ST TS4871 User Manual

TS4871

OUTPUT RAIL TO RAIL 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE

OPERATING FROM VCC = 2.5V to 5.5V

1W RAIL TO RAIL OUTPUT POWER @ Vcc=5V, THD=1%, f=1kHz, with 8Ω Load

ULTRA LOW CONSUMPTION IN STANDBY MODE (10nA)

75dB PSRR @ 217Hz from 5V to 2.6V

ULTRA LOW POP & CLICK

ULTRA LOW DISTORTION (0.1%)

UNITY GAIN STABLE

AVAILABLE IN SO8, MiniSO8 & DFN8 3x3mm

DESCRIPTION

The TS4871 is an Audio Power Amplifier capable of delivering 1W of continuous RMS Ouput Power into 8Ω load @ 5V.

This Audio Amplifier is exhibiting 0.1% distortion level (THD) from a 5V supply for a Pout = 250mW RMS. An external standby mode control reduces the supply current to less than 10nA. An internal thermal shutdown protection is also provided.

The TS4871 has been designed for high quality audio applications such as mobile phones and to minimize the number of external components.

The unity-gain stable amplifier can be configured by external gain setting resistors.

APPLICATIONS

Mobile Phones (Cellular / Cordless)

Laptop / Notebook Computers

PDAs

Portable Audio Devices

ORDER CODE

Part

Temperature

Package

Marking

 

 

 

Number

Range: I

D

S

Q

 

 

 

 

 

 

 

 

 

 

TS4871

-40, +85°C

 

 

4871I

 

4871

 

 

 

 

 

 

 

 

 

MiniSO & DFN only available in Tape & Reel with T suffix(IST & IQT) D = Small Outline Package (SO) - also available in Tape & Reel (DT)

June 2003

PIN CONNECTIONS (Top View)

 

 

 

TS4871IST - MiniSO8

 

 

Standby

1

8

VOUT2

 

 

Bypass

2

7

GND

 

 

 

VIN+

3

6

VCC

 

 

 

VIN-

4

5

VOUT1

 

 

 

 

 

 

TS4871ID-TS4871IDT - SO8

 

 

Standby

1

8

VOUT2

 

 

Bypass

2

7

GND

 

 

VIN+

3

6

VCC

 

 

 

VIN-

4

5

VOUT1

 

 

 

 

 

 

 

TS4871IQT - DFN8

 

 

 

STANDBY

1

8

VOUT 2

 

 

 

BYPASS

2

7

GND

 

 

 

 

VIN+

3

6

Vcc

 

 

 

 

VIN-

4

5

VOUT 1

 

 

TYPICAL APPLICATION SCHEMATIC

 

 

 

Cfeed

 

 

 

 

 

 

 

Rfeed

Vcc

 

 

 

 

 

 

 

6

 

Cs

 

 

 

 

 

 

 

Audio

 

 

 

Vcc

 

 

Input

Rin

 

 

 

 

 

4

Vin-

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

Vout1

5

 

Cin

 

 

 

 

 

3

Vin+

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RL

 

 

 

 

 

 

 

8 Ohms

Vcc

 

 

 

 

-

 

 

 

 

 

 

 

Vout2

8

 

 

 

 

 

Av=-1

 

 

2

Bypass

 

 

 

 

 

 

+

 

 

 

Rstb

 

 

 

 

 

 

 

 

 

 

 

 

 

1

Standby

Bias

 

 

 

 

 

 

 

GND

 

 

 

 

 

 

 

TS4871

 

 

 

 

 

 

 

 

 

Cb

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1/28

TS4871

ABSOLUTE MAXIMUM RATINGS

Symbol

Parameter

Value

Unit

 

 

 

 

VCC

Supply voltage 1)

6

V

Vi

Input Voltage 2)

GND to VCC

V

Toper

Operating Free Air Temperature Range

-40 to + 85

°C

Tstg

Storage Temperature

-65 to +150

°C

Tj

Maximum Junction Temperature

150

°C

Rthja

Thermal Resistance Junction to Ambient 3)

175

°C/W

SO8

 

MiniSO8

215

 

 

QNF8

70

 

 

 

 

 

Pd

Power Dissipation

Internally Limited4)

 

ESD

Human Body Model

2

kV

ESD

Machine Model

200

V

 

 

 

 

Latch-up

Latch-up Immunity

Class A

 

 

 

 

 

 

Lead Temperature (soldering, 10sec)

260

°C

1.All voltages values are measured with respect to the ground pin.

