ST TS4621ML User Manual

TS4621ML
High-performance class-G stereo headphone amplifier
Datasheet production data
Features
Power supply range: 2.3 V to 4.8 V
2.1 mA current consumption with
100 µW/channel (10 dB crest factor)
0.006% typical THD+N at 1 kHz
100 dB typical PSRR at 217 Hz
100 dB of SNR A-weighted at G = 0 dB
Zero "pop and click"
Gain settings : 0 dB and 6 dB
Integrated high efficiency step-down converter
Low standby current: 5 µA max
Output-coupling capacitors removed
Thermal shutdown
Flip-chip package: 1.65 mm x 1.65 mm,
400 µm pitch, 16 bumps
Applications
Cellular phones, smartphones
Mobile internet devices
PMP/MP3 players
Portable CD/DVD players
Description
The TS4621ML is a class-G stereo headphone driver dedicated to high-performance audio, high­power efficiency and space-constrained applications.
It is based on the core technology of a low power dissipation amplifier combined with a high­efficiency step-down DC/DC converter for supplying this amplifier.
When powered by a battery, the internal step­down DC/DC converter generates the appropriate voltage to the amplifier depending on the
TS4621MLEIJT - flip-chip
Pinout (top view)
TOP VIEW
EN
GAIN
VOUTR
INR-
INR+
CMS
PVSS
C1
HPVDD
INL+
VOUTL
INL-
4321
AVDD
AGND
SW
D
C2
C
B
A
Balls are underneath
amplitude of the audio signal to supply the headsets. It achieves a total 2.1 mA current consumption at 100 µW output power (10 dB crest factor).
THD+N is 0.02 % maximum at 1 kHz and PSRR is 100 dB at 217 Hz, which ensures a high audio quality of the device in a wide range of environments.
The traditionally bulky output coupling capacitors can be removed.
A dedicated common-mode sense pin removes parasitic ground noise.
The TS4621ML is designed to be used with an output serial resistor. It ensures unconditional stability over a wide range of capacitive loads.
The TS4621ML is packaged in a tiny 16-bump flip-chip package with a pitch of 400 µm.
May 2012 Doc ID 023181 Rev 1 1/40
This is information on a product in full production.
www.st.com
40
Contents TS4621ML
Contents
1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 5
2 Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Gain control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Overview of the class-G, 2-level headphone amplifier . . . . . . . . . . . . . . . 25
4.3 External component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 Step-down inductor selection (L1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Step-down output capacitor selection (C
4.3.3 Full capacitive inverter capacitors selection (C12 and C
4.3.4 Power supply decoupling capacitor selection (Cs) . . . . . . . . . . . . . . . . . 28
4.3.5 Input coupling capacitor selection (C
4.3.6 Low-pass output filter (R
IEC 61000-4-2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
out
and C
) . . . . . . . . . . . . . . . . . . . . . . . 27
t
) . . . . . . . . . 28
SS
) . . . . . . . . . . . . . . . . . . . . . . . . . 28
in
) and
out
4.3.7 Integrated input low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.1 Layout recommendations for single-ended operation . . . . . . . . . . . . . . 32
4.5 Startup phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.1 Auto zero technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.2 Input impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6.1 Common-mode sense layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2/40 Doc ID 023181 Rev 1
TS4621ML List of figures
List of figures
Figure 1. Typical application schematic for the TS4621ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Current consumption vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 3. Standby current consumption vs. power supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. Maximum output power vs. power supply voltage, R Figure 5. Maximum output power vs. power supply voltage, R Figure 6. Maximum output power vs. power supply voltage, R Figure 7. Current consumption vs. total output power, R Figure 8. Current consumption vs. total output power, R Figure 9. Current consumption vs. total output power, R
Figure 10. Differential input impedance vs. gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 11. THD+N vs. output power - R Figure 12. THD+N vs. output power - R Figure 13. THD+N vs. output power - R Figure 14. THD+N vs. output power - R Figure 15. THD+N vs. output power - R Figure 16. THD+N vs. output power - R Figure 17. THD+N vs. output power - R Figure 18. THD+N vs. output power - R Figure 19. THD+N vs. output power - R Figure 20. THD+N vs. output power - R Figure 21. THD+N vs. output power - R Figure 22. THD+N vs. output power - R Figure 23. THD+N vs. output power - R Figure 24. THD+N vs. output power - R Figure 25. THD+N vs. output power - R Figure 26. THD+N vs. output power - R Figure 27. THD+N vs. output power - R Figure 28. THD+N vs. output power - R Figure 29. THD+N vs. output power - R Figure 30. THD+N vs. output power - R Figure 31. THD+N vs. output power - R Figure 32. THD+N vs. output power - R Figure 33. THD+N vs. output power - R Figure 34. THD+N vs. output power -R Figure 35. THD+N vs. frequency, R Figure 36. THD+N vs. frequency, R Figure 37. THD+N vs. frequency, R Figure 38. THD+N vs. frequency, R Figure 39. THD+N vs. frequency, R Figure 40. THD+N vs. frequency, R Figure 41. THD+N vs. frequency, R Figure 42. THD+N vs. frequency, R Figure 43. THD+N vs. frequency, R Figure 44. THD+N vs. frequency, R Figure 45. THD+N vs. frequency, R Figure 46. THD+N vs. frequency, R Figure 47. THD+N vs. frequency, R Figure 48. THD+N vs. frequency, R
= 16 Ω, in-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . . . 12
L
= 16 Ω, out-of-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . 12
L
= 16 Ω, in-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . . . 12
L
= 16 Ω, out-of-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . 13
L
= 16 Ω, in-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . . . 13
L
