ST TS4890 User Manual

1/32
OPERATING FROM V
CC
= 2.2V to 5.5V
1W RAI L TO RAIL OUTPUT POWER @
Vcc=5V, THD=1%, f=1kHz, with 8
Load
ULTRA LOW CONSUMPTION IN STANDBY
75dB PSRR @ 217Hz from 5 to 2.2V
POP & CLICK REDUCTION CIRCUITRY
ULTRA LOW DISTORTION (0.1%)
UNITY GAIN STABLE
AVAILABLE IN SO8, MiniSO8 & DFN8
DESCRIPTION
The TS4890 (Min iSO8 & SO 8) is a n A udio P ower
Amplifier capable of delivering 1W of continuous
RMS. ouput power into 8
load @ 5V.
This Audio Am plifier is exhibiting 0.1% distortion
level (THD) from a 5V supply for a Pout = 250mW
RMS. An external standby mode cont rol reduces
the supply current to less than 10n A. An internal
thermal shutdown protection is also provided.
The TS4890 have b een designed for high quality
audio applications such as m obile phones and t o
minimize the number of external components.
The unity-gain stable amplifier can be configured
by external gain setting resistors.
APPLICATIONS
Mobile Phones (Cellular / Cordless)
Laptop / Notebook Computers
PDAs
Portable Audio Devices
ORDER CODE
MiniSO & DFN only available in Tape & Reel: with T suffix.
SO is available in Tube (D) and of Tape & Reel (DT)
PIN CONNECTIONS (Top View)
Part
Number
Temperature
Range
Package
Marking
SDQ
TS4890 -40, +85°C
4890I
4890
4890
Standby
Bypass
V+
IN
VIN-
V2OUT
GND
V
CC
VOUT1
1
2
3
4
8
7
6
5
Rin
Cin
Rstb
Cb
Rfeed
4
3
2
1
5
8
Vin-
Vin+
-
+
-
+
Bypass
Standby
Bias
6
Vout1
Vout2
Av=-1
TS4890
RL
8 Ohms
Vcc
GND
Audio
Input
Vcc
Vcc
Cfeed
Cs
7
TYPICAL APPLICATION SCHEMATIC
TS4890IST - MiniSO8
TS4890ID, TS4890IDT - SO8
Standby
Bypass
V+
IN
VIN-
V2OUT
GND
V
CC
VOUT1
1
2
3
4
8
7
6
5
TS4890IQT - DFN8
1
2
3
4
5
8
7
6
STANDBY
BYPASS
V
OUT 2
V
IN-
V
IN+
Vcc
V
OUT 1
GND
1
2
3
4
5
8
7
6
STANDBY
BYPASS
V
OUT 2
V
IN-
V
IN+
Vcc
V
OUT 1
GND
TS4890
RAIL TO RAIL OUTPUT 1W AUDIO POWER AMPLIFIER WITH
STANDBY MODE ACTIVE LOW
June 2003
TS4890
2/32
ABSOLUTE MAXIMUM RATINGS
OPERATING CONDITIONS
Symbol Parameter Value Unit
V
CC
Supply voltage
1)
6V
V
iInput Voltage
2)
G
ND
to V
CC
V
T
oper
Operating Free Air Temperature Range -40 to + 85 °C
T
stg
Storage Temperature -65 to +150 °C
T
j
Maximum Junction Temperature 150 °C
R
thja
Thermal Resistance Junction to Ambient
3)
SO8
MiniSO8
DFN8
175
215
70
°C/W
Pd
Power Dissipation
4)