2.The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V

3.Device is protected in case of over temperature by a thermal shutdown active @ 150°C.

4.Exceeding the power derating curves during a long period, involves abnormal operating condition.

OPERATING CONDITIONS

Symbol

Parameter

Value

Unit

 

 

 

 

VCC

Supply Voltage

2.5 to 5.5

V

VICM

Common Mode Input Voltage Range

GND to VCC - 1.2V

V

VSTB

Standby Voltage Input :

GND VSTB 0.5V

 

Device ON

V

 

Device OFF

VCC - 0.5V VSTB VCC

 

RL

Load Resistor

4 - 32

Ω

Rthja

Thermal Resistance Junction to Ambient 1)

 

°C/W

SO8

150

 

 

 

MiniSO8

190

 

 

DFN8 2)

41

 

1.This thermal resistance can be reduced with a suitable PCB layout (see Power Derating Curves Fig. 20)

2.When mounted on a 4 layers PCB

2/28

 

 

 

 

 

 

TS4871

ELECTRICAL CHARACTERISTICS

 

 

 

 

VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

ICC

Supply Current

 

 

6

8

mA

No input signal, no load

 

 

 

 

 

 

 

 

 

 

 

 

 

ISTANDBY

Standby Current

1)

 

10

1000

nA

No input signal, Vstdby = Vcc, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

Voo

Output Offset Voltage

 

5

20

mV

No input signal, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

Po

Output Power

 

 

1

 

W

THD = 1% Max, f = 1kHz, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

THD + N

Total Harmonic Distortion + Noise

 

0.15

 

%

Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

PSRR

Power Supply Rejection Ratio2)

 

75

 

dB

f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms

 

 

 

 

 

 

 

 

 

 

 

 

 

ΦM

Phase Margin at Unity Gain

 

70

 

Degrees

RL = 8Ω, CL = 500pF

 

 

 

 

 

 

 

GM

Gain Margin

 

 

20

 

dB

RL = 8Ω, CL = 500pF

 

 

 

 

 

 

 

 

 

 

 

 

 

GBP

Gain Bandwidth Product

 

2

 

MHz

RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Standby mode is actived when Vstdby is tied to Vcc

2.Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz

VCC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 3)

Symbol

 

Parameter

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

ICC

Supply Current

 

 

5.5

8

mA

No input signal, no load

 

 

 

 

 

 

 

 

 

 

 

 

 

ISTANDBY

Standby Current

1)

 

10

1000

nA

No input signal, Vstdby = Vcc, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

Voo

Output Offset Voltage

 

5

20

mV

No input signal, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

Po

Output Power

 

 

450

 

mW

THD = 1% Max, f = 1kHz, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

THD + N

Total Harmonic Distortion + Noise

 

0.15

 

%

Po = 250mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

PSRR

Power Supply Rejection Ratio2)

 

75

 

dB

f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms

 

 

 

 

 

 

 

 

 

 

 

 

 

ΦM

Phase Margin at Unity Gain

 

70

 

Degrees

RL = 8Ω, CL = 500pF

 

 

 

 

 

 

 

GM

Gain Margin

 

 

20

 

dB

RL = 8Ω, CL = 500pF

 

 

 

 

 

 

 

GBP

Gain Bandwidth Product

 

2

 

MHz

RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Standby mode is actived when Vstdby is tied to Vcc

2.Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz

3.All electrical values are made by correlation between 2.6V and 5V measurements

3/28

TS4871

ELECTRICAL CHARACTERISTICS

VCC = 2.6V, GND = 0V, Tamb = 25°C (unless otherwise specified)

Symbol

 

Parameter

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

ICC

Supply Current

 

 

5.5

8

mA

No input signal, no load

 

 

 

 

 

 

 

 

 

 

 

 

 

ISTANDBY

Standby Current

1)

 

10

1000

nA

No input signal, Vstdby = Vcc, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

Voo

Output Offset Voltage

 

5

20

mV

No input signal, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

Po

Output Power

 

 

260

 

mW

THD = 1% Max, f = 1kHz, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

THD + N

Total Harmonic Distortion + Noise

 

0.15

 

%

Po = 200mW rms, Gv = 2, 20Hz < f < 20kHz, RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

PSRR

Power Supply Rejection Ratio2)

 

75

 

dB

f = 217Hz, RL = 8Ω, RFeed = 22KΩ, Vripple = 200mV rms

 

 

 

 

 

 

 

 

 

 

 