= 16 Ω, out-of-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . 13
L
= 32 Ω, in-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . . . 13
L
= 32 Ω, out-of-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . 14
L
= 32 Ω, in-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . . . 14
L
= 32 Ω, out-of-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . 14
L
= 32 Ω, in-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . . . 14
L
= 32 Ω, out-of-phase, V
L
= 32 Ω+IPad, in-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . 15
L
= 32 Ω+IPad, out-of-phase, VCC = 2.5 V. . . . . . . . . . . . . . . 15
L
= 32 Ω+IPad, in-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . 15
L
= 32 Ω+IPad, out-of-phase, VCC = 3.6 V. . . . . . . . . . . . . . . 16
L
= 32 Ω+IPad, in-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . 16
L
= 32 Ω+IPad, out-of-phase, VCC = 4.8 V. . . . . . . . . . . . . . . 16
L
= 47 Ω, in-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . . . . 16
L
= 47 Ω, out-of-phase, VCC = 2.5 V . . . . . . . . . . . . . . . . . . . 17
L
= 47 Ω, in-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . . . . 17
L
= 47 Ω, out-of-phase, VCC = 3.6 V . . . . . . . . . . . . . . . . . . . 17
L
= 47 Ω, in-phase, VCC = 4.8 V . . . . . . . . . . . . . . . . . . . . . . 17
L
= 47 Ω, out-of-phase, V
L
= 16 Ω, in-phase, V
L
= 16 Ω, out-of-phase, V
L
= 16 Ω, in-phase, V
L
= 16 Ω, out-of-phase, V
L
= 16 Ω, in-phase, V
L
= 16 Ω, out-of-phase, V
L
= 32 Ω, in-phase, V
L
= 32 Ω, out-of-phase, V
L
= 32 Ω, in-phase, V
L
= 32 Ω, out-of-phase, V
L
= 32 Ω, in-phase, V
L
= 32 Ω, out-of-phase, V
L
= 47 Ω, in-phase, V
L
= 47 Ω, out-of-phase, V
L
CC
CC
CC
CC
CC
CC
CC
= 16 Ω . . . . . . . . . . . . . . . . . . . . . . . . .11
L
= 32 Ω . . . . . . . . . . . . . . . . . . . . . . . . .11
L
= 47 Ω . . . . . . . . . . . . . . . . . . . . . . . . .11
L
= 16 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
L
= 32 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
L
= 47 Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
L
= 4.8 V . . . . . . . . . . . . . . . . . . . 15
CC
= 4.8 V . . . . . . . . . . . . . . . . . . . . 17
CC
= 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . 17
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . 18
CC
= 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . 18
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . 18
CC
= 4.8 V. . . . . . . . . . . . . . . . . . . . . . . . . . 18
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . 19
CC
= 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . 19
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . 19
CC
= 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . 19
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . 20
CC
= 4.8 V. . . . . . . . . . . . . . . . . . . . . . . . . . 20
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . 20
CC
= 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . 20
= 2.5 V . . . . . . . . . . . . . . . . . . . . . . 21
CC
Doc ID 023181 Rev 1 3/40
List of figures TS4621ML
Figure 49. THD+N vs. frequency, RL = 47 Ω, in-phase, V Figure 50. THD+N vs. frequency, R Figure 51. THD+N vs. frequency, R Figure 52. THD+N vs. frequency, R Figure 53. PSRR vs. frequency - V Figure 54. PSRR vs. frequency - V Figure 55. Output signal spectrum (V Figure 56. Crosstalk vs. frequency - R Figure 57. Crosstalk vs. frequency - R Figure 58. Crosstalk vs. frequency - R Figure 59. Crosstalk vs. frequency - R Figure 60. CMRR vs. frequency, 32 Ω, V Figure 61. CMRR vs. frequency, 32 Ω, V
= 47 Ω, out-of-phase, V
L
= 47 Ω, in-phase, V
L
= 47 Ω, out-of-phase, V
L
= 3.6 V, gain = 0 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CC
= 3.6 V, gain = +6 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CC
= 3.6 V, load = 32 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CC
= 32 Ω, V
L
= 32 Ω, V
L
= 47 Ω, V
L
= 47 Ω, V
L
= 36 V, 0 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
CC
= 36 V, 6 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
CC
= 3.6 V, gain = 0 dB . . . . . . . . . . . . . . . . . . . . . 23
CC
= 3.6 V, gain = +6 dB . . . . . . . . . . . . . . . . . . . . 23
CC
= 3.6 V, gain = 0 dB . . . . . . . . . . . . . . . . . . . . . 23
CC
= 3.6 V, gain = +6 dB . . . . . . . . . . . . . . . . . . . . 23
CC
= 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . 21
CC
CC
= 3.6 V . . . . . . . . . . . . . . . . . . . . . . 21
CC
= 4.8 V. . . . . . . . . . . . . . . . . . . . . . . . . . 21
= 4.8 V . . . . . . . . . . . . . . . . . . . . . . 22
CC
Figure 62. Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 63. Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 64. TS4621ML architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 65. Efficiency comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 66. Class-G operating with a music sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 67. Typical application schematic with IEC 61000-4-2 ESD protection . . . . . . . . . . . . . . . . . . 30
Figure 68. Single-ended input configuration1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 69. Single-ended input configuration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 70. Incorrect ground connection for single-ended option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 71. Correct ground connection for single-ended option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 72. Common-mode sense layout example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 73. TS4621ML footprint recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 74. Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 75. Marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 76. Flip-chip - 16 bumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 77. Device orientation in tape pocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4/40 Doc ID 023181 Rev 1
TS4621ML Absolute maximum ratings and operating conditions