See Power Derating Curves
Fig. 24
W
ESD Human Body Model 2 kV
ESD Machine Model 200 V
Latch-up Immunity Class A
Lead Temperature (solde ring, 10sec ) 260 °C
1. All voltages values are measured with respect to the ground pin.
2. The magnitude of input signal must never exceed V
CC
+ 0.3V / G
ND
- 0.3V
3. Device is protected in case of over temperature by a thermal shutdown active @ 150°C.
4. Exceeding the power derating curves during a long period may involve abnormal working of the device.
Symbol Parameter Value Unit
V
CC
Supply Voltage 2.2 to 5.5 V
V
ICM
Common Mode Input Voltage Range
G
ND
+ 1V to V
CC
V
V
STB
Standby Voltage Input :
Device ON
Device OFF
1.5
V
STB
V
CC
G
ND
V
STB
0.5
V
R
L
Load Resistor 4 - 32
R
thja
Thermal Resistance Junction to Ambient
1)
SO8
MiniSO8
DFN8
2)
150
190
41
°C/W
1. This thermal resistance can be reduced with a suitable PCB layout (see Power Derating Curves Fig. 24)
2. When mounted o n a 4 l ayers PCB
TS4890
3/32
ELECTRICAL CHARACTERISTICS
V
CC
= +5V, GND = 0V, T
amb
= 25°C (unless otherwise specified)
V
CC
= +3.3V, GND = 0V, T
amb
= 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
I
CC
Supply Current
No input signal, no load
68mA
I
STANDBY
Standby Current
1)
No input signal, Vstdby = G
ND
, RL = 8
1. Standby mode is actived wh en Vstdby is tied to GND
10 1000 nA
Voo
Output Offset Voltage
No input signal, RL = 8
520mV
Po
Output Power
THD = 1% Max, f = 1kHz, RL = 8
1W
THD + N
Total Harmonic Distortion + Noise
Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8
0.15 %
PSRR
Power Supply Rejection Ratio
2)
f = 217Hz, RL = 8
Ω,
RFeed = 22K
Ω,
Vripple = 200mV rms
2. Dynamic measurements - 20*log(r m s(Vout)/rms(Vripple)). Vripple is the surim posed sinus signal to Vc c @ f = 217Hz
77 dB
Φ
M
Phase Margin at Unity Gain
R
L
= 8
, C
L
= 500pF
70 Degrees
GM
Gain Margin
R
L
= 8
, C
L
= 500pF
20 dB
GBP
Gain Bandwidth Product
R
L
= 8
2MHz
Symbol Parameter Min. T yp. Max. Unit
I
CC
Supply Current
No input signal, no load
5.5 8 mA
I
STANDBY
Standby Current
1)
No input signal, Vstdby = G
ND
, RL = 8
1. Standby mode is actived wh en Vstdby is tied to GND
10 1000 nA
Voo
Output Offset Voltage
No input signal, RL = 8
520mV
Po
Output Power
THD = 1% Max, f = 1kHz, RL = 8
450 mW
THD + N
Total Harmonic Distortion + Noise
Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8
0.15 %
PSRR
Power Supply Rejection Ratio
2)
f = 217Hz, RL = 8
Ω,
RFeed = 22K
Ω,
Vripple = 200mV rms
2. Dynamic measurements - 20*log(r m s(Vout)/rms(Vripple)). Vripple is the surim posed sinus signal to Vc c @ f = 217Hz
77 dB
Φ
M
Phase Margin at Unity Gain
R
L
= 8
, C
L
= 500pF
70 Degrees
GM
Gain Margin
R
L
= 8
, C
L
= 500pF
20 dB
GBP
Gain Bandwidth Product
R
L
= 8
2MHz
TS4890
4/32
V
CC
= 2.6V, GND = 0V, T
amb
= 25°C (unless otherwise specified)
V
CC
= 2.2V, GND = 0V, T
amb
= 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
I
CC
Supply Current
No input signal, no load
58mA
I
STANDBY
Standby Current
1)
No input signal, Vstdby = G
ND
, RL = 8
1. Standby mode is actived wh en Vstdby is tied to GND
10 1000 nA
Voo
Output Offset Voltage
No input signal, RL = 8
520mV
Po
Output Power
THD = 1% Max, f = 1kHz, RL = 8
260 mW
THD + N
Total Harmonic Distortion + Noise
Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8
0.15 %
PSRR
Power Supply Rejection Ratio
2)
f = 217Hz, RL = 8
Ω,
RFeed = 22K
Ω,
Vripple = 200mV rms
2. Dynamic measurements - 20*log(r m s(Vout)/rms(Vripple)). Vripple is the surim posed sinus signal to Vc c @ f = 217Hz
77 dB
Φ
M
Phase Margin at Unity Gain
R
L
= 8
, C
L
= 500pF
70 Degrees
GM
Gain Margin
R
L
= 8
, C
L
= 500pF
20 dB
GBP
Gain Bandwidth Product
R
L
= 8
2MHz
Symbol Parameter Min. T yp. Max. Unit
I
CC
Supply Current
No input signal, no load
58mA
I
STANDBY
Standby Current
1)
No input signal, Vstdby = G
ND
, RL = 8
1. Standby mode is actived wh en Vstdby is tied to GND
10 1000 nA
Voo
Output Offset Voltage
No input signal, RL = 8
520mV
Po
Output Power
THD = 1% Max, f = 1kHz, RL = 8
180 mW
THD + N
Total Harmonic Distortion + Noise
Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8
0.15 %
PSRR
Power Supply Rejection Ratio
2)
f = 217Hz, RL = 8
Ω,
RFeed = 22K
Ω,
Vripple = 100mV rms
2. Dynamic measurements - 20*log(r m s(Vout)/rms(Vripple)). Vripple is the surim posed sinus signal to Vc c @ f = 217Hz
77 dB
Φ
M
Phase Margin at Unity Gain
R
L
= 8
, C
L
= 500pF
70 Degrees
GM
Gain Margin
R
L
= 8
, C
L
= 500pF
20 dB
GBP
Gain Bandwidth Product
R
L
= 8
2MHz
TS4890
5/32
REMARKS
1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF.