 

 

ΦM

Phase Margin at Unity Gain

 

70

 

Degrees

RL = 8Ω, CL = 500pF

 

 

 

 

 

 

 

GM

Gain Margin

 

 

20

 

dB

RL = 8Ω, CL = 500pF

 

 

 

 

 

 

 

GBP

Gain Bandwidth Product

 

2

 

MHz

RL = 8Ω

 

 

 

 

 

 

 

 

 

1.Standby mode is actived when Vstdby is tied to Vcc

2.Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz

Components

Functional Description

 

 

Rin

Inverting input resistor which sets the closed loop gain in conjunction with Rfeed. This resistor also

forms a high pass filter with Cin (fc = 1 / (2 x Pi x Rin x Cin))

 

 

 

Cin

Input coupling capacitor which blocks the DC voltage at the amplifier input terminal

 

 

Rfeed

Feed back resistor which sets the closed loop gain in conjunction with Rin

 

 

Cs

Supply Bypass capacitor which provides power supply filtering

 

 

Cb

Bypass pin capacitor which provides half supply filtering

 

 

Cfeed

Low pass filter capacitor allowing to cut the high frequency

(low pass filter cut-off frequency 1 / (2 x Pi x Rfeed x Cfeed))

 

 

 

Rstb

Pull-up resistor which fixes the right supply level on the standby pin

 

 

Gv

Closed loop gain in BTL configuration = 2 x (Rfeed / Rin)

 

 

REMARKS

1.All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs = 100µF.

2.External resistors are not needed for having better stability when supply @ Vcc down to 3V. By the way, the quiescent current remains the same.

3.The standby response time is about 1µs.

4/28

TS4871

Fig. 1 : Open Loop Frequency Response

Fig. 2 : Open Loop Frequency Response

Gain (dB)

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0

 

60

 

 

Gain

Vcc = 5V

 

-20

 

 

60

 

Gain

Vcc = 5V

 

-20

 

 

 

 

 

-40

 

 

 

 

 

 

 

 

 

 

 

RL = 8Ω

 

 

 

 

 

 

 

ZL = 8Ω + 560pF

-40

 

40

 

 

 

Tamb = 25°C

-60

 

 

40

 

 

 

Tamb = 25°C

-60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

Phase

 

 

 

 

-80

Phase(Deg)

Gain(dB)

0

Phase

 

 

 

 

-80

Phase(Deg)

 

 

 

 

 

-140

 

 

 

 

 

-140

20

 

 

 

 

 

-100

 

 

20

 

 

 

 

 

-100

 

 

 

 

 

 

 

-120

 

 

 

 

 

 

 

 

-120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-160

 

 

 

 

 

 

 

 

-160

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-20

 

 

 

 

 

-180

 

 

-20

 

 

 

 

 

-180

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-200

 

 

 

 

 

 

 

 

-200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-40

 

 

 

 

 

-220

 

 

-40

 

 

 

 

 

-220

 

0.3

1

10

100

1000

10000

 

 

 

 

 

 

 

 

 

 

 

 

0.3

1

10

100

1000

10000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency (kHz)

 

 

 

 

 

 

 

 

Frequency (kHz)

 

 

 

Fig. 3 : Open Loop Frequency Response

Fig. 4 : Open Loop Frequency Response

80

 

 

 

 

 

0

 

 

 

Gain

 

Vcc = 3.3V

-20

 

60

 

 

-40

 

 

 

 

RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

Tamb = 25°C

-60

 

40

 

 

 

 

 

-80

Phase (Deg)

 

Phase

 

 

 

 

-100

 

 

 

 

 

 

20

 

 

 

 

 

-120

Gain(dB)

 

 

 

 

 

-140

 

 

 

 

 

-160

0

 

 

 

 

 

 

 

 

 

 

 

 

-180

 

-20

 

 

 

 

 

-200

 

 

 

 

 

 

 

-220

 

-40

 

 

 

 

 

-240

 

0.3

1

10

100

1000

10000

 

 

Frequency (kHz)

80

 

 

 

 

 

0

 

 

 

Gain

 

Vcc = 3.3V

 

-20

 

60

 

 

ZL = 8Ω + 560pF

-40

 

 

 

 

 

 

 

 

 

Tamb = 25°C

-60

 

 

 

 

 

 

 

 

40

 

 

 

 

 

-80

 

 

Phase

 

 

 

 

-100

 

20

 

 

 

 

 

-120

 

Gain(dB)

 

 

 

