third pa rty p ro duc ts or se rv ices it sh all n ot be deem ed a lice ns e gr ant by ST fo r t he use of su ch thi r d party products or services, or any intellectua l property c ontained the rein or consi dered as a warr anty coverin g the use in any manner whats oever of suc h third party products or servi ces or any intellectual propert y contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICUL AR PURPOS E (AND THEIR EQUIVALE NTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJ URY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST fo r the ST pro duct or serv ice describe d herein and shall not cr eate or exten d in any manne r whatsoever , any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in vari ous countries.
Information in this document su persedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of compan ie s
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - Fran ce - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
41/41
Loading...