1. External resistors are not needed for having better stability when supply @ Vcc down to 3V. The
quiescent current still remains the same.
2. The standby response time is about 1µs.
Components Functional Description
Rin
Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also
forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin))
Cin
Input coupling capacitor which blocks the DC voltage at the amplifier input terminal
Rfeed Feed back resistor which sets the closed loop gain in conjunction with Rin
Cs Supply Bypass capacitor which provides power supply filtering
Cb Bypass pin capacitor which provides half supply filtering
Cfeed
Low pass filter capacitor allowing to cut the high frequency
(low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed))
Rstb Pull-down resistor which fixes the right supply level on the standby pin
Gv Closed loop gain in BTL configuration = 2 x (Rfeed / Rin)
TS4890
6/32
Fig. 1 : Open Loop Frequency Response
Fig. 3 : Open Loop Frequency Response
Fig. 5 : Open Loop Frequency Response
Fig. 2 : Open Loop Frequency Response
Fig. 4 : Open Loop Frequency Response
Fig. 6 : Open Loop Frequency Response
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Vcc = 5V
RL = 8
Tamb = 25
°
C
Gain (dB)
Frequency (kHz)
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 3.3V
RL = 8
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 2.6V
RL = 8
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 5V
ZL = 8
+ 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 3.3V
ZL = 8
+ 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 2.6V
ZL = 8
+ 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
TS4890
7/32
Fig. 7 : Open Loop Frequency Response
Fig. 9 : Open Loop Frequency Response
Fig. 11 : Open Loop Frequency Response
Fig. 8 : Open Loop Frequency Response
Fig. 10 : Open Loop Frequency Response
Fig. 12 : Open Loop Frequency Response
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 2.2V
RL = 8
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-220
-200
-180
-160
-140
-120
-100
-80
Gain (dB)
Frequency (kHz)
Vcc = 5V
CL = 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-240
-220
-200
-180
-160
-140
-120
-100
-80
Gain (dB)
Frequency (kHz)
Vcc = 2.6V
CL = 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-240
-220
-200
-180
-160
-140
-120
-100
-80
-60
-40
-20
0
Gain (dB)
Frequency (kHz)
Vcc = 2.2V
RL = 8
, + 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-240
-220
-200
-180
-160
-140
-120
-100
-80
Gain (dB)
Frequency (kHz)
Vcc = 3.3V
CL = 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.3 1 10 100 1000 10000
-40
-20
0
20
40
60
80
100
-240
-220
-200
-180
-160
-140
-120
-100
-80
Gain (dB)
Frequency (kHz)
Vcc = 2.2V
CL = 560pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
TS4890
8/32
Fig. 13 : Power Supply Rejection Ratio (PSRR)
vs Power supply
Fig. 15 : Power Supply Rejection Ratio (PSRR)
vs Bypass Capacitor
Fig. 17 : Power Supply Rejection Ratio (PSRR)
vs Feedback Resistor
Fig. 14 : Power Supply Rejection Ratio (PSRR)
vs Feedback Capacitor
Fig. 16 : Power Supply Rejectio n Ratio (PSRR)
vs Input Capacitor
Fig. 18 : Pout @ THD + N = 1% vs Supply
Voltage vs RL
10 100 1000 10000 100000
-80
-70
-60
-50
-40
-30
Vcc = 5V to 2.2V
Cb = 1
µ
F & 0.1
µ
F