 

 

-140

Phase(Deg)

 

 

 

 

 

-160

0

 

 

 

 

 

 

 

 

 

 

 

 

-180

 

-20

 

 

 

 

 

-200

 

 

 

 

 

 

 

-220

 

-40

 

 

 

 

 

-240

 

0.3

1

10

100

1000

10000

 

 

Frequency (kHz)

Fig. 5 : Open Loop Frequency Response

80

 

 

 

 

 

0

 

 

 

Gain

 

Vcc = 2.6V

-20

 

60

 

 

-40

 

 

 

RL = 8Ω

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tamb = 25°C

-60

 

40

 

 

 

 

 

-80

 

 

Phase

 

 

 

 

-100

 

20

 

 

 

 

 

-120

 

Gain(dB)

 

 

 

 

 

-140

Phase(Deg)

 

 

 

 

 

-160

0

 

 

 

 

 

 

 

 

 

 

 

 

-180

 

-20

 

 

 

 

 

-200

 

 

 

 

 

 

 

-220

 

-40

 

 

 

 

 

-240

 

0.3

1

10

100

1000

10000

 

 

Frequency (kHz)

Fig. 6 : Open Loop Frequency Response

80

 

 

 

 

 

0

 

 

 

Gain

 

Vcc = 2.6V

-20

 

60

 

 

-40

 

 

 

 

ZL = 8Ω + 560pF

 

 

 

 

 

Tamb = 25°C

-60

 

40

 

 

 

 

 

-80

Phase (Deg)

 

Phase

 

 

 

 

-100

20

 

 

 

 

 

-120

Gain(dB)

 

 

 

 

 

-140

 

 

 

 

 

-160

0

 

 

 

 

 

 

 

 

 

 

 

 

-180

 

-20

 

 

 

 

 

-200

 

 

 

 

 

 

 

-220

 

-40

 

 

 

 

 

-240

 

0.3

1

10

100

1000

10000

 

 

Frequency (kHz)

5/28

TS4871

Fig. 7 : Open Loop Frequency Response

Fig. 8 : Open Loop Frequency Response

Gain (dB)

100

 

-80

 

 

100

80

Phase

-100

 

 

80

60

 

-120

 

 

60

 

 

 

 

 

Gain

-140

(Deg)Phase

(dB)Gain

Gain

40

 

40

 

 

 

 

 

 

 

20

 

-160

 

 

20

 

 

 

 

 

 

-180

 

 

 

0

Vcc = 5V

 

 

 

 

0

Vcc = 3.3V

 

 

 

 

 

-200

-20

CL = 560pF

 

 

 

 

CL = 560pF

 

 

 

 

-20

Tamb = 25°C

 

 

 

Tamb = 25°C

 

 

 

 

-220

 

 

 

 

 

 

 

 

-40

 

 

 

 

 

-40

 

 

0.3

1

10

100

1000

10000

0.3

1

10

Frequency (kHz)

-80

Phase -100

-120

-140

-160

-180

-200

-220

-240 100 1000 10000

Frequency (kHz)

Phase (Deg)

Fig. 9 : Open Loop Frequency Response

 

100

 

 

 

 

-80

 

 

80

 

 

Phase

 

-100

 

 

 

 

 

 

 

 

60

 

 

 

 

-120

 

 

 

 

 

 

 

 

(dB)

 

Gain

 

 

 

-140

(Deg)

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-160

Gain

 

 

 

 

 

Phase

20

 

 

 

 

-180

 

 

 

 

 

 

0

 

 

 

 

-200

 

 

 

Vcc = 2.6V

 

 

 

 

 

 

 

 

 

 

 

 

-20

CL = 560pF

 

 

 

-220

 

 

 

Tamb = 25°C

 

 

 

 

 

 

 

 

 

 

-40

 

 

 

 

-240

 

 

0.3

1

10

100

1000

10000

 

Frequency (kHz)

6/28

TS4871

Fig. 10 : Power Supply Rejection Ratio (PSRR) vs Power supply

Fig. 11 : Power Supply Rejection Ratio (PSRR) vs Feedback Capacitor

 

-30

 

 

 

 

 

 

Vripple = 200mVrms

 

 

 

 

-40

Rfeed = 22Ω

 

 

 

 

Input = floating

 

 

 

 

 

 

 

 

 

 

RL = 8Ω

 

 

 

(dB)

-50

Tamb = 25°C

 

 

 

 

 

 

 

 

 

 

 

 