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
V
CC
V
in+,Vin-
Control
input
voltage
T
stg
T
j
R
thja
P
d
ESD
Supply voltage
Input voltage referred to ground +/- 1.2 V
EN, Gain -0.3 to VDD V
Storage temperature -65 to +150 °C
Maximum junction temperature
Thermal resistance junction to ambient
Power dissipation Internally limited
Human body model (HBM)
All pins VOUTR, VOUTL vs. AGND
Machine model (MM), min. value
Charge device model (CDM)
All pins VOUTR, VOUTL
IEC61000-4-2 level 4, contact IEC61000-4-2 level 4, air discharge
(1)
during 1 ms.
(5)
(7)
(2)
(6)
(7)
(3)
5.5 V
150 °C
200 °C/W
(4)
2 4
100 V
500 750
+/- 8
+/- 15
kV
V
kV
Lead temperature (soldering, 10 sec) 260 °C
1. All voltage values are measured with respect to the ground pin.
2. Thermal shutdown is activated when maximum junction temperature is reached.
3. The device is protected from overtemperature by a thermal shutdown mechanism, active at 150° C.
4. Exceeding the power derating curves for long periods may provoke abnormal operation.
5. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
6. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
7. The measurement is performed on an evaluation board, with ESD protection EMIF02-AV01F3.
Doc ID 023181 Rev 1 5/40
Absolute maximum ratings and operating conditions TS4621ML

Table 2. Operating conditions

Symbol Parameter Value Unit
V
CC
Supply voltage 2.3 to 4.8 V
internal step-down DC output voltages
HPVDD
High rail voltage Low rail voltage
1.9
1.2
EN,GAIN Input voltage low level 0.6 V max V
EN,GAIN Input voltage high level 1.3 V min
Load resistor ≥ 16 Ω
Load capacitor Serial resistor of 12 Ω minimum, R
16 Ω 0.8 to 100
L
nF
Operating free air temperature range -40 to +85 °C
Flip-chip thermal resistance junction to ambient 90 °C/W
T
R
R
C
oper
thja
L
L
V
6/40 Doc ID 023181 Rev 1
TS4621ML Typical application schematic