Vripple = 200mVrms
Rfeed = 22k
Input = floating
RL = 8
Tamb = 25
°
C
PSRR (dB)
Frequency (Hz)
10 100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
Cb=47µF
Cb=100µF
Cb=10µF
Cb=1µF
Vcc = 5 to 2.2V
Rfeed = 22k
Rin = 22k, Cin = 1µF
Rg = 100, RL = 8
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
10 100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
Rfeed=22k
Rfeed=10k
Rfeed=47k
Rfeed=110k
Vcc = 5 to 2.2V
Cb = 1µF & 0.1µF
Vripple = 200mVrms
Input = floating
RL = 8
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
10 100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
Cfeed=680pF
Cfeed=330pF
Cfeed=150pF
Cfeed=0
Vcc = 5 to 2.2V
Cb = 1µF & 0.1µF
Rfeed = 22k
Vripple = 200mVrms
Input = floating
RL = 8
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
10 100 1000 10000 100000
-60
-50
-40
-30
-20
-10
Cin=22nF
Cin=100nF
Cin=220nF
Cin=330nF
Cin=1µF
Vcc = 5 to 2.2V
Rfeed = 22k, Rin = 22k
Cb = 1µF
Rg = 100, RL = 8
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
32
16
4
6
Gv = 2 & 10
Cb = 1
µ
F
F = 1kHz
BW < 125kHz
Tamb = 25
°
C
8
Output power @ 1% THD + N (W)
Vcc (V)
TS4890
9/32
Fig. 19 : Pout @ THD + N = 10% vs Supply
Voltage vs RL
Fig. 21 : Power Dissipation vs Pout
Fig. 23 : Power Dissipation vs Pout
Fig. 20 : Power Dissipation vs Pout
Fig. 22 : Power Dissipation vs Pout
Fig. 24 : Power Derating Curves
2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
4
6
8
16
32
Gv = 2 & 10
Cb = 1µF
F = 1kHz
BW < 125kHz
Tamb = 25°C
Output power @ 10% THD + N (W)
Vcc (V)
0.0 0.2 0.4 0.6 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
RL=4
RL=8
Vcc=3.3V
F=1kHz
THD+N<1%
RL=16
Power Dissipation (W)
Output Power (W)
0.0 0.1 0.2 0.3
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
Vcc=2.6V
F=1kHz
THD+N<1%
RL=16
RL=8
RL=4
Power Dissipation (W)
Output Power (W)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
RL=16
RL=8
Vcc=5V
F=1kHz
THD+N<1%
RL=4
Power Dissipation (W)
Output Power (W)
0.0 0.1 0.2 0.3 0.4
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
RL=4
RL=8
Vcc=2.6V
F=1kHz
THD+N<1%
RL=16
Power Dissipation (W)
Output Power (W)
0 25 50 75 100 125 150
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
SO8
MiniSO8
QFN8
Power Dissipation (W)
Ambiant Temperature (°C)
TS4890
10/32
Fig. 25 : THD + N vs Output Power
Fig. 27 : THD + N vs Output Power
Fig. 29 : THD + N vs Output Power
Fig. 26 : THD + N vs Output Power
Fig. 28 : THD + N vs Output Power
Fig. 30 : THD + N vs Output Power
1E-3 0.01 0.1 1
0.1
1
10
Rl = 4
Vcc = 5V
Gv = 2
Cb = Cin = 1µF
BW < 125kHz
Tamb = 25°C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
RL = 4, Vcc = 3.3V
Gv = 2
Cb = Cin = 1µF
BW < 125kHz
Tamb = 25°C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.1
1
10
RL = 4, Vcc = 2.6V
Gv = 2
Cb = Cin = 1µF
BW < 125kHz
Tamb = 25°C
20kHz
20Hz, 1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
RL = 4, Vcc = 5V
Gv = 10
Cb = Cin = 1µF
BW < 125kHz, Tamb = 25°C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1 1
0.1
1
10
RL = 4, Vcc = 3.3V
Gv = 10
Cb = Cin = 1µF
BW < 125kHz
Tamb = 25°C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
1E-3 0.01 0.1
0.1
1
10
RL = 4, Vcc = 2.6V
Gv = 10
Cb = Cin = 1µF
BW < 125kHz
Tamb = 25°C
20kHz
20Hz
1kHz
THD + N (%)
Output Power (W)
Loading...
+ 22 hidden pages