PSRR

-60

Vcc = 5V, 3.3V & 2.6V

 

 

Cb = 1μF & 0.1μF

 

 

 

 

 

 

 

 

 

-70

 

 

 

 

 

-80

 

 

 

 

 

10

100

1000

10000

100000

Frequency (Hz)

PSRR (dB)

-10

 

 

-20

Vcc = 5, 3.3 & 2.6V

Cfeed=0

Cb = 1μF & 0.1μF

 

 

 

-30

Rfeed = 22kΩ

Cfeed=150pF

Vripple = 200mVrms

 

Input = floating

Cfeed=330pF

 

-40

RL = 8Ω

 

 

Tamb = 25°C

 

 

 

-50

 

 

 

 

-60

 

 

 

 

-70

 

 

Cfeed=680pF

 

-80

 

 

 

 

10

100

1000

10000

100000

Frequency (Hz)

Fig. 12 : Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor

 

-10

 

 

Cb=1μF

Vcc = 5, 3.3 & 2.6V

 

-20

Rfeed = 22k

 

Cb=10μF Rin = 22k, Cin = 1μF

 

-30

Rg = 100Ω, RL = 8Ω

(dB)

 

Tamb = 25°C

-40

Cb=47μF

 

PSRR

 

-50

 

 

 

 

-60

 

-70

Cb=100μF

 

 

 

 

 

 

 

-80

 

 

 

 

10

100

1000

10000

100000

Frequency (Hz)

Fig. 14 : Power Supply Rejection Ratio (PSRR) vs Feedback Resistor

 

-10

 

 

 

-20

Vcc = 5, 3.3 & 2.6V

Rfeed=110kΩ

 

Cb = 1μF & 0.1μF

 

 

 

 

-30

Vripple = 200mVrms

 

 

Input = floating

Rfeed=47kΩ

(dB)

 

RL = 8Ω

 

-40

Tamb = 25°C

 

PSRR

-50

 

 

 

-60

 

 

 

 

 

Rfeed=22kΩ

 

-70

 

 

Rfeed=10kΩ

-80

 

 

 

 

10

100

1000

10000

100000

Frequency (Hz)

Fig. 13 : Power Supply Rejection Ratio (PSRR) vs Input Capacitor

 

-10

 

 

Cin=1μF

Vcc = 5, 3.3 & 2.6V

 

Cin=330nF

 

Rfeed = 22kΩ, Rin = 22k

 

-20

 

Cb = 1μF

 

Cin=220nF

 

 

Rg = 100Ω, RL = 8Ω

(dB)

-30

Tamb = 25°C

 

 

 

PSRR

-40

 

 

 

Cin=100nF

-50

Cin=22nF

 

-60

 

 

 

 

10

100

1000

10000

100000

Frequency (Hz)

7/28

TS4871

Fig. 15 : Pout @ THD + N = 1% vs Supply Voltage vs RL

 

1.4

 

 

(W)

1.2

Gv = 2 & 10

8Ω

6Ω

Cb = 1μF

N

 

F = 1kHz

 

+

1.0

4Ω

BW < 125kHz

THD

 

 

0.8

Tamb = 25°C

 

1%

 

16Ω

 

 

@

 

 

0.6

 

 

power

 

 

0.4

 

 

Output

 

 

0.2

 

32Ω

 

 

 

0.0

 

 

 

 

 

2.5

3.0

3.5

4.0

4.5

5.0

Vcc (V)

Fig. 17 : Power Dissipation vs Pout

 

1.4

 

 

 

 

Vcc=5V

 

(W)

1.2

F=1kHz

 

 

THD+N<1%

RL=4Ω

Dissipation

1.0

 

 

Power

0.8

 

 

0.6

 

 

 

0.4

 

RL=8Ω

0.2 RL=16Ω

0.0

 

 

 

 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Output Power (W)

Fig. 19 : Power Dissipation vs Pout

0.40 Vcc=2.6V

0.35F=1kHz

(W)

0.30

THD+N<1%

Dissipation

RL=4Ω

0.20

 

 

0.25

 

Power

0.15

 

 

 

 

0.10

RL=8Ω

 

 

0.05

RL=16Ω

 

 

 

 

 

 

 

0.00

 

 

 

 

0.0

0.1

0.2

0.3

0.4

Output Power (W)

Fig. 16 : Pout @ THD + N = 10% vs Supply Voltage vs RL

 

2.0

Gv = 2 & 10

 

(W)

1.8

8Ω

Cb = 1μF

+N

 