2 Typical application schematic

Figure 1. Typical application schematic for the TS4621ML

Negative left input
Positive left input
Negative right input
Positive right input
Cin 1 uF
Cin 1 uF
Cin 1 uF
Cin 1 uF
EN
InL-
InL+
InR+
InR-
GAIN
Interface
Cs
2.2 uF
PVss
Css
2.2 uF
-
+
+
-
Negative
supply
AVdd
Vbat
Positive
detector
detector
C12
2.2 uF
supply
Level
Level
Sw
3.3 uH
HpVdd
VoutL
CMS
VoutR
AGndC1 C2
L1
Ct 10 uF
Rout
12 ohms min.
Rout
12 ohms min.
Cout
0.8 nF min.
3
J1
2
1
Cout
0.8 nF min.
AM06119

Table 3. TS4621ML pin description

Pin number Pin name Pin definition
A1 SW Switching node of the buck converter
A2 AVDD Analog supply voltage, connect to battery
A3 VOUTL Output signal for left audio channel
A4 INL- Negative input signal for left audio channel
B1 AGND Device ground
B2 C1 Flying capacitor terminal for internal negative supply generator
B3 HPVDD Buck converter output, power supply for amplifier
B4 INL+ Positive input signal for left audio channel
C1 C2 Flying capacitor terminal for internal negative supply generator
C2 PVSS Negative supply generator output
C3 CMS
Common-mode sense, to be connected as close as possible to the ground of headphone/line out plug
C4 INR+ Positive input signal for right audio channel
D1 EN Amplifier enable
D2 GAIN Amplifier gain select
D3 VOUTR Output signal for right audio channel
D4 INR- Negative input signal for right audio channel
Doc ID 023181 Rev 1 7/40
Typical application schematic TS4621ML

Table 4. TS4621ML component description

Component
(1)
Value Description
Cs 2.2 µF
C12 2.2 µF
C
SS
C
in
C
out
R
out
2.2 µF
Cin
----------------------------------------- -=
2 π Rin Fc×××
0.8 to 100 nF
12 Ω min.
L1 3.3 µH
C
t
10 µF
Decoupling capacitors for V
. A 2.2 µF capacitor is sufficient for proper
CC
decoupling of the TS4621ML. An X5R dielectric and 10 V rating voltage is recommended to minimize ΔC/ΔV when V
=4.8V.
CC
Must be placed as close as possible to the TS4621ML to minimize parasitic inductance and resistance.
Capacitor for internal negative power supply operation. An X5R dielectric and 6.3 V rating voltage is recommended to minimize ΔC/ΔV when HPVDD = 1.9 V.
Must be placed as close as possible to the TS4621ML to minimize parasitic inductance and resistance.
Filtering capacitor for internal negative power supply. An X5R dielectric and
6.3 V rating voltage is recommended to minimize ΔC/ΔV when HPVDD = 1.9 V.
1
Input coupling capacitor that forms with Rin R
/2 a first-order high-pass
indiff
filter with a -3 dB cut-off frequency Fc.
Output capacitor of 0.8 nF minimum to 100 nF maximum. This capacitor is mandatory for operation of the TS4621ML.
Output resistor in-series with the TS4621ML output. This 12 Ω minimum resistor is mandatory for operation of the TS4621ML.
Inductor for internal DC/DC step-down converter. References of inductors: refer to Section 4.3.1 for more information.
Tank capacitor for internal DC/DC step-down converter. An X5R dielectric and 6.3 V rating voltage is recommended to minimize ΔC/ΔV when HPVDD = 1.9 V. Refer to Section 4.3.2 for more information.
1. Refer to Section 4.3 for a complete description of each component.
8/40 Doc ID 023181 Rev 1
TS4621ML Electrical characteristics

3 Electrical characteristics

The values given in the following table are for the conditions VCC = +3.6 V, AGND = 0 V, GAIN = 0 dB, R

Table 5. Electrical characteristics of the amplifier

Symbol Parameter Min. Typ. Max. Unit
= 32 Ω + 15 Ω, T
L
= 25° C, unless otherwise specified.
amb
I
CC
I
s
I
STBY
V
in
V
oo
V
out
THD+N
PSRR
Quiescent supply current, no input signal, both channels enabled
Supply current, with input modulation, both channels enabled, HPVDD = 1.2 V, output power per channel, F= 1 kHz
Pout = 100 µW at 3 dB crest factor Pout = 500 µW at 3 dB crest factor Pout = 1mW at 3dB crest factor Pout = 100 µW at 10 dB crest factor Pout = 500 µW at 10 dB crest factor Pout = 1 mW at 10 dB crest factor
Standby current, no input signal, V
Input differential voltage range
(1)
EN
= 0 V, V
=0V 0.6 5 µA
GAIN
Output offset voltage No input signal
Maximum output voltage, in-phase signals
RL = 16 Ω, THD+N = 1% max, f = 1 kHz
= 47 Ω, THD+N = 1% max, f = 1 kHz
R
L
RL = 10 kΩ, Rs = 15 Ω, CL = 1 nF, THD+N = 1% max, f = 1 kHz
Total harmonic distortion + noise, G = 0 dB
= 700 mVrms, F = 1 kHz
V
out
= 700 mVrms, 20 Hz < F < 20 kHz
V
out
(1)
, V
Power supply rejection ratio
= 200 mVpp, grounded
ripple
inputs
F = 217 Hz, G = 0 dB, R F = 10 kHz, G = 0 dB, R
16 Ω
L
16 Ω
L
1.2 1.5 mA
2.3
3.7
4.7
3.5 5
6.5
mA
2.1
3.1
3.9
1V
-500 +500 µV
0.6
1.0
1.0
0.8
1.1
1.3
0.006
V
0.02 %
0.05
90 100
dB
70
rms
rms
CMRR
Crosstalk
SNR
ONoise
Common mode rejection ratio
F = 1 kHz, G = 0 dB, V F = 20 Hz to 20 kHz, G = 0 dB, Vic = 200 mV
= 200 mV
ic
pp
pp
Channel separation
= 32 Ω + 15 Ω , G = 0 dB, F = 1 kHz, Po = 10 mW 60 100
R
L
Signal-to-noise ratio, A-weighted, V F = 1 kHz
(1)
G = +0 dB
Output noise voltage, A-weighted
(1)
out
= 1 V
, THD+N < 1%,
rms
100
G = +0 dB
Doc ID 023181 Rev 1 9/40
65 45
dB
dB
dB
Vrms
Electrical characteristics TS4621ML
Table 5. Electrical characteristics of the amplifier (continued)
Symbol Parameter Min. Typ. Max. Unit
AV
Closed loop voltage gain, GAIN=L 0 dB
Closed loop voltage gain, GAIN=H 6 dB
ΔAV Gain matching between left and right channels -0.5 +0.5 dB
R
V
V
1. Guaranteed by design and parameter correlation.
Differential input impedance at 6 dB 24 33.2 kΩ
indiff
Low level input voltage on EN, GAIN pins 0.6 V
IL
High level input voltage on EN, GAIN pins 1.3 V
IH
Input current on EN,GAIN 10 µA
I
in
10/40 Doc ID 023181 Rev 1
TS4621ML Electrical characteristics
Figure 2. Current consumption vs. power
supply voltage
Figure 4. Maximum output power vs. power
supply voltage, R
= 16 Ω
L
Figure 3. Standby current consumption vs.
power supply voltage
Figure 5. Maximum output power vs. power
supply voltage, RL = 32 Ω
Figure 6. Maximum output power vs. power
supply voltage, R
= 47 Ω
L
Doc ID 023181 Rev 1 11/40
Figure 7. Current consumption vs. total
output power, RL = 16 Ω
Electrical characteristics TS4621ML
Figure 8. Current consumption vs. total
output power, R
= 32 Ω
L
Figure 10. Differential input impedance vs.
gain
Figure 9. Current consumption vs. total
output power, RL = 47 Ω
Figure 11. THD+N vs. output power -
R
= 16 Ω, in-phase, VCC = 2.5 V
L
Figure 12. THD+N vs. output power -
R
= 16 Ω, out-of-phase, VCC = 2.5 V
L
Figure 13. THD+N vs. output power -
12/40 Doc ID 023181 Rev 1
RL = 16 Ω, in-phase, VCC = 3.6 V
Loading...
+ 28 hidden pages