6Ω

1.6

F = 1kHz

THD

 

BW < 125kHz

4Ω

1.4

 

Tamb = 25°C

 

10%

1.2

 

 

 

 

 

@

1.0

 

16Ω

 

 

power

0.8

 

 

Output

0.6

 

 

0.4

 

 

 

 

 

 

0.2

 

32Ω

0.0

 

 

 

 

 

2.5

3.0

3.5

4.0

4.5

5.0

Vcc (V)

Fig. 18 : Power Dissipation vs Pout

 

0.6

Vcc=3.3V

 

 

 

 

 

0.5

F=1kHz

 

 

THD+N<1%

RL=4Ω

(W)

0.4

 

 

Dissipation

 

 

0.3

 

 

Power

 

 

0.2

 

RL=8Ω

 

 

 

 

0.1

 

 

RL=16Ω 0.0

0.0

0.2

0.4

0.6

0.8

 

 

Output Power (W)

 

 

Fig. 20 : Power Derating Curves

 

2.0

 

 

1.8

 

 

1.6

QFN8

(W)

 

1.4

 

Dissipation

1.2

 

 

 

 

1.0

 

 

0.8

SO8

Power

 

0.6

 

 

 

 

0.4

 

0.2

 

 

MiniSO8

 

 

 

 

 

 

 

 

 

 

 

 

0.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

25

50

75

100

125

150

Ambiant Temperature (°C)

8/28

ST TS4871 User Manual

TS4871

Fig. 21 : THD + N vs Output Power

 

10

 

 

 

 

Rl = 4Ω

 

 

 

 

Vcc = 5V

 

 

 

 

Gv = 2

 

 

 

 

Cb = Cin = 1μF

 

 

(%)

BW < 125kHz

 

 

 

Tamb = 25°C

 

 

 

+ N

1

 

 

 

THD

 

 

20kHz

 

 

 

 

 

 

 

 

20Hz, 1kHz

 

0.1

0.01

0.1

1

 

1E-3

Output Power (W)

Fig. 22 : THD + N vs Output Power

 

10

 

 

 

 

RL = 4Ω, Vcc = 5V

 

 

 

Gv = 10

 

 

 

 

Cb = Cin = 1μF

 

 

 

BW < 125kHz, Tamb = 25°C

 

 

(%)

 

20kHz

 

 

+ N

 

 

 

1

 

 

 

THD

 

 

20Hz

 

 

 

 

 

0.1

 

 

1kHz

 

 

 

 

1E-3

0.01

0.1

1

Output Power (W)

Fig. 23 : THD + N vs Output Power

Fig. 24 : THD + N vs Output Power

10

10

RL = 4Ω, Vcc = 3.3V

RL = 4Ω, Vcc = 3.3V

Gv = 2

Gv = 10

 

Cb = Cin = 1μF

 

 

Cb = Cin = 1μF

(%)N

BW < 125kHz

(%)N

1

BW < 125kHz

Tamb = 25°C

20kHz

 

 

 

Tamb = 25°C

+

1

+

 

 

THD

THD

 

 

 

 

 

 

 

20kHz

 

 

 

 

 

 

0.1

20Hz

1kHz

 

0.1

 

20Hz, 1kHz

 

 

 

 

 

 

 

 

 

 

 

1E-3

0.01

0.1

1

1E-3

0.01

0.1

1

 

Output Power (W)

 

 

Output Power (W)

 

Fig. 25 : THD + N vs Output Power

 

10

 

 

 

 

RL = 4Ω, Vcc = 2.6V

 

 

 

Gv = 2

 

 

 

Cb = Cin = 1μF

 

(%)

 

BW < 125kHz

 

 

Tamb = 25°C

 

+ N

1

 

 

THD

 

 

 

 

 

 

 

20kHz

 

 

20Hz, 1kHz

 

0.1

 

 

 

1E-3

0.01

0.1

 

 

Output Power (W)

 

Fig. 26 : THD + N vs Output Power

 

10

 

 

 

 

RL = 4Ω, Vcc = 2.6V

 

 

 

Gv = 10

 

 

 

Cb = Cin = 1μF

 

(%)

 

BW < 125kHz

 

 

Tamb = 25°C

 

N

1

20kHz

 

THD +

 

 

 

 

 

 

 

20Hz

0.1

1kHz

 

 

 

 

 

1E-3

0.01

0.1

 

 

Output Power (W)

 

9/28

Loading...
+ 19 hidden pages